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ABSTRACT

Intelligent reflecting surface (IRS) technology has recently attracted

a significant interest in non-light-of-sight radar remote sensing. Prior

works have largely focused on designing single IRS beamformers for

this problem. For the first time in the literature, this paper considers

multi-IRS-aided multiple-input multiple-output (MIMO) radar and

jointly designs the transmit unimodular waveforms and optimal IRS

beamformers. To this end, we derive the CramÂer-Rao lower bound

(CRLB) of target direction-of-arrival (DoA) as a performance met-

ric. Unimodular transmit sequences are the preferred waveforms

from a hardware perspective. We show that, through suitable trans-

formations, the joint design problem can be reformulated as two uni-

modular quadratic programs (UQP). To deal with the NP-hard nature

of both UQPs, we propose unimodular waveform and beamforming

design for multi-IRS radar (UBeR) algorithm that takes advantage of

the low-cost power method-like iterations. Numerical experiments

illustrate that the MIMO waveforms and phase shifts obtained from

our UBeR algorithm are effective in improving the CRLB of DoA

estimation.

Index Terms— Beamforming, IRS-aided radar, non-line-of-

sight sensing, unimodular sequences, waveform design.

1. INTRODUCTION

An intelligent reflecting surface (IRS) is composed of a large array of

scattering meta-material elements, which reflect the incoming signal

after introducing a pre-determined phase shift [1, 2]. Recently, the

benefits of IRS have been investigated for future wireless communi-

cations [3±5] applications, including multi-beam design [6], secure

parameter estimation [7] and joint sensing-communications [8±10].

In this paper, we focus on the IRS-aided radar, where combined pro-

cessing of line-of-sight (LoS) and non-LoS (NLoS) paths has shown

improvement in target estimation and detection [11±14] through an

optimal design of IRS phase shifts.

Target detection via multiple-input multiple-output (MIMO)

IRS-aided radar was studied extensively in [11]. In our earlier works

on target estimation [12, 15], we derived the optimal IRS phase

shifts based on the mean-squared-error of the best linear unbiased

estimator (BLUE) for complex target reflection factor [12] and the

CramÂer-Rao lower bound (CRLB) of Doppler estimation for mov-

ing targets [15]. Recent studies [13, 16] focused on optimization

of IRS beamforming based on CRLB of direction-of-arrival (DoA)
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estimation for a single IRS-aided radar. More recent works [15, 17]

demonstrate the benefits of deploying multiple IRS platforms instead

of a single IRS.

Similar to a conventional radar [18], a judicious design of

transmit waveforms improves the performance of IRS-aided radar.

Whereas designing radar probing signals is a well-studied prob-

lem [18±22], it is relatively unexamined for IRS-aided radar. In

this context, transmit sequences that mitigate the non-linearities of

amplifiers and yield a uniform power transmission over time are of

particular interest. Unimodular sequences with the minimum peak-

to-average power ratio exhibit these properties and have been studied

in previous non-IRS works for radar applications [21]. In this paper,

we jointly design unimodular sequences and IRS beamformers.

Multipath propagation through multiple IRS platforms increases

the spatial diversity of the radar system [23]. To this end, we inves-

tigate the benefits of multipath processing for multi-IRS-aided tar-

get estimation. We first derive the CRLB of DoA estimation for a

multi-IRS-aided radar. Then, we formulate the unimodular wave-

form design problem based on the CRLB minimization for IRS-

aided radar as a unimodular quadratic program (UQP). The uni-

modularity constraint makes the UQP an NP-hard problem. In gen-

eral, UQP may be relaxed via a semi-definite program (SDP) for-

mulation but the latter has a high computational complexity as well

[24,25]. Inspired by the power method that has the advantage of sim-

ple matrix-vector multiplications, [22, 26] proposed power method

like iterations (PMLI) algorithm to approximate UQP solutions lead-

ing to a low-cost algorithm. We formulate the IRS beamforming

design as a unimodular quartic programming (UQ2P). Prior works

[19,27] on unimodular waveform design with good correlation prop-

erties also lead to UQ2Ps, for which they employ a more costly

majorization-minimization technique. On the contrary, we use a

quartic to bi-quadratic transformation to solve UQ2P by splitting

it into two quadratic subproblems. Our unimodular waveform and

beamforming design for multi-IRS radar (UBeR) algorithm is based

on the cyclic application of PMLI and provides the optimized CRLB.

