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Abstract—The ability to accurately predict public transit rid-
ership demand benefits passengers and transit agencies. Agencies
will be able to reallocate buses to handle under or over-utilized
bus routes, improving resource utilization, and passengers will
be able to adjust and plan their schedules to avoid overcrowded
buses and maintain a certain level of comfort. However, accu-
rately predicting occupancy is a non-trivial task. Various reasons
such as heterogeneity, evolving ridership patterns, exogenous
events like weather, and other stochastic variables, make the task
much more challenging. With the progress of big data, transit
authorities now have access to real-time passenger occupancy
information for their vehicles. The amount of data generated is
staggering. While there is no shortage in data, it must still be
cleaned, processed, augmented, and merged before any useful
information can be generated. In this paper, we propose the use
and fusion of data from multiple sources, cleaned, processed, and
merged together, for use in training machine learning models
to predict transit ridership. We use data that spans a 2-year
period (2020-2022) incorporating transit, weather, traffic, and
calendar data. The resulting data, which equates to 17 million
observations, is used to train separate models for the trip and
stop level prediction. We evaluate our approach on real-world
transit data provided by the public transit agency of Nashville,
TN. We demonstrate that the trip level model based on Xgboost
and the stop level model based on LSTM outperform the baseline
statistical model across the entire transit service day.

Index Terms—public transit, data processing, machine learn-
ing, passenger occupancy

I. INTRODUCTION

Public transportation is a vital component in any modern
metropolitan city. Access to reliable forms of public transit
have been known to have an impact in many aspects, such
improved quality of life, reduced carbon emissions, and have
an overall positive effect on social equity. However, even with
the availability of public transit, it is not always guaranteed
that it is always reliable and accessible. On the contrary, they
are more often over-stretched or underdeveloped. As a result,
most of the work being done is focused on improving the
accessibility and reliability of public transit.

Traditional measures of reliable transit systems include trip
frequency, punctuality, and travel time. In response, plenty of
work has been done with the goal of improving travel times
by identifying and reducing causes of delay [1]. However, an
often overlooked element in reliability is the perceived comfort
of riders [2] which can be seen as the a direct consequence

of vehicle occupancy and capacity. A frequently overcrowded
bus can prevent potential commuters from even considering
public transit. Inversely, consistently low rider demand can be
seen as an under utilization of already constrained resources.
This duality of public transit is often caused by the agencies’
constant struggle with providing increased transit coverage
amidst highly heterogeneous ridership demand.

With the progress of big data, transit authorities now have
access to and are able to provide real-time passenger occu-
pancy information for their vehicles. Transit agencies such
as the Nashville Metropolitan Transit Authority (MTA) uses
Automated Passenger Counter (APC) systems that provide
stop-level estimates of passenger boarding and alighting. This
information have been integrated by apps such as Transit1,
which in addition to allowing potential riders to see an
estimated future passenger occupancy, also use crowdsourcing
to collect occupancy information from riders onboard in an
effort to improve service accuracy. From the perspective of
passengers, this helps them choose departure times to match
their desired comfort level. For the agencies, this can be a
reference for them to optimize their services by allocating
resources according to predicted ridership demand. Thus,
accurately predicting the maximum occupancy of each vehicle
in a public transit system is pivotal in improving perceived
reliability, resource optimization, and rider comfort.

Achieving accurate occupancy prediction, however, is a
difficult task. There are a number of factors that can affect
demand ranging from short high impact factors such as sport
events and festivals to long-term factors such as school sched-
ule and season. Additionally, stochastic traffic conditions along
the route can cause variation in ridership, further increasing
uncertainty. Another issue that can affect prediction is sensor
data noise. As with any system that relies on a fleet of sensors
and a large database, there are bound to be inconsistencies
and errors [3]. This is especially true for APC systems, where
passenger boarding and alighting information are recorded
using infrared sensors installed on vehicle doors [4]. This can
lead to erratic and misleading information. This issue brings
up the need for data preparation and augmentation to ensure
that the data is reliable and useful.

