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1 INTRODUCTION

Route Planning Services (RPS) are web-based applications which can calculate routes between two chosen points
in a road network, and are indispensable navigational aids for commuters, vehicle operators, autonomous vehicles,
etc. However, these same routes can reveal points of interest [15] which may contain users’ places of work and
residence, in addition to highly-sensitive information about their political, sexual, or religious tendencies [30].
Furthermore, this exposes users to risks of targeted criminal acts, mass surveillance, discrimination, etc. =The
rise in high-profile data breaches over the past decade has highlighted the importance of protecting user location
(and route) data, and has spurred many recent works focusing on adding privacy-preserving mechanisms to RPS.

In the RPS context, privacy primarily entails keeping users’ origin, destination, and route information from
being acquired by untrusted entities. It exists side-by-side with other important Quality of Service (QoS) metrics
such as Utility (e.g. the accuracy of the routes, etc.) and Performance (e.g. the response time of the RPS, etc.) which
affect whether or not an RPS would gain widespread adoption. Finding a good balance between these metrics is
crucial for any privacy-preserving RPS. For instance, privacy-preserving protocols for querying road traffic data
have been developed for Vehicle Ad-hoc Networks (VANETSs) but these either offload the computation cost of route
planning onto the vehicle itself [24, 25, 39] or an external trusted entity [3, 4]. The latter approaches are already
done by modern RPS, while the former are not web-based RPS at all. Structured encryption schemes [17, 26, 37]
provide privacy-protection for both user queries and road network data while also being relatively lightweight
and efficient but at the cost of inherently leaking some query-related information which are detrimental to the
privacy of user routes.

Aside from these, there are also works that utilize Private Information Retrieval (PIR) [7] since this protocol
has strong privacy guarantees. In an RPS, their efficiency depends mostly on the routing algorithm but are often
considered too computationally-heavy to be used on very large databases — such as the road network graph of a
large city. As such, only a few examples of PIR-based RPS have been developed over the past decade. One approach
[35] compresses road network graphs in a novel PIR-queryable manner but results in longer pre-processing and
query response times. The other approach [28] partitions the road network into disjoint subgraphs and these
are individually retrieved via PIR to inform a local routing algorithm on the user’s device. This results in longer
route completion times since many PIR queries are needed to complete the route. Both approaches clearly entail
a significant degradation of QoS which dissuades most mainstream RPS from experimenting with and adopting
them.

Our approach aims to create a RPS that addresses the aforementioned issues by fulfilling the following three
objectives: (1) produce close-to-optimal users’ routes, (2) provide strong privacy guarantees for users’ route data,
and (3) maintain an adequate level of performance by minimizing processing and communication overhead as
much as possible. The approach involves two phases. In the pre-processing phase, a graph partitioning technique
is used to hierarchically divide the road network into balanced partitions. Routes within each partition are then
pre-computed and stored in separate databases, and the same is done for an additional set of routes between
neighboring partitions. In the routing phase, a novel hierarchical heuristic algorithm on the user’s device privately
obtains partial routes from the different partition databases using PIR, and iteratively combines them to create
a progressively finer route. We named the proposed approach, Hierarchical Privacy-Preserving Route Planning
(HPRoP), which makes the following key contributions:

o A RPS that uses a hierarchical partitioning of the road network with a novel hierarchical route planning
algorithm to produce routes with good optimal route approximation while maintaining strong privacy
guarantees and low route completion times,

o A pair of privacy metrics — endpoint location privacy and route privacy — that aim to be general enough to
be applicable to other privacy-preserving RPS while also accounting for specific characteristics of PIR-based
RPS (such as providing strong privacy guarantees between routes in the same database), and
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o A comprehensive evaluation of the Utility, Privacy, and Performance of the proposed RPS on a simulated
road network based on Osaka City against two PIR-based baseline approaches.

Note that the baseline approaches mentioned above were also developed solely for this paper to address the
lack of recent PIR-based route planning approaches which HPRoP can be compared against. However, we do
not count them as separate contributions since they are primarily used as an evaluation tool. The rest of this
article is organized as follows. Section 2 presents a summary of prior work related to privacy-preserving route
planning. Section 3 discusses the mathematical models, assumptions, and other preliminaries. Section 4 presents
the concept and intuition behind route planning under the constraints of PIR. Section 5 defines and discusses
the privacy metrics used to evaluate the RPS. Section 6 presents the key ideas behind the approach itself, and
the details of the heuristic algorithm. Section 7 discusses the evaluation framework and the results. Section 8
concludes with a brief summary of the article and some notes on potential future work.

2 RELATED WORK

Most algorithms for calculating exact shortest paths require knowledge of the exact source and destination
locations. Classical algorithms like Dijkstra’s and Bellman-Ford [10] calculate routes by repeatedly scanning
connected vertices from some source point and assigning them weights until a path to the destination point
is found. Modern algorithms improve upon this by leveraging unique properties of road networks. ALT [18]
pre-computes distances to fixed landmarks, and uses them as lower bounds to informa a bidirectional A* search
[21]. Contraction Hierarchies [16] pre-processes the network graph to establish “shortcut edges,” facilitating faster
route calculation between distant points. Customizable Route Planning [11] uses the network graph’s topology in
their metric-independent hierarchical routing method. Regardless, deploying these on the server-side inevitably
means that the user’s origin and destination must be divulged so that the final route can be computed. Meanwhile,
deploying these on the client-side means downloading large amounts of road network data, and computing routes
on more resource-constrained machines. In other words, the first case compromises privacy while the second
degrades functionality.

Alternatively, algorithms for finding approximate shortest paths also exist, focusing on quickly obtaining short
routes rather than finding the exact shortest ones. Point-to-point variants of these [8, 22, 23] were developed at a
time when mobile computational power was very limited, and have been outclassed by modern exact shortest
path algorithms. Yet, these remain useful in All-Pairs Shortest Path (APSP) distance oracles [1, 34] for speeding up
goal-directed route calculations.

Recent research on privacy-preserving route planning techniques generally fall under three categories: (1)
Structured Encryption-based, (2) PIR-based, and (3) Other encryption-based schemes. In addition, a number of
schemes for privately querying road traffic information with applications to vehicle navigation systems also exist,
but, since these either perform route planning on the vehicle itself [24, 25, 39] or an external trusted entity [3, 4],
these works have been excluded here.

Structured Encryption [6] refers to techniques that allows data structures to be encrypted such that these
can be queried later in a privacy-preserving manner. They are typically more efficient in terms of computation
time and communication overhead at the cost of leaking a small amount of information about the data and the
queries. The approaches in [26, 37] use structured encryption to find the shortest distance between vertex-pairs
in encrypted graphs. These, however, are only able to find shortest distance values instead of the actual shortest
paths, and are vulnerable to collusion between the storage and computing servers — which are essentially the
same entity in the RPS context. In contrast, [17] is able to retrieve the actual shortest paths on a single-server
setup which effectively eliminates the aforementioned issues. However, pre-computing the encrypted database
for large sparse graphs (i.e. with |V| > 10,000 and |E| > 30, 000) took upwards of 16.5 hours and produced very
large files (around 4.4 GB), rendering it impractical for dynamic scenarios such as real-time route planning.
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Additionally, while all three have heavily-constrained leakage profiles, some of the information they inherently
leak may be detrimental to route privacy. For instance, the number of potential query elements (i.e. the database
size) can be used to determine the specific subgraph of the road network graph being used. Query repetitions and
total queries for route completion can be jointly analyzed across multiple sessions to deduce the actual route.
Different approaches may also leak other information in addition to the ones mentioned here.

