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Abstract—Traffic congestion anomaly detection is of
paramount importance in intelligent traffic systems. The goals
of transportation agencies are two-fold: to monitor the general
traffic conditions in the area of interest and to locate road
segments under abnormal congestion states. Modeling conges-
tion patterns can achieve these goals for citywide roadways,
which amounts to learning the distribution of multivariate
time series (MTS). However, existing works are either not
scalable or unable to capture the spatial-temporal information
in MTS simultaneously. To this end, we propose a principled and
comprehensive framework consisting of a data-driven generative
approach that can perform tractable density estimation for
detecting traffic anomalies. Our approach first clusters segments
in the feature space and then uses conditional normalizing
flow to identify anomalous temporal snapshots at the cluster
level in an unsupervised setting. Then, we identify anomalies
at the segment level by using a kernel density estimator on the
anomalous cluster. Extensive experiments on synthetic datasets
show that our approach significantly outperforms several state-
of-the-art congestion anomaly detection and diagnosis methods
in terms of Recall and F1-Score. We also use the generative
model to sample labeled data, which can train classifiers in
a supervised setting, alleviating the lack of labeled data for
anomaly detection in sparse settings.

Index Terms—Anomaly Detection, Traffic Congestion, Flow
Model

I. INTRODUCTION

Transportation Management Centers are critical for man-
aging the surface road network. Monitoring is critical in
practice; delays accrued during the monitoring phase delay
response and resolution [1]. Frequently, secondary crashes
and long-clearance times lead to additional congestion on
critical arterial road segments. To improve the real-time
monitoring of extensive road networks, transportation agen-
cies are increasing the available sensing modalities, often in
smart corridors. However, this drastic increase in the number
of sensors raises an essential question from an operational
perspective—how can transportation agencies monitor thou-
sands of sensors in (near) real-time to detect incidents of
interest? Our conversations with local transportation agencies
revealed that this monitoring is largely performed manually,
an infeasible strategy in the long run. One approach to
enable transportation agencies to utilize an extensive array
of sensors is to detect potentially anomalous patterns in real-
time using the data generated by the sensors; then, human
experts (or potentially decision-theoretic approaches [2]) can
narrow their focus on the anomalies and take necessary
operational actions.

Challenges The problem of monitoring large sensor
streams to detect incidents of interest is basically an unsuper-
vised anomaly detection problem in multivariate time series
(MTS); traffic data pertaining to road segments are collected
across time and span several dimensions. While anomaly
detection has been traditionally done for various traffic con-
dition variables with techniques such as CUSUM [3], K-
nearest Neighbor [4], Isolation Forest [5], and forecasting
models (e.g., ARIMA [6]), deep neural networks (DNN) have
gradually become the state-of-the-art due to the remarkable
capability of modeling high-dimensional MTS data. How-
ever, despite the universal approximation power of DNN
on learning unknown data distributions, performing anomaly
detection on MTS is still challenging. For example, many
DNN-based approaches either rely on an uncontaminated
training dataset to learn the normal traffic patterns (semi-
supervised) or reframe the detection task as a classification
task using a fully-labeled traffic mobility dataset (supervised).

Such approaches, however, are not practical in general.
Moreover, such data often do not account for a large number
of incidents, such as phantom traffic jams, slowdowns, and
weather hazards. Further, even if labels are available, such
classifiers and approaches identify point anomalies where
the observation is clearly far away from what is expected
globally. However, transportation networks often suffer from
contextual anomalies. Consider that an observed value of con-
gestion on a road segment (at a given time) can be an anomaly
if it deviates significantly from expected historic behavior,
which might be caused by severe weather, big events, road
construction, etc. These challenges require the design of an
unsupervised detector that can generalize decisions based on
multi-dimensional probability distributions learned over both
the spatial and temporal aspects of the traffic time series.

In addition, traditional anomaly detection techniques focus
on maximizing the accuracy of detection. However, in the
specific use case of transportation centers, the goal of such
a detector is to ensure that the search space for monitoring
is shrunk for domain experts. As a result, in practice, the
detector must demonstrate high recall with relatively low
precision, i.e., false negatives are more costly than false
positives because missing the alerts usually leads to late
emergency response, congestion cascades, or even chain
collisions. Finally, an additional challenge is proactive model
improvement; agencies must ensure that the learned model
used to detect anomalies is improved proactively to detect



potentially unseen anomalies.

