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ABSTRACT

Integrated sensing and communications (ISAC) is a spectrum-
sharing paradigm that allows different users to jointly utilize and
access the crowded electromagnetic spectrum. In this context, intel-
ligent reflecting surfaces (IRSs) have lately emerged as an enabler
for non-line-of-sight (NLoS) ISAC. Prior IRS-aided ISAC studies
assume passive surfaces and rely on the continuous-valued phase-
shift model. In practice, the phase-shifts are quantized. Moreover,
recent research has shown substantial performance benefits with
active IRS. In this paper, we include these characteristics in our
IRS-aided ISAC model to maximize the receive radar and communi-
cations signal-to-noise ratios (SNR) subjected to a unimodular IRS
phase-shift vector and power budget. The resulting optimization
is a highly non-convex unimodular quartic optimization problem.
We tackle this problem via a bi-quadratic transformation to split
the design into two quadratic sub-problems that are solved using
the power iteration method. The proposed approach employs the
M -ary unimodular sequence design via relaxed power method-/ike
iteration (MaRLI) to design the quantized phase-shifts. Numerical
experiments employ continuous-valued phase shifts as a benchmark
and demonstrate that our active-IRS-aided ISAC design with MaRLI
converges to a higher value of SNR with an increase in the number
of IRS quantization bits.

Index Terms— Dual-function radar and communications, in-
telligent reflecting surface, integrated sensing and communications,
non-line-of-sight radar, unimodularity.

1. INTRODUCTION

Next-generation communications are expected to provide significant
performance enhancements to meet the demands of emerging ap-
plications such as vehicular networks, smart warehouses, and vir-
tual/augmented reality with high throughput and low latency [1].
This requires a judicious sharing of the electromagnetic spectrum,
which is a scarce resource, by both incumbent and opportunistic
users [2]. In this context, integrated sensing and communications
(ISAC) offers significant advantages over traditional wireless sys-
tems by combining sensing and communications functions into a sin-
gle device and a joint waveform to prevent mutual interference [3].
A recent trend in ISAC research is employing intelligent reflect-
ing surfaces (IRSs) to enable non-line-of-sight (NLoS) sensing and
communications [4-8]. An IRS comprises several subwavelength
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units or meta-atoms that are able to manipulate incoming electro-
magnetic waves in a precisely controlled manner through modified
boundary conditions [9, 10]. Recent studies have shown that IRS
exploits NLoS signals to extend the coverage area and bypass line-
of-sight (LoS) blockages in radar [11-13] and communications [14].

Prior IRS-aided ISAC research assumes IRS as a passive device,
whose continuous-valued phase-shifts need to be optimized [6,8,15].
However, in hardware implementations, IRS phases are quantized
[16-18]. While there is some literature [19,20] on using quantized
IRS for ISAC, they model IRS as a completely passive device. In
general, IRS may be equipped with active RF components that al-
low changing the amplitude of the incoming signal, among other
functionalities [21, 22]. An active IRS consumes less power and
has low processing latency in comparison to a relay [22-24]. In
this paper, we impose constraints on both the transmitter and IRS
power leading to a design criterion that allocates only a fraction of
the transmit power to the IRS. Contrary to previous research, we
employ active IRS with quantized phase-shifts for the ISAC sys-
tem. In particular, we focus on optimizing the DFBS precoder and
active IRS parameters. In the case of continuous-valued passive
IRS-ISAC [19, 25], this joint optimization problem is highly non-
convex because of the unit modulus constraint or unimodularity on
each element of the IRS parameter matrix. In such cases, the prob-
lem is cast as a unimodular quadratic program (UQP) [26] which is
NP-hard when the phase-shifts are quantized. A semi-definite pro-
gram (SDP) may relax the problem but it is computationally expen-
sive [27,28]. Recently, power method-like iteration (PMLI) algo-
rithms, inspired by the power iteration method’s advantage of simple
matrix-vector multiplications [26, 29], have been shown to address
UQPs efficiently [26].