In summary, the contributions of our work are introducing the signal

model for a multi-IRS-aided radar system, derivation of the Fisher

information for the DoA estimation and developing our algorithm

called UBeR for joint Unimodular waveform and beamforming de-

sign in multi-IRS-aided radar.

Throughout this paper, we use bold lowercase and bold upper-

case letters for vectors and matrices, respectively. We represent a

vector x ∈ C
N in terms of its elements {xi} as x = [xi]

N
i=1. The

mn-th element of the matrix B is [B]mn. The sets of complex

and real numbers are C and R, respectively; (·)⊤, (·)∗and (·)H

are the vector/matrix transpose, conjugate and the Hermitian trans-

pose, respectively; trace of a matrix is Tr(.); the function diag(.)
returns the diagonal elements of the input matrix; and Diag(.)
produces a diagonal/block-diagonal matrix with the same diago-

nal entries/blocks as its vector/matrices argument. The Hadamard



(element-wise) and Kronecker products are ⊙ and ⊗, respectively.

The vectorized form of a matrix B is written as vec (B). The

s-dimensional all-ones vector, all-zeros vector, and the identity ma-

trix of size s × s are 1s, 0N , and Is, respectively. The minimum

eigenvalue of B is denoted by λmin(B). The real, imaginary, and

angle/phase components of a complex number are Re (·), Im (·),
and arg (·), respectively. vec−1

K,L
(c) reshapes the input vector

c ∈ C
KL into a matrix C ∈ C

K×L such that vec (C) = c.

2. MULTI-IRS-AIDED RADAR SYSTEM MODEL

Consider a colocated MIMO radar with Nt transmit and Nr receive

antennas, each arranged as uniform arrays (ULA) with inter-element

spacing d. The M IRS platforms indexed as IRS1, IRS2,...,IRSM ,

are implemented at stationary and known locations, each equipped

with Nm reflecting elements arranged as ULA, with element spac-

ing of dm between the antennas/reflecting elements of IRSm. The

continuous-time signal transmitted from the n-th antenna at time

instant t is xn(t). Denote the Nt × 1 vector of all transmit sig-

nals as x(t) = [x
i
(t)]Nt

i=1 ∈ ΩNt , where the set of unimodular

sequences is Ωn =
{
s ∈ C

n|s = [ejωi ]ni=1, ωi ∈ [0, 2π]
}

. The

steering vectors of radar transmitter, receiver and the m-th IRS

are, respectively, at(θ) = [1, ej 2π
λ

dsinθ, . . . , ej 2π
λ

d(Nt−1)sinθ]⊤,

ar(θ) = [1, ej 2π
λ

dsinθ, . . . , ej 2π
λ

d(Nr−1)sinθ]⊤, and bm(θ) =

[1, ej 2π
λ

dmsinθ, . . . , ej 2π
λ

dm(Nm−1)sinθ]⊤, where λ, is the carrier

wavelength and d and dm are usually assumed to be half the carrier

wavelength. Each reflecting element of IRSm reflects the incident

signal with a phase shift and amplitude change that is configured via

a smart controller [28]. We denote the phase shift vector of IRSm

by vm = [ejϕ
m,1 , . . . , e

jϕ
m,Nm ]⊤ ∈ C

Nm , where ϕ
m,k
∈ [0, 2π]

is the phase shift associated with the k-th passive element of IRSm.