Contributions This paper systematically addresses these
challenges by developing a traffic anomaly detection frame-
work based on conditional normalizing flow, a probabilistic
generative model that can tractably perform density estima-
tion and sampling in extremely high dimensional spaces [7].
Through this approach, we can model the multimodal distri-
butions of traffic data. In particular, we propose a principled
MTS anomaly detection and diagnosis model for traffic data
that comprises an LSTM-Encoder-Decoder (LSTM-EncDec)
model and a Normalizing Flow architecture [7], specifically a
RealNVP [8] flow. The former makes sequence-to-sequence
forecasting with a sliding-window scheme to extract internal
spatial-temporal information from ground-truth data. The
flow model is used to model complex data distribution in
the high-dimensional transit data. Specifically, it performs
conditional density estimation using the outputs of the fore-
casting model. To ensure tractability of our approach, we
divide the road network of a city into clusters, and perform
anomaly detection at the granularity of clusters. Then, we use
a simpler density estimator based on a kernel density function
to identify anomalies at the granularity of road segments.

We compare our approach with existing state-of-the-art
baselines using traffic data collected from the City of
Nashville, Tennessee. Experimental results show that our ap-
proach has superior performance and sensitivity on anomaly
detection in traffic networks.

II. RELATED WORK

Existing research on anomaly detection for surface trans-
portation systems can be broadly classified into three classes:
reconstruction-based, prediction-based, and density-based
approaches. We review the principle and weaknesses of
each strategy and eventually propose CondRealNVP which
makes up for these deficiencies by combining the ideas of
prediction-based and density-based approaches.

Reconstruction-based approaches leverage the notion
that normal samples can be better reconstructed from a
latent space than anomalies. AutoEncoder is the founda-
tion of this class [9]. Hu et.al [10] combined AutoEncoder
with graph convolutional networks to detect unexpected
travel time in a set of directed weighted graphs. Madarash
et.al [11] used LSTM-predicted maneuver labels to reduce
false alarms when using LSTM AutoEncoder (LSTM-AE) to
detect anomalous driving modality. These studies are limited
to training the detectors using unpolluted data. Under an un-
supervised setting, Contextual AutoEncoder [12] extends the
regular LSTM-AE to multiple decoders. However, a common
issue with AE-based methods is that the L2 optimization
objective enforces models to learn a generic summarization of
underlying regularities of ground-truth data, even for outliers,
leading to severe over-fitting [13]. Variational AutoEncoder
employs an additional Kullback-Leibler divergence loss term
to alleviate this problem. It has been combined with LSTM
for MTS anomaly detection [14], [15].

Prediction models rely on the fact that normal samples are
more predictable than anomalies. One common implementa-

tion of this class is stacked LSTM models [16]-[18]. The
performance of bidirectional LSTM (BiLSTM) in freeway
traffic forecasting was investigated in [19]. Basak et al. [20]
analyzed the cascade effects of traffic congestion using a
citywide ensemble of intersection level connected LSTM
models. The major drawback of these attempts is that the
forecasting accuracy is likely to be affected by anomalies
when training models with polluted datasets [21], leading to
unreliable anomaly detection results.

Density-based approaches detect anomalies based on the
principle that the density around a normal sample is similar
to that around its neighbors. Chiang et al. [22] designed
a two-step congestion cascaded identification strategy: (1)
use a kernel density function to compute anomaly score for
road segments; (2) form up congested cascades by unifying
attribute coherence and spatial-temporal closeness of detected
congested segments. Dias et al. [23] employed RealNVP and
masked autoregressive flow for trajectory anomaly detection.
Their experimental results show that flow models outperform
classical density-based methods. Although density-based de-
tectors do not need labeled training data [24], they only focus
on the underlying data distribution, therefore, cannot capture
the sequential correlation in time series.

ITII. BACKGROUND
A. Normalizing Flow

Normalizing flows define a series of bijective transforma-
tions that can transform the probability density px (x) of a
random variable X € R” to a well-known base distribution
pz(2) defined by a random variable Z € RP [25]. The
random variable Z is chosen such that it has an explicit
probability density function. The problem of training the
normalizing flow is to learn an invertible transformation, f
such that z = f(x) and © = f~!(z). The transformation
is a sequence of bijective functions composed together, i.e.,
f=(fi.-fa--+). Once learned, the forward mapping, X — Z
can be used for density estimation and the inverse mapping
Z — X can be used for sampling (synthetic data generation).
This mapping presents a key advantage that enables exact
density estimation without loss of dimensional information,
making it suitable for anomaly detection. In particular, the
marginal likelihood px (x) can be expressed as:

px(2) = pz(f(z)) |det (W)\ 0

ox

where pz(f(z)) is density of x under the base distribution

pz and det (%&f)

f. The main challenges of modeling arbitrary distributions
using normalizing flow lie in designing the compositional
and invertible transformation f. Further, the choice of the
architectures are restricted by the need for the efficient
computation of the determinant of the Jacobian matrix.

is the determinant of the Jacobian of

B. RealNVP

One of the recent innovations in normalizing flow is the use
of the real-valued non-volume preserving transformations [8]
as the function f. Effectively, RealNVP is a set of affine



coupling layers, one of the possible bijective transformations
that can be used to design the composition f.

