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AbstractÐAn intelligent reflecting surface (IRS) consists of passive

reflective elements capable of altering impinging waveforms. The IRS-

aided radar systems have recently been shown to improve detection and

estimation performance by exploiting the target information collected via

non-line-of-sight paths. However, the waveform design problem for an

IRS-aided radar has remained relatively unexplored. In this paper, we

consider a multi-IRS-aided orthogonal frequency-division multiplexing

(OFDM) radar and study the theoretically achievable accuracy of target

detection. In addition, we jointly design the OFDM signal and IRS phase-

shifts to optimize the target detection performance via an alternating

optimization approach. To this end, we formulate the IRS phase-shift

design problem as a unimodular bi-quadratic program which is tackled

by a computationally cost-effective approach based on power-method-

like iterations. Numerical experiments illustrate that our proposed joint

design of IRS phase-shifts and the OFDM code improves the detection

performance in comparison with conventional OFDM radar.

Index TermsÐIntelligent reflecting surfaces, non-line-of-sight sensing,

OFDM, unimodular bi-quadratic programming, waveform design.

I. INTRODUCTION

Intelligent reflective surface (IRS) is an emerging technological

advancement for next-generation wireless systems. An IRS comprises

meta-material units that enable smart and programmable radio envi-

ronments by introducing predetermined phase-shifts to the impinging

signal [1]. The IRS-aided wireless communications are shown to

provide range extension to users with obstructed direct links [2],

enhance physical layer security [3, 4], facilitate unmanned air vehicle

(UAV) communications [5], and shaping the wireless channel through

multi-beam design [6]. Recent works have also introduced IRS to

integrated communications and sensing systems [3, 7±9].

Recently, following the advances in [7, 10], IRS-aided sensing for

non-line-of-sight (NLoS) target estimation has been investigated in

[10±12]. In [13], the phase-shift matrix of the IRS was optimized

for collocated MIMO radar to improve the estimation and detection

performance. Target detection was also considered in cases where the

radar is aided by a single IRS [14] or multiple IRS platforms [15, 16].

The deployment of multiple IRS platforms is necessary to overcome

line-of-sight (LoS) blockage or obstruction in cases where the NLoS

path formed by a single IRS is unable to provide the desired coverage.

To this end, [17] jointly designed the radar transmitter and IRS

beamformers for a multi-IRS-aided radar. Similar to a conventional

radar [18], a judicious design of transmit waveforms improves the

performance of IRS-aided radar.

In general, radar waveform design is a well-investigated prob-

lem [18±20]. However, it is relatively unexamined for IRS-aided
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scenarios. Among prior works, [21] designed a transmit radar code

with constant-modulus for a narrowband IRS-aided radar. However,

wideband signaling compensates for signal fading resulting from

multipath propagation [22]. Therefore, very recent works [8, 23,

24] investigate wideband waveforms such as orthogonal frequency-

division multiplexing (OFDM) signaling to improve detection with

IRS-aided radar.

In this paper, we focus on designing a wideband radar wave-

form for multi-IRS-aided radar jointly with the IRS phase-shifts.

In particular, we formulate the detection problem as a hypothesis

test to decide the presence of a target in a particular range cell.

Then, we jointly design the OFDM signal and the IRS phase-shifts

to enhance the receiver operating characteristics (RoC) associated

with moving target detection. We adopt noncentrality parameter of

the asymptotic distribution of the generalized likelihood ratio test

(GLRT) statistic [22] as the performance metric for target detection.

We demonstrate that maximizing the noncentrality parameter with

respect to the system parameters such as the transmit waveform

and phase-shifts of IRS, yields improvement in the probability of

detection. Contrary to prior works, wherein only IRS phase-shifts

were optimized in an IRS-aided radar [10, 15, 16], we show that

jointly optimal waveform and phase-shifts increase the probability

of detection. Further, our IRS-aided radar outperforms the multipath

OFDM radar [22] with specular reflection in the exactly identical

paths between the target and radar.

The remainder of this paper is organized as follows. In the next

section, we describe the signal model for the multi-IRS-aided OFDM

radar. The moving target detector based on GLRT is introduced in

Section III. We present our joint waveform and IRS phase-shift design

in Section IV. We validate our model and methods via numerical

experiments in Section V and conclude in Section VI.

