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We study a method of producing approximately diagonal 1-qubit gates. For each positive
integer, the method provides a sequence of gates that are defined iteratively from a fixed
diagonal gate and an arbitrary gate. These sequences are conjectured to converge to
diagonal gates doubly exponentially fast and are verified for small integers. We systemi-
cally study this conjecture and prove several important partial results. Some techniques
are developed to pave the way for a final resolution of the conjecture. The sequences
provided here have applications in quantum search algorithms, quantum circuit com-
pilation, generation of leakage-free entangled gates in topological quantum computing,
etc.
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1. Introduction

A basic problem in quantum computing is to approximate an arbitrary quantum
gate e�ciently with a universal gate set. The Solovay-Kitaev theorem provides a
general solution to this question. Given a universal gate set in SU(d), the theorem
provides an algorithm to approximate an arbitrary gate of SU(d) with running time
and space complexity both O(logc(1/✏)) to an accuracy ✏ > 0.4 Here c ⇡ 3 with its
explicit value varying depending on the realizations of the theorem. However, this
algorithm is usually not optimal and more e�cient approximation protocols exist on
certain gate sets. Developing optimal approximation protocols is especially critical
for systems that have potential experimental implementations. One such example
is the Fibonacci anyon circuit, one of the most prominent models for topological
quantum computing.5 In this model, there are algorithms for approximation where
the exponent c can be improved to the asymptotically optimal value c = 1.7,8

We focus on the methods used in8 where a key tool to obtain the optimal c = 1 is
the following proposition. Let ✓ = ⇡

5 and D(✓) = diag(1, ei✓). Consider the recursive
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sequence

Uk+1 = UkD(✓)U�1
k D(✓)3UkD(✓)3U�1

k D(✓)Uk. (1)

It was shown that for any U0 2 U(2), |(Uk+1)21| = |(Uk)21|5 where (Uk)ij denotes
the (i, j)-entry of Uk.8,9 Hence, if U0 is not diagonal, the sequence in Equation 1
converges to a diagonal gatea. The convergence is double exponentially fast and
the space complexity is O(log(1/✏)) to reach the limit within precision ✏ > 0. The
above technique is also heavily utilized to design composite pulse sequence for
quantum error correction9 and to generate leakage-free entangling 2-qubit gates in
the Fibonacci model.2,3

Equation 1 in turn is inspired by a simpler sequence from Grover’s quantum
search algorithm.6 That is, for ✓ = ⇡

3 , consider instead the sequence,

Uk+1 = UkD(✓)U�1
k D(✓)Uk. (2)

Then it is straightforward to check that |(Uk+1)21| = |(Uk)21|3. Besides Grover’s
search algorithm, this sequence is also used in some other quantum algorithms.11,12

The relation between the (2, 1)-entry (and also the (1, 2)-entry) of adjacent terms
in the above two sequences is intriguing as it is an exact equality. This motivates the
question of whether they are special cases of a more general pattern. That is, fix p =
2n+1 for n 2 N, and define ✓p ⌘ ⇡

p = ⇡
2n+1 . Is there a recursive sequence {U

(n)
k }1k=0,

defined similar in form to those in Equations 1 and 2 with D(✓) replaced by D(✓p)

such that |(U (n)
k+1)21| = |(U (n)

k )21|2n+1 = |(U (n)
k )21|p? Such a generalization not only

is interesting on its own as a mathematical proposition, but also has applications
in topological quantum computing. Recall that the Fibonacci model is described
by the Witten-Chern-Simons theory SU(2)3, in which braiding of anyons naturally
gives the diagonal gate D(⇡5 ).

3 Hence Equation 1 can be used in this model. The
theory SU(2)p is also defined for any p � 1, and for odd p = 2n + 1, braiding of
anyons gives the diagonal gate D( ⇡

p+2 ). This can be obtained from the R-symbols of

the theory (Ref.,1 Sec. 5.4). Therefore, the generalized sequence {U (n+1)
k }1k=0 will be

useful in the SU(2)p anyon model for both topological compilation and generation
of entangled gates.

A conjectured formula for the generalized sequence was given for each odd p
8

(see also Section 2.1 for an explicit form). For each p = 2n + 1, the sequence
{U (n)

k } is defined in a recursive formula similar to those in Equations 1 and 2. The

length of the words in the recursion is O(n). Conjecture 1 states that |(U (n)
k+1)21| =

|(U (n)
k )21|2n+1.
In this paper, we systemically study this conjecture. For each odd p = 2n+1 > 1,

we analyze the entries of U (n)
k+1 in terms of those of U (n)

k+1 and present them in a

aIn fact, the term D(✓)�7 has to be appended to the RHS of Equation 1 in order for the sequence
to converge. Otherwise, it would have several convergent subsequences. This will not a↵ect our
discussions below though.
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specially designed form. Explicitly, let ak = (U (n)
k )11 and bk = (U (n)

k )21 (ignoring
the dependence of ak and bk on n for now). Then

bk+1

bk
= �0 + |ak|2(�1 � |bk|2(�2 + |ak|2(�3 � |bk|2(. . .)))), (3)

where the coe�cients �0, · · · ,�n are expressions involving entries ofD(✓p). By using
induction, we provide an explicit formula for the �j

0s in terms of roots of unity
�j0 = !

(�1)jj and �j1 = (�1)j+1
!
(�1)j+1j for ! = e

i✓p/2 (Theorem 6). In general,
these �j

0s are very complicated and hence di�cult to evaluate further. However, we
are able to compute the values for �0, �1, and �n for any fixed n. Furthermore, we
conjecture that the values of all the �j

0s can be expressed as binomial coe�cients
(Conjecture 2). The derivation of such values itself is quite non-trivial and involves
several technical identities about these binomial coe�cients. However, we prove that
this secondary conjecture is equivalent to Conjecture 1 using Theorem 1, providing
a simpler method of proving the conjecture for a given n by means of showing a
set of identities on the coe�cients �j . A complete verification for the conjectured
values would lead to a proof of Conjecture 1. This is left for a future direction.
As a concrete application, we prove Conjecture 1 for p = 7 (n = 3), with the
corresponding sequence given by,

Uk+1 = UkD(✓)U�1
k D(✓)5UkD(✓)3U�1

k D(✓)3UkD(✓)5U�1
k D(✓)Uk. (4)

In addition to the results above, we show that two sequences for p1 and p2

respectively can be combined to obtain a sequence for p1p2 which is di↵erent from
the one constructed from the conjecture. As a consequence, there exists a sequence
for p = 15 = 3 · 5 with the desired property but di↵erent from the conjectured
sequence for p = 15.