To explain this further, consider the example of a single
layer transformation (several such layers are composed in
practice) Y that maps X to Z. RealNVP transformation
Y partitions X into two disjoint groups, where the first d
dimensions remain unchanged while the latter part, i.e., from
the d 4+ 1-th to the D-th dimension, undergoes an affine
transformation. Formally,

ylzd _ l,lzd

yd+1:D _ :L,d—&-l:D ® eXp(Snet(£C1:d)) + tnet(xlzd)

2)

Snet and t,.; indicate a “scale” and a “translation” func-
tion respectively and © stands for element-wise product.
The representation power of RealNVP depends on $,.:
and t,.:, which can be any arbitrarily complex function
(often a neural network architecture). Note that because the
first d dimensions remain unchanged during transformation,
to make the flow model capture the full picture of input
space, ReaNVP swaps active and inactive dimensions in an
alternating manner. A convenient way to realize this is to
multiply the D dimensional inputs and outputs with a binary
mask vector.

RealNVP guarantees its computation of Jacobian function
is efficient because the Jacobian is a block-triangular matrix,
where elements on the diagonal are an identity matrix and
a diagonal matrix whose diagonal elements correspond to
the vector exp (spe(z?)). Therefore, the determinant of
Jacobian, which simplifies to exp(zj(smt(:clzd)j)) can be
efficiently computed. If the flow is implemented using K
such layers, which is required to ensure better learning, the
probability density of a given sample x can be calculated as
follows: >

log(px (x)) = log(pz(2)) + Y _ log <
k=1
3)

where the first term denotes the likelihood of z (transformed
from z) on the base distribution, and the second term
represents the accumulated changes while transforming = to
z. Thus, the training objective of ReaINVP is to find the right
set of hyperparameters of the s,.; and t,.; that maximize
the overall likelihood of the observed data, which can be
denoted as 6* = arg maxl%w > wep logpx (x;0), where D

eXp(Z(Sﬁet(yiﬂ))j)

is the observed data and 6 denotes parameters of s,.; and
tnet functions.

IV. METHODOLOGY

Let S denote the set of all road segments under consid-
eration. Consider an arbitrary segment S; € S on which
(near) real-time speed is monitored continuously; we assume
that the estimated harmonic mean speed on segment S; is
computed and stored at discrete times ¢ € {1,2,...,T}.
We denote this observation at time ¢ by v!. The free-flow
speed ©;, an intrinsic property of segment .S;, is calculated
based upon the 85th-percentile of the observed speeds on
the segment .S; for all time periods [26]-[28]. The historical

average speed, denoted by ©f, signifies the regular traffic

condition on S;, which is calculated by taking the harmonic
average of speeds on S; for each hour of day and for each
day of the week. Then, the congestion rate is defined as

t ot
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The congestion rate of /N roadway segments can be mod-
eled as an N-dimensional time series of length 7', denoted
by X, ie, X = {z',2% ...27}, where 2 € RY is an
N dimensional vector representing a measurement at time .
The congestion observation from the ith segment at time ¢
is z!. At an arbitrary time ¢, z* therefore denotes a snapshot
of congestion at all roadway segments. Each time step can
have additional features associated with it, e.g., day of the
week and hour of the day. We denote such features for the
t-th time step be \’.

The primary goal of our framework is to detect points
in time at which anomalous congestion may occur. With
the obtained detection results, the secondary target is to
recognize the roadway segments most likely to have caused
the abnormal observation at each timestamp. Figures 1 and 2
together demonstrate a four step method we propose for ful-
filling these targets: (1) time series clustering based on sim-
ilarity measures; (2) unsupervised anomaly detection based
on conditional RealNVP; (3) anomaly diagnosis at the road
segment granularity based on non-parametric kernel density
estimation; (4) auxiliary supervised anomaly detection based
on multi-layer perceptron.