Throughout this paper, we use bold lowercase and bold uppercase

letters for vectors and matrices, respectively. The (m,n)-th element

of the matrix B is [B]
mn

. The sets of complex and real numbers

are C and R, respectively; (·)⊤, (·)∗ and (·)H are the vector/matrix

transpose, conjugate, and Hermitian transpose, respectively; the trace

of a matrix is Tr(.); the function diag(.) returns the diagonal elements

of the input matrix; and Diag(.) produces a diagonal/block-diagonal

matrix with the same diagonal entries/blocks as its vector/matrices

argument. The Hadamard (element-wise) and Kronecker products are

⊙ and ⊗, respectively. The vectorized form of a matrix B is written

as vec (B) and the block diagonal vectorization [25] is denoted by

vecb(B). The s-dimensional all-ones vector and the identity matrix

of size s× s are 1s, and Is, respectively. The minimum eigenvalue

of B is denoted by λmin(B). The real, imaginary, and angle/phase

components of a complex number are Re (·), Im (·), and arg (·),
respectively. vec−1

K,L
(b) reshapes the input vector b ∈ C

KL into a

matrix B ∈ C
K×L such that vec (B) = b. Also, 0N is the all-zero

vector of size N . The generalized inversion of a matrix B is (B)−.

We use Pr (.) to denote the probability.

II. SYSTEM MODEL

Consider a multi-IRS-aided radar with transmitter and receiver

located at ρr = [0, 0]T in the two-dimensional (2-D) Cartesian



coordinate system. The radar transmits an OFDM signal with the

bandwidth B Hz consisting of L subcarriers as

s
OFDM

(t) =

L−1∑

l=0

ale
j2πflt, 0 ≤ t ≤ T, (1)

where al is the waveform code, fl = fc + l∆f denotes the l-th
subcarrier frequency and the subcarrier spacing is chosen as ∆f =
B/(L+ 1) = 1/T to guarantee the orthogonality of the subcarriers.

The vector a = [a1, . . . , aL]
⊤ collects the OFDM coefficients of

all subcarriers for which we have ∥a∥22 = 1. The pulses in (1) are

transmitted with the pulse repetition interval (PRI) TPRI.

The M IRS platforms denoted as IRS1, IRS2,..., IRSM are

installed at stationary known locations (Fig. 1). Each IRS is a

uniform linear array (ULA) with Nm reflecting elements, and

with an inter-element spacing of d. The first element of IRSm

is located at a known coordinate ρ
(m)
i

= [x
(m)
i , y

(m)
i ]T . The

space-frequency steering vector of the m-th IRS is bm(θ, fl) =[
1, ej

2πfl
c

dsinθ, . . . , ej
2πfl

c
d(Nm−1)sinθ

]⊤
, where c is the speed of

light, fl is the subcarrier frequency, d is the half-wavelength

Nyquist spacing and θ is the direction of the impinging wave-

front at the ULA. Each reflecting element of IRSm reflects the

incident signal with a phase-shift change that is configured via a

smart controller [1]. We denote the phase-shift vector of IRSm by

vm = [ejϕ
m,1 , . . . , e

jϕ
m,Nm ]⊤ ∈ C

Nm , where ϕ
m,k
∈ [0, 2π) is

the phase-shift associated with the k-th passive element of IRSm.

Clearly, vm is a unimodular vector chosen from the set ΩNm , where

Ω =
{
s ∈ C|s = ejωi , ωi ∈ [0, 2π)

}
.

Assume a target at ρt = [xt, yt]
⊤ moving with velocity νt =

[νx,νy]
⊤. In the LoS path, the target is characterized by its Doppler

shift and time delay given by, respectively,

ν0 =
1

c

2ν⊤
t (ρt − ρr )

dtr
, (2)

and

τ0 =
2dtr
c

, (3)

where dtr = ∥ρt−ρr∥2 is the distance between the radar and target.

The IRS deployment also yields M non-line-of-sight (NLoS) paths

from the target to the radar. The Doppler shift and time delay in the

radar-IRSm-target-IRSm-radar path are, respectively,

νm =
1

c

2ν⊤
t (ρt − ρ

(m)
i

)

d
(m)
it

, (4)

and

τm = 2
d
(m)
ri + d

(m)
it

c
, (5)

for m = 1, . . . ,M , where d
(m)
ri = ∥ρ(m)

i
− ρr∥2 and d

(m)
it = ∥ρt −

ρ
(m)
i
∥2 are the radar-IRSm and target-IRSm distances, respectively.