The rest of the paper is organized as follows. In Section 2, we provide some
backgrounds and define the sequence for each odd p in both the notation of8 as
well as in an alternative form. In Section 3, we present the matrix entries in each
sequence as a set of solutions to special recursive equations and show how adjacent
sequences are related with each other. Sections 4 and 5 are devoted to studying
these equations to greater details, including deriving explicit formulas for each �j

and evaluating them for j = 0, n, and 1. Section 6 provides an alternative approach
to obtaining the sequence for a composite integer from those of its prime factors.

2. Preliminaries

We begin with some notation. We use the following construction of a unitary matrix
Uk 2 U(2):

Uk = e
i'k/2

✓
ak �bk

bk ak

◆
(5)

where |ak|2 + |bk|2 = 1 and 'k 2 [0, 2⇡), hence detUk = e
i'k . If 'k = 0, then

Uk 2 SU(2). In this notation, the upper left element of Uk is (Uk)11 ⌘ e
i'k/2ak
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and the lower left element of Uk is (Uk)21 ⌘ e
i'k/2bk. This extra phase will not be

important, since throughout most of the paper we will let 'k = 0 without loss of
generality. Hence the upper and lower left elements of Uk will be referred to as ak
and bk respectively. We also denote �j ⌘ j mod 2 for brevity since this will be used
often throughout the paper.

2.1. Diagonalizing Sequences

As before, fix n 2 N, defining p ⌘ 2n + 1. Additionally, fix an input unitary
U0 2 U(2). We wish to construct a sequence {U (n)

k }1k=0 defined recursively from
any U0, such that Uk+1 is expressed as a product of Uk, U

�1
k , and a set of diagonal

gates Dj(✓) to be chosen. The (n) notation here on the sequences denotes which
integer n the sequence is defined with respect to. We will also refer to n as the order
of the sequence {U (n)

k }1k=0. If the order n referred to is clear in context it will be
dropped. The objects that will have this notation applied are the elements of our
sequences U

(n)
k and their sub-elements, such as (U (n)

k )11 ⌘ e
i'k/2a

(n)
k . Sometimes

powers or inverses will be applied, but these will be written without a parenthesis
around the superscript.

Let Dj(✓p) be diagonal matrices indexed by j, with ✓p ⌘ ⇡
p ⌘ ⇡

2n+1 . These
matrices are defined as Dj(✓p) ⌘ diag(�j0,�j1), where �j0 and �j1 (we will also
refer to these pairs of elements as �jl, where l = 0, 1) denote the roots of unity

�j0 = !
(�1)jj

, �j1 = (�1)j+1
!
(�1)j+1j (6)

for ! = e
i✓p/2, and j = 1, . . . , n.

Here we will define the sequences in question.

Definition 1. Given some order n and an input matrix U0 2 U(2), we define the
corresponding diagonalizing sequence {Uk}1k=0 ⌘ {U (n)

k }1k=0 to be given by the

recursive equation Uk+1 ⌘ QnU
(�1)n

k Pn, where Pn and Qn are defined recursively
as

Pj+1 = Dj+1(✓p)U
(�1)j

k Pj ,

Qj+1 = QjU
(�1)j

k Dj+1(✓p),
(7)

where P0 = Q0 = I.

Here we are using Reichardt’s notation for generating these sequences.8 For a
given n, we have that Uk+1 is expressed as a product of Uk, U

�1
k , and Dj(✓p) for

j = 1, . . . , n. For example, for order 1 the recursive equation is given by expression

Uk+1 = UkD1U
�1
k D1Uk.

For order 2, the equation is given by the expression

Uk+1 = UkD1U
�1
k D2UkD2U

�1
k D1Uk.
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In Reichardt’s definition of the above sequences, he used the alternative diagonals
D

0
j(✓p) ⌘ diag(1, (�1)j+1

e
i✓p(�1)j+1j) for the diagonal matrices, which correspond

to Dj(✓p) in our formulation. However, there is no fundamental di↵erence in con-
vergence between these two sequences, as we shall show at the end of this section.

Below we provide an alternative description of the sequences.

Definition 2. Given some Uk 2 U(2), let m be any product of any number of
matrices Uk, U

�1
k , and Dj(✓) = diag(�j0,�j1) for any j. Define the shifting op-

eration T on m to be a transformation denoted as Tm, such that in each entry of
m we replace ✓p 7! ✓p+2, �jl 7! �(j+1),l, ak 7! ak, and bk 7! �bk.

An immediate property that we can note is that since we map each instance of
every element in the entries of m, we can simply distribute T to each element of
each matrix in the product m from the definition. Therefore an equivalent mapping
for T is Uk 7! U

�1
k and Dj(✓p) 7! Dj+1(✓p+2). For a simple example of this shift,

in order 1 the diagonalizing sequence is defined by Uk+1 = UkD1(✓p)U
�1
k D1(✓p)Uk.

Therefore applying a shift gives TUk+1 = U
�1
k D2(✓p+2)UkD2(✓p+2)U

�1
k . This op-

eration allows us to write a compact expression for the above definition of the
diagonalizing sequences:

Proposition 1. For a given order n, the diagonalizing sequence {U (n+1)
k }1k=0 sat-

isfies the recursive relation

U
(n+1)
k+1 = UkD1(✓p+2)TU

(n)
k+1 D1(✓p+2)Uk, (8)

where U
(n)
k+1 is treated as a function of Uk.

Proof. Applying the shift to the definition for U
(n)
k+1, we get TU

(n)
k+1 =

TQn U
(�1)n+1

k TPn by distribution. The factors TPn and TQn are given by the
relations

TPj+1 = Dj+2(✓p+2)U
(�1)j+1

k TPj , TQj+1 = TQjU
(�1)j+1

k Dj+2(✓p+2).