0;

A. Time Series Clustering

In practice, X might be composed of thousands of di-
mensions with heterogeneous temporal patterns, semantic
meanings, or underlying dependencies. It is computationally
difficult to learn patterns or explicit probability distributions
for extremely high-dimensional data. One way to alleviate
this challenge is by identifying dimensions that are related
in the feature space. To tackle this, we perform data-driven
clustering to partition the given time series into separate
groups based on similarity (where similarity is based on
an appropriate distance in the feature space, e.g., the /1
norm). This step facilitates anomaly detection and diagnosis
in two aspects. First, it ensures that learning the probability
distribution over the input time series is tractable. Second,
similarity in the feature space naturally associates semantic
meaning to the clusters; e.g., we observe that different clus-
ters correspond (roughly) to different types of roads such as
highways and on-ramps. Learning an explicit distribution for
a particular cluster therefore enables us to learn a distribution
of traffic in a particular type of roadway.

Raw congestion Data DTW matrix OPTICS
X ={x',x%, .., xT|x* € RM} computation clustering Road segments

cluster data

Fig. 1: Grouping the road segments into clusters.

Traditional clustering methods cannot be applied directly
to time-series settings due to the temporal nature of the data.



A general idea of time series clustering, as shown in Figure 1,
is to first convert temporal data to a flat representation by
computing a similarity or distance matrix; then, a standard
clustering algorithm (e.g., KMeans [29], DBSCAN [30])
can be used to partition the flat representation. We leverage
the commonly-used “Dynamic Time Warping” (DTW) [31]
distance to measure pair-wise similarities between time se-
ries. Particularly, consider arbitrary road segments S; and
S;. The DTW distance between the segments (in the fea-
ture space defined by congestion) can be calculated as the
squared root of the sum of squared distances between every
element in z! V¢ € {1,...,7} and its nearest point in
xt ¥t € {1,...,T}. Intuitively, the distance reflects how
similar was each congestion value observed in segment S;
to any congestion value observed in segment S;, and then
aggregates the similarities. Given the similarity measures,
we use the OPTICS algorithm [32] for clustering. The
OPTICS algorithm is density-based, which does not require
the number of clusters as a prerequisite. Given the clusters,
we perform anomaly detection in each cluster independently.

B. Timestamp-level Anomaly Detection

We can perform density estimation on the raw data using
RealNVP directly; recall that the normalizing flow approach
allows us to perform tractable density estimation. However,
our initial experiments proved otherwise as the flow model
failed to capture contextual anomalies. This observation is
not surprising; the transformations in RealNVP operate along
the feature dimensions but discard the temporal correlation
in the data. In contrast, recurrent neural networks with
gated memory such as LSTM (long short-term memory
networks) [33] have been proven to be powerful tools for
modeling sequential data. This inspires us to explore the
possibility of capturing “point” and “contextual” anomalies
simultaneously by aggregating an LSTM-based Encoder-
Decoder and a normalizing flow model. As LSTM requires
three-dimensional inputs (the batch size, the number of time
steps, and the number of features), we use overlapping sliding
windows z{17} of length 7 as inputs, where each window
is further divided into a context window x{'*o—1} and a
prediction window ztf0'7} (see figure 2). We explain the
functioning of the LSTM below.

1) LSTM Encoder-Decoder: We use an LSTM-Encoder-
Decoder structure that defines two separate components: an
encoder and a decoder, each of which is composed of a stack
of LSTM layers. During inference, the encoder first converts
data z{1*o—1} into a single fixed-length representation vector,
fo.,. : xttto=t} — ¢ given by the last hidden states
of LSTM, that contains all the information needed for the
input of a subsequent decoder. The encoder vector e is then
repeated 7 — o + 1 times and used to initialize the internal
states of decoder LSTM cells. The decoder then generates
the ultimate hidden states of the target sequence =% in an
autoregressive manner, i.e., fg,. :e — h'o7.

With respect to anomaly detection, the autoregressive
scheme enables RNN to propagate and leverage historical
information. Also, the encoder-decoder structure prevents

Output: classified

Output: anomalous Output: anomalous

timestamp-level anomalies timestamps road segments
D 9]
Ood Ood (’/
- t Road segment-level anomaly
Supe;'wse;i Anomaly diagnosis based on KDE
Classification:
MLPClassifier history(x7),
x/€ anomalies, j € [ty, 1]
Generat'e MTS, Timestamp-level
samples using trained ly detection based
flow model anomaly detection base
% on a static threshold
L0010  CondRealNvP
B e e e >
to:T Q Q
xo, §¢ 5 5e 5
Ato:T E§H§%<-;.-+§§HE§<+
Rearrange data = ! o z
to length t i L3
7 sliding
windows concat([hto?, 180:7])
hto o pto+l ht
LSTM-EncDec
m
2 5 =
(3]
. xl,ll x2 ,AZ xt“_l,ﬂ.to_ll
T _
Encoder Decoder

