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ABSTRACT

Integrated sensing and communications (ISAC) is a spectrum-

sharing paradigm that allows different users to jointly utilize and

access the crowded electromagnetic spectrum. In this context, intel-

ligent reflecting surfaces (IRSs) have lately emerged as an enabler

for non-line-of-sight (NLoS) ISAC. Prior IRS-aided ISAC studies

assume passive surfaces and rely on the continuous-valued phase-

shift model. In practice, the phase-shifts are quantized. Moreover,

recent research has shown substantial performance benefits with

active IRS. In this paper, we include these characteristics in our

IRS-aided ISAC model to maximize the receive radar and communi-

cations signal-to-noise ratios (SNR) subjected to a unimodular IRS

phase-shift vector and power budget. The resulting optimization

is a highly non-convex unimodular quartic optimization problem.

We tackle this problem via a bi-quadratic transformation to split

the design into two quadratic sub-problems that are solved using

the power iteration method. The proposed approach employs the

M -ary unimodular sequence design via relaxed power method-like

iteration (MaRLI) to design the quantized phase-shifts. Numerical

experiments employ continuous-valued phase shifts as a benchmark

and demonstrate that our active-IRS-aided ISAC design with MaRLI

converges to a higher value of SNR with an increase in the number

of IRS quantization bits.

Index Terms— Dual-function radar and communications, in-

telligent reflecting surface, integrated sensing and communications,

non-line-of-sight radar, unimodularity.

1. INTRODUCTION

Next-generation communications are expected to provide significant

performance enhancements to meet the demands of emerging ap-

plications such as vehicular networks, smart warehouses, and vir-

tual/augmented reality with high throughput and low latency [1].

This requires a judicious sharing of the electromagnetic spectrum,

which is a scarce resource, by both incumbent and opportunistic

users [2]. In this context, integrated sensing and communications

(ISAC) offers significant advantages over traditional wireless sys-

tems by combining sensing and communications functions into a sin-

gle device and a joint waveform to prevent mutual interference [3].

A recent trend in ISAC research is employing intelligent reflect-

ing surfaces (IRSs) to enable non-line-of-sight (NLoS) sensing and

communications [4±8]. An IRS comprises several subwavelength
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units or meta-atoms that are able to manipulate incoming electro-

magnetic waves in a precisely controlled manner through modified

boundary conditions [9, 10]. Recent studies have shown that IRS

exploits NLoS signals to extend the coverage area and bypass line-

of-sight (LoS) blockages in radar [11±13] and communications [14].

Prior IRS-aided ISAC research assumes IRS as a passive device,

whose continuous-valued phase-shifts need to be optimized [6,8,15].

However, in hardware implementations, IRS phases are quantized

[16±18]. While there is some literature [19, 20] on using quantized

IRS for ISAC, they model IRS as a completely passive device. In

general, IRS may be equipped with active RF components that al-

low changing the amplitude of the incoming signal, among other

functionalities [21, 22]. An active IRS consumes less power and

has low processing latency in comparison to a relay [22±24]. In

this paper, we impose constraints on both the transmitter and IRS

power leading to a design criterion that allocates only a fraction of

the transmit power to the IRS. Contrary to previous research, we

employ active IRS with quantized phase-shifts for the ISAC sys-

tem. In particular, we focus on optimizing the DFBS precoder and

active IRS parameters. In the case of continuous-valued passive

IRS-ISAC [19, 25], this joint optimization problem is highly non-

convex because of the unit modulus constraint or unimodularity on

each element of the IRS parameter matrix. In such cases, the prob-

lem is cast as a unimodular quadratic program (UQP) [26] which is

NP-hard when the phase-shifts are quantized. A semi-definite pro-

gram (SDP) may relax the problem but it is computationally expen-

sive [27, 28]. Recently, power method-like iteration (PMLI) algo-

rithms, inspired by the power iteration method’s advantage of simple

matrix-vector multiplications [26, 29], have been shown to address

UQPs efficiently [26].

We cast the IRS-ISAC quantized phase-shifts design as a

unimodular quartic program (UQ2P) that we split into two low-

complexity quadratic sub-problems through a quartic to bi-quadratic

transformation [12, 30, 31]. We then tackle each quadratic sub-

problem with respect to the quantized phase-shifts using the re-

cently proposed M -ary unimodular sequence design via relaxed

PMLI (MaRLI) algorithm [30]. Here, the conventional projection

operator of the exponential function in the PMLI is replaced by a

relaxation operator [30, 32]. This ensures enhanced convergence to

the desired discrete set. Our numerical experiments show that the

proposed algorithm increases the signal-to-noise ratio (SNR) even

with quantized phase-shifts.