1https://transitapp.com/



In this paper, we implement an end-to-end framework for
predicting occupancy at both the stop and route levels. This
ensures that our method can react to both short and long-term
changes in the public transit system. We do this by analyzing
and combining different spatio-temporal data such as weather,
traffic, and APC data to develop a model for bus occupancy.
First, we investigate how data can be augmented and merged
to provide features that would expose the relationship with
bus occupancy. Second, we build different models for bus-stop
and transit-route levels. Finally, we demonstrate and compare
our approach using actual APC data from the public transit
agency of Nashville, TN. One of the key parts of our setup is
a data cleaning and augmentation method that processes and
cleans raw APC data. Raw APC data is often noisy with a
variety of different issues regarding the accuracy and precision
of passenger counts [5]. Augmenting and cleaning ensure that
data used in training models is valid. We generate passenger
occupancy from alighting and boarding information.

Organization: The rest of this paper is organized as fol-
lows. In Section II, we give an overview of the state-of-the-
art in occupancy prediction. In Section III, we present and
formulate the problem. We then discuss in-depth the APC
data in Section IV and the issues accompanying the dataset. In
Section VI, we validate our proposed models using real-world
data from Nashville, TN. Finally, in Section VII, we give our
conclusions.

II. RELATED WORK

In this section we discuss the current state-of-the-art meth-
ods used in public transit occupancy prediction.

A. Occupancy Prediction

Given the importance of public transit and the increasing
ubiquity of available vehicle data, research in the field of
occupancy prediction, also known as passenger flow or transit
demand prediction, has been flourishing. There is a consider-
able number of work done on understanding and mapping the
occupancy level in public transport.

Short-term passenger demand forecasting fall into one of
two categories, parametric and non-parametric approaches.
Traditionally, parametric approaches such as historical av-
eraging [6] and autoregressive integrated moving average
(ARIMA) [7] have been used to predict not only demand
but traffic flow, travel times and vehicle speed. Ever since it
was established, ARIMA has been known to perform well in
modeling linear and stationary time series. However, ARIMA’s
shortcomings in taking into account seasonality and capturing
non-linear relationships in data are also well known.

In contrast, non-parametric approaches build a non-linear
relationship between the input and output variables without
any prior knowledge. These methods gained popularity as
consequence of the rapidly increasing availability of data
from systems such as Advanced Public Transportation Systems
(APTS) and Advanced Traveler Information Systems [4].
These techniques have been proven effective at forecasting
demand based on data gathered through smart cards [8],

[9]. Toque et al. [10] used Random Forest (RF) and LSTM
neural networks trained on smart card data to predict travel
demand. By creating multiple temporal units neural networks
(MTUNN) and parallel ensemble neural networks (PENN),
Tsai et al. [11] showed that it can outperform predictions based
on statistical analysis of historical data. The obvious periodic-
ity and repeatability of traffic flow data led to the development
of various short-term and long-term prediction, with long-term
prerdiction decreasing far slower than short-term. Wang et
al. [12] uses an LSTM based Encoder-Decoder architecture
to overcome the problems of gradient disappearance present
in typical RNN models.

Incorporating other spatio-temporal dataset such as weather
and special events have also been explored. Karnberger et
al. [13] considered the effect of exogenous events on public
transportation ridership. Meanwhile, Zhou et al. [14] combined
smart data and weather information and found that while riders
are more resilient to changes in weather, it still has an effect
on the overall demand. Finally, Wood et al. generated models
the passenger occupancy and demand at the next-stop/any-
stop level based on APC and weather data [15] and proved
that even simpler models such as RF and LSTM provide
reliable estimates of future data when trained with historical
information if demand patterns are fairly stable.

