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ABSTRACT

To facilitate target localization, active radar signals or sequences

are designed to have low auto-correlation. This goal is typically

achieved by the minimization of the auto-correlation integrated side-

lobe level (ISL) metric, or the weighted more general version of ISL,

known as the WISL metric. In this work, we propose an efficient ap-

proach to WISL minimization for unimodular sequence design that

takes advantage of the low-cost and easily implementable power

method-like iterations. Several numerical results are presented to

illustrate the effectiveness of the proposed method.

Index TermsÐ Auto-correlation, power method-like iterations,

radar signals, unimodular sequences, weighted integrated sidelobe

level.

1. INTRODUCTION

Radar signal optimization has attracted a significant deal of interest

in the last two decades owing to the emergence of stronger com-

putational hardware as well as compatible adaptive illumination de-

vices [1±3]. Particularly, the practitioners are more interested in uni-

modular (also known as constant-modulus) signals due to their min-

imal peak-to-average-ratio (PAR), which facilitates a uniform tem-

poral and spatial power allocation, as well as the fact that the signal

generation can be done using low-cost amplifiers, without being ex-

posed to the perils of gain non-linearity [4±6].

Identifying and examining sequences with desirable aperiodic

correlation properties is typically a more arduous task compared to

sequences with good periodic correlation. This is because construct-

ing sequences with exact impulsive aperiodic autocorrelation, unlike

periodic correlations, is not feasible, as discussed in [7]. Therefore,

the statistical signal processing literature has dedicated significant

efforts to the search for low autocorrelation sequences [1].

A well-studied approach to the design of sequences with low

(or good) correlation properties is through the minimization of the

weighted integrated sidelobe level (WISL) [2, 4, 6]. The minimiza-

tion of the WISL produces an optimization problem with a quartic

objective in terms of the radar sequence which is deemed to be a

difficult problem. Moreover, it deals with a considerable number

of local optima, while many such local optima are in fact known

to have a good quality for deployment [5, 8, 9]. In [4], the mini-

mization of WISL has been accomplished by the weighted Cyclic

Algorithm New (WeCAN). Majorization-minimization-based algo-

rithms have been investigated to minimize the WISL or the weighted

peak sidelobe level (WPSL) in [6]. To minimize the combination of
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the peak sidelobe level (PSL) and WISL, the iterative Coordinate-

Descent (CD) framework was proposed in [8, 10].

In this paper, we will design sequences with good correlation

in terms of the WISL metric by deploying one of the most efficient

solvers for unimodular quadratic programming (UQP), known as the

power method-like iterations (PMLI). Inspired by the power method,

the PMLI algorithm takes advantage of simple matrix vector multi-

plications, leading to a low computational cost algorithm [5,11±13].

In Section 2, we transform the quartic WISL objective to one that

is quadratic. Section 3 presents a brief introduction to PMLI. The

Cyclic PMLI (CyPMLI) algorithm is then proposed based on the

cyclic application of PMLI to efficiently tackle the WISL minimiza-

tion problem. The numerical results are presented in Section 4 to

validate the performance of the proposed method to design a WISL-

minimized unimodular sequence. Finally, Section 5 concludes the

paper.

Notation: Throughout this paper, we use boldface lowercase,

boldface uppercase, and calligraphic letters for vectors, matrices,

and sets, respectively. C and R represent the set of complex and

real numbers, respectively. (·)⊤ and (·)H denote the vector/matrix

transpose, and the Hermitian transpose, respectively. Tr(.) denotes

the trace of the matrix argument. IN is the identity matrix of size N .

Finally, 0N1×N2 is the all zero matrix of size N1 ×N2.

2. WISL METRIC: A QUARTIC TO QUADRATIC

TRANSFORMATION

Consider the set of complex unimodular sequences defined as

ΩN =
{

s ∈ C
N |s(l) = e

jωl , ωl ∈ [0, 2π), 0 ≤ l ≤ N − 1
}

.

(1)

The autocorrelation function of the signal s is defined as:

r
P
k =

N−1∑

l=0

s(l)s∗(l + k)mod N

r
AP
k =

N−k−1∑

l=0

s(l)s∗(l + k) = r
AP⋆
−k

(2)

where k ∈ {0, · · · , N − 1}, in the periodic and aperiodic cases re-

spectively, with the signal power calculated at k = 0. The above

functions can be written in a compact form as:

r
P
k = s

H
J
P
k s, r

AP
k = s

H
J
AP
k s, (3)

where J
P
k and J

AP
k are the periodic and aperiodic shift matrix op-

erators that shift the vector argument by k indices. For the sake of

brevity, in this paper we are going to focus on the aperiodic case that



is deemed to be more challenging and denote the associated shift

matrix as Jk. Here Jk = J
⊤
−k is given by [14],

Jk (i, j) =

{

1 i− j + k = 0,

0 i− j + k ̸= 0.
(4)

It is straightforward to verify that the derivations for the periodic

case would be similar.