Denote the angle between the radar-target, radar±IRSm, and

target-IRSm by θtr , θri,m, and θti,m, respectively. Denote target-

radar channel by Htr = ar(θtr) ∈ C
Nr×1; and radar-target by

Hrt = at(θtr)
⊤ ∈ C

1×Nt . The LoS or radar-target-radar channel

matrix is Hrtr = ar(θtr)at(θtr)
⊤ ∈ C

Nr×Nt . Analogously, for

the multi-IRS aided radar the NLoS channel matrices associated with

IRSm are defined as Hri,m = bm(θri,m)a⊤
t (θri,m) ∈ C

Nm×Nt

for radar-IRSm; Hit,m = b⊤
m(θti,m) ∈ C

1×Nm for IRSm-

target; Hti,m = bm(θti,m) ∈ C
Nm×1 for target-IRSm; and

Hir,m = ar(θri,m)b⊤
m(θri,m) ∈ C

Nr×Nm for dela paths.

The received signal back-scattered from a single target is the

superimposition of echoes from both LoS and NLoS paths as

y(t) = αrtrHrtrx(t− τrtr)

+

M∑

m=1

α
ritr,m

HtrHit,mΦmHri,mx(t− τritr,m)

+
M∑

m=1

α
rtir,m

Hir,mΦmHti,mHrtx(t− τrtir,m)

+

M∑

m=1

α
ritir,m

Hir,mΦmHti,mHit,mΦmHri,m

x(t− τritir,m) +w(t), ∈ C
Nr , (1)

where Φm = Diag (vm), α
(·),m

is the complex reflectivity which

depends on the target back-scattering coefficient and the atmospheric

attenuation, and w(t) ∼ CN (0, σ2INt) denotes a stationary (ho-

moscedastic) additive white Gaussian noise (AWGN). In general,

the received signal may also have an additional inter-IRS interfer-

ence that should be included while accounting for the SNR. When

there is some blockage or obstruction between the radar and target,

we have αrtr ≃ 0, αritr,m ≃ 0 and αrtir,m ≃ 0. We replace

α
ritir,m

by αm for notation brevity. The received signal becomes

y(t) =

M∑

m=1

αmHir,mΦmHti,mHit,mΦmHri,m

x(t− τritir,m) +w(t). (2)

Our goal is to design a radar system for inspecting a range cell

located at distance dtr with respect to (w.r.t.) the radar transmit-

ter/receiver for a potential target. Assume that the relative time

gaps between any two multipath signals are very small in compar-

ison to the actual roundtrip delays, i.e., τritir,m ≈ τ0 = 2dtr
c

for

m ∈ {1, . . . ,M}, where c is the speed of light. We collect N
slow-time samples at the rate 1/Ts from the signal, at t = nTs,

n = 0, . . . , N − 1. Hence, corresponding to the range-cell of inter-

est, the received signal vector is

y[n] =
M∑

m=1

αmHmx[n] +w[n], y[n] ∈ C
Nr×1, (3)

where x[n] = x(τ0 + nTs) ∈ C
Nt×1, y[n] = [y

i
[n]]Nr

i=1, and we

define Hm = Hir,mΦmHti,mHit,mΦmHri,m ∈ C
Nr×Nt . The

delay τ0 is aligned on-the-grid so that n0 = τ0/Ts is an integer [29].

Collecting all discrete-time samples for Nr receiver antennas,

the received signal is the Nr × N matrixY = [y[0], . . . ,y[N −

1]] =
∑M

m=1 αmHmX + W,where X = [x[0], . . . ,x[N − 1]] ∈

C
Nt×Nand W = [w[0], . . . , w[N − 1]] ∈ C

Nr×N . Vectorizing as

y = vec (Y) yields

y =

M∑

m=1

αmvec (HmX) + vec (W) = X̃H̃α+ w̃, (4)

where X̃ = X⊤⊗ I
Nr

, H̃ = [H̃1 , . . . , H̃M
], H̃m = vec (Hm) for

m ∈ {1, . . . ,M}, w̃ = vec (W) and α = [αm]Mm=1. Given that

w(t) is AWGN in (1), it is easily observed that y ∼ CN (µ,R),

where µ = X̃H̃α and R = σ2I
NrN

. Note that, since w[n] is a

stationary process and i.i.d. with σ2 variance, through vectorization

and stacking all ensembles as one vector, the resulting process is still

stationary and i.i.d with the same variance.