This recursion stops at j = 0, where TP0 = TQ0 = I. Now consider the

products P̃n+1 and Q̃n+1 defined by P̃j+1 = Dj+1(✓p+2)U
(�1)j

k P̃j and Q̃j+1 =

Q̃jU
(�1)j

k Dj+1(✓p+2) for j = 0, . . . , n. The tilde on the terms P̃j and Q̃j denotes
using the angle ✓p+2 instead of ✓p, which was the angle Pn originally used before

shifting by T . Note that by definition U
(n+1)
k+1 = Q̃n+1U

(�1)n+1

k P̃n+1. Left multipli-

cation by (TPj)�1 on P̃j+1 gives us

(TPj)
�1

P̃j+1 =
⇣
(TPj�1)

�1
U

(�1)j+1

k D
�1
j+1(✓p+2)

⌘
Dj+1(✓p+2)U

(�1)j

k P̃j

= (TPj�1)
�1

P̃j .

By induction, we get a chain of equalities (TPn)�1
P̃n+1 = . . . = (TP0)�1

P̃1 =
D1(✓p+2)Uk. Therefore P̃n+1 = TPn D1(✓p+2)Uk. The same process applies for
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Q̃n+1, and we conclude that Q̃n+1 = UkD1(✓p+2)TQn. Therefore

U
(n+1)
k+1 = Q̃n+1U

(�1)n+1

k P̃n+1

= UkD1(✓p+2)TQnU
(�1)n+1

k TPn D1(✓p+2)Uk

= UkD1(✓p+2)TU
(n)
k+1D1(✓p+2)Uk.

For the rest of this paper, we will use this alternative form for the diagonaliz-
ing sequences instead of the original definition. The conjectured property of these
sequences is the following:

Conjecture 1. Given any U0 2 U(2) and a fixed order n, the diagonalizing se-
quence {Uk}1k=0 has the property that

|(Uk+1)21| ⌘ |bk+1| = |bk|2n+1
. (9)

If |b0| = 1, then |bk+1| = |bk|2n+1 = . . . = |b0|(2n+1)k+1

= 1. Since |b0| 2 [0, 1],
this conjecture implies that the sequence will converge to a diagonal gate unless
the input gate U0 is skew-diagonal. Before we begin the analysis, we will prove two
more properties of diagonalizing sequences.

Proposition 2. For a given order n and a diagonalizing sequence {Uk}1k=0, we
have that det(Uk) = det(U0). Therefore det(Uk) = 1 if det(U0) = 1.

Proof. Note that det(Dj(✓p)) = �j0�j1 = (�1)j+1
!
(�1)j+1j

!
(�1)jj = (�1)j+1,

so det(Dj(✓p))2 = 1. The determinants of Pj+1 and Qj+1 are given by

det(Pj+1) = det(Dj+1(✓p)) det(Uk)
(�1)j det(Pj),

det(Qj+1) = det(Qj) det(Uk)
(�1)j det(Dj+1(✓p)),

and so det(Qj+1)/ det(Qj) = det(Pj+1)/ det(Pj). Since det(Q1) = det(P1) =
det(Uk) det(D1(✓p)), we have det(Q2) = det(P2) and by induction det(Qn) =
det(Pn). Therefore det(Uk+1) = det(Qn)2 det(Uk)(�1)n . We claim that det(Qj)2 = 1
if j is even and det(Qj)2 = det(Uk)2 if j is odd. We have that det(Q1)2 = det(Uk)2,
and by induction we assume that the result holds for j. For odd j we have
det(Qj+1)2 = det(Uk)�2 det(Qj)2 = 1, and for even j we have det(Qj+1)2 =
det(Uk)2 det(Qj)2 = det(Uk)2, which implies the statement for j + 1. By induc-
tion we conclude that the result holds for j = n. For odd n, we get det(Uk+1) =
det(Qn)2 det(Uk)�1 = det(Uk)2 det(Uk)�1 = det(Uk), and for even n we get
det(Uk+1) = det(Qn)2 det(Uk) = 1 · det(Uk) = det(Uk). This shows the result,
as det(Uk+1) = det(Uk) = . . . = det(U0).

Proposition 3. Given a diagonalizing sequence {Uk}1k=0 of order n and input U0,
consider the sequence {Ũk}1k=0 defined by the recursive relation Ũk = e

i�kUk for
�k 2 R. If {Uk} has the property from Conjecture 1, then so does {Ũk}.
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Proof. For each k in the sequence {Ũk}, the lower left element (Ũk)21 will have the
same norm as (Uk)21, and so |(Ũk+1)21| = |(Uk+1)21| = |(Uk)21|2n+1 = |(Ũk)21|2n+1.

Without loss of generality, we will set detU0 = 1 for convenience, as for any
input matrix U0 with detUk = e

i'0 we satisfy the property from Conjecture 1 if
and only if we have the same property for the input matrix Ũ0 = e

�i'0/2U0 with
determinant det Ũ0 = 1.

Remark 1. We can pull the �j0 factor out for each matrix Dj and obtain the
diagonals D

0
j = diag(1, (�1)j+1

e
i✓p(�1)j+1j), the same definition as given by Re-

ichardt in Equation 6.8 The sequence {U 0
k} defined in the same way as {Uk} but

replacing Dj with D
0
j satisfies the property from Conjecture 1 if and only if {Uk}

has the property by Proposition 3. This is because Ũk and Uk di↵er by a phase
Uk = (

Qn
j=1 �

2
j0)Ũk. That said, our choice for Dj is due to convenient properties

like Proposition 2, which this sequence does not have; when we refer to �j0 and
�j1, we mean the definitions in equation 6 unless stated otherwise.

3. Recursively Constructing Sequences of Arbitrary Order

In this section we show our elements come in the form (Uk+1)11 = ak+1 = akAk

and (Uk+1)21 = bk+1 = bkBk, where Ak and Bk are polynomial functions in terms
of �jl and bk, ak. This ansatz will allow us to examine the Conjecture 1 in a way
that is independent of U0.