We make the following assumptions about the IRS-aided OFDM

radar and target parameters:

A1 ªBandwidth-invariant Dopplerº: The bandwidth of OFDM signal

is much smaller than the carrier frequency, i.e., B ≪ fc. Hence,

the phase-shifts arising from the Doppler effect are identical over

all subcarriers.

A2 ªSlow Targetº: The Doppler frequency of the target does

not change during one coherent processing interval (CPI) i.e.

νm << 1
NT

PRI
B

. Therefore, the following piecewise-constant

approximation holds νmt ≈ νmnT
PRI

, for t ∈ [nT
PRI
, (n +

1)T
PRI
].

A3 ªNarrow surveillance areaº: The radar is deployed in a region,

where the range of the target is much greater than the width

Target

𝐈𝐑𝐒𝟏 𝐈𝐑𝐒𝟐
Radar

𝐈𝐑𝐒𝟑

Fig. 1. A simplified illustration of various NLoS or virtual LoS links provided
by multiple IRS platforms mounted on urban infrastructure between the radar
and the hidden moving target.

or cross-range extent of the surveillance area. The relative time

gaps between any two signals received from NLoS paths are

very small in comparison to the LoS round trip delays, i.e.,

τm ≈ τ0 = 2dtr
c

for m ∈ {1, . . . ,M}.
A4 ªFrequency-invariant IRS phase-shiftº: The IRS platforms im-

pose the same phaseshifts over all subcarrier frequencies and

therefore the IRS phase-shift matrix is not indexed over different

frequencies, i.e., Φm(fl) = Φm, for l ∈ {0, . . . , L − 1} and

m ∈ {1, . . . ,M}.
A5 ªInter-IRS interferenceº: The mutual interference between vari-

ous IRS platforms is negligible. In other words, the interference

caused by reflections in the radar-IRSm-target-IRSm′ -radar path

for m ̸= m′ is insignificant because IRS is a passive reflector

and the reflections in non-beamformed directions are weaker.

Define the NLoS channel along the l-th subcarrier and m-th path

as

h
lm

= b(θir,m, fl)
⊤Φmb(θti,m, fl)b(θit,m, fl)

⊤Φmb(θri,m, fl),

(6)

for m > 1 and hl0 is the LoS channel [22]. We define Φm =
Diag (vm) as diagonalization of the 1-D phase-shift vector of IRSm.

Assume the LoS path between radar and target is obstructed, i.e.,

hl0 ≈ 0. The signal reflected from a Swerling-0 [26] target with α
lm

as the complex reflectivity/amplitude along the l-th subchannel and

m-th path is a delayed, modulated and scaled version of the transmit

signal in (1) as

yl(t) =

M∑

m=0

alhlm
αlmej2πl∆f (1+νm)(t−τm)

× e−j2πfc(1+νm)τmej2πfcνmtej2πfct + wl(t), (7)

where the signal independent interference (noise) for the l-th subcar-

rier is denoted by wl(t).
We collect N samples from the signal, at t = τ0 + nT

PRI
, n =

0, . . . , N − 1. By applying νmt ≈ νmnT
PRI

(A2) and τm ≈ τ0 (A3)

to (7), the discrete-time received signal corresponding to the range-

cell of interest is

yl[n] =

M∑

m=0

alhlm
α

lm
p
l
(n, νm) + wl[n], (8)

where, p
l
(n, νm) = e−j2πflτ0ej2πflνmnT

PRI contains the unknown

target delay and Doppler.