There has been plenty of work done in the field of public
transportation with a special focus on improving reliability
through understanding and forecasting passenger demand.
However, our work is distinct in three ways. First, our work
aims to provide occupancy prediction at both the stop and trip
levels separately by forecasting short and long term demand.
Second, we work on APC data which is fundamentally differ-
ent from smart card data, which is the data commonly used by
prior work. Smart cards are embedded with integrated circuits
enabling it to process information, or in this case, allow for
contactless ticketing for riding on mass transit. These cards are
much more accurate and complete in their data collection [16],
[17] due in part they require passengers to swipe after getting
on and before getting of the vehicle. In contrast, APC data is
much more noisy and introduces far more uncertainty in data
collection and processing. Third, we focus on implementing
this for the entire public transport system and not on a few
select routes.

III. PROBLEM STATEMENT

Based on our conversations with the transit agency, they
want to be able to identify particular trips and stops which
experience overcrowding. Overcrowding increases the chances
of passengers not being able to get on the bus and decreasing
their overall satisfaction and willingness to take public transit
again in the future. Knowing the maximum occupancy at
the trip and stop level will allow them to react and prepare
accordingly by increasing bus dispatch frequency thereby
decreasing headway.

The primary objective of this work is to provide accurate
occupancy prediction for public transit vehicles. The goal is to
be able to reliable and efficiently forecast maximum ridership



demand at both stop and trip levels. The problem then is,
given a fleet of heterogeneous vehicles2, each equipped with
automated passenger count systems, how are we able to model
and accurately predict the maximum occupancy at any trip
or stop in the future. We focus on using APC data in this
paper since this is the current system being used by the transit
agencies. While the use of smart cards would be better for
generating models, it is not in the best interests of the transit
agency to change their current system.

Fig. 1. A sample block assignment for a public transit vehicle

In a public transit timetable, each vehicle is assigned to
serve a specific block. Each block is a collection of non-
overlapping trips going back and forth a predetermined route.
A single trip t ∈ T constitutes a vehicle travelling one
direction across a single route, a round trip is made of two
separate trips. In each trip, the bus passes by a predetermined
number of stops s ∈ S where passengers can board from or
alight to. At each stop a number of people get on or off the
bus, this information is then recorded in the APC data as ons
and offs, respectively.

We formally define a bus schedule as a collection of
sequential trips {t1, . . . , tr} assigned to a bus, where each
trip tr is an ordered sequence of n stops {sr1, . . . , srn}. Fig. 1
shows two trips that have been assigned to a bus. The first row
of stops s11 to s11+n correspond to a trip t1 with n stops. Once
the vehicle reaches the end of this trip, it proceeds with its
return trip, t2, segment of the assigned route. Trip t2 consists
of stops from s21 to s21+n.

Our goal is to predict the passenger occupancy at the stop
and trip levels. For the stop level, given a vehicle is at stop
s11, the goal is to predict occupancy at s12. For the trip level,
the goal is to predict maximum occupancy across the entire
trip for any trip in the future, tr.

IV. DATA COLLECTION AND PROCESSING

In this section we first provide an overview of the different
data sources used and we describe the data augmentation and
processing methods that we applied to it.

A. Data Sources

There are a variety of data from different sensors and
sources that needs to be temporally and spatially joined
together.

2In this work we use the terms vehicle and bus as public transit vehicles
interchangeably.

• Automatic Passenger Counting (APC): Automatic Pas-
senger Counting systems record a variety of information
as the vehicle passes by bus stops. Sensors installed over
vehicle doors are triggered when people exit and enter the
bus, recording offs and ons respectively. Each entry in
the APC is a log of the current state of the bus at a stop
on a trip. This log also includes scheduled and actual stop
arrival times.

• Weather: Weather data comes from multiple sources
(Darksky and Weatherbit) and multiple weather stations.
Data is matched based on the geographic locations of
the stops and weather stations, and then joined with the
APC data. Data includes precipitation, temperature and
humidity.

