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Abstract—The public commute is essential to all urban centers
and is an efficient and environment-friendly way to travel.
Transit systems must become more accessible and user-friendly.
Since public transit is majorly designed statically, with very
few improvements coming over time, it can get stagnated,
unable to update itself with changing population trends. To
better understand transportation demands and make them more
usable, efficient, and demographic-focused, we propose a fast,
multi-layered transit simulation that primarily focuses on public
transit simulation (BTE-Sim). BTE-Sim is designed based on
the population demand, existing traffic conditions, and the road
networks that exist in a region. The system is versatile, with
the ability to run different configurations of the existing transit
routes, or inculcate any new changes that may seem necessary, or
even in extreme cases, new transit network design as well. In all
situations, it can compare multiple transit networks and provide
evaluation metrics for them. It provides detailed data on each
transit vehicle, the trips it performs, its on-time performance
and other necessary factors. Its highlighting feature is the
considerably low computation time it requires to perform all
these tasks and provide consistently reliable results.

Index Terms—public transit, fast traffic simulation, model
integration, data processing, road speed calibration

I. INTRODUCTION

Whether it is for a meeting or for a recreational commute,
we regularly need to travel from one place to another. In
doing so, the modes of transport used for every individual.
In the United States, transportation accounts for 29% of all
greenhouse gas emissions, among that 57% is from private
vehicles, such as cars, SUVs and pickup trucks [1]. On
average, public transit produces less than two-thirds of the
emissions of private vehicles per passenger mile. Another issue
is that public transit is not very well utilized in the United
States and that there is a universal need to build and promote
public transit systems to address the issues of increased
greenhouse gases and emissions. Public transportation not only
reduces environmental impacts but also reduces the cost of
transportation for all individuals. To make it viable, the system
needs to be easily accessible and tailored to the needs of the
population. Transit systems are built using many individually
controllable components, such as the number of buses, the
routes they should run on, their times of travel, and so on,
which can be difficult to visualize and configure all at once.
A transit simulator is specifically designed to help this issue

and by using it, we can replicate the scenario that would go on
in an usually day in a city. Since we prioritize public transit,
the simulator environment that we propose primarily focuses
on public transportation, allowing us to assess the impact of
various transportation routes in the city and how people will
interact with it.
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Fig. 1: Components of a transit simulation

The system relies on identifying the commuter preferences
(that we are collecting through surveys) and calibrating user
trips from each census block or traffic analysis zone to match
the activity seen in real-life. The simulator will help to identify
and address the eventual challenges of low transit efficiency
by combining the complementary advantages of fixed-and
dynamic-route transit services by seamlessly integrating them.

Generally, a transit simulation includes three main compo-
nents: transit system, background traffic, and transportation in-
frastructures as illustrated in Fig. 1. The transit system includes
buses, bus stops, and commuters. Meanwhile, the background
traffic consists of other modes of transportation, such as private
vehicles, taxis, freight vehicles, and pedestrians. In addition,



the transit system and the background traffic share the use of
the transportation infrastructure, so they affect each other.

Problem statement: We address a novel simulation scenario
where only the transit system’s setting (like the number of
transit vehicles) changes while the rest remains stable. This
problem happens in many tasks related to optimization and
planning. For instance, to design optimal bus routes, opti-
mization algorithms [11] usually execute a greedy/evolution
process which repeats the simulation many times, but only
the bus routes are adjusted. Furthermore, machine learning-
based online routing models for on-demand transit services
[12] are usually trained by a trial and error simulation process
that affects only the setting of the transit system. Another
example is when there is high demand during a football match,
planning public transportation services for this demand may
require conducting simulation evaluation for multiple times
[3]. Such scenarios cannot be avoided, and simulating such
a high-traffic scenario is computationally too heavy for the
existing system.

A naive approach is to simulate from scratch each time the
transit system’s setting changes. However, transit simulation
is a citywide problem with a large road network and several
thousands of vehicles, so it is extremely computationally
expensive. The simulation shown in [13] took around 8 hours
to simulate a day of a city-wide transit system. To improve
the computing-time efficiency, we propose a module named
Background Traffic Elimination (BTE) that can mimic effects
of the background traffic to the transit system, and we call
this method of transit simulation BTE-Sim. The proposed
module can speed up the simulation 13 times while achieving
competitive results in other metrics such as trip duration, bus
delay, bus speeds, total distance traveled, and virtual passenger
alightings.