We cast the IRS-ISAC quantized phase-shifts design as a
unimodular quartic program (UQ?P) that we split into two low-
complexity quadratic sub-problems through a quartic to bi-quadratic
transformation [12, 30, 31]. We then tackle each quadratic sub-
problem with respect to the quantized phase-shifts using the re-
cently proposed M-ary unimodular sequence design via relaxed
PMLI (MaRLI) algorithm [30]. Here, the conventional projection
operator of the exponential function in the PMLI is replaced by a
relaxation operator [30,32]. This ensures enhanced convergence to
the desired discrete set. Our numerical experiments show that the
proposed algorithm increases the signal-to-noise ratio (SNR) even
with quantized phase-shifts.

Throughout this paper, we use bold lowercase and bold upper-
case letters for vectors and matrices, respectively. The mn-th el-
ement of the matrix B is [B], . (), (-)*and (-)" are the vec-
tor/matrix transpose, conjugate and the Hermitian transpose, respec-
tively; The trace of a matrix is denoted byTr(.); the function diag(.)
returns the diagonal elements of the input matrix, while Diag(.) pro-
duces a diagonal matrix with the same diagonal entries as its vector
argument. The Kronecker and Hadamard products are denoted by ®



and ©, respectively. The vectorized form of a matrix B is written as
vec (B). The s-dimensional all-zeros vector, and the identity matrix
of size s X s are Oy, and I, respectively. For any real number =z,
the function [z] yields the closest integer to x (the largest is chosen
when this integer is not unique) and {z} = = — [z].

2. SIGNAL MODEL

Consider an IRS-aided ISAC system (Fig. 1) that consists of a
dual-function base station (DFBS) with N elements each in trans-
mit (Tx) and receive (Rx) antenna arrays. The IRS comprises
L = L, x L, reflecting elements arranged as a uniform planar array
(UPA) with L, (L) elements along the x- (y-) axes in the Carte-
sian coordinate plane. Define the IRS steering vector a(6y,6,) =
ay(0n, 0,)®ay(0h, 0,), where 05, (0,) is the azimuth (elevation) an-
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X\ = ¢/ f. is the carrier wavelength, ¢ = 3 x 10® m/s is the speed of
light, f. is the carrier frequency, and d = 0.5 is the inter-element
(Nyquist) spacing. The IRS operation is characterized by the pa-
rameter matrix & = Diag (v) = Diag ([b1e)*?,...,bpel?]) =
Diag (b ® u), where b = [by,...,br]" and u = [e/?1, ... el%L]
are gain and phase-shift vectors, respectively.

For active (passive) IRS we have |b;|> 1 (|b;|= 1), i.e., a passive
IRS modifies only the phase shift of the impinging waveform. For
IRS phase-shifts with M quantization-levels, the feasible set of u is
the set of polyphase sequences

Qi[:{UGCL‘ulzejwl,le\I/k[,OSZSLfl}v (1)

where Wy = {1, Qﬁ", cee %A/Ifl)} is quantized phase-shift set.

Assume that the DFBS transmits an orthogonal symbol vector
s = [s1,...,sk]" where E {ss”} = Ix to K communications
users and sense a target. The Tx and active IRS powers are P, and
P, respectively. The continuous-time transmit signal from 7-th
Tx antenna is

K
z,, (t) = Z[P]”t’kskrect(t — kAP 0 <t < KAL, (2)
k=1

where [P], , is the (n¢, k)-th element of the DFBS precoder P €
Lif ft[< 4,

CN*K At is the symbol duration, and rect(t) = 27,
0 otherwise.

The covariance of the DFBS Tx signal is Rp = PPH,
Communications Rx signal: In communications setup, denote the
direct channel state information (CSI) and IRS-reflected non-line-
of-sight (NLoS) CSI matrices by F € C¥*¥ and H € CK*E,
respectively. Then, at each communications receiver after sampling,
the discrete-time received signal is y ;. Concatenating the signal of
all users, we obtain the K x 1 vector:

ye. = (F+H®G)Ps + n., 3)
where the Tx-IRS CSI matrix G € C**¥ is assumed to be esti-
mated a priori through suitable channel estimation techniques [5]
and n. ~ N(0, 021 ) is the noise at communications receivers.
DFBS Rx signal: Consider the NLoS Swerling-0 [33] radar target
located at range r; with respect to the DFBS and direction-of-arrival
(DoA) (0p,,0v,) with respect to the IRS and radar cross-section
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Fig. 1. A simplified illustration of IRS-aided ISAC system. When the LoS is
blocked, the NLoS paths via the IRS allow for establishing the link between
the targets/users with the DFBS.