• General Transit Feed Specification (GTFS): A dataset
provided by the transit agency based on a common
format for public transportation schedules and associated
geographic information [18]. It includes all the schedules
and time tables for all the vehicles in their fleet. It also
includes the geometric routes and scheduled arrival times
that can be used to compute scheduled headways and
match with road traffic data. A version of the GTFS
standard can be found here: https://developers.google.
com/transit/gtfs/.

• Traffic: Traffic data is from INRIX [19]. It provides road
segment level speed and congestion information in five
minute granularities. Matching this data with APC is done
by dividing the metropolitan city into one by one mile
grids and identifying the grids where the bus trip’s shape
passes through. INRIX segments which are within these
grids are then collected and the average traffic speed is
obtained. This value is then joined with APC.

• Calendar: This includes information regarding city holi-
days and school breaks which have been shown to have
an effect in the overall ridership demand [20].

Fig. 2. Noise in occupancy sensor readings, difference between ground truth
and sensor data observations over a period from 2021-03-21 to 2022-02-17.

B. Data Cleaning and Augmentation

APC data received directly from vehicles are noisy, often
reporting highly erroneous data. Figure 2 shows a plot of the
difference between the reported occupancy and ground truth
data for a span of almost one year. The recorded data, on
average, was 5 people away from the ground truth, with a



TABLE I
DATA FEATURES, SIZE AND SOURCES

Dataset Range Size Rows Features Source Frequency Type Description

Transit 831MB 17,000,000

Transit date APC variable Temporal Date of bus trip
Route ID APC variable Spatio-temporal Unique route identifier
Route direction name APC variable Spatio-temporal Name of route heading
Scheduled headway APC variable Spatio-temporal Duration between buses headed in the same route and direction (per stop)
Load derived variable Spatio-temporal Total occupancy at the stop (after alights and boards)

01/01/2020 Stop sequence APC variable Spatio-temporal Number of current stop within the entire trip
to Stop ID APC variable Spatio-temporal Unique stop identifier
04/06/2022 Past load derived variable Spatio-temporal Past loads from previous trips and stops

Past actual headway derived variable Spatio-temporal Past actual headway from previous trips and stops
Percent load change derived variable Spatio-temporal Percent change of occupancy from two stops or trips prior
Percent headway change derived variable Spatio-temporal Percent change of headway from two stops or trips prior
Zero load at trip end APC variable Spatio-temporal Boolean indicator if people should all alight at the end of the trip

Weather
01/01/2020

300MB 226,105
Temperature Darksky 1 hour Spatio-temporal Recorded temperature

to Humidity Darksky 1 hour Spatio-temporal Recorded humidity
04/06/2022 Precipitation intensity Darksky 1 hour Spatio-temporal Amount of precipitation.

Traffic
01/01/2020

21GB 2,300,000,000
Speed INRIX 5 minutes Spatio-temporal Recorded road segment traffic speed

to
02/28/2022

Holidays
01/01/2020

1MB
School breaks calendar 1 day Temporal Scheduled school breaks and holidays

to National holidays calendar 1 day Temporal National holidays
04/06/2022

Fig. 3. Count of various issues faced when dealing with APC data

maximum error of as much as 72. Another more pressing issue
with APC systems is that data is not reliably obtained. Figure 3
shows the only a fraction of the data received is in a “clean”
state or a state without issues that could even be attempted
to use for training. The issue is continuously improving over
time as better APC maintenance practices are implemented,
currently there are only less than 20% of data that is lost and
deemed unclean compared to almost 50% in the past.

Thus, prior to any processing and merging, we filter out
trips which have incorrect or unclean entries. Note that while
APC data is received at the stop level (events are logged every
time a bus reaches a stop), cleaning and filtering are done at
the trip level. This is due to the fact that we remove entire
trips when any of their stop entries meet certain criteria. The
following are the set of rules that determine whether an entry
in the APC is valid:

• Recorded occupancy is < −5.
• offs and ons error is > 0.2.
• All actual arrival times are null.
• All offs are null.
• The entire trip is a duplicate of a prior trip.
• Stop entries are not in the expected chronological se-

quence, which can sometimes happen when vehicles lose
GPS signal.