PIR [7] is a technique that allows remote databases to be queried in such a way that the retrieved element would
not be revealed to the service provider or any third-party entity. PIR-based schemes, therefore, have slightly
stronger privacy guarantees in that repeated queries and underlying database sizes are not leaked, but have the
disadvantage of much higher communication overhead. While most modern implementations [2, 19, 27, 29] have
become very communication-efficient (i.e. up to O(VN)), they remain impractical for accessing a database of
APSP in a large city. This is because PIR schemes need to go through each individual element to avoid leaking
information about the element being retrieved [5]. The approach in [35] describes a method for compressing
road network graphs via sign-decomposition combined with Yao’s garbled circuits [36] and PIR to protect both
user queries and said graph, giving it strong end-to-end privacy guarantees. However, it also has relatively long
pre-processing and query response times since the protocol must operate on compressed and encrypted data
at all times. The approach in [28] partitions the network graph into disjoint sections (i.e. each consisting of a
separate subgraph) which can then be retrieved via PIR during local computation of a shortest path during the
routing phase. While this requires minimal pre-processing time, the total route completion time remains rather
long since the locally-run routing algorithm would need multiple PIR queries to complete a single route.

Other encryption-based schemes with much stronger privacy guarantees also exist but they are also much less
efficient than the previous two. For instance, [38] allows users to request routes between arbitrary source and
destination partitions, as well as within said partitions in a privacy-preserving manner using 1-of-n Oblivious
Transfer [31]. However, the scheme needs to compute All-Pairs of Shortest Paths (APSP) for the aforementioned
partitions during the routing phase, drastically slowing down query response times. Similarly, the work in [14]
uses Paillier’s Encryption to privately query outgoing edge weights from vertices in the road network graph
which, in turn, is used to inform a route planning algorithm running locally on the user’s own device. The scheme,
unfortunately, has a very high communication overhead since it has to make a separate query for every vertex
that needs to be “scanned” by the routing algorithm.

As this works aims to achieve strong privacy guarantees for users’ routes while also meeting utility and
performance targets, PIR was chosen as the core privacy-preservation mechanism for the proposed approach.
Unlike structured encryption, it does not leak information about query repetitions, which can potentially be
analyzed by an adversary to distinguish between different route requests by the same user.

3 MODELS AND ASSUMPTIONS

This section presents the assumptions and mathematical models related to the road network graph, its corre-
sponding partition graph, and the “approximate” routes that can be derived from the latter.

3.1 Road Network Partitioning Model

A road network can be modelled as a directed graph G = (V, E) where the edges E represent road segments,
and the vertices V represent either road intersections or terminals. Each road segment e € E is a directed edge
between two vertices u, v € V such that e = (u,v), with parallel opposing lanes being represented by two directed
edges going in opposite directions. The traversal cost for e is given by its length, I (u, v). A route or path between

two vertices s,d € V is defined as a sequence of vertices rg(s,d) = (vid, vgd, e, vfld_l, vfzd) where the first vertex
vfd = s and the last vertex v3¢ = d. The total length of r(s, d) is given by Lg(rg (s, d)) = Zl;‘i(s’d)l_l lc (ofd, vff'l .
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Table 1. Summary of Symbols used in Sec. 3

l Symbol [ Description
G=(V,E) Road network graph with road segments E and intersections V'
I (u,0) Length of a road segment having endpoints (u, v)
s,d Source (s) and Destination (d) vertices
rg(s,d) Path/route between s and d
Lg(rg(s,d)) Total length of path/route rg (s, d)
Rg (s, d) All possible paths between s and d
pG(s,d) Shortest path between s and d
Gp = (P,C) Partition graph derived from G with the set of all partitions P and the connections between them C
p=(Vp,Ep) A partition (i.e., a subgraph of G) consisting of road segments E, and endpoints V}, within it
NBp, Set of all neighboring partitions for partition p,,
14 Partition level
L Maximum partition level (0 < ¢ < £)
Pt Subset of partitions in P at level ¢
pf A partition belonging under P? with a given index i
Xy Representative vertex for the partition py;
Cpupo A connection between partitions p,, and p, through shortest path pg (%, x5 )
distg (u,v) Shortest path distance between u and v in G
D(p) Database of shortest paths for partition p
C(pos - Pn) Arbitrary route combination heuristic
rg;(u,0) Approximate shortest path between u and v
a(rg(u,0)) Optimal route approximation metric

Denoting all possible paths (between s and d) as R (s, d), the Shortest Path is then:

pG(s,d) = arg min,cpgs,d) Lo(r) (1)

Most modern route planning algorithms can already deal with very large road networks, but typically do not
incorporate route privacy protection mechanisms out of the box, as they tend to significantly increase processing
and communication overhead as mentioned in Sec. 2. However, if the route planning task can be divided, then the
additional processing cost incurred by the privacy mechanism can be distributed across multiple devices instead
and ultimately improve RPS performance. This is done by first dividing the road network into different areas
called partitions.

An arbitrary partitioning of the road network graph G is represented by a separate partition graph Gp = (P, C)
where the vertices P represent partitions and the edges C represent connections between them. Each partition
p € Pis asubgraph p = (V,, E,) such that V, € V and E, C E. Each connection c,,,, € C is a shortest path
pG (xy, x,) between the representative vertices x,,x, € V of any two neighboring partitions p,, p, € P where
Xy € Vp, Nxy € Vp,. TWo partitions are considered “neighbors” if 3 e = (u,0) st.e e EAu € V,, Av €V,
Finally, the set of all neighboring partitions for p,, is defined as NB,, = {po|p, € P A (cp,p, € CV cpp, €C)}

Representative vertices are ideally chosen to minimize the shortest path distance to all other vertices in the
partition. Vertices with high graph centrality are good candidates, but our preliminary experiments show that
it is viable to simply choose the vertex closest to the geospatial average of the coordinates of each partition’s
vertices with no impact on routing performance. Thus, representative vertices were chosen via this method. It
then follows that I, (pu, po) = Lc(pc (xy, x,)). For simplicity, the shortest path distance between any u,0 € G
is represented by distg (u, v), while distg, (py, p,) refers to the shortest path distance between their containing
partitions, p,, p, € P.

Partitions are defined in a hierarchical manner with the maximum partition level being £, and the subset
of partitions for each level £ < £ denoted as P* C P such that P ¢ P‘~! for £ > 0. A partition may also be
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Fig. 1. Types of shortest paths stored by each partition

defined as p! where ¢ is the partition’s level and i is the partition’s index at that level given P* = {p{, p!, ..., p’}.
The base level partition set P’ contains only one partition/subgraph p§ = G at £ = 0. Conversely, p) might be
composed of several smaller partitions p;, p1, p,, and p; at £ = 1 such that all of them are subgraphs of p{, and so
on. For clarity, partition levels will henceforth be referred to by their position (i.e., higher or lower) instead of
their subgraph’s size. Each partition p’ has three sets of shortest path data as depicted in Fig. 1: (1) the shortest
paths within the partition p’ (black edges), (2) the shortest paths to its neighboring partitions, NB, (blue edges),
and (3) the shortest paths between the containing partition, p‘~', to its own neighbors, NB,.-1 (green edges). This
database of shortest paths is represented by D(p").