The weighted integrated sidelobe level (WISL) of the autocorre-

lation can be defined as [4]:

f(s) =

N−1∑

k=1

ωk|rk|
2
, (5)

with weights ωk ≥ 0 that are predetermined based on the emphasis

given to minimizing different autocorrelation lags. It is easy to see

that the WISL formulation subsumes the ISL metric as a special case

by simply considering unit {ωk} [6].

The problem of interest is to design sequences s that minimize

the WISL metric:
minimize

s∈ΩN
f (s) . (6)

Note that f (s) can be written as

f(s) =

N−1∑

k=1

ωk|s
H
Jks|

2
,

=

N−1∑

k=1

ωks
H
Jkss

H
Jks,

(7)

which is quartic with respect to s. Therefore, optimizing the radar

sequence s appears to be difficult. To find a quadratic alternative to

f(s), at first, we define g (s1, s2) as follows:

g (s1, s2) =

N−1∑

k=1

ωks
H
1 Jks2s

H
2 J

H
k s1, (8)

where f(s) = g(s, s). Moreover, let

G(s) =

N−1∑

k=1

ωkJkss
H
J
H
k . (9)

It is also interesting to observe that if either s1 or s2 are fixed, min-

imizing g (s1, s2) with respect to the other variable can be done via

a UQP formulation [5, 11]:

minimize
sj∈ΩN

s
H
j G(si)sj , i ̸= j ∈ {1, 2} . (10)

Let λm be the maximum eigenvalue of G(si), where λmI ⪰ G(si).

Thus, G̃(si) = λmI −G(si) is positive definite. As a result, (10)

can be reformulated as

maximize
sj∈ΩN

s
H
j G̃(si)sj , i ̸= j ∈ {1, 2} . (11)

Note that a diagonal loading with λmI has no effect on the solution

of (10) due to the fact that sHj G̃(si)sj = λmN − s
H
j G(si)sj .

In order to guarantee that a minimization of g (s1, s2) leads to

minimize f(s), a connection must be made to show that s1 and s2

obtained from (11) are convergent. We may consider:

maximize
sj∈ΩN

s
H
j G̃(si)sj , i ̸= j ∈ {1, 2}

subject to si = sj .

(12)

By adding the norm-2 error between s1 and s2 as a regularizer with

the Lagrangian multiplier to (11), we have:

minimize
sj∈ΩN

s
H
j G(si)sj + η ∥si − sj∥

2
2 , i ̸= j ∈ {1, 2} , (13)

where η is the Lagrangian multiplier. The regularizer ∥si − sj∥
2
2 is

a quadratic function as well. Consequently, the objective function of

(13) is recast as

s
H
j G(si)sj + η ∥si − sj∥

2
2 ,

= s
H
j G(si)sj − 2ηRe

(

s
H
j si

)

+ 2ηN,

=

(
sj

1

)H (
G(si) −ηsi
−ηsHi 2ηN

)

︸ ︷︷ ︸

G(si)

(
sj

1

)

.

(14)

Thus, the final UQP formulation for (6) is given by

maximize
sj∈ΩN

(
sj

1

)H (
λMI−G(si) ηsi

ηsHi λM − 2ηN

)

︸ ︷︷ ︸

Ĝ(si)

(
sj

1

)

,

(15)

where λM is the maximum eigenvalue of G(si), and Ĝ(si) =
λMI− G(si).

3. CYPMLI ALGORITHM

Due to the NP-hard nature of UQP, it has a highly multi-modal op-

timization objective. Finding the local optima of UQP is not only

useful to tackle the problem itself, but also to improve the UQP

approximate solutions obtained by semi-definite relaxation (SDR)

or other optimization algorithms. PMLI is a computationally effi-

cient procedure which resembles the well-studied power iteration

for computing the dominant eigenvalue/vector pairs of matrices [5].

In particular, it was demonstrated in [5, 11, 12] that UQP solutions

can be efficiently approximated by deploying the PMLI.