Our approach and motivation are described in the following
sections by showing how we prepare the necessary constituent
datasets for the simulation, the process of simulating the
system, and then we show through multiple experiments, the
robustness and efficiency of BTE-Sim.

Our contributions can be summarized as follows:

o We proposed the Background Traffic Elimination module
to speed up transit simulations while obtaining competi-
tive results compared to conventional simulations.

« We conducted comprehensive experiments to demonstrate
the operation of BTE-Sim. Moreover, we presented a
novel downstream task of transit simulations i.e., eval-
uating the OD matrices.

II. RELATED WORK

The simulator is built on the Eclipse Simulation of Ur-
ban MObility (SUMO) open source simulator [4]. It is a
highly customizable, large scale simulator with capabilities to
perform controls at microscopic level. It can work on city
sized areas, and is highly scalable with respect to the number
of components it can include. Components may include the
people, cars, trucks and buses its simulating. The city’s road

network which includes all types of roads, drivable and non-
drivable, are imported into SUMO using road data from
OpenStreetMap(OSM). The roads can be custom-configured
and edited further using tools from SUMO. In addition to
being highly capable of integrating and finely controlling
multiple parameters, SUMO also provides detailed outputs of
all its components which makes it ideal for use in our public
transit simulation.

In previous literature, traffic simulators have been used to
analyze transit simulations. They even extend to the use of
micro-transit, or shared mobility uses [7]. While most of them
are able to address the problems, they are limited in geographic
area and fleet size. Urban mobility services as a whole have
been studied sparsely. There have been some credible attempts
to simulate city-wide transit systems as shown through Transit-
Gym [13], but they are usually computationally very heavy
and take a lot of processing time. Our approach tries to
solve this issue by building a highly expansive, customizable,
controllable, and computationally fast simulation environment
focused on urban transit design.

III. DATA PREPARATION

The simulation considers multiple inputs to set up the
desired scenario:

o The road network is selected from OSM - represents the
city or region’s roads

o The transportation demand is obtained by generating OD
pairs from publicly available datasets, like LEHD Origin-
Destination Employment Statistics (LODES) [15] (for
jobs), or also from city organizations

o The bus schedules are found from GTFS

« We need to identify the number of individual cars on the
road as well, to get a proper assessment of the traffic
speeds

A. Road network

The urban model boundary includes Hamilton County in
Tennessee, Catoosa County in Georgia, and two partial coun-
ties (Dade and Walker) in Georgia (Fig. 2). The Chattanooga
highway network included all interstates, other freeways, ar-
terials, collectors, and a significant portion of the local roads.
For the purpose of compiling traffic-related data, particularly
the journey-to-work and place-of-work statistics, the traffic
analysis zone (TAZ) is used to divide the planning region
into small, relatively homogeneous areas in terms of land
use and activity. TAZs are used to represent travel within a
model study area because it is not practical or feasible to
model individual households and employment. Housing and
employment data are aggregated to the TAZ data, and the
TAZs are used through the model process to calculate the
origin and destination of trips in the model. To simulate travel
within the Chattanooga study area, a computer network must
be developed that represents the street system to be modeled.
As a part of the network development process, corrections and
quality checks were made to the SUMO network. Corrections
made to the Chattanooga network include transit routes,traffic
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Fig. 2: Model Boundary

lights, modified disconnected intersection nodes, and repaired
fragmented roadways.

B. Time of day model

Four time-of-day periods are incorporated into the model
stream from the destination choice to the assignment steps.
The four time-of-day periods are AM peak, midday, PM
peak, and off-peak. The development of the time-of-day model
included identifying peak travel time periods, developing peak
period factors, and developing the percentage of trips by
purpose during each time period by direction. These factors
were used to reflect the behavior of the traffic during the peak
period. The traffic assignment step for the Chattanooga model
is conducted for each time period of day.

C. Transit network development

Chattanooga Area Regional Transportation Authority
(CARTA) is the main provider of public transit services in the
region. CARTA operates 13 fixed-route bus routes, two dial-
a-ride neighborhood routes, a free shuttle route around the
University of Tennessee Chattanooga campus, and two free
downtown electric shuttle routes. All fixed-route bus routes
(including three shuttle service routes) were modeled in the
transit network.