Fig. 2: Anomaly detection, roadway segment-level anomaly diag-
nosis, and supervised anomaly classification.

out-of-distribution data from being constructed from com-
pressed historical information, which in turn ensures that the
density is learned without too many outliers. Deterministic
encoder-decoder models use mean squared error as anomaly
score to measure the deviation between observations and
predictions. However, this score may result in sub-optimal
anomaly detection decisions due to two reasons. First, noise
in data and randomness from the model’s parameters may
interfere with the training procedures. Second, the decisions
are concluded from a fixed-length of historical data, therefore
lacking a global perspective. We bypass this issue by integrat-
ing the encoder-decoder structure with the normalizing flow
(described below) and training the overall architecture by
maximizing the log likelihood function (which is inherently
probabilistic).

Consider an observation z' where t € {ty : 7}. Let the
output of the last layer of the decoder for z* be denoted by h?.
Intuitively, given hf, which implicitly contains information
summarized from previous time steps, our ultimate goal is
to estimate the likelihood of x! in the entire input space
X, ie., p(z!|h!). A low value implies the observation is
either rare in the input space or deviates from contextual
behavior. Our implementation of the LSTM Encoder-Decoder
model is shown in figure 2. We include temporal features
such as week-of-year, day-of-week, and hour-of-day with
the encoder’s input to facilitate learning the seasonality and
trend patterns of time series. Then, the likelihood of the
observations from ¢y to 7 can be represented as:

p(l’tOZT ‘ x1:t0_17 Alzm_lyaenmodu) = H p(xt|ht7 )‘t’edec)

t=to
(&)



where h! denotes the LSTM hidden at z! that is autore-
gressively derived from the previous step. Next, we explain
how to compute the density function mentioned in equation 5
using a conditional RealNVP flow model.

2) Conditional RealNVP: Note that while the LSTM
requires a three-dimensional input, such an input cannot
directly fit into the flow model. As a result, we begin by
flattening the time dimension. Recall that our goal is to learn
a set of bijective functions that enable transformation between
a simple distribution and the real-world data distribution, as
mentioned in section III-B. We use a multivariate Gaussian
distribution with a diagonal covariance matrix as the base
distribution, which is a common choice for normalizing
flow [25]. Let y* denote an arbitrary latent representation
learned as part of the transformation. RealNVP partitions a
given x into two disjoint groups, one of which is unchanged
and mapped to the 1 : d dimensions, while the other part of
x undergoes a transformation and is mapped to d + 1 : D
dimensions (see equation 2 in section III). To model the
conditional distribution shown in equation 5, we concatenate
ht and A! with the unchanged part of y*, forming the inputs
of st-networks in each coupling layer (see figure 2). During
the transformations, we use binary mask vectors to extract
the changed and unchanged dimensions in y!, where the
unchanged dimensions are multiplied by ones and the other
dimensions are multiplied by zeros. Note that the outputs of
st-networks preserve the dimensions of d + 1 : D using the
inverse mask vector so that we can compute corresponding
values smoothly.

We stack K coupling layers to ensure the flow models can
perform adequate changeovers when modeling complicated
distributions, corresponding to the second term in equation 3.
We also place a bijective batch normalization (BN) layer after
every coupling layer. Our design is motivated by prior work
by Dinh et.al [8], who use BN layers to stabilize the training
process. As the BN layer is essentially a linear function, it
is invertible and the computation of the Jacobian is efficient.

3) Training and Inference: The flow and encoder-decoder
models are trained together via minimizing the below loss
function with the Adam [34] optimizer. Given a batch of
sliding windows B, according to the optimization objective 3
and equation 5, the loss function is parameterized as:

1 T
B nTD L 2 loepx(@hX0) ©

zt0'TeB t=to

L=

where 6 denotes all trainable parameters in the workflow.

During inference, the procedure of anomaly detection is
straightforward and computationally efficient after training.
Given a sample z?, we use the trained network to perform
density estimation, and flag the point as an anomaly based
on a exogenous threshold e.

C. Segment-level Anomaly Diagnosis

We now have a general architecture that can detect anoma-
lies from real-time congestion data. However, note that an
anomalous data point z! (say) consists of N dimensions,
where each dimension corresponds to a road segment. This

detection does not fully solve our problem; recall that our
goal is to enable TMC operators focus their attention (e.g.,
secondary inspection of cameras and resource allocation) to
a small subset of segments. However, N can still be large
in practice. Now, given an anomalous time vector z!, we
describe how to diagnose an anomaly down to the granularity
of an individual segment.