Proposition 4. For any order n, the first column of Uk+1 comes in the form
(Uk+1)11 = ak+1 = akAk and (Uk+1)21 = bk+1 = bkBk, where Ak and Bk are
polynomials of the form

Bk = �0 + |ak|2
0

@
bn/2cX

j=1

(�|bk|2|ak|2)j�1(�2j�1 � |bk|2�2j)

1

A ,

Ak = ↵0 � |bk|2
0

@
bn/2cX

j=1

(�|bk|2|ak|2)j�1(↵2j�1 + |ak|2↵2j)

1

A ,

(10)

where �j and ↵j are defined to be 0 if j > n. For each j = 1, . . . , n, the coe�cients
�j and ↵j are polynomial expressions of �i0 and �i1 for i = 1, . . . , n.

Proof. We are going to use induction on n to prove this ansatz is correct, with
the base case n = 1. Using the above ansatz we can express Uk+1 and the shifted
TUk+1 to be of the form

Uk+1 =
⇣

ak+1 �bk+1

bk+1 ak+1

⌘
⌘
⇣

akAk �bkBk

bkBk akAk

⌘
=) TUk+1 =

⇣
akTAk bkTBk

�bkTBk akTAk

⌘
. (11)

Now we insert this into our sequence U
(n+1)
k+1 . The calculation below will be useful

for showing how case n implies case n + 1 as well as for examining the base case.
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Assume that A(n)
k and B(n)

k take the form of the ansatz. Then expanding out the
definition of the diagonalizing sequence in Proposition 1 yields

U
(n+1)
k+1 = UkD1 TU

(n)
k+1 D1Uk

=
⇣

ak �bk
bk ak

⌘�
�10 0
0 �11

�⇣
akTAk bkTBk

�bkTBk akTAk

⌘�
�10 0
0 �11

�⇣
ak �bk
bk ak

⌘

=
⇣

�10ak ��11bk
�10bk �11ak

⌘⇣
akTAk bkTBk

�bkTBk akTAk

⌘⇣
�10ak ��10bk
�11bk �11ak

⌘

=
⇣

�10ak ��11bk
�10bk �11ak

⌘⇣
�10|ak|2TAk+�11|bk|2TBk �akbk(�10TAk��11TBk)

akbk(�11TAk��10TBk) �11|ak|2TAk+�10|bk|2TBk

⌘

=

✓
(U(n+1)

k+1 )11 (U(n+1)
k+1 )12

(U(n+1)
k+1 )21 (U(n+1)

k+1 )22

◆
,

where each element of the matrix is given by the forms

(U (n+1)
k+1 )11 = ak(�

2
10|ak|2TAk + �10�11|bk|2TBk � |bk|2(�2

11TAk � �10�11TBk))

= ak(�
2
10TAk � |bk|2(�2

10TAk + �
2
11TAk � �10�11TBk � �10�11TBk)),

(U (n+1)
k+1 )21 = bk(�

2
10|ak|2TAk + �10�11|bk|2TBk + |ak|2(�2

11TAk � �10�11TBk))

= bk(�10�11TBk + |ak|2(�2
10TAk + �

2
11TAk � �10�11TBk � �10�11TBk)),

(U (n+1)
k+1 )12 = �bk(�

2
11|ak|2TAk + �10�11|bk|2TBk + |ak|2(�2

10TAk � �10�11TBk))

= �bk(�10�11TBk + |ak|2(�2
10TAk + �

2
11TAk � �10�11TBk � �10�11TBk),

(U (n+1)
k+1 )22 = ak(�

2
11|ak|2TAk + �10�11|bk|2TBk � |bk|2(�2

10TAk � �10�11TBk))

= ak(�
2
11TAk � |bk|2(�2

10TAk + �
2
11TAk � �10�11TBk � �10�11TBk)).

In each secondary line, we have reorganized the terms in (U (n+1)
k+1 )ij by using

the identity |ak|2 + |bk|2 = 1. Note that the shifted TAk and TBk are still
of the form of the ansatz since T |ak|2 = T (akak) = T (akak) = |ak|2 and
T |bk|2 = T ((�bk)(�bk)) = |bk|2. In (U (n+1)

k+1 )11, the terms TBk + TBk preserve

the form of A(n+1)
k since they both have a |ak|2 factor in front. For TAk and TAk,

we substitute |ak|2 = 1�|bk|2 and |bk|2 = 1�|ak|2 to obtain the following equivalent
expressions for the ansatz:

Bk = �0 +

bn/2cX

j=1

(�|bk|2|ak|2)j�1
�2j�1

� |bk|2
bn/2cX

j=1

(�|bk|2|ak|2)j�1(�2j�1 + |ak|2�2j),

Ak = ↵0 �
bn/2cX

j=1

(�|bk|2|ak|2)j�1
↵2j�1

+ |ak|2
bn/2cX

j=1

(�|bk|2|ak|2)j�1(↵2j�1 � |bk|2↵2j).
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Therefore we write Bk and Ak alternatively in the form

Bk =

bn/2cX

j=0

(�|bk|2|ak|2)j(�2j + �2j+1 � |bk|2�2j+1), (12)

Ak =

bn/2cX

j=0

(�|bk|2|ak|2)j(↵2j � ↵2j+1 + |ak|2↵2j+1). (13)

Plugging the alternative forms in, we can see that TAk and TAk also preserves
the form for A(n+1)

k . We can apply the same approach for the other entries in the

matrix to see that B(n+1)
k also takes the form of the ansatz.

Now we consider the base case n = 1. Substituting TAk ! 1 and TBk ! 1, this
corresponds to the original sequence examined by Grover, Uk+1 = UkD1U

�1
k D1Uk:

(Uk+1)11 = ak(�
2
10 � |bk|2(�2

10 + �
2
11 � �10�11 � �10�11)),

(Uk+1)21 = bk(�10�11 + |ak|2(�2
10 + �

2
11 � �10�11 � �10�11)).