3.2 Approximate Shortest Path Model

Our approach relaxes the shortest path problem by accepting approximate shortest paths between two areas
(in this case, partitions) containing s and d in place of the exact shortest path between the two points. This,
in turn, reduces the number of queries required to obtain a route (hence, faster route completion times) at the
cost of potentially having slightly longer paths. These are formally defined here as follows. Given an arbitrary
s,d € V, the exact shortest path ps (s, d) rarely coincides with the shortest path pg, (x5, x4) where x; and x4 are
the representative vertices in the same partitions as s and d, respectively. This is because only routes between
representative vertices of partitions in P can be produced from Gp, and it is highly likely that s # x; or d # x4.
However, it it is still possible to “complete” the route by adding in the missing start and end sections. Letting
C(p1, ---» pn) be a route combination heuristic, the simplest “completed” route would be:

ré(s, d) = C(pG(sa xs), ,DGP(xSa Xd), ,DG(xda d)) (2)
This can be generalized further by replacing pg, (xs, x4) with C(pg, (x1, x2), . . ., pGp (Xn=1, Xn)):
r6(s,d) = C(pG (s, %s), pGp (X1, X2), - - - pGp (Xn-1, Xn), pG (xa, d)) ®3)

where x; = x5 and x, = x4. In this work, these kinds of combined paths are designated as approximate shortest
paths, and their quality is measured based on how well they approximate their counterpart exact shortest paths.
This metric is defined as the optimal route approximation:

sy = 20D

distf,(s,d) @)
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where I (r(; (s, d)) is the length of the approximate shortest path, and dist (s, d) is the length of the exact shortest
path in G.

3.3 Assumptions

Having presented the mathematical models relevant to route planning, we now state the core assumptions in this
work as follows. Foremost is that the RPS operates over a particular service region, and is primarily used by the
general public for their day-to-day activities. The service region in this case is assumed to be a geographical area
of arbitrary shape and size that has fixed bounds. This area is assumed to have comprehensive road network
data available such that a RPS can be used to calculate routes within it. This road network is assumed to be
represented as a graph that can be divided multiple times to produce subgraphs representing partitions as per Sec.
3.1. Each highest-level partition is assumed to be handled by a distinct physical or virtual device for the purpose
of the RPS. Additionally, it is assumed that each partition can calculate, build, and maintain its own database of
shortest paths D(p) independent of its other tasks. This per-partition database is then assumed to be queryable
by users in a privacy-preserving manner through PIR.

We additionally assume that all entities other than the user are potential threats — henceforth, simply called
“adversaries” — interested in gaining access to the user’s route information. Note that no distinction is made
between the service providers themselves and malicious third-parties. The kinds of information that can be
leaked include the user’s: (1) exact origin, (2) exact destination, and (3) the calculated “route” between them.

4 ROUTE PLANNING WITH PIR

Table 2. Summary of Symbols used in Sec. 4

Symbol Description
R Set of shortest paths between all possible pairs of vertices in V'
LZax Length of the longest path in the set, R
Cpir Constant representing the impact of database sizes on record retrieval times for PIR
Np Average number of vertices in a partition (across all p € P)
V; K Set of vertices in partition p that are adjacent to other partitions
Ng j Average number of vertices adjacent to other partitions (i.e. Vpa j ) (across all p € P)
Ne Average number of external connections (across all p € P)

PIR can be used by RPS to provide strong privacy guarantees by protecting the database representation of the
road network graph used to calculate routes. In the simplest case, consider a database containing APSP for the
whole road network graph, indexed by pairs of origin and destination vertices, (s, d). PIR can then be used to
retrieve any route between any two locations on the road network using a single query (i.e. O(1)) with very high
privacy. This is the naive approach which is not feasible in practice for two reasons: (1) it requires a prohibitively
large amount of storage space, and (2) pre-computing APSP information for large road network graphs takes a
very long time.

Assuming a graph with 10, 000 vertices, a longest path length of 20 vertices, and a 1-byte representation for
vertex data, the total PIR database size is already be around 2 GB. This is even larger for city-sized road networks
such as Osaka City’s which has ~ 99,000 vertices (~ 200.8 GB keeping all other parameters same). In short,
letting R7, = {r5;(u,0)|u,0 € V} and L}** = Lg(arg max,. R, |r]), the space complexity for such an approach is
o(|V|?- L73%%). This issue is made even worse by PIR since individual record retrieval times become slower with
larger database sizes. This has been verified through preliminary experiments where data retrieval times were
observed to scale linearly with database sizes by a constant factor, Cy;,, such that accessing a single route would
have a time complexity of O(Cp;r - [V|*)  O(|V|?) instead of the expected O(1).
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Since time complexity is heavily dependent on space-complexity for PIR-based approaches, existing works
[28, 35] have focused on tackling the space complexity problem since pre-processing is assumed to be done
offline only once. This is not the case for real-world road networks, however, where traffic conditions can
change very quickly. One way to solve this is by distributing route data among several edge servers such that
each one only manages vertices for a distinct partition. This reduces the time complexity to O(|V| - N;;) where
Np = 1/IP|- X pep |Vp| is the average vertex count per partition, while the per-partition space complexity becomes
O(N, - [V] - L#%¥). These databases still need to be kept updated, but it is much easier to do so in a distributed
manner. However, dividing the data comes at the cost of weaker privacy since the set of route data stored on the
accessed edge server is assumed known to the adversary. This is analyzed further in Sec. 5.

Table 3. Summary of Time and Space Complexity for Sec. 4

[ Space Complexity [ Time Complexity ‘
Naive O(|V[* - L) o(IV]?®)
EPR-D 0N, - [N, + NaU)) O(Np - [Ny +NaJ) - [IV] + |Elog|V])
APR-D O([Nj + Nl - RG™™) O([Nj + Nl < [(IP] +Cllog|P]) +2)])

4.1 Exact Partial Region Dijkstra’s Algorithm (EPR-D)

The space complexity problem can be mitigated further by storing only edge weights between adjacent vertex pairs
as this is the minimum information needed by Dijkstra’s algorithm. This is also known as the adjacency matrix
representation which readily maps into a database which can then be used with any PIR scheme. We designated
this PIR-adapted approach as Exact Partial Region Dijkstra’s Algorithm (EPR-D), since it simply partitions and
distributes graph data across several edge servers, and produces exact shortest paths. A notable disadvantage is
its use of separate PIR queries to retrieve information for each vertex since the original algorithm tends to scan a
lot of vertices which can make route completion times very long. It is also possible to reidentify routes based on
the sequence of edge servers queried by the user. This is examined further in Sec. 5. This is reflected in its average
time complexity of O(N, - [N, + N;dj] - [|V]| + |E|log|V|]) where N;dj = 1/IP| - Xpep |V;dj| is the average
number of vertices adjacent to other partitions, in turn, represented by V; 4 = {olo ¢V, A[(w,0) € EAu € V,]}.