We stack measurements from all L subchannels to obtain the L×1
vector

y[n] = Diag (a)Xp(n,ν) +w[n], (9)



where the Doppler steering vector is p(n,ν) =
[p0(n,ν)

⊤, . . . ,p
L−1(n,ν)

⊤]⊤, with p
l
(n,ν) =

[p
l
(n, ν0), . . . , pl

(n, ν
M
)]⊤, and the L × 1 noise vectors

is w[n] = [w0[n], . . . , wL−1[n]]
⊤. Stacking all N temporal

measurements, the L×N OFDM received signal matrix is

Y
OFDM

= AXP(ν) +N, (10)

where A = Diag (a), N = [w[0], . . . ,w[N − 1]]⊤ and the Doppler

information of the target is collected in

P(ν) = [p(0,ν), . . . ,p(N − 1,ν)], (11)

and

X = D⊙H, (12)

D = Diag
(
α

⊤

0
, . . . ,α⊤

L−1

)
, (13)

α
l
= [α

l1 , . . . , αlM
]⊤, (14)

H = Diag
(
h⊤

0
, . . . ,h⊤

L−1

)
, (15)

hl = [h
l1 , . . . , hlM

]⊤, (16)

We assume the noise is from complex zero-mean Gaussian distri-

bution and correlated with a positive-definite covariance Σ. The

columns of N are assumed to be (independent and identically

distributed) i.i.d. Then, OFDM measurements are distributed as

Y
OFDM
∼ CN (AXP(ν), IN ⊗Σ) (17)

where IN ⊗Σ is the covariance of the temporally white noise. Our

goal is to design a waveform that maximizes the detection of a

moving target located at a given range.

III. TARGET DETECTION

In order to decide whether a target is present in a particular known

range-cell, we perform binary hypothesis testing between H0 (target-

free hypothesis) and H1 (target-present hypothesis), that is

H0 : Y
OFDM

= N, (18)

H1 : Y
OFDM

= AXP(ν) +N. (19)

The likelihood ratio is [22, 27]

L (YOFDM;ν) =
fH1 (YOFDM;ν,X,Σ1)

fH0 (YOFDM ;Σ0)
, (20)

where fH0 and fH1 are the likelihood functions under H0 and H1,

respectively and ν is the Doppler frequency under test. Since the

Σ and target parameters are unknown, we employ a generalized

likelihood ratio test (GLRT) by replacing the unknowns with their

maximum likelihood estimates (MLEs) in the L (YOFDM;ν) to obtain

the GLRT for our detection problem (18) as

T
GLR

=
fH1

(
YOFDM;ν, X̂, Σ̂1

)

fH0

(
YOFDM ; Σ̂0

)
H1

≷
H0

γ, (21)

where Σ̂0 and Σ̂1 are the MLEs of Σ under H0 and H1, X̂ is the

MLE of X under H1, and γ is the detection threshold [22, 27]. The

MLEs of unknown covariance matrices are

Σ̂1 =
1

N
(YOFDM −AXP(ν))H (YOFDM −AXP(ν)) , (22)

Σ̂0 =
1

N
Y

H
OFDMYOFDM. (23)

Therefore, In the Gaussian noise scenario, the GLR becomes

T
GLR

=
det
(
YH

OFDMYOFDM

)

det
(
(YOFDM −AXP(ν))H (YOFDM −AXP(ν))

) . (24)

It follows from the Wilk’s theroem [28] that, as N → ∞, the

GLRT statistic underH0 asymptotically garners a complex chi-square

(central) distribution, i.e.,

N ln T
GLR
∼ Cχ2

rL
, (25)

and under H1,

N ln T
GLR
∼ Cχ

2

rL
(δ), (26)

where r = rank (P(ν)), rL is degrees of freedom, and δ is the

noncentrality parameter of chi-square distribution obtained in [22] as

δ = Tr
(
Σ

−1
AXP(ν)PH(ν)XH

A
H
)
. (27)

We have the probability of false alarm (P
FA

) and probability of

detection (P
D

) as

P
FA

= Pr (T
GLR

> γ|H0) = Q
rL

(γ)

P
D
= Pr (T

GLR
> γ|H1) = QM

rL
2

(
√
δ, γ) = QM

rL
2

(√
δ,Q−1

rL
(P

FA
)
)

(28)

where 1 − Q
rL

(.) is the cumulative distribution function (CDF) of

chi-squared distribution and 1−QM
rL
2

(., .) is the Marcum Q-function

accounting for the CDF of non-central chi-squared distribution [28,

29]. The Marcum Q-function is strictly increasing in δ. Thus, to

maximize P
D

, we maximize δ = f(a,v) with respect to parameters

such as the OFDM coefficients a and vector of all IRS phase-shifts,

v =
[
v⊤
1 ,v⊤

2 , · · · ,v⊤
M

]⊤
∈ C

MNm . We define the signal-to-noise

ratio (SNR) matrix AXP(ν)PH(ν)XHAH and its trace as in (27),

as the SNR metric [22, 27].