Assume Ĝ is positive definite and
{

s̄
(t+1)
j

}∞

t=0
be a sequence

of unimodular codes where s̄
(t+1)
j is the minimizer of the following

criterion:

minimize
s̄
(t+1)
j

∈ΩN

∥
∥
∥s̄

(t+1)
j − Ĝ(s̄

(t)
i )s̄

(t)
j

∥
∥
∥
2
, (16)

where s̄j =
(
s
⊤
j 1

)⊤
. Note that

∥
∥
∥s̄

(t+1)
j − Ĝ(s̄

(t)
i )s̄

(t)
j

∥
∥
∥

2

2
= const− 2Re

(

s̄
(t+1)H
j Ĝ(s̄

(t)
i )s̄

(t)
j

)

.

(17)

If s
(t+1)
j ̸= s

(t)
j and Ĝ ≻ 0,

(

s̄
(t+1)
j − s̄

(t)
j

)H

Ĝ(s̄
(t)
i )

(

s̄
(t+1)
j − s̄

(t)
j

)

> 0, (18)

which implies

s̄
(t+1)H
j Ĝs̄

(t+1)
j > 2Re

(

s̄
(t+1)H
j Ĝs̄

(t)
j

)

− s̄
(t)H
j Ĝs̄

(t)
j

> s̄
(t)H
j Ĝs̄

(t)
j ,

(19)

as Re
(

s̄
(t+1)H
j Ĝ(s̄

(t)
i )s̄

(t)
j

)

> s̄
(t)H
j Ĝ(s̄

(t)
i )s̄

(t)
j [5]. Therefore, the

UQP objective is increasing through the PMLI. The desired vector
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Fig. 1. Correlation levels obtained by CyPMLI and WeCAN for: a) N = 8, b) N = 16, c) N = 32, d) N = 64, e) N = 128, f) N = 512.

s̄
(t+1)
j of (15) and (16) is readily evaluated by PMLI in each iteration

as

s̄
(t+1)
j = e

j arg
(

Ĝ(s̄
(t)
i

)s̄
(t)
j

)

, (20)

or equivalently,

s
(t+1)
j = e

j arg
((

λM I−G(s
(t)
i

)
)

s
(t)
j

+ηs
(t)
i

)

. (21)

It is worth pointing out that the difference of recursions for (20) and

(21) compared to that of (11), i.e., s
(t+1)
j = e

j arg
((

λmI−G(s
(t)
i

)
)

s
(t)
j

)

is merely in including more momentum or the effect of η at each

iteration. Such power method-like iterations are already shown to

be convergent in terms of the signals, implying that s1 and s2 will

be converging to each other as well. We call our algorithm, Cyclic

PMLI (CyPMLI) which is summarized in Algorithm 1.

To guarantee the convergence of PMLI and a monotonically in-

creasing objective function, Ĝ(s
(t)
i ) must be positive definite which

is achieved by choosing proper λM . The following theorem is pro-

posed to select λM for our algorithm:

Theorem 1. To guarantee the positive definiteness of Ĝ(s̄(t)) in

each iteration, its maximum eigenvalue must meet the following re-

lation:

λM ≥

max






λmax,

λmax + 2Nη +
√

(λmax − 2Nη)2 + 4Nη2

2






,

=
λmax + 2Nη +

√

(λmax − 2Nη)2 + 4Nη2

2
,

(22)

where η is the Lagrangian multiplier, N is the sequence length, and

λmax is the maximum eigenvalue of G defined in (9).

Proof. According to the Schur complement, Ĝ(si) is positive defi-

nite if and only if [15, 16]:

• λMI−G(si) is positive definite.

• (λM − 2ηN)− η2
s
H
i (λMI−G(si))

−1
si > 0.

The first condition implies that λM ≥ λmax where λmax is the max-

imum eigenvalue of G(si). To achieve a boundary of λM from the

second condition, one can utilize the below relation:

(λM − 2ηN)− η
2
s
H
i (λMI−G(si))

−1
si ≥

(λM − 2ηN)− η
2
s
H
i (λM − λmax)

−1
Isi.

(23)

By choosing λM in a such way to guarantee the lower term in (23)

to be the positive value, the second condition of the aforementioned

Schur complement is met as well. Thus, the optimal value of λM

may satisfy the following inequality which is obtained from (23)

considering s
H
s = N :

λ
2
M − (2Nη + λmax)λM + 2Nηλmax − η

2
N ≥ 0. (24)

It is straightforward to verify that to satisfy both λM ≥ λmax, and

(24), the relation (22) must be met for λM . Also, it is easy to verify

that the second term of the max (·) in (22) is greater than λmax as

follows:

λmax + 2Nη +

√

(λmax − 2Nη)2 + 4Nη2 ≥ 2λmax,
√

(λmax − 2Nη)2 + 4Nη2 ≥ λmax − 2Nη,

(25)

where the last inequality is trivial and completes the proof.