(RCS) a,.. Define R = o, GT ®a(8y, , 0, )a(On, , 0, ) " ®G. The

continuous-time baseband signal at n,.-th DFBS Rx antenna is

N
Y, ()= > [Rl, .z, {E-7),0<t< KAt

ng=1

“)

where 7 = 2% is the range-time delay and [R],, ., accounts for
the RCS and DoA information of the target with respect to the n-
th transmit and n,-th receive antenna. Stacking the echoes for all
receiver antennas, the /N x 1 signal at radar receiver after downcon-
version and sampling is y,. = [y, (£),...,y5 (t)]T = RPs + n,,
where n, ~ A(0,02Iy) is the noise at radar receiver. Denote
C = F + H®G. The output SNR at communications and DFBS
Rx are, respectively,

SNR. = %Tr (CPPHCH> , 5)
and
SNR, = %T‘r <RPPHRH) . )

The following Proposition states SNR,. as a quartic function with re-
spect to the IRS phase shift vector v or equivalently with respect to b
and u. It further expresses SNR. as a quadratic function with respect
to IRS complex gain. Hereafter, we assume the DFBS is scanning
a specified azimuth-elevation bin of the environment for the target.
The DoA (0, 0,) is estimated by solving a separate optimization
problem that we omit in this work because of the paucity of space.
and denote a(6y, 0,,) by a, for brevity.

Proposition 1. Define the variables F = vec (F), G = G @ H,

Q=P Ix)"PT @Ix), T = [vec(Ry) : ... vec(Ry)],
and Xy as an L x L matrix with [R],, = 1 and zero everywhere else.
Denote x = THGHQF and Q = THGHQGT. Then,

SNR. = v"'Qv, @)
where v = b, withb = [b'1]", @ = [u'1]", and Q =
(%g [3{ Fgﬁ}' Then,

SNR. = a"QWMa = b"Q b, (8)
where QM = b*b" © Qand Q@ = a*ia' © Q. Similarly,
SNR, = v7Q(v)v, )



|

wherev = bou, Q(v) = (;fj (VHQ* ® Q*P*) (QTV ® PTQT) DFBS Precoder Design: Substituting (6) and (5) into (12), problem

and 2 = Diag (a) G. Then, (9) is rewritten as
SNR, = u" Q™ (v)u = b"Q® (v)b, (10)
where QP (v) = b*b" © Q(v) and Q@ (v) = u*u’ © Q(v).
Proof: Consider the following expression in SNR.:

Tr (CPPHCH) = vec (CP)H vec (CP)

= ((PT 8 1x)vec(©) (BT ® I )vec (C)

= vHQv + allv + v o + FQF = [{]H[o“% Fgﬁ] Y] an
where we used vec (®) = vec (Diag(v)) = Tv [34, Lemma 1]
and vec (C) = vec (F) 4+ (G @ H)vec (®) = F + GTv. Sub-
stituting v = Diag (b) u = Diag (u) b in (7) will result in (8). The

proofs of (9) and (10) follow, mutatis mutandis, through (6). |

Our goal is to jointly design the IRS and DFBS precoder matrix
to maximize the SNR at communications and DFBS Rx.

3. PROBLEM FORMULATION

Prior studies on IRS-ISAC design are either radar- or communications-

centric choosing to optimize either of the systems while constraining
the performance of the other. For instance, [8] minimizes the trace
of the radar target parameter Cramér—Rao lower bound matrix sub-
ject to a minimum communications user SNR. Here, we adopt an
equitable approach to optimize the SNRs of both systems.

Define the weighted sum of the radar and communications
SNRs, with a weight factor 3 as SNR, = BSNR, + (1 — 5)SNR.
as the design criterion and the power allocated to Tx and IRS as
constraints. Our design problem is

P1 : maximize SNR .

u,b,

subjectto PP" = Rp, |P||2 = Py, |[b|]> = Prs, (12)

The problem P; is highly nonconvex because of the coupling be-
tween quantized phase-shifts and precoder parameters. We, there-
fore, solve it via a cyclic optimization over each design parameter as
detailed below.