Our goal is to show the effectiveness of placing M IRS plat-

forms in estimating the DoA of the target in the LoS path, i.e. θtr .

For simplicity, we consider a two-dimensional (2-D) scenario, where

the radar, IRS platforms and the target are in the same plane. Our

analysis can be easily extended to 3-D scenarios. The following re-

mark states that the estimation of DoAs in the NLoS paths, θti,m,

for m ∈ {1, . . . ,M} is equivalent to an estimation of θtr .

Remark 1. Estimation of the vector of target DoAs, ζ = [θti,1,
. . . , θti,M ]⊤ is equivalent to estimating scalar DoA parameter, θtr .

This follows because, given the locations of radar, IRS platforms

and potential target range in the 2-D plane, we have ζ = [θtr +
θ1, . . . , θtr + θ

M
]⊤, where θm for m ∈ {1, . . . ,M} are known.

3. UQP-BASED CRLB OPTIMIZATION

For an unbiased estimator of a parameter θtr (θ, hereafter), the vari-

ance of θ̂ is lower bounded as E{(θ̂ − θ)(θ̂ − θ)H} ≥ CRLB(θ) [30].

Theorem 1 below unveils the Fisher information Fθ = (CRLB(θ))−1
.



Theorem 1. Consider for the multi-IRS-aided radar, the receive sig-

nal model in (4). The Fisher information of LoS DoA θ is

Fθ =
2

σ2
Re

(

α
H ˙̃
H

H
X̃

H
X̃

˙̃
Hα

)

, (5)

where
˙̃
H =

[
˙̃
H1 , . . . ,

˙̃
H

M

]

,
˙̃
Hm = vec

(

Ḣm

)

and Ḣm =
∂Hm

∂θ
= bmHir,mΦm(bm(θti,m)(d ⊙ bm(θti,m))⊤ +(d ⊙

bm(θti,m))bm(θti,m)⊤)ΦmHri,m, with NLoS DoAs being θti,m =
θ + θm, bm = j 2πdm

λ
cos(θm) and d = [0, . . . , Nm − 1]⊤.

Proof. Given the observations y ∼ CN (µ(θ),R), using Slepian-

Bangs formula [30, Chapter 3C], the Fisher information is

Fθ = Tr

(

R
−1 ∂R

∂θ
R

−1 ∂R

∂θ

)

+ 2Re

(
∂µ(θ)

∂θ

H

R
−1 ∂µ(θ)

∂θ

)

.

(6)

From (4), µ(θ) = X̃H̃α. Also, given the above mentioned defini-

tions, we have
∂µ(θ)
∂θ

= X̃
˙̃
Hα. Substituting this in (6) and using

R = σ2I, one arrives at (5).

Remark 2. In the absence of the IRS, ceteris paribus, the LoS

Fisher information is Fθ = 2|αrtr|2
σ2 ∥X̃ ˙̃

Hrtr∥
2
2, where

˙̃
Hrtr =

vec
(

Ḣrtr

)

, Ḣrtr =
∂H

rtr

∂θ
= j 2πd

λ
cos(θ)

(

(d′ ⊙ ar(θ))at(θ)
⊤

+ar(θ)(d
′ ⊙ at(θ)

⊤)
)

, Nr = Nt, and d′ = [0, . . . , Nr − 1]⊤.

To design the unimodular waveform X, the following proposi-

tion casts Fθ in standard quadratic form.

Proposition 1. The Fisher information Fθ of LoS DoA is

Fθ (X) = vec (X)H (IN ⊗B)H(IN ⊗B)vec (X) , (7)

where B =
√
2

σ
vec−1

Nr,Nt

(
˙̃
Hα

)

∈ C
Nr×Nt .