Meanwhile, its average per-partition space complexity is O(N,, - [N, +N: dj ]). Table 3 summarizes the complexity
of EPR-D.

4.2 Approximate Partial Region Dijkstra’s Algorithm (APR-D)

A possible solution to the time complexity issue is by allowing the RPS to produce approximate shortest paths
instead of exact shortest paths. This can be done as follows: (1) calculate an approximate route between source
and destination partitions ps and p; using Dijkstra’s algorithm over partition graph Gp, (2) retrieve subpaths
to both s and d from within their respective partitions via database lookup, and (3) merge all obtained paths to
form the final route. We designated this approach as Approximate Partial Region Dijkstra’s Algorithm (APR-D),
since it produces approximate routes instead of exact ones. While it is significantly faster than EPR-D, it requires
more space (since full routes are stored). It also has weaker privacy guarantees since routes between distant
areas tend to follow the same intermediate route as will be expanded upon in Sec. 5. Since the database has
to store complete routes, the space complexity is larger than EPR-D’s being at O([A} + Nc] - RZ™*) where
Ne =1/|P| - 2pep |Cp| is the average number of external connections from each partition. The different stages
have different time complexities, with the first stage having O( [Nﬁ + N¢] - [IP] +|C]|log|P|]) and the second stage
having O(2 - Nj + N,). The combined time complexity is then O([Ny + Nc] - [(|P| + |C|log|P|) +2)]) which is
significantly less than that of EPR-D since |P| << |V|. The complexity of APR-D is also summarized in Table 3.
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5 PROPOSED PRIVACY METRICS

To evaluate the effectiveness of a privacy-preserving PIR-based RPS, objectively quantifiable privacy metrics
must first be established in the RPS context. Thus, the two models presented in this section jointly characterize
the privacy of the different kinds of information that can be leaked by an RPS as described in Sec. 3.3.

Table 4. Summary of Symbols used in Sec. 5

Symbol [ Description
Q(s,d) Endpoint location privacy metric
R (u,v) Arbitrary routing mechanism operating on some graph G

054 Query sequence used to obtain a route from s to d
o An arbitrary query sequence for no specific route

Q") Route privacy metric for some candidate query sequence Q*
Psa Partition sequence derived from some query sequence Q>¢

k(Qs.q,0%) Indicator function for checking if Q# can replace Qs 4 and vice versa

Vx A subset of V' containing only the representative vertices

5.1 Endpoint Location Privacy Model

As mentioned in Sec. 3.1, the partition database is used to store the shortest paths for each partition, and is queried
privately using PIR in our approach. The queried partitions are assumed to be knowable by adversaries, but strong
privacy is still guaranteed for exact locations within each partition. Let R, (s, d) be a routing mechanism which
returns the approximate shortest path pg, (s, d), and suppose that the origin location s is replaced with a nearby
location s'. If s’ is still in the same partition as s (i.e., s’ € V}, ), then Rg, (s’,d) = Rg, (s, d). The same applies
replacing d with any d’ € V,,,. An adversary knowing only Rg, (s, d) would be unable to distinguish s, d from all
other possible s, d’ as long as s” € V},_ and d’ € V},,. Thus, location privacy is guaranteed for s and d within p;
and p, respectively.

The privacy for any s, d pair is then proportional to the number of possible s’,d” pairs that can be drawn
between V,,; and V. This is designated as the endpoint location privacy metric:

1

Qs,d)=1- ————
Vol - [Vpgl

)
where V},_ and V},, give the sets of all vertices in ps and pg, respectively. Note that while having more vertices
per partition (i.e. larger |V, | and |V, |) is advantageous for endpoint location privacy, this also means higher
computation overhead for PIR. Extensive preliminary experiments with the PIR scheme used by our approach
showed that the retrieval times scaled almost linearly with the database size at a rate of roughly m ~ 2.22X107°
seconds per record. That is, a database with |Vp|2 ~ 10000 routes was found to have an average retrieval time of
~ 0.25 seconds, while another with |V,|* ~ 100000 routes took ~ 2 seconds.

5.2 Route Privacy Model

Endpoint location privacy assumes that a route’s origin and destination partition are already known, and thus
quantifies only the privacy of the exact origin and destination points. This section focuses on the privacy of the
routes themselves. As with endpoint location privacy, it is assumed that the queried partitions are knowable by
adversaries. It is also assumed that they have in-depth knowledge about the algorithms used by the RPS.

Let Qsq = {qo.---,qn} be the query sequence that a user must perform to obtain a route from s to d. This
sequence can be transformed into a partition sequence Psq = {po, ..., pn} (Where py = ps and p, = p4) using
a function fg, : QO — P that maps every element of Q to its handling partition in P. If the partitioning is
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Fig. 2. Queried Partitions using Dijkstra’s algorithm to calculate two routes with the same origin but different destinations
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, y the highest-level partitions are considered since they alréady contain the shortest pa
data of lower-level partitions as stated in Sec. 3.1.

Note that partition sequences are not simply partitions along the final route. For instance, in the case of
Dijkstra’s algorithm, they can be thought of as the entire sequence of “scanned” vertices as depicted in Fig. 2.
It is therefore possible for several routes to share the same partition sequence (though unlikely in the case of
Dijkstra’s). This is modeled as an indicator function that identifies whether or not a candidate Q* can replace
Qs.q for calculating rg, (s, d) and vice versa:

> 1 if s.d) = *
K00 = { o) = Q) ©
0 otherwise
With this, the lower bound for the total number of distinct routes that share Q™ is:
> k(Quan Q") ()

s.d' eVy
where Vx C V contains only the representative vertices (e.g., x,, x,) associated with the partition graph Gp as
described in Sec. 3.1. This ensures that routes where py # ps and pg # pg are counted with equal importance as
the route where py = ps A par = pq — hence, the focus on distinct routes. Finally, the route privacy can then be

quantified for any Q* as follows:
1

2 k(Qva,0Q%)

s',d' €Vx

6 HIERARCHICAL PRIVACY-PRESERVING ROUTE PLANNING

Our proposed approach, Hierarchical Privacy-Preserving Route Planning (HPRoP), is built up from several key
design choices to meet particular requirements. That is, HPRoP should be able to:

®(Q") =1~

®)

o REQ1: Compose feasible approximate shortest paths by carefully choosing its component routes from the
appropriate partitions,

e REQ2: Privately retrieve component route information from said partitions with minimal processing
overhead,
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Fig. 3. Road network graph of Osaka City, Japan hierarchically-partitioned using the Inertial Flow algorithm

e REQ3: Produce an approximate shortest path with good optimal route approximation values (i.e., a(rg (s, d)) —
1.0),

e REQ4: Ensure a good level of privacy protection for the user’s exact origin and destination points, and
intermediate route,

e REQ5: Reflect dynamic and up-to-date road conditions, and

o REQ6: Scale reasonably well with changes in client demand and computational resource availability over
time and per area.