D. Transportation demand

Urban area travel demand models are important tools for
the analysis of transportation plans, projects, and policies.
Travel demand modeling practices vary significantly between
Metropolitan Planning Organizations (MPOs) in the United
States. In general, traditional 4-step models require less time,

data, and resources to develop and validate. More advanced
travel demand estimation techniques, such as the activity-
based approach, usually require more resources to estimate,
validate, and use, but have the benefits of improved sensitivity
to policy changes. The geographic area under consideration
is Chattanooga, Tennessee. The city is divided into census
tracts. We find the movement matrix of people travelling
for jobs (LODES) from census tract to census tract. The
generated origin-destination(OD) pairs are used as requests
for our solver. Each row in either dataset represents a single
trip by one person. The trip represents movement to the job
location and then back to home, at certain times of the day,
which are sampled from a given set of regular job start and
job end times.

The data are a congregation of the geographic data of
the area (from OpenStreetMap), people movement, cen-
sus(LODES) data, residential and work locations, and open-
source building footprint data (we use Microsoft’s open data).
We use a combination of the above-mentioned datasets to
arrive at the custom Transportation demand.

E. Schedules

Our motive here is to represent all of the city/county’s
area and model the movement of people to and from each
specified subregion. This is achieved by discretizing space
and time to create the data set. Each entry in the dataset
refers to one person moving from their inital(home) location
to their final(usually their workplace, may be different for
different types of data sources) location. The data sources can
be divided into two primary categories: (a) Data source for
mass movement of people, usually on a census tract or census
block group scale, (b) Data source for housing, work, and
miscellaneous building locations throughout the region under
consideration.

F. People’s Movement data

Usually such datasets are obtained from census bureaus,
which collect county-wide information on people’s travel
patterns and their preferred destinations. We use the LODES
data, which is publicly available from the United States
Census Bureau which may change over the years. This data
is aggregated for each census block group, having the number
of people travelling between census block groups. It also
contains the number of workers, classified into age groups,
wage groups, and industry sector.

Another source could be individual organizations that use
tracking technologies to record the activity of their user base.
These give us a temporal trend of the population’s travels
but are not usually spatially widespread and mostly confined
to cities. One such dataset is Safegraph [8], which is also
on a census block group scale of aggregation. This counts
the number of people moving between their residence census
block groups and different types of destination (like, offices,
grocery stores, entertainment places), which is also in a
specific census block group. This includes the frequency and
count of visits, and hence the a robust temporal distribution.



G. Building locations

As we have seen in the previous subsection, the data is
usually aggregated on the census block group scale, and
we have no specific information about the exact home or
work locations that are needed to formulate specific Origin-
Destination pairs. It is imperative we find the locations of
individual houses and workplaces in the concerned census
block groups. Two such hierarchical methods are described
here. OpenStreetMap [6] provides a labelled collection of
buildings. They are individual geometric shapes on a two-
dimensional (2D) plane. These buildings are then represented
as a point, which are the centroids of the building’s shape.
Since these buildings are tagged, we can classify them into
homes or workplaces and form a primary notion of the exact
locations of where people are moving. One drawback of this
method of data collection is that for smaller or less populous
areas, the buildings are not properly tagged, making the dataset
very small and restricted to major population centers.

Census block groups that lie on the outskirts or far from
cities are usually missing any sort of tagged buildings, hence
a distinct lack of home or residential buildings can be seen. We
are unsure of the exact locations of where people are starting
and ending their trips. To get some spatial clarity and increase
the granularity of the people’s movement locations, we use
a secondary layer of building location information. This data
layer usually covers a large number of buildings in both urban
and rural areas but is not tagged, that is, buildings cannot be
specifically classified as homes, workplaces, or if they are used
for other purposes. Microsoft produced a dataset for vector
creation throughout the US in 2018 [14] that was generated
from aerial images available to Bing Maps using deep learning
methods for object classification [S]. We use the US Buildings
Footprint to find the set of untagged buildings. Combining the
tagged and untagged buildings, we can essentially cover the
landscape under consideration.

H. Calibrated traffic speeds

A microscopic model describes the movements of specific
combinations of vehicle and driver. These behaviors are the
outcome of the features of drivers and their vehicles, the
interactions between drivers, driver-road interaction and road
characteristics, external factors, and traffic rules and control.
This necessitates calibrating the parameter values so that the
simulator may be used for simulation analysis in the desired
context. Finding the optimal parameter values that minimize
the discrepancy between the simulated and actual output values
is, in general, the calibration procedure. Because of the impact
of the parameters related to driver and vehicle on speed, a
focus is put on an accurate portrayal of velocities in the
simulation. A SUMO simulation of Chattanooga is compared
to real-world vehicle speed data from INRIX as the foundation
for evaluating the simulated behavior. The parameters of a
transportation simulation model must undergo a meticulous
calibration procedure to ensure that the model’s output is
as accurate as feasible. Fig. 3 describes the workflow of

the calibration algorithm. The calibration charts are presented
below.