Proof. Given X̃ = X⊤ ⊗ I
Nr

, rewrite Fisher information in (5) as

Fθ =
2

σ2
Re

{((

X
⊤ ⊗ INr

)
˙̃
Hα

)H ((

X
⊤ ⊗ INr

)
˙̃
Hα

)}

.

(8)

Since the argument of real operator is a real number, we can put

it out of the real operator. Using the identity
(
X⊤ ⊗ INr

) ˙̃
Hα =

(

IN ⊗ vec−1
Nr,Nt

(
˙̃
Hα

))

vec (X) in (8), we immediately get (7).

Using the expression in (7), we recast the unimodular waveform

design objective as a unimodular quadratic objective that leads to

a UQP. To proceed with IRS beamformer design, define,
˙̃
Hm =

Dmvec (Vm), D = Diag (D1, . . . ,Dm),

Dm =
(

C
⊤
mdiag (d)⊗C

⊤
m

)

+
(

C
⊤
m ⊗C

⊤
mdiag (d)

)

(9)

and Cm = Diag (bm(θti,m))Hri,m, where the unimodular

phase shifts for IRSm are given by vm = diag (Φm) or Vm =
vec

(
vmv⊤

m

)
. In order to obtain (9), we imposed the reciprocity,

Hir,m = H⊤
ri,m for a radar with collocated antennas and Nr = Nt.

For the IRS beamforming, the Fisher information Fθ w.r.t. phase

shifts is recast in the following proposition.

Proposition 2. The Fisher information is quartic in phase shifts:

Fθ(ν) = ν
H
Q

H
1 (ν)TQ1(ν)ν = ν

H
Q

H
2 (ν)TQ2(ν)ν, (10)

where ν =
[
v⊤
1 ,v⊤

2 , · · · ,v⊤
M

]⊤
∈ C

MNm , T = DHPHZ∗PD,

Q1(ν) = Diag ([v1 ⊗ INm , . . . ,v
M
⊗ INm ]), Q2(ν) = Diag ([

INm ⊗ v1, . . . , INm ⊗ v
M
]), Z = (INrNt ⊗ α∗α⊤)⊤(X̃⊤X̃∗ ⊗

IM ), and P is the commutation matrix, i.e., vec
(
˙̃
H⊤

)

= Pvec
(
˙̃
H
)

.

Proof. The Fisher information is Fθ = Tr
(
˙̃
HααH ˙̃

HHX̃HX̃
)

=

vec
(

α∗α⊤ ˙̃
H⊤

)⊤
vec

(
˙̃
HHX̃HX̃

)

= vec
(
˙̃
H⊤

)⊤
Zvec

(
˙̃
HH

)

.

Since Fθ is real, we have Fθ (z) = vec
(
˙̃
H⊤

)H

Z∗vec
(
˙̃
H⊤

)

=

vec
(
˙̃
H
)H

PHZ∗Pvec
(
˙̃
H
)

= zHDHPHZ∗PDz, where z =

vec ([V1, . . . ,VM ]) = [vec
(
vmv⊤

m

)⊤
, . . . , vec

(
vmv⊤

m

)⊤
]⊤.

Applying the identity

vec
(

vmv
⊤
m

)

= (INm ⊗ vm)vm = (vm ⊗ INm)vm, (11)

yields z = Q1(ν)ν = Q2(ν)ν. This completes the proof.

To jointly optimize vm = diag (Φm) and X, we solve

maximize
X∈ΩNt×N ,ν∈ΩMNm

Fθ(ν,X), (12)

which leads to the CRLB minimization. Note that this problem is

UQP w.r.t. X but quartic or UQ2P w.r.t. the phase shifts ν.

4. UBER ALGORITHM

We resort to a task-specific alternating optimization (AO) or cyclic

algorithm [22, 31, 32], wherein we optimize (12) for X and ν cycli-

cally. To tackle each subproblem, we adopt power method-like itera-

tions (PMLI) [26], which is a computationally efficient procedure to

tackle the UQP. The PMLI resembles the well-studied power method

for computing the dominant eigenvalue/vector pairs of matrices [26].