IV. JOINT WAVEFORM AND IRS PHASE-SHIFT DESIGN

As discussed earlier in Section III, the probability of detection for a

given probability of false alarm is a monotonically increasing function

of the SNR. Hence, the design problem may also be formulated to

maximize the SNR with respect to the system parameters. The joint

waveform and IRS phase-shift design problem is

maximize
v,a

f(a,v)

subject to a
H
a = 1. (29)

We resort to a task-specific cyclic algorithm, wherein we cyclically

optimize (29) for a and v [20, 31]. To ensure the unimodularity con-

straint of IRS phase-shift, we need a projection-based optimization

method.

A. OFDM Waveform Design

Problem (29) with respect to a is recast as

P1 : maximize
a

a
H
[(

XP(ν)PH(ν)XH
)⊤ ⊙Σ−1

]
a

subject to a
H
a = 1. (30)

The optimal OFDM coefficient a is the eigenvector corresponding to

the dominant eigenvalue of
(
XP(ν)PH(ν)XH

)⊤
⊙Σ−1, evaluated

based on the power method [32] at each iteration s as follows:

a
(s+1) =

[(
XP(ν)PH(ν)XH

)⊤ ⊙Σ−1
]
a
(s)

∥∥∥
[
(XP(ν)PH(ν)XH)⊤ ⊙Σ−1

]
a
(s)
∥∥∥
2

, s ≥ 0. (31)

B. IRS Beamforming Design

To design the phase-shift parameters, we maximize the SNR metric

with respect to v:

P2 : maximize
v

f(a,v). (32)

In what follows, we show that P2 can be written as a unimodular

quadratic program (UQP). To tackle P2 with respect to v, we

adopt a computationally efficient procedure of the power-method-

like iterations (PMLI) algorithm [33]. This method closely resembles

the widely used power method for computing the dominant eigen-

value/vector pairs of matrices.

The UQP is defined as

maximize
s∈Ωn

s
H
Gs. (33)



The sequence of unimodular vectors at the t-th PMLI iteration is

s
(t+1) = ej arg(Gs

(t)), (34)

leads to a monotonically increasing objective value for the UQP, when

G is a positive semidefinite matrix [19, 33].

The following Lemma 1 states the required transformations of (32)

to facilitate the application of the PMLI approach.

Lemma 1. Define C =
[
Υ1 · · · ΥL

]
,Υl =∑LM

i=1 Ci(ℵ
⊤
l E

⊤
i ⊗ I), Ci = ei ⊗ I

L
, ei as a LM × 1

vector whose i-th element is unity and remaining elements are zero,

ℵl as a L× L matrix with [ℵ]
ll
= 1 and zero everywhere else, and

Ei = vec−1
(M,L)

(ei). Then,

vec (H) = Ch, (35)

Proof. Following the definitions in Lemma. 1, we have

vec (H) = vec
(
Diag

(
h⊤
1 , . . . ,h⊤

L

))
= vec

(
L∑

l=1

ℵl ⊗ h⊤
l

)

=

L∑

l=1

vec
(
ℵl ⊗ h⊤

l

)
=

L∑

l=1

LM∑

i=1

Ci

(
ℵl ⊗ h⊤

l

)
ei

=

L∑

l=1

LM∑

i=1

Ci

(
ℵl ⊗ h⊤

l

)
vec (Ei)

=

L∑

l=1

LM∑

i=1

Civec
(
h⊤
l Eiℵl

)
=

L∑

l=1

LM∑

i=1

Ci(ℵ
⊤
l E⊤

i ⊗ I)hl

=

L∑

l=1

Υlhl = Ch. (36)

Subsequently, we will use Lemma. 1 to propose a quadratic form

with respect to h for the SNR metric.

