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ABSTRACT

To facilitate target localization, active radar signals or sequences
are designed to have low auto-correlation. This goal is typically
achieved by the minimization of the auto-correlation integrated side-
lobe level (ISL) metric, or the weighted more general version of ISL,
known as the WISL metric. In this work, we propose an efficient ap-
proach to WISL minimization for unimodular sequence design that
takes advantage of the low-cost and easily implementable power
method-like iterations. Several numerical results are presented to
illustrate the effectiveness of the proposed method.

Index Terms— Auto-correlation, power method-like iterations,
radar signals, unimodular sequences, weighted integrated sidelobe
level.

1. INTRODUCTION

Radar signal optimization has attracted a significant deal of interest
in the last two decades owing to the emergence of stronger com-
putational hardware as well as compatible adaptive illumination de-
vices [1-3]. Particularly, the practitioners are more interested in uni-
modular (also known as constant-modulus) signals due to their min-
imal peak-to-average-ratio (PAR), which facilitates a uniform tem-
poral and spatial power allocation, as well as the fact that the signal
generation can be done using low-cost amplifiers, without being ex-
posed to the perils of gain non-linearity [4-6].

Identifying and examining sequences with desirable aperiodic
correlation properties is typically a more arduous task compared to
sequences with good periodic correlation. This is because construct-
ing sequences with exact impulsive aperiodic autocorrelation, unlike
periodic correlations, is not feasible, as discussed in [7]. Therefore,
the statistical signal processing literature has dedicated significant
efforts to the search for low autocorrelation sequences [1].

A well-studied approach to the design of sequences with low
(or good) correlation properties is through the minimization of the
weighted integrated sidelobe level (WISL) [2,4,6]. The minimiza-
tion of the WISL produces an optimization problem with a quartic
objective in terms of the radar sequence which is deemed to be a
difficult problem. Moreover, it deals with a considerable number
of local optima, while many such local optima are in fact known
to have a good quality for deployment [5, 8,9]. In [4], the mini-
mization of WISL has been accomplished by the weighted Cyclic
Algorithm New (WeCAN). Majorization-minimization-based algo-
rithms have been investigated to minimize the WISL or the weighted
peak sidelobe level (WPSL) in [6]. To minimize the combination of
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the peak sidelobe level (PSL) and WISL, the iterative Coordinate-
Descent (CD) framework was proposed in [8, 10].

In this paper, we will design sequences with good correlation
in terms of the WISL metric by deploying one of the most efficient
solvers for unimodular quadratic programming (UQP), known as the
power method-like iterations (PMLI). Inspired by the power method,
the PMLI algorithm takes advantage of simple matrix vector multi-
plications, leading to a low computational cost algorithm [5,11-13].
In Section 2, we transform the quartic WISL objective to one that
is quadratic. Section 3 presents a brief introduction to PMLI. The
Cyclic PMLI (CyPMLI) algorithm is then proposed based on the
cyclic application of PMLI to efficiently tackle the WISL minimiza-
tion problem. The numerical results are presented in Section 4 to
validate the performance of the proposed method to design a WISL-
minimized unimodular sequence. Finally, Section 5 concludes the
paper.

Notation: Throughout this paper, we use boldface lowercase,
boldface uppercase, and calligraphic letters for vectors, matrices,
and sets, respectively. C and R represent the set of complex and
real numbers, respectively. (-)7 and (-)™ denote the vector/matrix
transpose, and the Hermitian transpose, respectively. Tr(.) denotes
the trace of the matrix argument. Iy is the identity matrix of size V.
Finally, On, x n,, is the all zero matrix of size N1 X Na.

2. WISL METRIC: A QUARTIC TO QUADRATIC
TRANSFORMATION

Consider the set of complex unimodular sequences defined as

QN:{seCN|s(1):ei“l,wl € [0, 27), Oglngl}.
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The autocorrelation function of the signal s is defined as:
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where k € {0,---, N — 1}, in the periodic and aperiodic cases re-

spectively, with the signal power calculated at & = 0. The above
functions can be written in a compact form as:

ri =s"30s, it =" s, 3)
where J7 and J{*7 are the periodic and aperiodic shift matrix op-
erators that shift the vector argument by k indices. For the sake of
brevity, in this paper we are going to focus on the aperiodic case that



is deemed to be more challenging and denote the associated shift
matrix as J. Here J,, = J, is given by [14],

. 1 i—-j+k=0,
Jk(lmj):{ ’ J

0 i—j+k#0. @

It is straightforward to verify that the derivations for the periodic
case would be similar.