Traffic demand is the description of the vehicles that will
circulate on the simulated map. The O/D matrices for this
study are provided by the Chattanooga Hamilton County
regional planning agency. An O/D matrix provides traffic flows
(often vehicle flows) from each origin to each destination.
With O/D matrices, traffic may take several paths to complete
the trip from the origin to the destination. As there are 909
TAZ in our study area, we have 909x909 O/D matrices. Using
demand generation tools of the SUMO DUArouter, OD2trips,
the O/D matrices were imported and split into single vehicle
trips. The simulation needs to figure out how to get from the
origin edge to the destination edge for a collection of vehicles
with a set of origin-destination relations (trips). In a network
with high traffic, the difficulty of selecting optimal routes that
account for journey times is known as user assignment. To
address this issue, SUMO offers a variety of options. Using
dualterate to compute a user equilibrium, that is, it tries to
identify a route for each vehicle such that no vehicle may lower
its trip cost (typically the travel time) by taking a different
route. It accomplishes this iteratively by: 1- using duarouter
to route automobiles in a network with the lowest known edge
costs (starting with empty-network travel times). 2- Invoking
sumo to mimic “actual” travel times based on the computed
routes. The resulting edge costs are utilized in the net routing
stage. These repetitive procedures are known as Dynamic
User Assignment (DUA) and are often used in combination
with a traffic simulation framework. Furthermore, a specified
network was created in SUMO, and detectors were installed
to collect output such as speed. The detector computes the
values by calculating the entry and exit timings of the vehicle.
Next, a sensitivity analysis was conducted to determine the
relevant factors that can have a significant impact on particular
results. Then, a genetic algorithm (GA) model was created
to determine the optimal values for every relevant parameter.
The primary distinction between GA and other conventional
search algorithms is how the computer selects sites. Classic
search algorithms select points more arbitrarily and iterate
until specific requirements are met, whereas GA selects points
randomly and then mutates them to produce a new set of val-
ues [9]. In GA, a random parent from the original population
would be picked and assigned a fitness value according to the
fitness function. This parent undergoes mutation and cross-
over to produce the child whose fitness value is determined
and compared to the parent. If the fitness value of the child
exceeds that of the parent, the child will become the parent
and the cycle will continue. If lower, the parent endures more
mutations until its fitness value falls below that of the child.
As previously mentioned, the performance of the calibrated
model was evaluated using speed as the effectiveness metric.
For this purpose, speeds derived from the calibrated SUMO
model and the INRIX dataset were compared and the errors
were quantified in terms of Root Mean Square Error (RMSE).
Finally, the calibrated model is used as background traffic.
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IV. SIMULATION

Public transit simulation is done conventionally by feeding
all data at once. This makes it slower to complete and requires
more computational processing. To make this task easier and
much faster, we leverage the use of calibrated background
speeds in our proposed system, simulation with background
traffic elimination (BTE-Sim). Both methods are shown here.

A. Conventional method - simulation with background traffic

This method of simulation is quite straight-forward, in
the sense that it runs all the collected data about transit
vehicles, personal vehicles and the people moving all at once
to simulate a city’s scenario, and is based on [13]. As we
have shown earlier, we collect data of different types to run
the system. These are fed into the python intermediate which
structures and converts them into SUMO (an open source
transit simulator) usable formats as shown in Fig.4. SUMO
performs the simulation for the desired periods (usually 24
hours) and outputs the movement details of each bus — like
their speed, acceleration, distance covered, and so on. We can
then use this data to find the average speed of each traffic lane
and calibrate those lanes to the found speeds. This is the speed
due to the background traffic (all other vehicles, except the
buses). This is used further down the line in the updated type

of simulation, which is simulation using background traffic
elimination.

B. Simulation with Background Traffic Elimination (BTE-Sim)

This form of simulation requires the same inputs as previ-
ously used, along with the calibrated background speeds, as
shown in Fig.5. This background traffic speed can be received
from one of three sources:

a) the background traffic speeds of the simulation discussed
above

b) the automated passenger count (APC) dataset for the
buses of the transit agency

¢) INRIX, which is a dataset containing the speeds of
vehicles on discrete road segments at very fine time
intervals.