Throughout this paper, we use bold lowercase and bold upper-

case letters for vectors and matrices, respectively. The mn-th el-

ement of the matrix B is [B]
mn

. (·)⊤, (·)∗and (·)H are the vec-

tor/matrix transpose, conjugate and the Hermitian transpose, respec-

tively; The trace of a matrix is denoted byTr(.); the function diag(.)
returns the diagonal elements of the input matrix, while Diag(.) pro-

duces a diagonal matrix with the same diagonal entries as its vector

argument. The Kronecker and Hadamard products are denoted by ⊗



and ⊙, respectively. The vectorized form of a matrix B is written as

vec (B). The s-dimensional all-zeros vector, and the identity matrix

of size s × s are 0N , and Is, respectively. For any real number x,

the function [x] yields the closest integer to x (the largest is chosen

when this integer is not unique) and {x} = x− [x].

2. SIGNAL MODEL

Consider an IRS-aided ISAC system (Fig. 1) that consists of a

dual-function base station (DFBS) with N elements each in trans-

mit (Tx) and receive (Rx) antenna arrays. The IRS comprises

L = Lx×Ly reflecting elements arranged as a uniform planar array

(UPA) with Lx (Ly) elements along the x- (y-) axes in the Carte-

sian coordinate plane. Define the IRS steering vector a(θh, θv) =
ax(θh, θv)⊗ay(θh, θv), where θh (θv) is the azimuth (elevation) an-

gle, ax(θh, θv) = [1, ej 2πd
λ

cosθhsinθv , . . . , ej
2πd(Lx−1)

λ
cosθhsinθv ]⊤

and ay(θh, θv) = [1, ej 2πd
λ

cosθhsinθv , . . . , ej
2πd(Ly−1)

λ
cosθhsinθv ]⊤,

λ = c/fc is the carrier wavelength, c = 3× 108 m/s is the speed of

light, fc is the carrier frequency, and d = 0.5λ is the inter-element

(Nyquist) spacing. The IRS operation is characterized by the pa-

rameter matrix Φ = Diag (v) = Diag
(
[b1e

jϕ1 , . . . , bLe
jϕL ]

)
=

Diag (b⊙ u), where b = [b1, . . . , bL]
⊤ and u = [ejϕ1 , . . . , ejϕL ]

are gain and phase-shift vectors, respectively.

For active (passive) IRS we have |bl|> 1 (|bl|= 1), i.e., a passive

IRS modifies only the phase shift of the impinging waveform. For

IRS phase-shifts with M quantization-levels, the feasible set of u is

the set of polyphase sequences

ΩL
M =

{

u ∈ C
L|ul = ejωl , ωl ∈ ΨM , 0 ≤ l ≤ L− 1

}

, (1)

where ΨM =
{

1, 2π
M

, · · · , 2π(M−1)
M

}

is quantized phase-shift set.

Assume that the DFBS transmits an orthogonal symbol vector

s = [s1, . . . , sK ]⊤ where E
{
ssH

}
= IK to K communications

users and sense a target. The Tx and active IRS powers are P
T

and

P
IRS

, respectively. The continuous-time transmit signal from nt-th

Tx antenna is

xnt
(t) =

K∑

k=1

[P]
nt,k

s
k

rect(t− k∆t)ej2πfct, 0 < t < K∆t, (2)

where [P]
nt,k

is the (nt, k)-th element of the DFBS precoder P ∈

C
N×K , ∆t is the symbol duration, and rect(t) =

{

1 if |t|< 1
2
,

0 otherwise.
.

The covariance of the DFBS Tx signal is RD = PPH.

Communications Rx signal: In communications setup, denote the

direct channel state information (CSI) and IRS-reflected non-line-

of-sight (NLoS) CSI matrices by F ∈ C
N×N and H ∈ C

K×L,

respectively. Then, at each communications receiver after sampling,

the discrete-time received signal is yc,k. Concatenating the signal of

all users, we obtain the K × 1 vector:

yc = (F+HΦG)Ps+ nc, (3)

where the Tx-IRS CSI matrix G ∈ C
L×N is assumed to be esti-

mated a priori through suitable channel estimation techniques [5]

and nc ∼ N (0, σ2
cIK) is the noise at communications receivers.