If an entry matches any one of these rules, then it and the
entire trip it belongs to are considered invalid and filtered
out. Once a valid APC dataset has been established, it is then

merged with all the other datasets. Two sets of data are then
prepared, one for the trip level and another for the stop level.

Since APC data is recorded every time a bus arrives at
a stop, it needs to be aggregated into specific trips before
it can be used for trip level occupancy prediction. It is first
grouped per transit date and trip id, and aggregated
as follows and then be used in trip level occupancy prediction.:

• weather: mean weather across all stops since it does not
change within the duration of the trip.

• headway: mean headway across all stops.
• occupancy: maximum occupancy across all stops in the

trip.
• others: use the first instance as the value.
For the stop level prediction, zero load at end an

extra feature, which is not present in the trip level data is used.
This feature defines whether a trip would require all passengers
to alight upon reaching the final stop. The feature is useful for
maintaining continuity between trips within a block. Table I
lists down all the features collected and generated from the
multiple dataset used in this paper.

Another challenge faced when using APC data for forecast
and prediction is the need to sort before any training can begin.
In the course of an entire service day multiple vehicles will be
travelling across the city, many of the trips occurring simul-
taneously. Certain blocks are non-overlapping are traversed in
sequence by a single vehicle, while others are independent.
There might exist multiple routes under each block, each with
its own trips that need to be arranged properly before a model
such as an LSTM can be used. Otherwise, the data would be
disjoint and the model would not be able to learn correctly.

All of our code is public and available here: https://github.
com/smarttransit-ai/mta occupancy prediction

V. OCCUPANCY PREDICTION MODELS

Recall our goal is to predict passenger occupancy on public
transit buses and help transit agencies plan and optimize
their trips accordingly. We accomplish this by designing two
different models that handle either the stop or trip level rider-
ship demand forecasting. We train and evaluate each model



separately. Ultimately, we want to minimize the prediction
error for each of the models. Error is measured by how far
our model’s prediction is from the ground truth.

The ground truth is the occupancy recorded by the APC
data. Based on conversations with the transit agency they
are interested in primarily identifying trips and stops with
a high occupancy count. One of the outputs of this work
will be to show potential riders how crowded the arriving bus
will be. Thus, a binned output based on the absolute load is
sufficient for this problem. We classified the loads based on
how the agency breaks it down as well: Low: ≤ 6, Medium:
7−12, Medium-High: 13−54, High: 55−75 and Very-High:
≥ 76. However, given the heterogeneity of the buses used in a
public transit system, vehicle capacities are not uniform. Thus,
using only absolute loads will not provide enough information
regarding the crowdedness of a particular bus. One solution
should be to factor in the vehicle capacity after inference and
provide a crowdedness factor to the user instead of the absolute
load.

A. Feature Selection

We start with an initial list of 14 features ranging from
transit information such as trip date, time and direction, to
weather and traffic. Features are treated as one of three
categories: numerical, one-hot encoded and ordinal. Numerical
values include traffic and weather. These values are scaled and
normalized before they are used in training. One-hot encoded
features include binary features such as is it a holiday, a school
break, zero load at end, and also route id and direction and
time window. Using one-hot encoding, we can transform these
categorical variables into numerical ones while preventing the
models from treating one category as greater than the other.
On the other hand, we treat year, month, day and hour as
ordinal variables where order and sequence are considered.
Time windows are not considered ordinal since we want to
treat each time window independent of others.

B. Trip Level Prediction

In trip level prediction, the goal is to be able identify,
throughout the service day, which trips in a route experience
a high number of occupancy. This allows transit agencies to
react and adjust their timetables to future trips that will have a
drastic change in demand. Throughout the entire service day,
multiple buses will be plying the same trip along the same
route and direction. The time between bus dispatch is defined
as the headway. We can control the granularity of the data by
selecting different time windows with larger time windows
grouping together more trips. Grouping by time windows
allow the model to provide a prediction for a specific trip at a
given time window regardless of which vehicle is present. We
divided trip level prediction into two different models which
we call day ahead and any day prediction.