All these are brought together by a novel hierarchical route planning heuristic presented in the latter half of this
section, along with other improvements to privacy and routing.

6.1 Private Information Retrieval (PIR)

HPRoP uses PIR as its core route privacy-preservation mechanism. The choice of implementation was the
SealPIR [2] library configured to use Brakerski/Fan-Vercauteren (BFV) Homomorphic Encryption (HE)[13] with
a database upper bound of N = 216, a plaintext modulus of log(t) = 12, and a dimensionality factor, d = 2. This
implementation was chosen specifically for its significantly reduced processing and communication overhead
compared to other HE-based ones, making it ideal for an RPS. This along with the hierarchical route planning
heuristic drastically reduces the number of queries and, in effect, the route completion time.

6.2 Inertial Flow Partitioning

Optimal route approximation and endpoint location privacy are highly-dependent on how the service region is
partitioned. Straightforward methods such as grid partitioning are simple but often result in disjoint partition
subgraphs in the presence of natural barriers like rivers, etc. To mitigate this, one way would be to ensure that
each partition subgraph is a strongly-connected component, ensuring high internal connectivity and reachability.
Examples of road network graph aware partitioning methods include PUNCH [12], Buffoon [32], and Inertial
Flow [33].

Inertial Flow was chosen for HPRoP as it is a relatively simple algorithm based on maximum flow which
results in balanced partitions and also preserves internal connectivity. A vertex threshold of around 300 nodes
per partition was chosen instead of an area-based threshold to guarantee an Endpoint Location Privacy of
Q(s,d) =~ 99.998% (i.e., < 0.002% probability). Moreover, based on preliminary experiments with SealPIR, a
partition database with 3002 ~ 90000 routes is expected to have retrieval times between 1.5 — 2.5 seconds (1.75
seconds on average) which is viable when combined with HPRoP’s reduced query counts. A queue is initialized
by adding the entire road network graph to it. A graph from this queue is then used as input to the Inertial Flow
algorithm to produce two balanced partition subgraphs. The simple iterative technique in [1] was used alongside
Inertial Flow to find and apply optimal cuts during this step. If any of the subgraphs do not yet satisfy vertex
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Fig. 4. Cloud-based Architecture (Left) vs Distributed/Edge-based Architecture (Right)

threshold, they are simply added back to the queue. This entire procedure is then repeated until the queue is
empty. Afterwards, every two consecutive cuts was then retroactively denoted as a separate partition level as
shown in Fig. 3, and the partitions under each are then tagged accordingly. Due to the vertex threshold, the
highest level partition may vary greatly from area to area. Some routes therefore require more queries to complete
over other routes, which increases profiling risk. A partition level threshold &, espoig = 3 was therefore imposed
such that higher level ones were reassigned to ¢ = £preshold-

6.3 Distributed Architecture

HPROoP leverages the hierarchically partitioned road network by delegating each partition to a different entity.
In the cloud-based scenario, these entities would be server instances; while, in the edge-based scenario, these
would be edge-servers throughout the smart city. The edge-based architecture presents several advantages.
First, it allows PIR queries to be directed only to partitions which have the information necessary to answer
them, effectively distributing the computational load of using PIR. Second, it allows the system to better scale
based on the number of users, availability of computing resources, etc. which can vary greatly at different times
across different parts of the city as shown in Fig. 4. Finally, it also makes the pre-computation of shortest paths
to neighboring partitions more efficient since it can be done independently by every partition after an initial
exchange of road condition information with said neighbors. This is useful for reflecting dynamic road conditions
bound to some local area.

6.4 Heuristic Algorithm
HPRoP uses a simple heuristic algorithm to arrive at an approximate shortest path as follows:

(1) Initialization: Find an initial basis route between the lowest level partitions containing source and destination,
then move up one level.

(2) Subroute Connection: Connect the source and destination partitions at the current level to the basis route
using subroutes.

(3) Basis Route Merging: Merge the subroutes into the basis route.

(4) Repeat steps (2) to (3) until the highest partition level is reached

Algo. 1 runs exclusively on the client-side, sending PIR queries to edge servers handling specific partitions. Route
information is obtained solely through these PIR queries, and, thus, no information is leaked by the queries
themselves. However, the number of queries, their timestamps, and the partitions they were sent to are still
assumed to be known to the adversary.
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Algorithm 1: Hierarchical Route Planning Heuristic

Input: Source node s, Destination node d, Current level .
Output: The final route r.

1 begin

2 l, « FindBaseLevel(s,d);

3 re RetrievePath(pé",p(l;, “from source”);

4 Initialize I, « I, + 1;

5 while I; < Lipreshola do

P Initialize rle, r'e  [];

7 if Ic < (Ithreshota — 1) then

8 réc «— GetSubroute(s, I, v, “from source”);

9 r(l; «— GetSubroute(d, I, r., “from destination”);
10 else

1 rblﬁ «— GetEndSubroute(s, I, r, “from source”);
12 réc «— GetEndSubroute(d, I, r., “from destination”);
13 r. < MergeRoutes(r, ré", ré" );

14 lo —1.+1;
15| return r,;

The algorithm starts with an Initialization step (lines 2-4 in Algo. 1) which finds an approximate shortest
path between the lowest level partitions containing s and d separately as shown in Fig. 5. This level is denoted
as the base level I, = argmin; (p! # pfi). For simplicity, this is just denoted as FindBaseLevel(s,d) in Algo.

1. The client then sends a PIR query to partition pi", retrieving a route to partition pil”. This corresponds to
RetrievePath(py,, p,, ©) which retrieves the shortest path between two partitions taking into account some
direction flag . This flag simply indicates whether the path is being calculated from the source or the destination,
which will be relevant later. The retrieved route is then denoted as the initial basis route r. shown in Fig. 6. At the
end of this step, the current level variable [; is also initialized (line 4).

The main loop starts from the Subroute Connection steps (lines 6-9 in Algo. 1). The algorithm for Subroute
Connection itself is described in Algo. 2. A subroute r,lf is defined as a path that connects a basis partition pff
to the current basis route r,. The basis partition given by p,lf is always the source or destination partition at
level I, containing some vertex x, and is used to obtain the source or destination sub-partitions (depending
on the direction D) at line 3 of Algo. 2. For instance, the source subroute is obtained by finding a sequence of
shortest paths from pﬁc that connects to the basis route as shown in Fig. 7. This step also uses several important
functions, such as: (1) FindRoutePartitions(r.,[) which gives the sequence of partitions at level [ along r., and
(2) DoesNotI ntersect(r,l(C , 1) which is “True” if r,lf and r, have no common vertices. Starting from pff, it builds
r,lf by retrieving a path to nearby connected partitions (line 9) and then connecting them to the subroute (lines
10-13). Since r,lf might not yet intersect r, during the initial iteration, this is repeated with an updated reference
partition (lines 14-15) until an intersection is found. Computing the destination subroute follows the same steps
but first has to reverse the aforementioned sequence (lines 5-7) so that the algorithm can begin from the last route
partition. This step is shown in Fig. 8.