DFBS Rx signal: Consider the NLoS Swerling-0 [33] radar target

located at range rt with respect to the DFBS and direction-of-arrival

(DoA) (θht , θvt) with respect to the IRS and radar cross-section

DFBS Communications users

Target

Active/Passive IRS

Blocked LoS

Fig. 1. A simplified illustration of IRS-aided ISAC system. When the LoS is
blocked, the NLoS paths via the IRS allow for establishing the link between
the targets/users with the DFBS.

(RCS) α
T

. Define R = α
T
GTΦa(θht , θvt)a(θht , θvt)

⊤ΦG. The

continuous-time baseband signal at nr-th DFBS Rx antenna is

ynr
(t) =

N∑

nt=1

[R]nr,nt
xnt

(t− τ), 0 < t < K∆t, (4)

where τ = 2rt
c

is the range-time delay and [R]nr,nt
accounts for

the RCS and DoA information of the target with respect to the nt-

th transmit and nr-th receive antenna. Stacking the echoes for all

receiver antennas, the N × 1 signal at radar receiver after downcon-

version and sampling is yr = [y1(t), . . . , yN
(t)]⊤ = RPs + nr ,

where nr ∼ N (0, σ2
rIN ) is the noise at radar receiver. Denote

C = F + HΦG. The output SNR at communications and DFBS

Rx are, respectively,

SNRc =
1

σ2
c

Tr
(

CPPHCH
)

, (5)

and

SNRr =
1

σ2
r

Tr
(

RPPHRH
)

. (6)

The following Proposition states SNRr as a quartic function with re-

spect to the IRS phase shift vector v or equivalently with respect to b

and u. It further expresses SNRc as a quadratic function with respect

to IRS complex gain. Hereafter, we assume the DFBS is scanning

a specified azimuth-elevation bin of the environment for the target.

The DoA (θh, θv) is estimated by solving a separate optimization

problem that we omit in this work because of the paucity of space.

and denote a(θh, θv) by a, for brevity.

Proposition 1. Define the variables F̃ = vec (F), G̃ = G⊤ ⊗H,

Q̂ = (P⊤ ⊗ IK)H(P⊤ ⊗ IK), T = [vec (ℵ1)
... . . .

... vec (ℵL)],
and ℵl as an L×L matrix with [ℵ]

ll
= 1 and zero everywhere else.

Denote α = THG̃HQ̂F̃ and Q̃ = THG̃HQ̂G̃T. Then,

SNRc = v̄
H
Ω̃v̄, (7)

where v̄ = b̄ ⊙ ū, with b̄ = [b⊤1]⊤, ū = [u⊤1]⊤, and Ω̃ =
1
σ2
c

[
Q̃ α

α
H F̃Q̂F̃

]

. Then,

SNRc = ū
H
Ω̃

(1)
ū = b̄

H
Ω̃

(2)
b̄, (8)

where Ω̃(1) = b̄∗b̄⊤ ⊙ Ω̃ and Ω̃(2) = ū∗ū⊤ ⊙ Ω̃. Similarly,

SNRr = v
H
Q(v)v, (9)



where v = b⊙u , Q(v) =
|α

T
|2

σ2
r

(
vHΩ⋆ ⊗Ω⋆P⋆

) (
Ω⊤v ⊗P⊤Ω⊤

)

and Ω = Diag (a)G. Then, (9) is rewritten as

SNRr = u
H
Q

(1)(v)u = b
H
Q

(2)(v)b, (10)

where Q(1)(v) = b∗b⊤ ⊙Q(v) and Q(2)(v) = u∗u⊤ ⊙Q(v).

Proof: Consider the following expression in SNRc:

Tr
(

CPPHCH
)

= vec (CP)H vec (CP)

=
(

(P⊤ ⊗ IK)vec (C)
)H

(P⊤ ⊗ IK)vec (C)

= vHQ̃v + α
Hv + vH

α+ F̃Q̂F̃ = [ v1 ]
H
[

Q̃ α

α
H F̃Q̂F̃

]

[ v1 ] (11)

where we used vec (Φ) = vec (Diag (v)) = Tv [34, Lemma 1]

and vec (C) = vec (F) + (G⊤ ⊗H)vec (Φ) = F̃ + G̃Tv. Sub-

stituting v = Diag (b)u = Diag (u)b in (7) will result in (8). The

proofs of (9) and (10) follow, mutatis mutandis, through (6).