1) Day Ahead: In day ahead, we use data from the prior
day (24 hours) to generate additional features and then predict
the occupancy level for the trips in the future. If we are trying
to predict the occupancy at trip ti then:

• past actual headway percent change of trip ti−2 and ti−1

• past load percent change of trip ti−2 and ti−1

• past average load of trips ti−P , · · · ti−1, where P is the
number of past trips in the same route and direction.

• past average actual headway of trips ti−P , · · · ti−1, where
P is the number of past trips in the same route and
direction.

Fig. 4. Model comparison for any day prediction. Xgboost root-mean-square
error (RMSE) outperforms all others across all time windows.

Training These features along with the features in Table I are
then used as input features in training multiple models ranging
from Random Forest, MLP, and an Xgboost model. Figure 4
shows all the RMSE for occupancy prediction across time
windows for three models compared to the baseline. Xgboost
outperforms all in this preliminary experiment, thus will be
used from here on.
Inference Inference is done on a per trip basis, by providing
the transit scheduled for the desired trip ti+1, past information,
weather and traffic forecast, the output would be the max
occupancy of trip tN+1. By doing this for all time windows,
the transit agency can have an overview of the maximum
occupancy at each route and direction across the entire day.

2) Any Day Trip Prediction: This model is used to predict
the maximum load occupancy for any trip at any day in the
future. This model is similar to the previous model. However,
this model does not rely on any past information to generate
a prediction. It is trained using the same type of XGBoost
model as the day ahead prediction.

C. Stop Level Prediction

In contrast to the previous two models, stop level attempts to
forecast the occupancy at future stops. When used with the trip
level prediction, the goal is that it will allow transit agencies
to have a more fine-grained view of which stops have a high
passenger demand. It uses the stop level dataset generated in
Section IV as input to our model. The time window is used
to group vehicles that travel the same route and direction.

The data is grouped by transit date, route id, direction, stop
id and time window. The occupancy data is then summed
across all stops in the same group, giving us an overall idea
of the occupancy at that stop for that time window. Similar
to the trip level prediction loads are then assigned into the
following bins: Low: ≤ 5, Medium: 6 − 11, Medium-High:
12−16, High: 17−29 and Very-High: ≥ 30. The goal of this



model is then to predict the binned maximum occupancy for
stops ahead given past p stops.

Fig. 5. LSTM Encoder-Decoder architecture

Training: Our proposed machine learning model is an LSTM
encoder-decoder, see Figure 5, with two recurrent modules and
two feed forward modules which output a bin corresponding
to the maximum occupancy at the stop. An encoder-decoder or
seq2seq model is selected to be able to leverage its ability of
transforming input into some latent space and using a decoder
to create a sequence from those inputs. In essence we are using
the model to generate the next word in a sentence, where words
are stops and the sentence are the trips. The model is trained
on the past stops which are then used to predict the immediate
next stop.
Inference: We use the past N stops to predict the next
stop ahead in a single trip. Weather and traffic forecast are
combined with scheduled transit date time for use in the
prediction. The output is the predicted occupancy at the stop
in a particular route and direction.

VI. RESULTS AND DISCUSSIONS

In this section, we evaluate our models based on real-
world public transit data from Nashville, TN. We describe our
experimental setup and then present the results for the trip
level and then stop level predictions.