The Basis Route Merging step (line 13 in Algo. 1) is performed once the source and destination subroutes are
found. The basic idea is to find the “best” point at which the subroutes intersect with the basis route and join
them there. For the source subroute, the “best” point is as far as possible from the start of the basis route; while
for the destination subroute, this is as far as possible from the end of the basis route. This is illustrated in Fig. 9.
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This merged route is then used as the new basis route. The current level I, is then updated (line 15), and the loop
is restarted. The loop is terminated once . reaches L eshora-

The time complexity of this algorithm depends on the required number of PIR database lookups. Finding the
initial basis route and calculating the final routes at p; and py always require a single lookup each. Meanwhile,
the number of lookups at each level depends on the maximum length of the shortest path in Gp at that level which
is given by max,¢ ,¢cpe Iré;’ (pL, ph)| where G}, C Gp containing only that level’s partitions P* and connections

C’. The average time complexity is then:

O[INZ+ D N~ [3+ > 2+ max |r, (ph, pl) )
tel teLl PupoeP! F

where N/ is the average number of connections from each partition at level ¢. Since HPRoP precomputes and
stores shortest path data for multiple levels per partition, it is necessary to account for N in HPRoP’s space
complexity:

O(ING + D NI - RY™™) (10)

teL

6.4.1 Route Privacy Mechanism. Route privacy as defined in Sec. 5.2 quantifies the privacy based on how many
other possible routes have a query sequence matching that of a given route, where more matches mean better
privacy. That is, an adequate route privacy mechanism should: (1) maximize the matching of query sequences
between all possible routes, and (2) minimize the information gain from the order of queries in the sequence itself.
HPRoP already achieves the latter via hierarchical execution which can somewhat obfuscate the actual query
sequence, but does not necessarily strengthen the former. To address this, the algorithm is extended to pad the
query sequence with dummy queries. The basic idea is to query multiple other partitions instead of just p; and py
to ensure that the actual origin and destination partitions are “hidden” among them. In theory, querying more
partitions would mean better route privacy at the cost of longer route completion times. Achieving full route

Algorithm 2: Subroute Connection

Input: Basis node x, Current level /., Basis route 7y, Direction D

Output: Subroute at the current level r,lcc

1 begin

2 Initialize rie « [];

3 Pe — pff //This retrieves either source or destination sub-partition depending on direction D
RPl — FindRoutePartitions(r,, I.)

4 if D is “from destination” then

5 L Reverse(RP);

6 i 0;

7 while DoesNotIntersect(r)lf,r*) and i < |RP| do

8 Tpart < RetrievePath(pc,RPlC [i],D);

9 if ©.is “from source” then

10 L ralcc - rylcc+rpart§

1 else if D is “from destination” then

12 L r,lf — Tpart + r,lf;

13 pc<—RPl‘-‘[i];

14 i—i+1;

15 return r,lf;
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privacy, however, would require querying all level partitions at every iteration of the algorithm at least once,
which would require prohibitively long route completion times. For example, a service region with a total of 463
partitions would require roughly 810 seconds (13.5 minutes) on average to complete a single route. However,
simply querying a small random subset of the aforementioned partitions will not be enough to ensure a certain
level of route privacy, since an adversary can simply use the hierarchy of partitions to check for inconsistencies
in the set of queried partitions and easily identify the dummy ones. Instead, we chose to limit HPRoP to querying
all other partitions under the same parent as the highest level partitions containing s and d. This selection method
is straightforward and ensures that none of the queried partitions can easily be identified as dummy partitions.
Additionally, this ensures that route privacy will be around ®(Q*) = 1 — 1/jk where j and k are the total number
of partitions under the same parent partitions as p; and py, respectively.

Algorithm 3: Subroute End Connection with Dummies

Input: Source or Destination node x, Current level ., Basis route r,
Output: Source or Destination subroute at the current level r,lf

1 begin

2 Initialize rle « [];

3| pe e Pl

4 RP! — FindRoutePartitions(r, l.)

5 if © is “from destination” then

6 L Reverse(RPlC);

7 SPle FindSubPartitions(pfffl) as Queue

8 J<0;

0 while |SP<7!| > 0 do

10 Psub — Pop(SP');

1 if psup = pc and DoesNotIntersect(rl", r.) then
12 Tpart < RetrievePath(psub,RPlc [iD;
13 if D is “from source” then

14 L r)lcc — r)lcc + Ipart;

15 else if D is “from destination” then

16 L r,lf — Tpart + r,lf;

v pe < RPF[j];

18 je—j+1

19 else if psy,p € RP and DoesNotIntersect(r‘l;, r.) then
20 if Index(psub,RPIC) > j then

21 Push(psup, SPle)

22 Shuf fle(SP')

23 else

24 L SendDummyQuery(psup);
25 return r)lf;

This is implemented through the Subroute End Connection steps (lines 10-12 in Algo. 1), while the procedure
itself is presented in Algo. 3. Instead of stopping when the subroute and basis route first intersect, this algorithm
continues until all other partitions sharing the same parent pff_l as the basis partition have been queried. This is
done by repeatedly drawing a partition py,; from a queue of these same-parent sub-partitions SP* (line 10). If
psub is the same as the current partition p,, then a part of the subroute is retrieved as normal (lines 11-18). If it is
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Fig. 10. Demonstration of different shortcut connection strategies for improving the heuristic algorithm’s performance
against the base case (Left), where the dark red shape represents the starting partition, and the lighter red shapes represent
the partitions it connects to. The black outline represents the starting partition’s parent. (Middle) uses Same Parent Shortcuts,
while (Right) uses 1-hop Neighbor Shortcuts.

a route partition, it is instead pushed back to the subpartition queue (lines 19-22). If both prior conditions are not
satisfied, then a dummy query is simply sent to ps,; (line 24). This ensures that important queries are mixed in
with dummy queries, making it more difficult to determine which ones are relevant.

6.5 Shortcut Connections

A simple strategy for improving algorithm performance is through pre-computing and storing shortest path
data to partitions beyond just the adjacent ones. This reduces the number of queries to complete a route while
also improving optimal route approximation for paths to further away partitions. These paths to non-adjacent
partitions were therefore denoted as Shortcut Connections, represented as additional edges in the partition graph.

These shortcut connections, however, also increase the pre-computation time for each partition relative to how
many of them need to be made. In addition, the extent of the road network graph needed for pre-computation also
increases based on the distance to the partitions being connected. It is therefore more useful to limit the number
of partitions to connect to and how far those partitions can be. HPRoP considers two methods for determining
shortcut connections: (1) the Same Parent Shortcuts method, and (2) the N-hop Neighbor Shortcuts method. Same
Parent Shortcuts simply connects each partition to all other partitions under the same parent partition as shown
in Fig. 10 (Middle). N-hop Neighbor Shortcuts pre-computes shortcuts to other N-hop away partitions as shown
in Fig. 10 (Right). Both would theoretically improve the optimal route approximation when calculating subroutes
between non-adjacent partitions and greatly reduce the possibility of broken routes. HPRoP currently has no
mechanisms to handle these other than deferring to the user’s device to perform local route calculation to bridge
the final gap. The usefulness of these methods are shown through the results in Sec. 7.3.1.