Proposition 1. Denote h = [h⊤
1 , . . . ,h

⊤
L ]

⊤, W = CHUHAUC

and U = Diag (vec (AD)). Then, the SNR metric becomes

f(a,v) = hHWh. (37)

Proof. Assume B = AX. We recast the objective in (32) as

f(a,v) = Tr
(
PH(ν)BHΣ−1BP(ν)

)

= Tr
(
BHΣ−1BP(ν)PH(ν)

)

= vec (B∗)⊤ vec
(
Σ−1BP(ν)PH(ν)

)

= vec (B)H
((

P(ν)PH(ν)
)⊤ ⊗Σ−1

)
vec (B)

= vec (B)HAvec (B) , (38)

where A =
(
P(ν)PH(ν)

)⊤
⊗ Σ−1. We have vec (B) =

vec (AX) = vec (Diag (a) (D⊙H)) = vec (H) ⊙ vec (AD) =
Ch⊙vec (AD) and using Lemma. 1, vec (B) = UCh. Substituting

this in (38) completes the proof.

We now reformulate the SNR metric as a quartic function in the

optimization parameter v.

Proposition 2. The SNR metric is quartic in phase-shifts, i.e.

f(a,v) = vHQ1(v)
HWQ1(v)v,

= vHQ2(v)
HWQ2(v)v, (39)

where

Q1(v) =
[

(S1Q(v))⊤ · · · (SLQ(v))⊤
]⊤

,

Q2(v) =
[

(S1Q
′(v))⊤ · · · (SLQ

′(v))⊤
]⊤

,

Q(v) = Diag (v1 ⊗ INm
, . . . ,v

M
⊗ INm

) ,

Q′(v) = Diag (INm
⊗ v1, . . . , INm

⊗ v
M
) ,

Sl = Diag
(
vec (Sl1)

⊤ , . . . , vec (SlM )⊤
)
,

Slm = (b(θir,m, fl)⊙ b(θti,m, fl)) (b(θri,m, fl)⊙ b(θit,m, fl))
⊤ .

(40)

Proof. Given Φm = Diag (vm), it is straightforward to verify

from (6) that we have h
lm

= v⊤
mS

lm
vm and

hl = [h
l1 , . . . , hlM

]⊤ =
[
Tr
(
S

l1v1v
⊤

1

)
, . . . ,Tr

(
S

lM
v

M
v⊤

M

)]⊤
,

= Diag
(
vec (S

l1 )
⊤ , . . . , vec (S

lM
)⊤
)

×
[
vec
(
v1v

⊤

1

)
, . . . , vec

(
v

M
v⊤

M

)]⊤
. (41)

Applying the identity [32]

vec
(
vmv

⊤
m

)
= (INm ⊗ vm)vm = (vm ⊗ INm)vm, (42)

to (41) produces

h
l
= S

l
Q(v)v = S

l
Q

′(v)v, (43)

where S
l
, Q(v) and Q′(v) are given in (40). Concatenating the

vectors in (43), we obtain

h = Q1(v)v = Q2(v)v, (44)

where Q1(v) and Q2(v) are given in (40).

C. Proposed Algorithm

We cyclically tackle the SNR maximization via its bi-quadratic

transformation with respect to auxiliary variables v(1) and v(2). In the

sequel, v(1),v(2) ∈ C
MNm are vectors produced by symmetrization,

representing the collection of phase-shifts of all IRS platforms,

whereas in the previous parts v1,v2 ∈ C
Nm were the vector of

phase-shift of IRS1 and IRS2. In the following proposition, we recast

the SNR metric as a bi-quadratic function of v(1) and v(2).

Proposition 3. The function

g(v
(1)

,v
(2)

) = vH
(1)

E(v
(2)

)v
(1)

,

= vH
(2)

E(v
(1)

)v
(2)

, (45)

where

E(v) =
G1(v) +G2(v)

2
,

G1(v) = QH
1 (v)WQ1(v),

G2(v) = QH
2 (v)WQ2(v), (46)

is a bi-quadratic transformation of SNR metric in (39).

Proof. To show symmetry, from (40) and (42), we observe that

Q1(v(i)
)v

(k)
= Q2(v(k)

)v
(i)

for i ̸= k ∈ {1, 2}. Therefore,

g

(
v

(1)
,v

(2)

)
= vH

(1)
E

(
v

(2)

)
v

(1)

= vH
(1)

G1

(
v

(2)

)
+G2

(
v

(2)

)

2
v

(1)

= vH
(1)

QH
1

(
v

(2)

)
WQ1

(
v

(2)

)
+QH

2

(
v

(2)

)
WQ2

(
v

(2)

)

2
v

(1)

= vH
(2)

QH
2

(
v

(1)

)
WQ2

(
v

(1)

)
+QH

1

(
v

(1)

)
WQ1

(
v

(1)

)

2
v

(2)

= vH
(2)

G2

(
v

(1)

)
+G1

(
v

(1)

)

2
v

(2)

= vH
(2)

E

(
v

(1)

)
v

(2)
= g

(
v

(2)
,v

(1)

)
. (47)



By Substituting v
(1)

= v
(2)

= v and (46) in (45), and comparing

it with (39), one can verify that f(a,v) = g(v,v).