A. Experimental Setup

We use APC data for Nashville, TN provided by Nashville
Metropolitan Transit Authority (MTA). We used 28 months
of data from January 2020 to April 2022. Across these two
years, MTA has an average of 100 unique vehicles, serving 30
routes going in 10 different directions in a single service day

(counting both weekdays and weekends and holidays). In this
work, we used all possible route and direction combinations
present in the dataset. All training and experiments were done
on a machine with 16-core AMD CPU and 4 Nvidia Titan
Xp. We measure error as the distance between the ground
truth and predicted occupancy. We treat the binned classes as
ordinal thus, we use:

yerror = ytrue − ŷ (1)

Predictions that are far from the truth have larger errors than
predictions that are off by a single bin.

B. Trip Level Prediction

For the trip level prediction, we split the 430,404 trip data
into 70% training and 30% testing. Trip level prediction model
is generated using multiple algorithms such as Random Forest,
MLP, LSTM, and XGBoost. Each model is scored based on a
5-fold cross-validation and compared with a baseline model.
The baseline model used statistical analysis on historical data.
We looked at the past trips taken along the same route and
direction, then we get the maximum occupancy across all of
those past trips which is then binned. We did this for all trips
one, two and four weeks in the past. We found that accuracy
does not improve across different baselines. The XGBoost
model performs the best compared to all the other models
and the baseline.

Grid search based on a 5-fold cross-validation is done to
select the best hyperparameters for the model. We tested
different time windows for aggregation and at every time
window, the model performed better than the baseline. Figure 7
shows the counts of mean absolute errors of the predicted bin
to the real bin for both the baseline and day ahead model. Our
model is able to predict more trips correctly across all time
windows. The model provides 40% more correct predictions
and makes 29% less yerror = 2 mistakes. Figure 8 shows
the RMSE of each model across time windows. This further
proves that our models perform better, however, it also proves
that even with the past information included in the day ahead
prediction models, it only performs marginally better than the
any day model. Note that the gap is due to the buses being
unavailable at those hours (1:30 am to 4:00 am).

To understand which features have an effect on the final
prediction models, we generated a SHAP analysis for the day
ahead model. It shows that the feature with the highest impact
on the model output is route and direction. This is expected
since certain routes experience more demand than others due
simply to the fact that these routes feature destinations that
expect a lot of commuters. The next highest ones are hour
and month which are due to jobs and schools having a direct
effect in demand. Aside from past trip loads, all other past
information had little to no impact to the overall model output.
Certain features such as school breaks and national holidays
also had less impact since these features essentially have the
same relationship with transit demand as month.

Since one of the end goals of this work is to help the transit
agency plan for sudden high occupancy events, we evaluate the



Fig. 6. End-to-end framework showing how historical data is extracted, filtered, merged, and cleaned for use in both the trip level and stop level prediction
models. Once the models have been trained and deployed, they can be used to continuously predict passenger occupancy. Once new data from the current
service day is available, the process is repeated, improving the performance of the system over time.

Fig. 7. Comparison between baseline and any day trip level models. From left to right, the plots show the counts of mean absolute error, yerror = {0, 1, 2, 3},
of the predicted to the true label. The model is able to provide 40% more correct predictions and 29% less mistakes than the baseline.

Fig. 8. RMSE of baseline, day ahead, and any day models. The gap in the
data is due to buses not travelling at those hours (1:30 am to 4:00am).

ability of the model to distinguish between low (0-11) and high
(12-100) number of occupants. In Table II we summarize the
precision, recall and F1 scores for the any day prediction given
different time windows. The model is able to distinguish high
and low occupancy 61% of the time. We can see the effect of
increasing the time window has on precision and recall which

Fig. 9. SHAP Feature Analysis for the trip level model



TABLE II
EFFECT OF VARYING TIME WINDOW ON ANY DAY PREDICTION OF LOW VS.