Our goal is to jointly design the IRS and DFBS precoder matrix

to maximize the SNR at communications and DFBS Rx.

3. PROBLEM FORMULATION

Prior studies on IRS-ISAC design are either radar- or communications-

centric choosing to optimize either of the systems while constraining

the performance of the other. For instance, [8] minimizes the trace

of the radar target parameter CramÂer±Rao lower bound matrix sub-

ject to a minimum communications user SNR. Here, we adopt an

equitable approach to optimize the SNRs of both systems.

Define the weighted sum of the radar and communications

SNRs, with a weight factor β as SNR
T
= βSNRr + (1 − β)SNRc

as the design criterion and the power allocated to Tx and IRS as

constraints. Our design problem is

P1 : maximize
u,b,P

SNR
T

subject to PP
H = RD, ∥P∥2F = P

T
, ∥b∥22 = P

IRS
, (12)

The problem P1 is highly nonconvex because of the coupling be-

tween quantized phase-shifts and precoder parameters. We, there-

fore, solve it via a cyclic optimization over each design parameter as

detailed below.

IRS Design: Using (7) and (9) from Proposition 1, the IRS beam-

forming design problem is formulated as

P2 : maximize
v̄

v̄
H
Ω̌v̄, (13)

where Ω̌ = β
[
Q(v) 0

L
0 0

]

+ (1− β)Ω̃ and v̄ = b̄⊙ ū is comprised

of the vector of amplitudes b and quantized phase-shifts u. Conse-

quently, (13) is split into two quartic sub-problems that are cyclically

solved with respect to b and u. From (8), P2 with respect to b is

P(1)
2

: maximize
b

b̄
H
Ω̌

(1)
b̄ subject to ∥b∥22 = P

IRS
, (14)

where Ω̌(1) = ū∗ū⊤ ⊙ Ω̌. Further, P2 with respect to u is

P(2)
2

: maximize
u∈ΩL

M

ū
H
Ω̌

(2)
ū, (15)

where Ω̌(2) = b̄∗b̄⊤ ⊙ Ω̌. Passive IRS does not require P(1)
2 .

DFBS Precoder Design: Substituting (6) and (5) into (12), problem

P1 with respect to P becomes equivalent to

P3 : maximize
P

Tr
(

PPHZ
)

subject to

∥
∥
∥PPH −RD

∥
∥
∥
2

F
≤ η, ∥P∥2F = P

T

(16)

where Z = β

σ2
r
RHR + 1−β

σ2
c
CHC and η is a positive constant. De-

fine Ž = (IK⊗Z) and p̃ = vec (P). If one employs same algebraic

transformations as in (11), we have Tr
(
PPHZ

)
= p̃HŽp̃.

Assume λm is the maximum eigenvalue of Ž, where λmI ⪰ Ž.

We deploy diagonal loading to replace Ž with Z̆. One can verify that

diagonal loading with Z̆ = λmI − Ž will not change the solution

and only changes the maximization to minimization and ensures that

Z̆ is positive semidefinite.

P
(1)
3 : minimize

P
p̃HZ̆p̃+ γ

∥
∥
∥PPH −RD

∥
∥
∥
2

F
(17)

subject to ∥P∥2F = ∥p̃∥22 = P
T
, (18)

where γ is the Lagrangian multiplier. Reformulate
∥
∥PPH −RD

∥
∥
2

F

as p̃H
(
IK ⊗ vec

(
PPH

))
p̃− 2p̃H(IK ⊗RD)p̃+RH

DRD . Con-

sequently, we obtain the following quartic program

P(1)
3 : minimize

p̃
p̃
H
Ω̆ (p̃) p̃ subject to ∥p̃∥22 = P

T
, (19)

where Ω̆ (p̃) = Z̆+γ
(
IK ⊗ vec

(
PPH

))
−2γ(IK ⊗RD). Using

the diagonal loading, we change (19) to a maximization problem.

Assume λM is the maximum eigenvalue of Ω̆. Thus, Ω̂ = λMI−Ω̆

is positive definite and we get

P(2)
3 : maximize

p̃
p̃
H
Ω̂ (p̃) p̃ subject to ∥p̃∥22 = P

T
, (20)

Note that a diagonal loading with λMI has no effect on the solution

of (20) because p̃HΩ̂ (p̃) p̃ = λMP0 − p̃HΩ̆ (p̃) p̃.