The weighted integrated sidelobe level (WISL) of the autocorre-
lation can be defined as [4]:

N-1
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with weights wi, > 0 that are predetermined based on the emphasis
given to minimizing different autocorrelation lags. It is easy to see
that the WISL formulation subsumes the ISL metric as a special case
by simply considering unit {w } [6].
The problem of interest is to design sequences s that minimize
the WISL metric: o s
minimize s).
seQN (s) 6)
Note that f (s) can be written as
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which is quartic with respect to s. Therefore, optimizing the radar
sequence s appears to be difficult. To find a quadratic alternative to
f(s), at first, we define g (s1, s2) as follows:

N-1
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where f(s) = g(s, s). Moreover, let
N-1
G(s) = > wiJyss" Ty, )
k=1

It is also interesting to observe that if either s; or s2 are fixed, min-
imizing g (s1, s2) with respect to the other variable can be done via
a UQP formulation [5,11]:

minimize sj G(s;)s;,
s;eQN

i7#je{l,2}. (10)

Let Ay, be the maximum eigenvalue of G(s; ), where A, I = G(s;).
Thus, G(s;) = AnI — G(s;) is positive definite. As a result, (10)
can be reformulated as

.. H ~
maximize s; G(s;)s;,
N
S; [SY]

Note that a diagonal loading with A, T has no effect on the solution
of (10) due to the fact that s} G(s;)s; = Am N — s} G(s:)s;.

In order to guarantee that a minimization of g (s1,s2) leads to
minimize f(s), a connection must be made to show that s; and s
obtained from (11) are convergent. We may consider:

maximize S?G(Si)Sj, 1 #7€{1,2}
SJ'ESZN (12)
subjectto  s; = s;.

By adding the norm-2 error between s, and s2 as a regularizer with
the Lagrangian multiplier to (11), we have:

L. H 2 . .
msljlelgl}vle s; G(si)s; +nllsi —sjllz, i#j€{l,2}, (13

where 7 is the Lagrangian multiplier. The regularizer ||s; — s; ||§ is
a quadratic function as well. Consequently, the objective function of
(13) is recast as

sj G(si)s; +1nllsi —s;ll5,
H
J

=s; G(si)s; —2nRe (s?si) + 29N,
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Thus, the final UQP formulation for (6) is given by
H
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where Ajs is the maximum eigenvalue of G(s;), and G(sl) =

)\]\,II — g(SZ)

3. CYPMLI ALGORITHM

Due to the NP-hard nature of UQP, it has a highly multi-modal op-
timization objective. Finding the local optima of UQP is not only
useful to tackle the problem itself, but also to improve the UQP
approximate solutions obtained by semi-definite relaxation (SDR)
or other optimization algorithms. PMLI is a computationally effi-
cient procedure which resembles the well-studied power iteration
for computing the dominant eigenvalue/vector pairs of matrices [5].
In particular, it was demonstrated in [5, 11, 12] that UQP solutions
can be efficiently approximated by deploying the PMLI.

(t+1

Assume G is positive definite and {5 y

) o0
} be a sequence
t=0

of unimodular codes where §§t+1) is the minimizer of the following
criterion:
PP S+ Aa®)yg®)
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where 5; = (s;r 1)T. Note that

If sg.tH) #* s;t) and G > 0,
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as Re (§§t+1)HG(§Et>)§§t>) > §§t)HG(§Et))§§.t) [5]. Therefore, the
UQP objective is increasing through the PMLI. The desired vector
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Fig. 1. Correlation levels obtained by CyPMLI and WeCAN for: a) N = 8,b) N = 16,¢c) N = 32,d) N =64,e) N = 128,f) N = 512.

s!""1 of (15) and (16) is readily evaluated by PMLI in each iteration
as
: Aors(t)y5(1)
s+ = Jars(GEE") 20)
or equivalently,
. (t) (t) (t)
s§t+1) _ das((Ar-asf))s sl @1

It is worth pointing out that the difference of recursions for (20) and

. t t
(21) compared to that of (11),i.e., sg-tH) =¢ arg((Am1-G(s[)s]")
is merely in including more momentum or the effect of n at each
iteration. Such power method-like iterations are already shown to
be convergent in terms of the signals, implying that s; and so will
be converging to each other as well. We call our algorithm, Cyclic
PMLI (CyPMLI) which is summarized in Algorithm 1.

To guarantee the convergence of PMLI and a monotonically in-
creasing objective function, G(sgt)) must be positive definite which
is achieved by choosing proper Aar. The following theorem is pro-
posed to select Ay, for our algorithm:

Theorem 1. To guarantee the positive definiteness of G(é(t)) in
each iteration, its maximum eigenvalue must meet the following re-
lation:

Am >

Amax + 2N + \/ (Anar — 2N1)? + AN7?
2

max < Amax,

T (22)

M+ 280 4/ Qv — 2N1)? + AN
- 2

where 1) is the Lagrangian multiplier, N is the sequence length, and
Amax 1S the maximum eigenvalue of G defined in (9).