HIGH OCCUPANCY

time window (min) precision recall F1 score

1 0.5860 0.6289 0.6066
10 0.5833 0.6357 0.6083
20 0.5750 0.6511 0.6107
30 0.5693 0.6615 0.6120
40 0.5526 0.6884 0.6131
50 0.5469 0.6989 0.6136
60 0.5419 0.7064 0.6133
120 0.5043 0.7695 0.6093

TABLE III
EFFECT OF VARYING PAST STOPS WITH CONSTANT TIME WINDOW (15
MINUTES) ON LOW VS. HIGH OCCUPANCY PREDICTION OF NEXT STOP

past stops precision recall F1 score

1 0.9276 0.9435 0.9355
3 0.9697 0.9381 0.9536
5 0.9407 0.9623 0.9514

10 0.9428 0.9569 0.9498

is expected since having smaller time windows result in finer
grained predictions which can approximate the ground truth
better. While the differences in F1 scores are negligible, the
most accurate time windows are those between the extremes.

C. Stop Level Prediction

For stop level prediction, we split 17M rows of data into
the following:

• Training: 2020-01-01 to 2021-06-30
• Validation: 2021-06-30 to 2021-10-31
• Testing: 2021-10-31 to 2022-04-06

While COVID-19 has had a negative impact on public rid-
ership in the last couple of years [21], we found that this
division of training, validation, and testing is still preferred to
maximize the amount of available data for training.

A hyperparameter search was done to identify the optimal
learning rate, batch size, size of hidden layers, and number
of past stops to use in predicting the next stop. The model
is compared to multiple baseline models, a simple rolling
baseline where only the immediate past stop occupancy is
used, a statistical analysis based baseline which gets the max
or mean occupancies of the stop in the past (matching route,
direction, time window and day of week). Both the number of
errors and root mean squared error were used to evaluate the
model.

TABLE IV
EFFECT OF VARYING TIME WINDOWS STOPS WITH CONSTANT PAST STOPS

(5 STOPS) ON LOW VS. HIGH OCCUPANCY PREDICTION OF NEXT STOP

time window precision recall F1 score

15 0.9008 0.9077 0.9042
30 0.9273 0.8870 0.9067
45 0.9783 0.9000 0.9375
60 0.9881 0.9540 0.9708
90 0.9583 0.9583 0.9583

Similar to the any day model, we choose various values of
past stops and time windows. We see in Tables III and IV that
using different hyperparameters had an effect on the prediction
ability of the model. However, the difference between the
values are very small and almost negligible.

For evaluation we uniformly select 5000 random trips which
have at least 10 stops in a trip. We then compare the baselines
with the model trained with the hyperparameters resulting
from the grid search. Figure 10 shows the ability of the model
to predict the 6th stop given the preceding 5. It is able to
predict more accurately than even the rolling baseline.

Fig. 10. Confusion matrices when predicting the 6th stop (left) using a rolling
baseline, (right) using the past 5th stops as input to the model.

In contrast to the rolling baseline which can only predict
the next stop, our model is able to predict any number stops
given an initial seed of past stops. Figure 11 shows the error
count as the number of predicted stops increase. The baseline
mean is unable to generate a prediction for stops in the future.
The difference in counts is due to not being able to find past
data that matches the features of the future stop.

Fig. 11. Count of errors per stop in the future

Finally in Figure 12, we show that the results from the
model stay consistent throughout different months.

Fig. 12. Count of mean absolute errors per month (2022) per stop in the
future



VII. CONCLUSION

The ability to predict and forecast transit occupancy accu-
rately is a boon not only to passengers but to transit agency.
Passengers will be able to adjust their schedules or plans to
meet their comfort requirements. Transit planners will have
the opportunity to allocate resources much more efficiently.
However, predicting occupancy is a non-trivial task. Due to
the difficulty of this problem, we proposed to utilize not only
available data from the transit agencies, automated passenger
counter (APC), but to leverage any additional datasets that can
provide further insight in the ridership demands. In this paper,
we presented a way to collect, process and augment data from
the transit agency, and merge it with traffic, weather, general
transit feed specification (GTFS) to obtain some meaningful
compilation of data. Our key contribution is proposing two
separate models for predicting the trip and stop level oc-
cupancy. We found that we are able to outperform baseline
statistical analysis using the trained models.
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