4. PROPOSED ALGORITHM

In this section, we employ diagonal loading to turn each transform

into a quadratic form suitable to apply power iteration methods.

To tackle P(1)
2

for b and u cyclically: We resort to a task-specific

alternating optimization (AO) or cyclic optimization algorithm [35±

37]. We split P(1)
2

into two quadratic optimization sub-problems

with respect to b. Define variables b̄1 = [b⊤
1 1]⊤ and b̄2 =

[b⊤
2 1]⊤. This changes P(1)

2 to

P(3)
2

: maximize
bj

b̄H
j Ω̌(1)(bi)b̄j , i ̸= j ∈ {1, 2} , (21)

subject to ∥bj∥
2
2 = P

IRS
, (22)

If either b1 or b2 is fixed, minimizing the objective with respect to

the other variable is achieved via quadratic programming. To guar-

antee that P(3)
2

leads to P(1)
2

, we must show that b1 and b2 are

convergent to the same value. Adding the second norm error be-

tween b1 and b2 as a penalty with the Lagrangian multiplier to P(3)
2

results in the following regularized Lagrangian problem [29, 31]:

P(4)
2

: minimize
bj

b̄
H
j

(

λ′
I− Ω̌

(1)(bi)
)

b̄j + τ
∥
∥b̄i − b̄j

∥
∥2

2
,

subject to ∥bj∥
2
2 = P

IRS
, (23)

where λ′ is the maximum eigenvalue of Ω̌(1), and τ is the La-

grangian multiplier. Also, P(4)
2

is recast as



P(4)
2

: minimize
bj

[
b̄j

1

]H [
λ′I−Ω̌(1)(bi) −τb̄i

−τb̄H
i 2τP

IRS

]

︸ ︷︷ ︸

E(bi)

[
b̄j

1

]

,

subject to ∥bj∥
2
2 = P

IRS
, (24)

Diagonal loading for P(4)
2

: Assume λ̌ is the maximum eigenvalue

of E . Rewrite P(4)
2

using the diagonal loading Ě = λ̌I− E as

P(5)
2

: maximize
bj

[
b̄j

1

]H [
(λ̌−λ′)I+Ω̌(1)(bi) τb̄i

τb̄H
i λ̌−2τP

IRS

]

︸ ︷︷ ︸

Ě(bi)

[
b̄j

1

]

,

subject to ∥bj∥
2
2 = P

IRS
. (25)

Define ¯̄bj = [b⊤
j 1 1]⊤ = [b̄⊤

j 1]⊤, and Ī =

[

IL
... 0L×2

]

∈

R
L×(L+2). The optimal beamforming gain bj is the eigenvector

corresponding to the dominant eigenvalue of Ě (bi), evaluated using

the power iteration [38] at each iteration t as follows:

b
(t+1)
j =

√
P

IRS
Ī

Ě

(

b
(t)
i

)
¯̄b
(t)
j

∥
∥
∥Ě

(

b
(t)
i

)
¯̄b
(t)
j

∥
∥
∥
2

, t ≥ 0, i ̸= j ∈ {1, 2} .

(26)

In each iteration,
√

P
IRS

is multiplied with the solution so that the

norm-2 constraint, i.e., ∥b∥22 = P
IRS

is satisfied. The projection is

multiplied by Ī to select only the first L elements of the resulting

vector.

To obtain quantized phase-shifts, we use the same bi-quadratic

transformation process as (21)-(26). Define new variables ū1 =
[u⊤

1 1]⊤ and ū2 = [u⊤
2 1]⊤. The UQ2P proposed as P(2)

2
becomes

P(6)
2

: maximize
uj∈ΩL

M

[
ūj

1

]H
[
(λ̆−λ)I+Ω̌(2)(ui) τ̆ūi

τ̆ūH
i λ̆−2τ̆L

]

︸ ︷︷ ︸

K(ui)

[
ūj

1

]
, (27)

where λ̆ is the diagonal loading parameter satisfying λ̆I ⪰ Ω̌(2), λ is

the maximum eigenvalue of Ω̌(2), and τ̆ is the Lagrangian multiplier.