Consider ! =< x1, 29, ..., T, > is a detected anomalous
vector, we investigate the data distribution at time t by
gathering historical data at the same period of [t — &, + Z],
where o denotes a configurable window size. We assume the
collected data have similar patterns as time ¢, thus forming
a dataset for density estimation. Next, we train a density
estimation model with a Gaussian kernel for each time series,
then determine the density threshold using a split validation
dataset that is not seen during training.

D. Supervised Anomaly Classification

Given the normalizing flow model (that can perform exact
density estimation and efficient sampling) and the LSTM-
EncDec model (that can capture temporal correlations), we
can generate labeled synthetic data to train supervised clas-
sifiers for anomaly detection. The procedure of generating
MTS sequences are as follows: we first provide a warm-
up sequence (an initial context window) as the input of
the encoder to produce the decoder’s initial hidden states.
Anomalies and normal samples are then sampled from a
standard normal distribution and then transformed to the
output space (with decoder hidden states as conditional
inputs). Generated samples are reused as inputs of the next
iteration until the desired time series length is reached. The
samples can then be used to train a classifier. We use a multi-
layer perceptron classifier in our analysis.

V. EXPERIMENTAL EVALUATION
A. Data

1) Congestion Rate data: We use an INRIX! traffic mo-
bility data collected for one year (2019) from the city of
Nashville, Tennessee. The details are summarized in Table I.
Specifically, this dataset contains estimated “real-time” har-
monic mean flow speeds, free-flow (reference) speeds, and
historical average speeds of 364 interstate road segments with
a five-minute frequency. The congestion rate measurements
are derived based on the equation 4. We impute missing
values at a specific road segment by interpolating observa-
tions from nearby segments. If nearby segments also contain
missing values, we impute by using historical averages.

Property Values
# roadway segments 364
# records/segments 104832
collection period 2019-01-01 00:00 —2019-12-30 23:55
frequency 5 minutes

TABLE I: Details of the traffic dataset collected from Nashville TN

! https://inrix.com/
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2) Synthetic Testing dataset: Given that the traffic data is
unlabeled, we evaluate the proposed method using a synthetic
dataset generated from ground-truth data between October
and December 2019. First, we model the ground-truth MTS
as a multivariate Gaussian distribution, whose parameters are
learned from empirical observations. We sample from the
multivariate Gaussian. Then, we randomly inject “point” and
“contextual” anomalies at a fraction («)) of half-hour length
time slices and in a fraction (/3) of road segments respectively,
where « and [ are hyper-parameters that control the temporal
and spatial distribution of anomalies. The motivation of
injecting anomalies in a temporal manner is that traffic
congestions are not instantaneous events in practice. Point
anomalies are created by perturbing the values obtained from
the first step by a factor drawn from a uniform distribution
U(—g,+g), where g denotes the magnitude of congestion
rate of the day. Contextual anomalies are introduced by
flipping the time slices that have minimum and maximum
hourly average values.

B. Baselines

In terms of MTS anomaly detection, we compare our
approach against prediction-based (e.g., AR, DeepLog-
LSTM) and reconstruction-based (e.g., AE, VAE, EncDec-
AD) anomaly detectors. These models are briefly described
as the following: i) AR [35] trains a linear auto-regression
model for individual time series and compute the anomaly
score by averaging the prediction errors across all time series;
ii) AE [36] is an autoencoder model using MLP for encoder
and decoder; iii) VAE is a variational autoencoder with MLP
encoder and decoder; iv) EncDec-AD [9] replaces MLP
layers in AE with LSTM layers; v) DeepLog-LSTM [17]
employs a stacked LSTM model for MTS anomaly detection,
whose anomaly score is the single-step prediction error.
As the baselines do not support anomaly diagnosis at the
segment level, we adopt the same KDE-based method as in
the proposed method.

C. Model Configurations

The encoder and decoder consist of 2 LSTM layers. For
clusters A-D and G, encoder LSTM layers consist of 128
and 64 hidden units (and the opposite for the decoder) [37].
The hidden size is changed to 64 and 32 for cluster E-F
and H. The flow model consists of 10 interleaving bijection
and Batch Normalization layers. The st-network of every
bijection layer is formed with 2 MLP layers (128 hidden
dimensions for clusters A-D, G, and 32 for clusters E-F, H),
where the s,,.; is activated with the Tanh function, and the
tnhet uses the ReLLU function [37]. The model is trained for
a maximum of 300 epochs with a batch size of 64. Out of
the training set, 30% is kept out as validation set for early
stopping. All experiments are run on a single Nvidia TITAN
X GPU (12GB) and the code implementations are based on
the Tensorflow Keras library version 2.4.0 and Tensorflow
Probability 0.11.0.