Since f(a,v) = g(v,v), we propose to maximize f(a,v)

by alternately fixing v(1) or v(2) and maximizing g
(
v

(1)
,v

(2)

)

with respect to the other variable while enforcing v
(1)

= v
(2)

as

a constraint. From Proposition 3, fixing either v
(1)

or v
(2)

and

maximizing g
(
v

(1)
,v

(2)

)
with respect to the other variable requires

solving the following

maximize
v(k)∈ΩMNm

vH
(k)E

(
v(i)

)
v(k), i ̸= k ∈ {1, 2} , (48)

Remark 1. In UQP, the diagonal loading technique is used to ensure

the positive semidefiniteness of the matrix, without changing the

optimal solution [12]. In (48), the diagonal loading as Ẽ(v) ←
λmI−E(v), with λm being the maximum eigenvalue of E(v), results

is an equivalent problem.

Note that diagonal loading has no effect on the solution of (48)

because vHẼ(v)v = λmMNm−v
HE(v)v. The equivalent problem

to (48) is

minimize
v(k)∈ΩMNm

vH
(k)Ẽ

(
v(i)

)
v(k), i ̸= k ∈ {1, 2} . (49)

The following theorem demonstrates that the IRS beamforming

design problem P2 is equivalent to a unimodular bi-quadratic pro-

gramming (UBQP) that we solve using the PMLI approach in (34).

Theorem 1. The SNR maximization problem P2 with respect to

phase-shifts is equivalent to the following UBQP

maximize
v
(k)

∈ΩMNm

[
v(k)

1

]H [λ̂mI− Ẽ(v
(i)

) ηv
(i)

ηvH
(i)

λ̂m − 2ηMNm

]

︸ ︷︷ ︸
=Ê

(
v
(i)

)

[
v(k)

1

]
,

(50)

where i ̸= k ∈ {1, 2}, and λ̂m is the maximum eigenvalue of E(v
(i)

)
as defined in (54).

Proof. From Proposition 3 and Remark 1, we know that P2 is

equivalent to the following problems,

minimize
v(k)∈ΩMNm

v
H
(k)Ẽ(v(i))v(k), i ̸= k ∈ {1, 2} ,

subject to v
(i)

= v
(k)

. (51)

We add the ℓ2-norm penalty term between v
(1)

and v
(2)

as a penalty

function to (51), which yields

minimize
v
(k)

∈ΩMNm

vH
(k)

Ẽ(v
(i)

)v
(k)

+ η∥v
(i)
− v

(k)
∥22, i ̸= k ∈ {1, 2} ,

(52)

where η is a Lagrangian multiplier. The regularizer as well as the

main objective are quadratic in v
(1)

and v
(2)

. Consequently, we recast

the objective of (52) as

vH
(k)

Ẽ(v
(i)

)v
(k)

+ η∥v
(i)
− v

(k)
∥22,

= vH
(k)

Ẽ(v
(i)

)v
(k)
− 2ηRe

(
vH

(k)
v

(i)

)
+ 2ηMNm,

=

[
v

(k)

1

]H [
Ẽ(v

(i)
) ηv

(i)

ηvH
(i)

2ηMNm

][
v

(k)

1

]
, (53)

where in the first equality, we used ∥v
(k)
∥22 = MNm, due to

unimodularity of v
(k)

. Substituting (53) in (52) yields

minimize
v
(k)

∈ΩMNm

[
v(k)

1

]H [
Ẽ(v

(i)
) ηv

(i)

ηvH
(i)

2ηMNm

]

︸ ︷︷ ︸
=E(v

(i)
)

[
v(k)

1

]
,

i ̸= k ∈ {1, 2} . (54)

We use diagonal loading as introduced in Remark 1 to obtain (50).