The constraint uj ∈ ΩL
M (discrete phase-shift constellation)

makes the problem P(6)
2 NP-hard [30, 39]. Therefore, an exhaustive

search is required to identify good local quantized phase-shifts [32].

We tackle this problem using MaRLI algorithm [30], deploying the

relaxation operator in conjunction with the power iteration algo-

rithm to approximate the solution.

Define ¯̄uj = [u⊤
j 1 1]⊤ = [ū⊤

j 1]⊤, the desired quantized IRS

phase shifts uj is therefore given at each iteration as

u
(t+1)
j = Ī

∣
∣
∣ũ

(t)
ij

∣
∣
∣
e−ν1t

e

j 2π
M













M arg

(

ũ

(t)
ij

)

2π






+











M arg

(

ũ

(t)
ij

)

2π











e−ν2t







,

(28)

where ν1 and ν2 are parameters of relaxation operator and ũ
(t)
ij =

K

(

u
(t)
i

)

¯̄u
(t)
j . Even though the final result is nearly identical to

the quantized solution, we reapply quantization to ensure that the

phases are accurately quantized. For continuous-valued (unquan-

tized) phase-shift scenario, i.e., M → ∞, and {ν1, ν2} = 0, the

projection (28) is u
(t+1)
j = Īe

j arg
(

K

(

u
(t)
i

)

¯̄u
(t)
j

)

.

To tackle P(1)
3 with respect to p̃: We apply the same bi-quadratic

transformation process as in (21)-(26) to obtain

Fig. 2. The optimized SNR
T

(dB) achieved for β = 0.5 , P
T

= 50 dBm

and P
IRS

= 30 dBm versus 103 iterations by jointly designing an active IRS
and DFBS precoder matrix.

P(3)
3

: maximize
p̃j

[
p̃j

1

]H
[
λI−Ω̆(p̃i) τ̌p̃i

τ̌p̃H
i λ−2τ̌P

T

]

︸ ︷︷ ︸

B(p̃i)

[
p̃j

1

]

,

subject to ∥p̃j∥
2
2 = P

T
, (29)

where λ is the diagonal loading parameter satisfying λI ⪰ Ω̆, and

τ̌ is the Lagrangian multiplier. Define ¯̃pj = [p̃⊤
j 1]⊤ = [ū⊤

j 1]⊤,

Ĩ =

[

IL
... 0L×1

]

∈ R
L×(L+1). The desired precoder p̃ = vec (P)

is obtained at each iteration as

p̃
(t+1)
j =

√
P

T
Ĩ

B

(

p̃
(t)
i

)
¯̃p
(t)
j

∥
∥
∥B

(

p̃
(t)
i

)
¯̃p
(t)
j

∥
∥
∥
2

, t ≥ 0, i ̸= j ∈ {1, 2} . (30)

Design Algorithm: We iterate over (26), (28), and (30) until the

convergence criteria |SNR(t)
T

− SNR(t−1)
T

|≤ ϵ, is met.

5. NUMERICAL EXPERIMENTS

We validated our model and methods through numerical experi-

ments. Throughout all simulations, we set the number of DFBS

antennas to N = 4. The IRS had L = 16 reflecting elements and

the number of communications users was K = 5. The radar target

was located at DoA (45°, 45°) and rt = 2500m with respect to

the IRS. The CSI matrices are generated according to the Rician

fading channel model [27]. The noise variances at the receivers of

all communications users and DFBS were σ2
c = 0dBm. Follow-

ing [30], the MaRLI relaxation parameters were set to ν1 = 1.2 and

ν2 = 10−9. Fig. 2 shows the achievable SNR
T

with weight factor

β = 0.5 through the iterations. At our algorithm, the convergence

threshold was set to ϵ = 10−3. The proposed algorithm converges

to a higher value of SNR
T

when we increase the number of quanti-

zation bits M because the size of the feasible set in P1 grows larger.

While MaRLI typically produces high-quality designs over discrete

constellations, it is not a monotonic local optimizer [30]. The non-

monotonic behavior of the SNR curves is presumably attributed to

this characteristic of the MaRLI algorithm.

6. SUMMARY

We considered an IRS-ISAC setup and optimized the performance

of both radar and communications receivers through the recently

proposed tools in unimodular quadratic programming. In particu-

lar, our formulation includes a practical setting for quantization in

IRS phase-shifts. Numerical experiments with both binarized and

densely quantized levels indicate a convergence of our algorithm.
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