Given a matrix G, the following problem is a UQP [26]:

P1 : maximize
s∈Ωn

s
H
Gs. (13)

If G is positive semidefinite, the PMLI iterations

s
(t+1) = ej arg(Gs

(t)), (14)

lead to a monotonically increasing objective value for the UQP.

Unimodular Waveform Design: From Proposition 1, the Fisher in-

formation Fθ for the unimodular waveform X is the unimodular

quadratic objective in (7). Let s = vec (X), and G = (IN ⊗
B)H(IN ⊗ B). Therefore, the vectorized X is obtained from P1

via the iterations (t ≥ 0):

vec
(

X
(t+1)

)

= ej arg((IN⊗B)H(IN⊗B)vec(X(t))). (15)

If G is not positive semidefinte, at each iteration we use the diagonal

loading technique, i.e., G̃← G+λmI, where the loading parameter

λm ≥ −λmin(G). Note that diagonal loading with λmI has no ef-

fect on the solution of (15) because sHG̃(s)s = λmNtN + sHGs.

IRS Beamforming Design: For the phase shifts optimization, we

find an alternative bi-quadratic formulation to the quartic Fθ (ν).
Define

g (ν1,ν2) =
1

2

(

ν
H
1 G1 (ν2)ν1 + ν

H
2 G1 (ν1)ν2

)

, (16)

where G1(ν) = QH
1 (ν)TQ1(ν). The function g(., .) is symmet-

ric, i.e., g (ν1,ν2) = g (ν2,ν1) and from proposition 2, Fθ(ν) =
g(ν,ν). According to (11), one can readily verify that Q1(ν1)ν2 =
Q2(ν2)ν1. As a result, g (ν1,ν2) is rewritten as

g (ν1,ν2) = v
H
1 E (ν2)ν1, (17)



where E (ν2) =
(G1(ν2)+G2(ν2))

2
, and G2(ν) = QH

2 (ν)TQ2(ν).
Fixing either ν1 or ν2 and minimizing g (ν1,ν2) w.r.t. the other

variable requires solving the following UQP:

minimize
νj∈ΩMNm

ν
H
j Ẽ(νi)νj , i ̸= j ∈ {1, 2} , (18)

where we used the diagonal loading, Ẽ(νi) ← λMI − E(νi), with

λM being the maximum eigenvalue of E(νi). Note that diago-

nal loading has no effect on the solution because ν
H
j Ẽ(νi)νj =

λMMNm−ν
H
j E(νi)νj . Moreover, Ẽ(νi) is positive semidefinite,

to satisfy the requirement of PMLI.

To guarantee that the maximization of g (ν1,ν2) w.r.t. ν1 and

ν2 also maximizes Fθ (ν), a regularization would be helpful. There-

fore, we add the norm-2 error between ν1 and ν2 as a penalty func-

tion to (18), we obtain

minimize
νj∈ΩMNm

ν
H
j Ẽ(νi)νj + η||νi − νj ||

2
2, i ̸= j ∈ {1, 2} , (19)

where η is Lagrangian multiplier. Rewrite the objective of (19) as

ν̄
H
j

[
Ẽ(νi) −ηνi

−ηνH
i 2ηMNm

]

︸ ︷︷ ︸

E(νi)

ν̄j , where ν̄j =
[
ν
⊤
j 1

]⊤
. Then, UQP for

(12) w.r.t. ν becomes

P2 : maximize
νj∈ΩMNm

ν̄
H
j

[
λ̂MI− Ẽ(νi) ηνi

ηνH
i λ̂M − 2ηMNm

]

︸ ︷︷ ︸

=Ê(νi)=λ̂M I−E(νi)

ν̄j ,

(20)

where λ̂M is the maximum eigenvalue of E(νi).

To tackle the UQ2P for maximizing Fθ , we solve the bi-

quadratic program (20) using PMLI in (14). Algorithm 1 sum-

marizes the proposed steps. The PMLI in UBeR have previously

been shown to be convergent in terms of both the optimization

objective and variable [21, 22].