)

Proof. According to the Schur complement, G(s;) is positive defi-
nite if and only if [15, 16]:

o AmI — G(s;) is positive definite.
o (Aar — 29N) — n?sl (AI — G(sy)) tsi > 0.
The first condition implies that Aps > Amax Where Amax is the max-

imum eigenvalue of G(s;). To achieve a boundary of Ajs from the
second condition, one can utilize the below relation:

(A —20N) = n?sit And — G(s) " 's >
(Aar — 20N) — 028 (Aar — Aman) ' I

7
By choosing A7 in a such way to guarantee the lower term in (23)
to be the positive value, the second condition of the aforementioned
Schur complement is met as well. Thus, the optimal value of Ans
may satisfy the following inequality which is obtained from (23)
considering s's = N:

A3 — (2N0 + Anax) At + 2N — 7° N > 0. (24)

It is straightforward to verify that to satisfy both Aas > Amax, and
(24), the relation (22) must be met for Aas. Also, it is easy to verify
that the second term of the max (-) in (22) is greater than Amax as
follows:

(23)

>\max + 2N77 + \/(Amax - 2N77)2 + 4N772 > 2>\maX7
(25)

\/(/\m‘dx - 2N77)2 +4NN2 > Amax — 2N,

where the last inequality is trivial and completes the proof. O

According to Theorem 1, A\as should not only be larger the the
maximum eigenvalue of G, but should also satisfy the tighter in-
equality discussed in (22). Although the theorem proposes a condi-
tion on Ay, it efficiently ensures there is enough momentum 7 to
guarantee the solutions s; and s2 are convergent.
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Fig. 2. Decreasing behaviour of (a) the regularizer ||s; — s2 ||§, and (b) the WISL during the iterations of the CyPMLI algorithm. As can be
observed, by increasing the number of iterations, (a) s; and sy converges to each other and to the optimal sequence s*. (b) demonstrates that

the CyPMLI properly minimizes the WISL (7).

Algorithm 1 The CyPMLI algorithm for WISL minimization.

Input: Initialization values s§°) and 5(20), weights of WISL
{wr }, Lagrangian multiplier 7, total number of iterations &.
Output: Optimized unimodular sequence s*.

) and sg) are the solutions at the ¢-th iteration.

I: >s;
2: > The objective function is g (S;,§;) = égé(si)éj.
3:fort=0:£—1do
4: 7 < 0.
s sy sy
6: while until convergence do N
Y B S\ e
7. st eJ drg’((OuN) G170 ) )
8: 141+ 1.
9: end while
10 s{ s
11: j <« 0.
122 89 s
13: while until convergence do
- In \ 7(J‘)>
14: st ¢ arg((OMN) o)
15: j—J+1
16: end while
17: end for

18: return s* <— si‘g) or sé‘s).

4. NUMERICAL INVESTIGATION FOR CYPMLI

To scrutinize our method, we consider the design of a unimodu-
lar sequence of length N, where N € {8,16,32,64,128,512}.
Suppose that we are interested in suppressing the correlation terms
{r1,- -, rc}. Therefore, wy in Eq. (5) will have the following form:

kel

kele+1,N] (26)

We compare our method with WeCAN. Both methods are initialized
by randomly generated sequences. The correlation levels of the de-

signed sequences are shown in Fig. 1 for different values of NV which
are averaged over 15 experiments. In this example, we afford both
algorithms the same design time for fair comparison. As can be seen,
it appears that the obtained unimodular sequences by CyPMLI have
lower correlation sidelobes at the required lags comparing to that of

WeCAN, with the correlation level defined in dB as 201log,, :—g‘

To compare the complexity cost of our approach with WeCAN, we
designed a unimodular sequence of length N = 100. In this case,
we impose the stopping criterion such that the designed sequences by
both algorithms have the same correlation levels. The CPU time for
WeCAN is 23s while CyPMLI requires 0.3s to achieve such perfor-
mance. Therefore, we may conclude the complexity of CyPMLI is
less than that of WeCAN, presumably due to using a simple matrix-
vector multiplications in CyPMLI.

To further investigate the performance of the CyPMLI al-
gorithm, we present the decreasing behaviour of the regularizer
|[s1 — SQHg and the WISL metric (7), in Fig. 2(a) and Fig. 2(b),
respectively. As can be seen in Fig. 2(a), in the iterative process of
the CyPMLI algorithm, the sequences s; and so are getting closer
and after near 1000 iterations, they virtually approach to each other.
By using the bi-quadratic transformation, we turn the WISL (7)
to (13). In Fig. 2(b), we show that the CyPMLI algorithm can si-
multaneously optimize both bi-quadratic (13) and quartic (7) WISL
formulations.

5. SUMMARY

To design a unimodular sequence with good correlation properties,
we proposed the CyPMLI algorithm. In this approach, at first we
present the UQP formulation for the WISL minimization problem
and then solve this UQP problem via a cyclic application of the
PMLI. In the numerical results, we showcased the effectiveness of
the proposed approach by comparing it to WeCAN which is a well-
known approach for WISL minimization.
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