We can choose the background speed from any one of the
above sources and we show in Experiment 1 [sec.V-A],
amongst the choices, which background speed data is preferred
for our system. Since we do not need to simulate the movement
of all vehicles, and focus only on bus movements, it can run in
a much shorter duration. Thus, greatly reducing the execution
time of a day’s simulation, providing faster results (around 5
minutes on a regular PC). It functions similar to the previous
scenario, but the lane speeds are individually modified here,
using a component of SUMO, called the TraCl (traffic control
interface) client. It allows “on-line”, as in while the sim is
running, to control the lanes and buses. The outputs are details
of the movements of the bus, which can be used to check for
optimality or for other purposes, such as energy calculations
[10].

V. EXPERIMENTS AND RESULTS

Here we discuss the multiple scenarios that we put the
BTE-Sim system through. We aim to show that our system
performance is comparable to the current standards (based
on Transit-Gym [13]) in terms of results and its time of
completion is significantly faster than other methods. For
this, we test the system on data collected from Chattanooga,
Tennessee, USA. We have information about its bus routes,
its traffic data through INRIX, automated passenger count
(APC) data for the time of arrival at every bus stop, the origin-
destination(OD) travel data from (a) the city’s planning agency,
and (b) synthetically generated OD datasets from census data.
We put together these data into four different experimental
scenarios and show the BTE-Sim performs better than the
existing system. All the experiments for both Transit-Gym and
BTE-Sim are performed using the same computing power. We
use the absolute error on Time of Arrival (ToA) at bus stops,
which shows how early or late a simulated bus arrives at a bus
stop compared to its designated time. This measure reveals the
relative accuracy and reliability of the simulation. Since BTE-
Sim requires prior information of the road segment (edge)
speed, we show in our first experiment which edge speed data
is more suited to run the simulations.
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A. Experiment 1: BTE-Sim with different sources for edge
speed data

Setting: As mentioned above, the edge speed data of BTE-
Sim can be collected from different sources. In this exper-
iment, we use BTE-Sim from three sources to simulate the
transit system on January 11, 2022. The first source is from a
prior run of Transit-Gym which uses the OD matrix to generate
the background traffic. The second source is the INRIX traffic
and road speed service [2] which is collected from connected
cars and mobile devices, cameras and sensors on roads, and
major events expected to affect traffic and is available through
INRIX IQ, a SaaS-based cloud platform. The third is APC,
which as described earlier, records the time that buses arrive

at each bus stop. In all the cases, we know the travel time of
buses between two bus stops from the data. In addition, we
also know the distance of the bus stops, so we can estimate
the average speed of the buses when moving from any bus
stop to another.

Result: In Fig. 6, the absolute ToA error is amplified
for APC data, while INRIX provides comparatively better
results. We could have chosen the other, independent data
sources as well, but BTE-Sim performs the best when using
the background traffic times generated using Transit-Gym
(marginally better compared to INRIX data). Thus, we choose
the background traffic speeds from Transit-Gym to be our
traffic speed data for the rest of the simulations. It should



be noted that we can choose to use the other, independently
available data sources, like the INRIX data in our case, as the
background speed. This would remove the dependence on the
background speeds from Transit-Gym.
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Fig. 6: Comparing background traffic sources for BTE-Sim

B. Experiment 2: BTE-Sim achieves competitive results com-
pared to Transit-Gym

Setting: We conducted simulations for the city of Chat-
tanooga and for the day of January 11, 2022. We used real
data from the day’s transit operation in the simulation. To
generate the background traffic for Transit-Gym we use the
OD travel matrix provided by the city’s planning agency.

Result: To evaluate the simulation, we focus on the dif-
ference of Time of Arrival (ToA) at bus stops between the
simulation and real world times, on the same date. It is
measured in minutes. Fig. 7 shows the absolute error of
ToA of Transit-gym and BTE-Sim. This shows that using
historical edge speeds, BTE-Sim can mimic the effects of
background traffic, without which it would not have delays.
But in accommodating background traffic, it has the capacity
to change dynamically with the traffic conditions that may
arise in the city. From this we can also infer that BTE-Sim
performs comparatively better at simulating the movement
of buses across the city, having a consistently lower ToA
than Transit-Gym for an entire day’s operation. In addition
to the ToA performance, BTE-Sim is able to provide an
extensive analysis of transit performance. Fig. 8 presents the
performance of the transit system in Chattanooga on January
11, 2022 by BTE-Sim.

C. Experiment 3: BTE-Sim improves the simulation time

Setting: For the city of Chattanooga, we investigate scenar-
ios of varying number of vehicles on the road. There could be
more vehicles, and to mimic that we increase the number of
vehicles in the OD matrix.