Algorithm 1 Unimodular waveform and beamforming design for

multi-IRS-aided radar (UBeR).

Input: Initialization values X(0) and ν
(0)
1 and ν

(0)
2 , Lagrangian

multiplier η, total number of iterations Γ1 and Γ2 for problems

P1 and P2, respectively.

Output: Optimized phase shifts ν∗, unimodular waveform X∗.

1: Obtain Fθ (X) and Fθ (ν) from (7) and (10), respectively.

2: B← vec−1
(
˙̃
Hα

)

∈ C
Nr×Nt ,

3: G← (IN ⊗B)H (IN ⊗B).

4: for t1 = 0 : Γ1 − 1 do ▷ Update the unimodular waveform

5: for t2 = 0 : Γ2 − 1 do ▷ Bi-quadratic programming via

PMLI

6: ν
(t2+1)
1 ← e

j arg
([

I
MNm

0
MNm

]

Ê

(

ν
(t2)
2 ,X(t1)

)

ν̄
(t2)
1

)

,

7: ν
(t2+1)
2 ← e

j arg
([

I
MNm

0
MNm

]

Ê

(

ν
(t2+1)
1 ,X(t1)

)

ν̄
(t2)
2

)

.

8: ν
(t1+1) ← ν

(Γ2)
1 or ν

(Γ2)
2 .

9: vec
(

X(t1+1)
)

← ej arg(G(ν(t1+1))vec(X(t1))).

10: return {ν⋆,X⋆} ←
{

ν
(Γ1),X(Γ1)

}

.

Fig. 1. The optimized CRLB of DoA versus (a) σ2 for fixed number

of iterations Γ1 = 50, and (b) Γ1 for fixed σ2 = 0.1. In both

experiments, Γ2 was set to 20.

5. SIMULATION RESULTS

We consider a radar, equipped with Nr = Nt = 8 antennas for

transmitter/receiver, positioned in the 2-D Cartesian plane at [0 m,

0 m], sensing a target at [5000 m, 5000 m]. We placed three IRS

platforms with Nm = 8 reflecting elements arranged as ULA with

the first elements located at [500 m, 500 m], [500 m, −800 m], and

[300 m, 1300 m]. The IRS platforms were deployed at far ranges

w.r.t. the radar. Usually, distant targets tend to have obstructed or

very weak LoS signal. In these cases, the received signal from the

NLoS paths, i.e., the signal propagated through IRS platforms, is

helpful in boosting the reflected LoS echo strength.

For a point-like target, given the radar, target and IRS positions,

the corresponding radar±IRSm and target±IRSm angles θir,m and

θti,m, for m ∈ {1, . . . ,M}, are obtained through geometric com-

putations. The complex reflectivity coefficients {αm}, which corre-

spond to a Swerling 0 target model are generated from a CN (0, 1).
In Algorithm 1, we set Γ1 = 50 and Γ2 = 20 for all iterations.

Throughout all our experiments the Lagrangian multiplier η is tuned

to 0.1. Initially, all IRS platforms are set to impose zero phase shift

ν
(0)
i = 0

MNm
for i ∈ {1, 2}. The number of slow-time samples is

set to N = 50 and the samples in X(0) are generated from a nor-

mal distribution. Fig. 1a illustrates that the multiple IRS-aided radar

outperforms the single-IRS aided radar. Further, Fig. 1b indicates

that iterations of Algorithm 1 result in a monotonically decreasing

CRLB.

6. SUMMARY

Waveform design for IRS-aided radar is relatively unexplored in

prior works. In this context, this paper studies a new set of wave-

form design problems. Numerical experiments demonstrate that the

deployment of multiple IRS platforms leads to a better achievable

estimation performance compared to non-IRS and single-IRS sys-

tems. Some IRS model enhancements that should be accounted for

in the future include the inter-IRS interference and quantization of

the IRS phases.
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