Based on Theorem 1, the IRS phase assignment problem can

be formulated as a UBQP and therefore it may be tackled in an

alternating manner over v̄
(1)

= [v⊤

(1)
1]⊤ and v̄

(2)
= [v⊤

(2)
1]⊤, by the

PMLI iterations in (34). The PMLI has been shown to be convergent

in terms of both the optimization objective and variable [19, 20].

Algorithm 1 summarizes the steps for joint waveform and IRS phase-

shift design.

Algorithm 1 Joint IRS phase-shift and OFDM waveform design

Input: Initialization values v
(0)
1 ,v

(0)
2 , a(0), the Lagrangian mul-

tiplier η, total number of iterations Γ1 (Γ2) for the problem P1

(P2).

Output: Optimized phase-shifts v⋆ and OFDM signal coeffi-

cients a
⋆.

1: for s = 0 : Γ1 − 1 do ▷ v
(t)

(1) and v
(t)

(2) are the solutions at

the t-th iteration.

2: for t = 0 : Γ2 − 1 do

3: v
(t+1)
(1)

← e
j arg

([
I
MNm

0
MNm

](
λ̂mI−E(v

(t+1)
(2)

,a(s))
)
v̄
(t)
(1)

)

.

4: v
(t+1)
(2)

← e
j arg

([
I
MNm

0
MNm

](
λ̂mI−E(v

(t)
(1)

,a(s))
)
v̄
(t)
(2)

)

,

5: v(s) ← v
(Γ2)

(1) or v
(Γ2)

(2) .

6: h(s) ← Q1(v
(s))v(s).

7: Update X(s) according to (12)-(15).

8: Update a
(s) according to (31).

9: return {a⋆,v⋆} ←
{
a
(Γ1),v(Γ1)

}
.

V. NUMERICAL ANALYSIS

We performed numerical experiments to analyze the performance

of Algorithm 1 through the RoC of the proposed detector. The radar

located at ρr = [0, 0]⊤ was set to transmit N = 50 pulses with pulse-

width T = 50 ns, carrier frequency fc = 1 GHz, bandwidth B = 100
MHz, and PRI T

PRI
= 20µs. The OFDM signal had L = 4 subcarriers

with spacing ∆f = 1/T = 20 MHz. The IRS1 was located at ρ
(1)
i =

[0.1, 0.1]⊤km and IRS2 is located at ρ
(2)
i = [−0.1, 0.1]⊤km. Each

IRS comprises Nm = 8 elements arranged as a ULA. The target

was located at ρt = [0, 5]⊤ km moving with ν = [10, 10]T m/s.

The complex target reflectivity coefficients α
lm

corresponding to a

Swerling-0 target model were drawn from CN (0, 1).
We compared multi-IRS-aided OFDM radar with a multipath

OFDM radar [22]. Fig. 2 illustrates the RoC obtained after 103

Monte-Carlo trials for fixed probability of false alarm P
FA

. In each

trial, the threshold γ is set according to (28) for the desired P
FA

.

We observe that deploying M = 1 IRS platforms with phase-shifts

obtained by Algorithm 1 improves P
D

over the non-IRS (LoS) OFDM

radar. Moreover, for M = 2, IRS-aided outperforms multipath
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Fig. 2. RoC of detection for LoS OFDM radar (single path), OFDM radar
with 2 specular paths, M = 1 IRS-aided OFDM radar, M = 2 IRS-aided
OFDM radar.

OFDM radar proposed in [22] with specular reflection {h
lm
} = 1

in the exactly identical two paths between the target and radar.

Deploying multiple IRS platforms in comparison with single IRS

and non-IRS scenarios provides additional degrees of freedom (DoFs)

and improves performance. Also, multi-IRS-aided radar outperforms

single IRS because an optimal deployment of more IRSs provides

more NLoS paths and, hence, enhanced detection of NLoS targets

especially those that may not be accessible via only one IRS.

VI. SUMMARY

We investigated the moving target detection problem using a multi-

IRS-aided OFDM radar. The IRS phase-shifts along with the OFDM

transmit signal coefficients were designed by taking advantage of an

alternating optimization of the non-centrality parameter of the GLRT.

We showed that maximizing the non-centrality parameter improved

the probability of detection. By means of numerical investigations,

we demonstrated that our proposed method enhances the P
D

over the

non-IRS OFDM radar systems.
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