Result: Table I records the execution times of both simula-
tion methods. For a baseline of 100,000 vehicles, we can notice
that BTE-Sim runs more than 12 times faster than the tradi-
tional Transit-Gym. With a varying number of vehicles, the

—— TransitGym
< BTE-Sim
£ 151
< \
e r
S 10-
e / '
; f ﬂ"WA’\N/W\
wn \

5 1 | AV

2 / 1/\/“./

5 10 15 20

hour of day

Fig. 7: Comparing Transit-gym and BTE-Sim on absolute error
of Time of Arrival

N w w
w o w
<
kS

N
o

=
o

0
& HTs Fa

1 10A0G1415A16 21 28 2A 3 4 9 DTS33
Routes

Ul

o

Max occupancy on each bus
(=]
(6]

(a) Maximum occupancy

0.161 Hour
20 :
gOIOB- 17
S o.

0 0.061

0.04 7 e

0.021 AN

0.00 S A SS -

0O 5 10 15 20 25 30 35 40

Occupancy of Buses

(b) Density of Route 4

Fig. 8: Analysis examples for the transit system of Chat-
tanooga on January 11, 2022, using BTE-Sim



computation speed of the simulations also changes drastically.
As the number of vehicles increased by a factor of 4, Transit-
Gym execution time increased by 8 times, whereas BTE-Sim
computation time increased by a factor of 2. BTE-Sim runtime
increases minimally with a huge increase in vehicular traffic,
and is highly adaptable to traffic volume changes and can
be re-run for increased traffic scenarios without much time
penalty.

#Vehicles | Transit-Gym | BTE-Sim
100K 27.7 minutes 2.21 minutes
400K 4 hours 4 minutes 5.11 minutes
800K 16 hours 51 minutes | 7.81 minutes
1400K 41 hours 18 minutes | 8.27 minutes

TABLE I: Simulation time of Transit-Gym and BTE-Sim for
scenarios with different number of vehicles

D. Experiment 4: Transit simulation can evaluate OD matri-
ces

Setting: The demand for transit (the number of transit
commuters and their travel routes) can change between dates.
We use three different OD datasets to simulate the scenario
of changing OD demand data. The datasets are disparate as
each of them contain a varying number of people moving,
to different locations throughout a day. For the same day
as January 11, 2022 in Chattanooga, we tested these OD
variations to show the absolute ToA error.

Result: BTE-Sim shows minimal differences in the three
OD situations as seen in Fig. 9 The changes in absolute ToA
error are minuscule for a day’s operation. This shows that
BTE-Sim is well equipped to maintain steady simulations even
in varying situations.
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Fig. 9: BTE-Sim for different OD data

E. Experiment 5: BTE-Sim simulates different dates

Setting: We demonstrate the operation of BTE-Sim by
simulating for a week from Jan. 10, 2002, to Jan. 16, 2022.
Note that the transit setting for various dates is different. For
example, a trip may be offered on Monday but unavailable on
Tuesday.

Result: As we can see in Fig 10, the simulated values
are usually very less scattered, with the ToA values having
very short inter-quartile ranges for a given day, with a com-
paratively higher dispersion on 01-12. Both the mean and
maximum values of the absolute error of ToA are consistently
under 10 minutes. With these we can confirm that BTE-Sim
has a very low error margin in simulating regular traffic and
the operations of the transit systems on different days.
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Fig. 10: BTE-Sim over different dates

Through all the experimentation we successfully show that
BTE-Sim is capable of performing consistently under dynamic
scenarios for city wide transportation operations. It is able to
handle large scale traffic, and people movements along with
its primary focus of public transportation. In comparison to
Transit-Gym, we can see that the BTE-Sim system performs
far better, as it is intentionally focused on catering the needs
of the transit systems only. The simulation time is significantly
faster than existing methods and continues to be so under
increased traffic load.

VI. CONCLUSION

Through the experiments conducted, we demonstrate the
ability to simulate a region’s transit system while taking
into account its population and non-transit users. The method
demonstrated gives us fast, reliable and temporally and spa-
tially accurate results about public transportation. We can use
the data obtained here to improve existing systems, increasing
efficiency while serving more passengers. We can support
the cause of pivoting away from private vehicles and making
public transit more accessible. It can also be used for purposes
of proposing new transit routes, changing sections of existing
routes, and estimating energy consumption on each trip. New
types of buses and modes of transportation can be tried out in
the process.
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