7 EVALUATION

In this section, the details of the evaluation framework for HPRoP are first presented prior to showing the actual
evaluation results and their subsequent analysis.
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7.1  Environment

HPRoP was implemented in Python on a Jupyter notebook for ease of testing and visualization, with the notebook
itself encapsulated in a Docker container for portability. The execution environment was a dedicated Linux server
running Ubuntu 20.04.1 SMP equipped with a AMD Ryzen Threadripper 3970X 32-Core processor and 256 GB
RAM in total.

The service region was a rectangular geographical area of roughly 546 km? (i.e. 26 km in width, 21 km in height)
encompassing the entire road network of Osaka City, Japan and a portion of the immediately outlying areas.
Its road network graph consists of |V| = 99, 734 vertices and |E| = 269, 614 edges. The region is hierarchically
partitioned using the Inertial Flow algorithm as shown in Fig. 3 based on the parameters in Sec. 6.2.

7.2 Methodology

Evaluation was done through several metrics under the following categories: (1) Utility, (2) Privacy, and (3)
Performance. The Utility category pertains to the usefulness of the service, with the Optimal Route Approximation
metric falling under this category. Since the base algorithm in Sec. 6.4 cannot guarantee complete routes, Route
Errors are also included here as a metric. Route errors are then defined as the occurrence count of broken routes
during testing. In turn, a broken route is defined as a route where a subroute connection cannot be established
to the highest level partition containing either s or d, and thereby results in a route that cannot be completed
by HPRoP’s algorithm. The Privacy category is comprised of the Endpoint Location Privacy, and Route Privacy
metrics described in Sec. 5. The Performance category pertains to how well the service can deal with higher
client demand, dynamic road conditions, etc. without service quality degradation. The Memory Usage, Route
Completion Time, and Pre-processing Time metrics fall under this category.

Evaluation was done by comparing HPRoP to the two baseline PIR-based approaches — EPR-D and APR-D —
previously presented in Sec. 4. For the Utility category, Privacy category, and Route Completion Time metrics, all
three approaches were evaluated by calculating routes for randomly-generated s, d pairs until 4,000 successful
routes have been completed. This termination threshold was chosen to be sufficiently high enough to capture any
route errors that might occur for HPRoP. Note that both APR-D and EPR-D are guaranteed to produce complete
routes so this metric is no longer evaluated for them. Memory Usage was evaluated by calculating the projected
size of the per-partition databases for the highest-level partitions. Finally, Pre-processing Time was evaluated by
measuring the time to build each partition’s database.

7.3 Results

7.3.1 Effect of Shortcut Connections. The base performance of HPRoP under different shortcut connection
methods in Sec. 6.5 is first characterized with the goal of finding the method that maximizes optimal route
approximation while minimizing both route completion time and route errors. Fig. 11 shows the resulting
distribution of optimal route approximation values for 4,000 successful test routes under different methods.
Surprisingly, Same Parent Shortcuts have an almost negligible effect on optimal route approximation, with N-hop
Neighbor Shortcuts being a more effective way to increase the said metric. However, Same Parent Shortcuts
were highly effective in preventing the occurrence of broken routes, reducing the error count to 21. Further
investigation of these remaining errors showed that they were caused by choosing the same vertex as s and
d which results in failure as no routing can be done by the algorithm. In short, for all 4,000 test routes, Same
Parent Shortcuts seem to eliminate all occurrences of true broken routes — i.e., where the highest level partitions
containing s or d could not be reached. This also validates the hypothesis that broken routes are caused by a
lack of reachability at the final partition level that can contain more than 4 child partitions due to the deliberate
choice to set f15,esh014 = 3 mentioned in Sec. 6.2.
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Meanwhile, using 1-hop Neighbor Shortcuts drastically improves the results of the 75-th percentile from
a(r.) = 1.54 to a(ry) ~ 1.28, but anything beyond 2-hop Neighbor Shortcuts is seen to have gradually diminishing
returns. Finally, the overhead caused by the additional shortcut connections is evaluated based on the pre-
processing time metric in Sec. 7.2. Fig. 13 shows that both methods increase the per partition pre-processing time
to about ~ 1.5 seconds once I-Hop Neighbor Shortcuts are introduced but stabilizes around this value even as the
number of hops are further increased. In contrast, the effect of Same Parent Shortcuts on pre-processing time is
minimal, amounting to an increase of ~ 0.1 seconds on average. Thus, both methods are equally viable in terms

of this metric.

Table 5 summarizes the results discussed so far. Based on these, it was decided to use 2-hop Neighbor Short-
cuts with Same Parent Shortcuts as the representative configuration for HPRoP as it offers good optimal route
approximation and short pre-computation times with minimal errors.

7.3.2  Optimal Route Approximation. The performance of HPRoP, APR-D, and EPR-D in terms of optimal route
approximation is shown in Fig. 14. As expected, EPR-D achieves a constant optimal route approximation value of
a(r.) = 1.0 since it always produces exact shortest paths. APR-D produced routes with «(r,) ~ 1.44 for the 75-th
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Table 5. Summary of Results for different Shortcut Connection Configurations

Normal With Same Parent Shortcuts

0-hop [ 1-hop [ 2-hop [ 3-hop | 0-hop [ 1-hop [ 2-hop [ 3-hop
Optimal Route Approximation

Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
25% 1.160 1.062 | 1.018 | 1.003 1.133 1.060 | 1.017 | 1.003
50% 1.314 1.141 1.080 1.052 1.270 1.138 1.079 1.052
75% 1.590 1.287 1.202 1.156 1.510 1.288 1.202 1.156
Max | 16.256 | 5.210 | 5.371 | 5.371 | 15424 | 5.210 | 5.371 | 5.371

Per-Partition Routes Calculation Time (in seconds)
Min 0.04 0.11 0.19 0.19 0.08 0.11 0.19 0.19
25% 0.16 0.58 1.88 3.33 0.24 0.75 1.92 3.48
50% 0.20 1.43 2.49 4.41 0.47 1.51 2.90 4.75
75% 0.28 1.60 3.36 5.70 1.30 1.74 3.47 6.03
Max 1.27 3.17 5.78 10.55 3.15 3.37 6.75 11.44

Route Errors (per 4,000 successful routes)
2310 | 520 [ 30.0 [ 240 | 21.0 [ 210 | 21.0 [ 210

Total
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1.0 —_
0.8333
081 — —

0.6
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Route Privacy Distribution
(for 4000 test routes)

0.0000 0.0000
0.0 4= — 4

APR-D EPR-D HPRoP
Fig. 15. Distribution of Route Privacy ®(Q*) results for APR-D, EPR-D, and HPRoP

percentile despite operating only over the partition graph. HPRoP produced even better routes with a(r.) = 1.20
for the 75-th percentile, whereas APR-D was only able to achieve this for the 25-th percentile of all results.
Additionally, HPRoP achieves much better worst-case routes than APR-D.

7.3.3  Endpoint Location Privacy. Endpoint Location Privacy Q(s,d) describes how well the exact s, d is kept
private as described in Sec. 5.1. Since Inertial Flow partitioning was used, evaluation results showed that all three
approaches were able to achieve an average endpoint location privacy of Q(s,d) = 0.999982. Thus, each route
is indistinguishable from approximately 99% of all other routes between the same partitions, making all three
approaches equally viable.