In the form of the ansatz above, we can see that ↵0 = �
2
10, �0 = �10�11, and

↵1 = �1 = (�10 � �11)2. Since this form is true for n = 1, it must continue to hold
for any n by induction.

In the statement of the above proposition, we claimed that ↵j and �j are poly-
nomials in the �jl’s. We derive their exact forms later in this paper, in Theorem 6.

For reference, the reader may look at Appendix B for the explicit forms for ↵
(n)
j

and �
(n)
j , for n = 1, 2, and 3. These forms were obtained by directly expanding the

sequences and writing the sequences in the form of the ansatz.

3.1. Constructing a Recursive System of Equations

From Proposition 4, we can conclude that for order n+ 1, we have

ak+1

ak
= A(n+1)

k = �
2
10TA

(n)
k � |bk|2

⇣
�
2
10TA

(n)
k + �

2
11TA

(n)
k

� �10�11TB(n)
k � �10�11TB(n)

k

⌘
,

(14)

bk+1

bk
= B(n+1)

k = �10�11TB(n)
k + |ak|2

⇣
�
2
10TA

(n)
k + �

2
11TA

(n)
k

� �10�11TB(n)
k � �10�11TB(n)

k

⌘
.

(15)

We can assume Bk is real for any k and n by induction on k, since �10�11 = 1 and
each complex term is summed with its conjugate, along with the fact that Bk is
real for n = 1. Including this assumption allows us to create the following system
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of equations by aligning terms together and using equations 12 and 13 to preserve
the ansatz form:

↵
(n+1)
j = �

2
10T↵

(n)
j +�

2
10(T↵

(n)
j�1��jT↵

(n)
j )+�

2
11

⇣
T↵

(n)
j�1 � �jT↵

(n)
j

⌘
�2�10�11T�

(n)
j�1,

(16)

�
(n+1)
j = �10�11T�

(n)
j +�

2
10T↵

(n)
j�1+�

2
11T↵

(n)
j�1�2�10�11

⇣
T�

(n)
j�1 + �jT�

(n)
j

⌘
. (17)

We denote �j ⌘ j mod 2 as before, so when we align terms from A(n)
j , A(n)

j�1, B
(n)
j ,

and B(n)
j�1, the �j represents the alternating additional term in equations 12 and 13.

This approach reduces the study of the sequence {U (n+1)
k } into solving the above

two equations, and by solving them we find closed-form expressions for every ↵j

and �j .
If j is odd, then we get that this simplifies to

↵
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 � �

2
11T↵

(n)
j

�
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 � �10�11T�

(n)
j .

(18)

For even j, it becomes

↵
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 + �

2
10T↵

(n)
j

�
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 + �10�11T�

(n)
j .

(19)

The goal of section 5 will be to examine these equations in detail, ultimately deriving
the general solution to both in Theorem 6.

Remark 2. Although our assumptions allow us to assume U
(n)
k 2 SU(2) for any

k, this is not necessary in order to find a convergent sequence. However, it is highly
beneficial to do so since the recursive equations below are much easier to solve
given our assumptions on �jl. Instead, we could provide some general form using
functions Ak,Bk, Ck,Dk:

U
(n)
k+1 =

⇣
akAk bkCk
bkBk akDk

⌘
.

and we would have a set of 4 recursive equations to solve simultaneously. This
approach would work when analyzing related recursive sequences of matrices.

4. Deriving Necessary Values for Convergence

In order for a diagonalizing sequence to have the property in Conjecture 1, the
coe�cients �j must take specific numerical values. These values simplify the ex-
pression for Bk in equation 10 to Bk = �0|bk|2n, which implies the property since

|bk+1| = |Bkbk| = |bk|2n+1 (�0 = (�1)
n(n+3)

2 , which will be shown in Theorem 2).
In this section we derive what those values are (Theorem 1), and first we show how
the expression simplifies via the relation |ak|2 = 1� |bk|2.
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Proposition 5. Suppose that for some order n and Bk given by the ansatz in
Equation 10, we substitute |ak|2 = 1 � |bk|2 in every instance of |ak|2. Then Bk

takes the form

Bk = �0[1 + (1� |bk|2)(A1 +A2|bk|2 + . . .+An|bk|2n�2)],

where each Ai is some integral linear combination of the coe�cients �j/�0. Given
this form, Bk = �0|bk|2n for any bk 6= 0 if and only if Ai = �1 for each i.

Proof. Suppose that Ai = �1 for all i, then

Bk = �0[1 + (1� |bk|2)(�1� |bk|2 � . . .� |bk|2n�2)]

= �0[1� (1� |bk|2)(1 + |bk|2 + . . .+ |bk|2n�2)]

= �0[1� (1� |bk|2n)] = �0|bk|2n.

Supposing that Bk = �0|bk|2n, we work backward through these equations to the
first line. Therefore we conclude that �1� |bk|2 � . . .� |bk|2n�2 = A1 + A2|bk|2 +
. . . + An|bk|2n�2, and this implies that Ai = �1 for all i since this identity holds
for |bk| 2 (0, 1].

Note that in the above proof, if bk = 0, then only A1 = �1 is required to
guarantee that Bk = �0|bk|2n = 0. This is not a problem for the stated conjecture
since bk = 0 implies that Uk is a diagonal matrix, so Uk+1 is also diagonal and
|bk+1| = |bk|2n+1 = 0.

Now we want to derive what the coe�cients of the combinations Ai are, and
to do so we will make the exact substitution suggested in the proposition. Before
stating the theorem, here is a low-order example to demonstrate how these combi-
nations arise.

Example 1. For order 4 we apply the relation |ak|2 + |bk|2 = 1 to obtain Bk in
terms of the coe�cients and powers of |bk|2:

Bk = �0 + |ak|2(�1 � |bk|2(�2 + |ak|2(�3 � |bk|2�4)))

= �0 + (1� |bk|2)(�1 + �2(�|bk|2) + �3(�|bk|2 + |bk|4) + �4(|bk|4 � |bk|6)).

Defining vj ⌘ �j/�0, v ⌘ (v1, v2, v3, v4), and grouping the coe�cients in front of
each power of |bk|2, we get

Bk = �0

⇥
1 + (1� |bk|2)(v1 + |bk|2(�v2 � v3) + |bk|4(v3 + v4) + |bk|6(�v4))

⇤
.