D. Experiment Setup

1) Clustering: The high dimensionality of the MTS make
computing the DTW distance matrix (see section IV-A) time-
consuming. Therefore, we sample 100 segments uniformly
at random, then use one week of data from the segments to
generate the cluster prototype. Then, we calculate the DTW
distances between the remaining segments and centroids of
initialized clusters and merge them into the nearest cluster.

2) Anomaly detection and diagnosis on synthetic testing
dataset: Our model is trained with the congestion data from
Jan-2019 to Sep-2019 and evaluated on synthetic data of
the remaining months. We empirically configure the sliding
window size to 72 (6 hours) and the moving step length
to 12 (1 hour). Point and contextual anomalies are detected
together for all experiments. We evaluate the anomaly detec-
tion performance from two perspectives: effectiveness (based
on temporal parameter (o)) and sensitivity (based on spatial
parameter (). Effectiveness measures whether anomalies can
be found in the case of high imbalance between anomalous
and normal data. Sensitivity, on the other hand, evaluates
situations in which only a portion of road segments are under
anomalous congestion at a specific time, which challenges
our approach to capture anomalies with high sensitivity. For
each « and (3 pair, we generate the synthetic test set five times
for all clusters and calculate the thorough average model
performance.

3) Supervised Classification: For each individual clus-
ter, we generate five one-month long datasets. Normal and
anomolous data are sampled from the overall flow architec-
ture. Then for each cluster, we train an MLP classifier with
the binary cross-entropy loss and Adam optimizer. Trained
MLP classifiers are evaluated on synthetic datasets using the
area under the curve (AUC) score metric.

E. Results and Discussion

Clustering The MTS clustering step groups the 364 road
segments into eight clusters that include 55, 67, 68, 79, 10,
12, 62, and 11 road segments, respectively. We name the
clusters using the letters A-H. Empirical results show that
roadways in the same cluster usually have similar functions
or properties. For instance, Cluster A mainly covers Exit road
segments. Cluster B involves the highways (e.g., [-65, 1-40)
that connect Nashville towards neighboring cities. Cluster C
consists of road segments around on-ramps. Experimental
results for individual clusters can be found in our Github
repository.

Anomaly Detection First, we compare CondRealNVP
with baseline methods for anomaly detection from aspects of
effectiveness and sensitivity. The former is achieved by con-
figuring the fraction of abnormal time slices o to 5%, 3%, and
1%, and the latter is by setting the fraction of anomalous road
segment S to 100%, 50%, and 25%. We conducted controlled
experiments and fixed S to 50% when testing the effective-
ness and configure o as 5% for the sensitivity test. These
settings ensure the sparsity of irregular traffic congestion in
temporal and spatial. The effectiveness test results shown in
Table II reflect that CondRealNVP consistently outperforms



other methods, with average improvements of 0.203-0.335
and 0.154-0.212 in terms of average Recall and F1-Score.
There is a clear trend that the Recall and F1-Score degrade
as the decreasing «; however, our approach is relatively
more robust and guarantee acceptable performance even in
the case of a = 1%. We also observe that CondRealNVP
identifies anomalous congestion situation more sensitively
than baselines in the cases of a small portion of road segments
are congested (3 is small). Except the situation where all road
segments in a cluster suffer heavy congestion in a specific
time slice (8 = 100%), we observe that the CondRealNVP
model comprehensively outperforms the other approaches.

metrics Recall F1-Score

anomaly rate o 5% 3% 1% 5% 3% 1%

AR 0.376 0343 0.265 | 0446 0401 0.292
AE 0.576  0.504 0.359 | 0475 0421 0.295
VAE 0.574 0518 0362 | 0490 0435 0307
EncDec-AD 0.529 0472 0358 | 0466 0401 0272
DeepLog-LSTM | 0.411 0345 0.278 | 0439 0374 0.246
CondRealNVP 0.752  0.710 0.604 | 0.632 0.583 0.480

TABLE II: Avg. Recall and F1-score of the effectiveness test across
8 clusters under different anomaly rates (8 = 50%). Best results
are presented in bold.

metrics Recall F1-Score
road segments 5 | 100% 50% 25% 100% 50% 25%
AR 0482 0376 0275 | 0.580 0.446 0.241
AE 0446 0576 0.504 | 0.516 0475 0.369
VAE 0459 0574 0486 | 0.541 0.490 0.370
EncDec-AD 0468 0.529 0462 | 0.519 0466 0.342
DeepLog-LSTM | 0.429 0411 0.359 | 0.530 0439 0.288
CondRealNVP 0.530 0.752 0.648 | 0.575 0.632 0.484

TABLE III: Avg. Recall and F1-Score of sensitivity test under
different ratios of anomalous road segments (o = 5%).