7.3.4  Route Privacy. Route Privacy ®(Q*) describes how well a route is kept private based on how many other
routes share a query sequence similar to its own as described in Sec. 5.2. To evaluate this, a lookup table for the
routes between each s, d € V, such that s # d was done separately for EPR-D, APR-D, and HPRoP to account for
their unique querying behaviors as shown in Fig. 16.
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Fig. 17. Distribution of Optimal Route Approximation and Route Privacy results using HPRoP for 4,000 test routes. Note that
both axes were reoriented to show the best results on the lower left.

Fig. 15 shows a comparison of the route privacy distributions across all three approaches. EPR-D showed the
worst route privacy, achieving ®(Q*) > 0 only for the 25-th percentile of all results. APR-D performed only
slightly better with ®(Q*) > 0 for about 50% of all results, while achieving ®(Q*) > 0.5 for only 25% of them.
This is expected since both have no inherent privacy mechanisms, yet this does illustrate that APR-D is still
better than EPR-D in terms of route privacy. HPRoP, in contrast, has route privacy of ®(Q*) > 0.80 for the 50-th
percentile of all results, while also achieving ®(Q*) > 0.50 for the 75-th percentile, surpassing both EPR-D and
APR-D. However, further analysis of the routes showed that the worst-case route privacy (i.e. ®(Q*) = 0.0) still
happens for ~ 12.2% of all test routes. This suggests that HPRoP does not fully guarantee route privacy for all
cases although this can be increased further by adding more dummy queries.
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Additionally, the relationship between optimal route approximation a(r.) and route privacy metric &(Q*) was
also analyzed for HPRoP. This was done to determine whether some trade-off exists between the two metrics.
The results in Fig. 17 show that majority of the routes have a(rs4) < 1.2 across widely-varying levels of route
privacy. This suggests that the two metrics have little effect on one another, and performing a simple Pearson
correlation confirms that there is only a weak positive correlation (p ~ 0.104) between the two.

7.3.5  Route Completion Time. Obtaining a route using any of the three algorithms (APR-D, EPR-D, and HPRoP)
requires the client to make multiple PIR queries to the RPS: Thus, route completion time is highly dependent
on how many such queries need to be made, and is equivalent to the total processing overhead for an RPS. In
this work, it is calculated based on projections derived from the preliminary experiments on SealPIR database
retrieval times mentioned at the end of Sec. 5.1. The empirically derived value of roughly m ~2.22x107°
seconds per record is then used to calculate the route completion times which are shown in Fig. 19. Note that we
opted to use projections here instead of simulating the actual results as the latter would take a prohibitively long
time to conclude in the case of EPR-D (and, to alesser extent, APR-D). For instance, APR-D requires ~ 214 queries
on average which is expected to take 5.55 minutes (333.26 seconds) per route. EPR-D is even worse, requiring
~ 4,958 queries on average which would take at least 2.15 hours (7,731.47 seconds) just to complete a single route.
Both are clearly impractical from the perspective of any modern RPS. This is in contrast to HPRoP which requires
significantly less queries on average (at ~ 25 queries) and takes only 23.55 seconds per route. This is because
HPRoP’s algorithm bypasses the need to explore large sections of the partition and road network graph as it
already starts with a very coarse route between the origin and destination partitions at the lowest level to guide
its route search. APR-D and EPR-D, in contrast, explore outwards from the origin, checking every unexplored
partition or vertex on the way as per Dijkstra’s algorithm.

7.3.6  Memory Usage. Memory usage depends on the size of the route databases maintained by each partition,
which is very important in a distributed environment with resource-constrained devices. Fig. 20 shows the
distribution of per partition memory usage across the three approaches. APR-D and HPRoP calculate and store a
similar number of routes, thus requiring an allocation of around 20-160 MB per partition. EPR-D has a significantly
smaller memory footprint at around 0.5-4 MB per partition because it essentially stores a next-hop matrix instead.
In practice, however, the memory usage of all three approaches are well within the capabilities of standard edge
servers.

7.3.7  Pre-processing Time. The pre-processing time metric is total time needed to build each partition’s database
during the pre-processing phase, which determines how often it can be updated during operation. As shown in
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Fig. 21, EPR-D require less than < 0.5 seconds per partition on average since it only needs to calculate the routes
inside each partition, while APR-D requires < 1.5 seconds since it also needs to calculate routes to immediately
neighboring partitions in addition. Meanwhile, HPRoP needs to calculate routes inside each partition, routes
to neighboring partitions, and routes to other partitions under the same parent. This results in slightly longer
pre-processing times at 1-5 seconds per partition. Regardless, the pre-processing time for all three approaches are
clearly fast enough to accommodate frequent updates even in under dynamic road conditions.

8 CONCLUSION

In this work, the Hierarchical Privacy-Preserving Route Planning (HPRoP) approach was proposed which
combines Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques along
with a novel hierarchical route planning heuristic algorithm to produce routes that can adequately approximate
the actual shortest paths while also providing endpoint location privacy and route privacy. HPRoP reliably produced
routes with an optimal route approximation of a(r.) < 1.2, while also achieving near-optimal endpoint location
privacy at Q(s,d) = 1.0 and good route privacy at ®(Q*) > 0.5. In terms of performance, HPRoP has a route
completion time of around 23.55 seconds on average which is reasonable for a privacy-preserving RPS. It’s
viability for deployment in a distributed/edge-based smart city context were also shown through its relatively
small memory footprint (20-160 MB for each partition’s database), and short pre-processing times (2-5 seconds
per partition) which are well within the capabilities of conventional edge servers.

In addition, although most modern route planning algorithms can also use PIR, we didn’t use them as the basis
of our approach due to several reasons. For instance, bounded-hop techniques such as two-hop labelling [9] are
the fastest known class of routing algorithms but they require computing and storing prohibitively large indices
for city-sized road networks which becomes even worse in combination with PIR. Separator-based techniques
such as Customizable Route Planning (CRP) [11] and goal-directed techniques such as ALT (based on A*) [18]
and Arc Flags [20] have very long precomputation times, making them infeasible to use with dynamic road
networks having edge weights that need to be updated frequently. The hierarchical technique called Contraction
Hierarchies (CH) [16] has none of the aforementioned problems but still presents a potential route privacy risk
since it must explicitly query the partitions along the actual shortest path multiple times to obtain the final path.
Nevertheless, it is a good routing algorithm to consider for future PIR-based RPS work.

Aside from the experiments presented in Sec. 7, we also conducted tests on how well HPRoP generalizes
to other road networks, but the results are omitted for conciseness. In particular, it was tested on three other
large cities — New York, Shanghai, and Tokyo — by obtaining 4,000 test routes and examining the optimal route
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approximation distribution. For 75% of all routes, the optimal route approximation was at a(r.) < 1.20 for New
York, a(r,) < 1.23 for Shanghai, and a(r.) < 1.24 for Tokyo. This indicates that HPRoP generalizes somewhat,
but further research is still required.

In the future, we also plan to refine HPRoP’s route planning algorithm to further improve optimal route
approximation and reduce route completion times by exploring more efficient data structures for route information,
and improve route privacy by considering out-of-order query execution.
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