IRS Design: Using (7) and (9) from Proposition 1, the IRS beam-
forming design problem is formulated as

P, : maximize viQv, (13)
v
where Q = 8 [Qé") OOL ] +(1—p)Qand v = b ©® @ is comprised
of the vector of amplitudes b and quantized phase-shifts u. Conse-
quently, (13) is split into two quartic sub-problems that are cyclically
solved with respect to b and u. From (8), P, with respect to b is

772(1) : max%]mize b" QWb subject to bl = Prs, (14

where Q) = a*a' © €. Further, P, with respect to u is

73252): maximize ﬁHQ(Q)ﬁ, (15)
ueny,

where 2® = b*b" © €. Passive IRS does not require P".

Py with respect to P becomes equivalent to
Py : maximize Tr (PPZ)
P
5 (16)
subject to HPPH — RDHF <mn, ||P||% =P,

where Z = (T%RHR + t—gﬁCHC and 7 is a positive constant. De-
fineZ = (Ix ®Z) and p = vec (P). If one employs same algebraic
transformations as in (11), we have Tr (PPHZ) = piZp.

Assume ), is the maximum eigenvalue of Z, where A\, I = 7.
We deploy diagonal loading to replace Z with Z. One can verify that
diagonal loading with Z = \,,I — Z will not change the solution
and only changes the maximization to minimization and ensures that
Z is positive semidefinite.

o 2
Py minimize  5Y1Zp + ‘PPH — RDHF a7

subjectto  ||P|| = ||Bll3 = Py, (18)

where 7 is the Lagrangian multiplier. Reformulate HPPH —Rp Hi
as p" (Ix ® vec (PP")) p — 2p" (Ix ® Rp)p + RHRp. Con-
sequently, we obtain the following quartic program

73351) . minimize p"€2 (P) P  subject to 1Bz =P,, (19
P

where (P) = Z + (IK ® vec (PPH)) —2v(Ix ® Rp). Using

the diagonal loading, we change (19) to a maximization problem.

Assume Ay is the maximum eigenvalue of €2. Thus, = Ay I— Q2

is positive definite and we get

PS5 : maximize pQ (P)p subjectto |p|2 = P,,  (20)
P
Note that a diagonal loading with /I has no effect on the solution
of (20) because P2 (P) p = A Po — P Q2 (P) P.

4. PROPOSED ALGORITHM

In this section, we employ diagonal loading to turn each transform
into a quadratic form suitable to apply power iteration methods.

To tackle 73,;1) for b and u cyclically: We resort to a task-specific
alternating optimization (AO) or cyclic optimization algorithm [35—
37]. We split 732(1) into two quadratic optimization sub-problems
with respect to b. Define variables by = [b{ 1] and by =
[bs 1]T. This changes 7751) to

73253) : maxti)mize B?Q(l)(bi)}?’j, i#j€{1,2}, 21
J

subjectto  [|b;[|2 = Py, (22)

If either by or by is fixed, minimizing the objective with respect to
the other variable is achieved via quadratic programming. To guar-
antee that 772(3) leads to P2(1>, we must show that b; and b, are
convergent to the same value. Adding the second norm error be-
tween by and bs as a penalty with the Lagrangian multiplier to 732(3)
results in the following regularized Lagrangian problem [29,31]:

772(4) : rninli)mize B? ()\'I — Qm(bi)) Bj +T HBZ - BJ’HZ’
j
HbJ”g = PIRS’ (23)

subject to

where )\ is the maximum eigenvalue of QW and 7 is the La-
grangian multiplier. Also, 732(4) is recast as
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subject to  ||by||2 = Py, (24)

Diagonal loading for 73;4): Assume A is the maximum eigenvalue
of £. Rewrite P2<4) using the diagonal loading € = A — £ as

= 1H T oA i+a® (b, b; b
) . maximize | 55 |7 [ G- ®) b T,
P, I‘Ilalxl17,n1ZG [ IJ] [ bl A= 27 Peg p

E(by)

subject to  ||bj||2 = Pps- (25)

Define b, = [b) 11]7 = [b] 1], and T = [IL 0L><2:| €
RL*(E+2) | The optimal beamforming gain b is the eigenvector
corresponding to the dominant eigenvalue of £ (b;), evaluated using
the power iteration [38] at each iteration ¢ as follows:

g (b{")b{"
b§t+1) =V PIRS I - -

>0

7t—7

i#je{1,2}.