Suppose that these constants vj for j = 1, 2, 3, 4 happened to satisfy the linear
system

v1 = �1,

�v2 � v3 = �1,

v3 + v4 = �1,

v4 = �1,

()

2

664

1 0 0 0
0 �1 �1 0
0 0 1 1
0 0 0 �1

3

775

2

664

v1

v2

v3

v4

3

775 =

2

664

�1
�1
�1
�1

3

775 . (20)
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Then we would be able to simplify the above to be

Bk = �0

⇥
1 + (1� |bk|2)(�1� |bk|2 � |bk|4 � |bk|6)

⇤
= �0

⇥
1 + (|bk|8 � 1)

⇤
= �0|bk|8.

Denoting this matrix as M4, we note that this is an upper triangular matrix with
determinant 1, so it is invertible. Denote each row of M4 as rTi ; we identify the rows
as the tuple of coe�cients in the combination Ai, such that rTi v = Ai = �1. As it
turns out, if Bk did happen to simplify down to �0|bk|8, then by the invertible nature
of the system we must have that v is given by v = M

�1
4 (�e) = (�1, 3,�2, 1), where

e = (1, 1, 1, 1). This implies a direct link between the values of the coe�cients �j

and the property from Conjecture 1.

Now we will show what the general form ofMn for any order n is by construction.

Definition 3. For a given n 2 N, define the matrix Mn 2 Rn⇥n such that its
entries are given as [Mn]ii = (�1)i+1 and

[Mn](2m�1�j),(2m�1) = (�1)j
✓
m� 1

j

◆
, (21)

[Mn](2m�j),(2m) = (�1)j+1

✓
m� 1

j

◆
, (22)

for j,m � 1. All other elements of the matrix are 0.

Here is an explicit calculation of Mn for a higher order, also including its inverse.

Example 2. One interesting observation is that Mm contains Mn as a nested sub-
block for m > n. We will solve the matrix system by finding the inverse matrix
M

�1
n , and it helps to have an example to see the patterns in the entries. Explicitly

calculating M10 yields the matrix

M10 =

2

6666666666666664

1 0 0 0 0 0 0 0 0 0
0 �1 �1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 �1 �2 �1 �1 0 0 0
0 0 0 0 1 2 3 1 1 0
0 0 0 0 0 �1 �3 �3 �4 �1
0 0 0 0 0 0 1 3 6 4
0 0 0 0 0 0 0 �1 �4 �6
0 0 0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0 0 �1

3

7777777777777775

, (23)

which contains M4 as a sub-block in the upper left corner. We can also calculate
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the inverse of M10 to be

M
�1
10 =

2

6666666666666664

1 0 0 0 0 0 0 0 0 0
0 �1 �1 �1 �1 �1 �1 �1 �1 �1
0 0 1 1 1 1 1 1 1 1
0 0 0 �1 �2 �3 �4 �5 �6 �7
0 0 0 0 1 2 3 4 5 6
0 0 0 0 0 �1 �3 �6 �10 �15
0 0 0 0 0 0 1 3 6 10
0 0 0 0 0 0 0 �1 �4 �10
0 0 0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0 0 �1

3

7777777777777775

. (24)

We should expect in general that the entries of Mn and M
�1
n are given in terms of

binomial coe�cients.

4.1. Solving the Matrix System

Here we show that the combinations Ai can be expressed explicitly by the ith row
of the matrix-vector product Mnv for any n.

Proposition 6. Denote e 2 Rn as the vector of all ones and v = (v1, . . . , vn),
where vj = �j/�0 for each j. Consider the expression for Bk from equation 10, and
replace |ak| with 1�|bk|2. Then the integral linear combinations Ai from Proposition
5 are given by the ith entry of the vector Mnv.

Proof. Using the binomial theorem on (�|ak|2)(j�1) yields

(�|ak|2)(j�1) = (|bk|2 � 1)j�1 =
j�1X

`=0

✓
j � 1

`

◆
(�1)`|bk|2(j�1�`)

.

Plugging this into the sum expression for the ansatz gives us

=) Bk = �0 + |ak|2
0

@
bn/2cX

j=1

(�|bk|2|ak|2)j�1(�2j�1 � |bk|2�2j)

1

A

= �0

2

41 + (1� |bk|2)
bn/2cX

j=1

j�1X

`=0

✓
j � 1

`

◆
(�1)`(|bk|2)2(j�1)�`(v2j�1 � |bk|2v2j)

3

5 .

From this we can see that in general [Mn]ii = 1 for odd i and �1 for even i (this
corresponds to ` = 0 in the summation above). Consider the terms in this summa-
tion with a factor �2m�1/�0 in front, where m is an integer. Then m = j in this
sum, and so the terms with this are of the form v2m�1

�m�1
`

�
(�1)`(|bk|2)2(m�1)�`,

where ` = 0, . . . ,m � 1. For terms with a factor v2m, we have m = j again and
the form of these terms are v2m

�j�1
`

�
(�1)`+1(|bk|2)2(m�1)�`. Therefore the ma-

trix element [Mn]ij describes the term with the factor vj |bk|2(i�1), and so we have
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[Mn](2m�1�`),(2m�1) = (�1)`
�m�1

`

�
and [Mn](2m�`),(2m) = (�1)`+1

�m�1
`

�
. There-

fore Mn gives the set of coe�cients in the combinations Ai, with the ith row cor-
responding to terms with the factor |bk|2(i�1). Therefore Mnv = (A1, . . . , An).

By Proposition 5, we can see that Mnv = (A1, . . . , An) = (�1, . . . ,�1) = �e,
and so Bk = �0|bk|2n if and only if Mnv = �e, which is equivalent to v = �M

�1
n e.

Now we determine what the inverse matrix M
�1
n is.

Lemma 1. The inverse matrix M
�1
n has the following elements: [M�1

n ]jj =
(�1)j+1 and the subsequent rows can be described as, for i 2 N and j � 0:

[M�1
n ](2i),(2i+j) = �

✓
j + i� 1

j

◆
, (25)

[M�1
n ](2i+1),(2i+1+j) =

✓
j + i� 1

j

◆
. (26)

The rest of the elements are 0.