According to Theorem 1, λM should not only be larger the the

maximum eigenvalue of G, but should also satisfy the tighter in-

equality discussed in (22). Although the theorem proposes a condi-

tion on λM , it efficiently ensures there is enough momentum η to

guarantee the solutions s1 and s2 are convergent.
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Fig. 2. Decreasing behaviour of (a) the regularizer ∥s1 − s2∥
2
2, and (b) the WISL during the iterations of the CyPMLI algorithm. As can be

observed, by increasing the number of iterations, (a) s1 and s2 converges to each other and to the optimal sequence s
⋆. (b) demonstrates that

the CyPMLI properly minimizes the WISL (7).

Algorithm 1 The CyPMLI algorithm for WISL minimization.

Input: Initialization values s
(0)
1 and s

(0)
2 , weights of WISL

{ωk}, Lagrangian multiplier η, total number of iterations E .

Output: Optimized unimodular sequence s
⋆.

1: ▷ s
(t)
1 and s

(t)
2 are the solutions at the t-th iteration.

2: ▷ The objective function is g (s̄i, s̄j) = s̄
H
j Ĝ(si)s̄j .

3: for t = 0 : E − 1 do

4: i← 0.

5: s̄
(i)
2 ← s̄

(t)
2 .

6: while until convergence do

7: s
(i+1)
2 ← e

j arg









IN

01×N





⊤

Ĝ(s
(t)
1 )s̄

(i)
2





.

8: i← i+ 1.

9: end while

10: s
(t+1)
2 ← s

(i)
2 .

11: j ← 0.

12: s̄
(j)
1 ← s̄

(t)
1 .

13: while until convergence do

14: s
(j+1)
1 ← e

j arg









IN

01×N





⊤

Ĝ(s
(t+1)
2 )s̄

(j)
1





.

15: j ← j + 1.

16: end while

17: end for

18: return s
⋆ ← s

(E)
1 or s

(E)
2 .

4. NUMERICAL INVESTIGATION FOR CYPMLI

To scrutinize our method, we consider the design of a unimodu-

lar sequence of length N , where N ∈ {8, 16, 32, 64, 128, 512}.
Suppose that we are interested in suppressing the correlation terms

{r1, · · · , rc}. Therefore, ωk in Eq. (5) will have the following form:

ωk =

{

1, k ∈ [1, c]

0, k ∈ [c+ 1, N ]
. (26)

We compare our method with WeCAN. Both methods are initialized

by randomly generated sequences. The correlation levels of the de-

signed sequences are shown in Fig. 1 for different values of N which

are averaged over 15 experiments. In this example, we afford both

algorithms the same design time for fair comparison. As can be seen,

it appears that the obtained unimodular sequences by CyPMLI have

lower correlation sidelobes at the required lags comparing to that of

WeCAN, with the correlation level defined in dB as 20 log10

∣
∣
∣
rk
r0

∣
∣
∣.

To compare the complexity cost of our approach with WeCAN, we

designed a unimodular sequence of length N = 100. In this case,

we impose the stopping criterion such that the designed sequences by

both algorithms have the same correlation levels. The CPU time for

WeCAN is 23s while CyPMLI requires 0.3s to achieve such perfor-

mance. Therefore, we may conclude the complexity of CyPMLI is

less than that of WeCAN, presumably due to using a simple matrix-

vector multiplications in CyPMLI.

To further investigate the performance of the CyPMLI al-

gorithm, we present the decreasing behaviour of the regularizer

∥s1 − s2∥
2
2 and the WISL metric (7), in Fig. 2(a) and Fig. 2(b),

respectively. As can be seen in Fig. 2(a), in the iterative process of

the CyPMLI algorithm, the sequences s1 and s2 are getting closer

and after near 1000 iterations, they virtually approach to each other.

By using the bi-quadratic transformation, we turn the WISL (7)

to (13). In Fig. 2(b), we show that the CyPMLI algorithm can si-

multaneously optimize both bi-quadratic (13) and quartic (7) WISL

formulations.

5. SUMMARY

To design a unimodular sequence with good correlation properties,

we proposed the CyPMLI algorithm. In this approach, at first we

present the UQP formulation for the WISL minimization problem

and then solve this UQP problem via a cyclic application of the

PMLI. In the numerical results, we showcased the effectiveness of

the proposed approach by comparing it to WeCAN which is a well-

known approach for WISL minimization.
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