(26)
In each iteration, /P is multiplied with the solution so that the
norm-2 constraint, i.e., |b||5 = P is satisfied. The projection is
multiplied by I to select only the first L elements of the resulting
vector.
To obtain quantized phase-shifts, we use the same bi-quadratic
transformation process as (21)-(26). Define new variables Gy =
[uf 1]7 and @2 = [uy 1]". The UQ*P proposed as P> becomes

(6) . A a; 1H [ A=NI+Q@) (u;)  *q; a,;
Py H},ixelglge [ 1@ [ tall X—2%L [IJ}’ @n

K(u;)

where X is the diagonal loading parameter satisfying AL = Q@ Ais
the maximum eigenvalue of Q@ and tis the Lagrangian multiplier.

The constraint u; € Q]I\‘/, (discrete phase-shift constellation)
makes the problem 732(6) NP-hard [30,39]. Therefore, an exhaustive
search is required to identify good local quantized phase-shifts [32].
We tackle this problem using MaRLI algorithm [30], deploying the
relaxation operator in conjunction with the power iteration algo-
rithm to approximate the solution.

Define i, = [u; 11]" = [@; 1], the desired quantized IRS
phase shifts u; is therefore given at each iteration as

e b

(28

. - (t
where v1 and v are parameters of relaxation operator and ul( j> =

e ()

(t+1) _ 3|5
u; —I‘uij

;- Even though the final result is nearly identical to

the quantized solution, we reapply quantization to ensure that the
phases are accurately quantized. For continuous-valued (unquan-
tized) phase-shift scenario, i.e., M — oo, and {v1,v2} = 0, the

projection (28) is u§-t+1) _ g (re(w)a)”)

To tackle 73?(,1) with respect to p: We apply the same bi-quadratic
transformation process as in (21)-(26) to obtain

22
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R
-
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Fig. 2. The optimized SNR,(dB) achieved for 3 = 0.5, P, = 50 dBm
and Py = 30 dBm versus 103 iterations by jointly designing an active IRS
and DFBS precoder matrix.

L H [AT_Q(5,) B _
P maximize [pj] A ,{zf(lp‘) P [Pj ]7
3 P; 1 ip; >\—21PT 1

B(p;)

subjectto  [|B;[|2 = Py, (29)

where A is the diagonal loading parameter satisfying AI = Q, and
1 is the Lagrangian multiplier. Define p; = [p, 1] = [, 1],

I=|I.:00x:| € REXEHY The desired precoder p = vec (P)

is obtained at each iteration as

~ (1)) =(t)
B(p;")P;
~ 1 z T J . .
U = /Py I<(t))(t) t>0, i#j€{1,2}. (30)
| (57) 5],
Design Algorithm: We iterate over (26), (28), and (30) until the
convergence criteria |SNR(Tt) - SNRgf ’1>|§ €, is met.

5. NUMERICAL EXPERIMENTS

We validated our model and methods through numerical experi-
ments. Throughout all simulations, we set the number of DFBS
antennas to N = 4. The IRS had L = 16 reflecting elements and
the number of communications users was K = 5. The radar target
was located at DoA (45°,45°) and 7, = 2500m with respect to
the IRS. The CSI matrices are generated according to the Rician
fading channel model [27]. The noise variances at the receivers of
all communications users and DFBS were o2 = 0dBm. Follow-
ing [30], the MaRLI relaxation parameters were set to v; = 1.2 and
ve = 107°. Fig. 2 shows the achievable SNR.. with weight factor
B = 0.5 through the iterations. At our algorithm, the convergence
threshold was set to e = 1073, The proposed algorithm converges
to a higher value of SNR,. when we increase the number of quanti-
zation bits M because the size of the feasible set in 7P grows larger.
While MaRLI typically produces high-quality designs over discrete
constellations, it is not a monotonic local optimizer [30]. The non-
monotonic behavior of the SNR curves is presumably attributed to
this characteristic of the MaRLI algorithm.

6. SUMMARY

We considered an IRS-ISAC setup and optimized the performance
of both radar and communications receivers through the recently
proposed tools in unimodular quadratic programming. In particu-
lar, our formulation includes a practical setting for quantization in
IRS phase-shifts. Numerical experiments with both binarized and
densely quantized levels indicate a convergence of our algorithm.
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