Proof. We can also rewrite the elements of the inverse by substituting j ! n �
2i� j:

[M�1
n ](2i),(n�j) = �

✓
n� i� j � 1

n� 2i� j

◆
= �

✓
n� i� j � 1

i� 1

◆
,

[M�1
n ](2i+1),(n�j) =

✓
n� i� j � 2

n� 2i� j � 1

◆
=

✓
n� i� j � 2

i� 1

◆
.

Here we used the binomial identity
�n
k

�
=
� n
n�k

�
. We want to show that the product

of the matrices is X = M
�1
n Mn = In, where In is the n ⇥ n identity matrix. For

an inductive argument, assume that the formula is true for Mn. Then we can write
Mn+1 as

Mn+1 =


Mn ⇤
0 (�1)n

�
,

where ⇤ is all the extra elements that would be included above the diagonal in the
last column. Note that if the formula is valid for Mn, then it must be true for Mn0

for n
0
< n. Therefore the base cases n = 1, 2, 3, 4 have already been verified by

Example 1. The inverse is also an upper triangular matrix, and we know that the
product of upper triangular matrices are upper triangular, so the inverse looks like

M
�1
n+1 =


M

�1
n ⇤
0 (�1)n

�
.

And of course, the last element on the diagonal is Xn+1,n+1 = 1 since the negative
signs cancel. It remains to just show the last column above the diagonal is zeros.
We split this into two cases, whether n is odd or even. In either case, the first entry
in the last column yields X1,n+1 = 0 because the only nonzero entry in the first row
of M�1

n+1 is the first entry, but the first entry of the last column in Mn is always 0.
Now we split the remaining entries into two cases.
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(1) If n = 2m for some integer m, then the last column comes in the form

[Mn+1](2m+1�j),(2m+1) = (�1)j
✓
m� 1

j

◆
,

and we want to multiply this column by every row in M
�1
n+1. For even rows 2i,

this looks like

X2i,n+1 = �
nX

j=0

(�1)j
✓
m� 1

j

◆✓
n� i� j

i� 1

◆

= �
m�1X

j=0

(�1)j
✓
m� 1

j

◆✓
2m� i� j

i� 1

◆
.

For odd rows 2i+ 1 it looks like

X2i+1,n+1 =
nX

j=0

(�1)j
✓
m� 1

j

◆✓
n� i� j � 1

i� 1

◆

=
m�1X

j=0

(�1)j
✓
m� 1

j

◆✓
2m� i� j � 1

i� 1

◆
.

In both cases we are looking at 1  i < m.
(2) If n = 2m� 1 for some integer m, then we get very similar situations:

[Mn+1](2m�j),(2m) = (�1)j+1

✓
m� 1

j

◆
,

and we want to multiply this column by every row in M
�1
n+1. For even rows 2i,

this looks like

X2i,n+1 = �
nX

j=0

(�1)j+1

✓
m� 1

j

◆✓
n� i� j

i� 1

◆

=
m�1X

j=0

(�1)j
✓
m� 1

j

◆✓
2m� i� j � 1

i� 1

◆
.

For odd rows 2i+ 1 it looks like

X2i+1,n+1 =
nX

j=0

(�1)j+1

✓
m� 1

j

◆✓
n� i� j � 1

i� 1

◆

= �
m�1X

j=0

(�1)j
✓
m� 1

j

◆✓
2m� i� j � 2

i� 1

◆
.

Note that the second binomials in each sum are of the form
�µ+⌫�1

µ�1

�
=�µ+⌫�1

⌫

�
= µ(µ + 1) . . . (µ + ⌫ � 1)/⌫!, which are polynomials in µ of degree

⌫. In each of the sums above, ⌫ = i � 1 and µ = 2m � i � j � R + 2, where
R = 0, 1, or 2 depending on the sum. Therefore

�µ+⌫�1
⌫

�
is a polynomial in j of
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degree i � 1. If P (j) is a polynomial in j with degree less than or equal to d,
then10

dX

j=0

(�1)j
✓
d

j

◆
P (j) = 0. (27)

Substitute d = m� 1 and P (j) =
�2m�i�j�R

i�1

�
. Since P (j) is a polynomial with

degree i� 1  m� 1, all of the sums above are equal to 0, and hence the last
column is 0 above the diagonal whether n is odd or even, and so by induction
X = In holds for all n. So M

�1
n is the inverse of the matrix Mn.

From this we can solve the system of equations Mnv = �e for v, given as
v = �M

�1
n e.

Theorem 1. For an order n, the given diagonalizing sequence has the property of
Conjecture 1 if and only if for all j the coe�cients �j from Proposition 4 take the
values �1 = ��0, �2i = �0

�n�i
i

�
, and �2i+1 = ��0

�n�i�1
i

�
, where i 2 N.

Proof. By Proposition 5, the conjectured property |bk+1| = |bk|2n+1 holds if and
only if each combination Ai = �1, which is equivalent to Mnv = �e since Ai is the
ith entry of Mnv by Proposition 6. The vector v is given by �M

�1
n e, with M

�1
n

given by Lemma 1. We can use the well-known binomial identities
PN

n=0

�m+n
n

�
=�N+m+1

N

�
and

�n
k

�
=
� n
n�k

�
to simplify the expressions:

v1 = �1, v2i =
n�2iX

j=0

✓
j + i� 1

j

◆
=

✓
n� i

n� 2i

◆
=

✓
n� i

i

◆
,

v2i+1 = �
n�2i�1X

j=0

✓
j + i� 1

j

◆
= �

✓
n� i� 1

n� 2i� 1

◆
= �

✓
n� i� 1

i

◆
.

(28)

Using the fact that vj = �j/�0 yields the expressions for �j in the theorem state-
ment.

This theorem establishes the direct equivalence between the property from Con-
jecture 1 and the exact numerical values that the �j ’s take.