Segment-Level Detection Given cluster level anomaly
detection, we now evaluate the accuracy of performing seg-
ment level detection. We present the experimental results in
Table IV. It can be seen that the overall trend coincides
with what we observed in the sensitivity test. Specifically,
CondRealNVP obtains 0.102-0.184 and 0.031-0.078 im-
provement regarding Recall and F1-Score compared with
baseline methods. Finally, recall that anomaly detection for
traffic centers is intended in near real-time. On average, for
each cluster, inference (including the time taken to train KDE
models) takes around 34 milliseconds, which is an acceptable
latency in practice.

metrics Recall F1-Score
road segments 8 | 100%  50% 25% 100%  50% 25%
AR 0459 0.238 0.126 | 0.570 0.341 0.178
AE 0401 0322 0210 | 0491 0345 0.221
VAE 0422 0333 0211 | 0517 0352 0218
EncDec-AD 0427 0300 0.192 | 0.507 0341 0.211
DeepLog-LSTM | 0.395 0.242 0.156 | 0514 0.333  0.199
CondRealNVP 0.520 0.508 0.282 | 0.572 0.420 0.245

TABLE IV: Avg. Recall and F1-Score for segment-level anomaly
diagnosis with a = 5%.

Visualization of real-world traffic anomaly We also
show a case study on real-world data to evaluate our ap-
proach. We use real congestion data from cluster G for
weekdays between Oct. 31st and Nov. 29th in Q4 2019,
which is not seen during training. Figure 3 shows (a) the
85th percentile congestion rate (average in 15 minutes) for

congestion rate

(b) Avg. anomaly scores per 15 minutes

Fig. 3: Visualization of real-world traffic anomalies and anomaly
scores. Boxes highlight the most noticeable periods that are likely
under abnormal congestion. Heatmaps show the results of Cluster G
from 5 AM to 10 AM (rush hours) for 22 working days. Our method
sensitively captures the time periods when recurring congestion
occurred.
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Fig. 4: Average AUC score for the MLPClassifiers on 5 synthetic
testing datasets. Boxplot shows the performance variation of MLP-
Classifiers trained on 5 datasets drawn from CondRealNVP.

all segments in the cluster and (b) the corresponding average
anomaly score assigned by CondRealNVP. We select the
period between 5 AM and 10 AM, which generally covers
rush hours of the roadway (e.g., interstates 65) in Cluster G.
The 85th percentile congestion intensity indicates the extent
of congestion in the cluster, implying that only 15% road
segments are under heavier congestion states than presented.
It can be seen that anomalous congestion occurred at 10/31,
11/07, 14, 18, and 22 with an apparent cascading pattern. As
expected, our approach successfully discovers the peak hours
and assigns notable anomaly scores from early stages.

Supervised Classification Finally, we evaluate the efficacy
of learning a classifiers in a supervised setting using samples
drawn from CondRealNVP. The classifiers are evaluated
on five synthetic testing datasets, as we conducted in the
previous section, with & = 5% and 5 = 50%. We report
the average AUC score in Figure 4. One can see that
classifiers have acceptable discrimination capability (AUC
score > 0.7) in 6 of the 8 clusters. The relatively lower AUC
scores in clusters A (off-ramp/Exit segments) and C (on-ramp
segments) are probably due to the extremely low volume of
abnormal congestion data in such clusters.



VI. CONCLUSION

In this paper, we present an end-to-end framework to
address the problem of citywide traffic congestion anomaly
detection and real-time anomaly diagnosis. Road segments
congestion rate is formulated as multivariate time series.
In the framework, we identify clusters of segments and
use a conditional normalizing flow model for every cluster
that combines an LSTM Encoder-Decoder network with a
RealNVP model for density-based anomaly detection. Then,
we perform KDE-based real-time anomaly diagnosis to locate
anomalous road segments in the anomalous clusters. Exten-
sive experiments conducted on synthetic datasets manifest
that our approach significantly outperforms several state-
of-art methods for both anomaly detection and anomaly
diagnosis. The proposed approach also demonstrates reliable
performance in detecting real-world traffic congestion. In
the future, we plan to (1) integrate geographical information
during the segments clustering process; (2) integrate attention
mechanism with the LSTM networks to differentiate the
importance of road segments when deriving anomaly score
at a particular time; and (3) explore other normalizing flow
models.
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