5. Using Recursive Equations to Solve Basic Sequences

We can directly compute formulas for �j and ↵j in terms of �i0 and �i1 for i =

1, . . . , n and a given n by expanding U
(n)
k+1 through matrix multiplication. However,

in general it is much simpler to use the recursive equations 16 and 17. Here we
compute some basic cases (j = 0, 1, and n), and at the end we will show the explicit
formulas for �j and ↵j for arbitrary j and n in terms of the �jl’s in Theorem 6. We
also show in these basic cases that they take on the values given from Theorem 1,
confirming the conjecture at least partially.
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For j = 0, the recursive equations (16) and (17) reduce to

↵
(n+1)
0 = �

2
10T↵

(n)
0 ,

�
(n+1)
0 = �10�11T�

(n)
0 ,

and here we will solve these equations.

Theorem 2. For any order n, ↵0 and �0 are explicitly given by the formulas

↵0 =
nY

k=1

�
2
k0 = !

1
2 (2(�1)nn+(�1)n�1)

, �0 =
nY

k=1

�k0�k1 = (�1)
n(n+3)

2 . (29)

Proof. For n = 1, explicitly calculating the sequence gives �0 = �10�11 and
↵0 = �

2
10, and so the above satisfies the initial conditions. Applying the shift T , we

have

�
2
10T↵

(n)
0 = �

2
10

n+1Y

k=2

�
2
k0 =

n+1Y

k=1

�
2
k0 = ↵

(n+1)
0 .

�10�11T�
(n)
0 = �10�11

nY

k=2

�k0�k1 =
n+1Y

k=1

�k0�k1 = �
(n+1)
0 .

Therefore the formulas above solve the recursive equations. Since �j0 = !
(�1)jj and

�j1 = (�1)j+1
!
(�1)j+1j , we have that

↵0 =
nY

k=1

!
2(�1)kk = !

2
Pn

k=1(�1)kk = !
1
2 (2(�1)nn+(�1)n�1)

,

�0 =
nY

k=1

(�1)k+1 = (�1)
Pn

k=1 k+1 = (�1)
n(n+3)

2 .

For n = 1, 2, 3, 4, we have ↵
(n)
0 = !

�2
,!

2
,!

�4
,!

4 and �
(n)
0 = 1,�1,�1, 1, and

the pattern continues in this fashion. For m 2 N, we can see that ↵
(2m)
0 = !

2m,

↵
(2m�1)
0 = !

�2m, �(2m)
0 = (�1)m, and �

(2m�1)
0 = (�1)m+1.

The next is j = n, which is simple to examine as well. For any pair (n, j), we
note that ↵(n)

j = �
(n)
j = 0 for j > n.

↵
(n+1)
n+1 = �

2
10T↵

(n)
n+1 + �

2
10(T↵

(n)
n � �n+1T↵

(n)
n+1)

+ �
2
11

⇣
T↵

(n)
n � �n+1T↵

(n)
n+1

⌘
� 2�10�11T�

(n)
n

= �
2
10T↵

(n)
n + �

2
11T↵

(n)
n � 2�10�11T�

(n)
n ,

�
(n+1)
n+1 = �10�11T�

(n)
n+1 + �

2
10T↵

(n)
n + �

2
11T↵

(n)
n � 2�10�11

⇣
T�

(n)
n + �n+1T�

(n)
n+1

⌘

= �
2
10T↵

(n)
n + �

2
11T↵

(n)
n � 2�10�11T�

(n)
n .
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All of the cancelling above comes from the assumption that we gave before, that
all functions are zero for j > n. We claim that both ↵n and �n take the same form
for order n.

Theorem 3. For any order n, both �n and ↵n are given by the same expression

↵n = �n =
nY

k=1

(�k0 � �k1)
2 = (�1)

n(n+1)
2 = (�1)n�0. (30)

Proof. Note that (�j0 � �j1)2 = �
2
j0 + �

2
j1 � 2�j0�j1 is real, as �

2
j0 = !

2(�1)jj

is the conjugate of �2
j1 = !

2(�1)j+1j , and �j0�j1 = (�1)j+1. The base case ↵1 =
�1 = (�10 � �11)2 confirms the theorem for n = 1, and by induction we can see
that ↵n = �n implies that ↵n+1 = �n+1, therefore ↵n = �n for all n. The recursive
equations give us

�n+1 = �
2
10T↵n + �

2
11T↵n � 2�10�11T�n

= (�2
10 + �

2
11 � 2�10�11)

n+1Y

k=2

(�k0 � �k1)
2

=
n+1Y

k=1

(�k0 � �k1)
2
.

Therefore the expression above satisfies the recursive equations. Plugging in the
roots of unity gives the identity

nY

k=1

(�k0 � �k1)
2 =

nY

k=1

⇣
!
(�1)kk + (�1)k!(�1)k+1k

⌘2

=
nY

k=1

⇣
!
2(�1)kk + !

2(�1)k+1k + 2(�1)k
⌘

=
nY

k=1

�
2 cos(k✓) + 2(�1)k

�
= (�1)

n(n+1)
2 .

The identity above is proved in Appendix A. Dividing by �0 is the same as multi-
plying by it, and so we get that vn is equal to

vn = �n/�0 = (�1)
n(n+1)

2 (�1)
n(n+3)

2 = (�1)n.

Now we consider j = 1, in which case our inductive sequences are

↵
(n+1)
1 = �

2
10T↵

(n)
0 + �

2
11T↵

(n)
0 � 2�10�11T�

(n)
0 � �

2
11T↵

(n)
1 ,

�
(n+1)
1 = �

2
10T↵

(n)
0 + �

2
11T↵

(n)
0 � 2�10�11T�

(n)
0 � �10�11T�

(n)
1 .
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However, we already know the first three terms using our results from Theorem 2
for ↵0 and �1, so we can write

↵
(n+1)
1 =

n+1Y

k=1

�
2
k0 +

n+1Y

k=1

�
2
k1 � 2

n+1Y

k=1

�k0�k1 � �
2
11T↵

(n)
1

=

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

� �
2
11T↵

(n)
1 ,

�
(n+1)
1 =

n+1Y

k=1

�
2
k0 +

n+1Y

k=1

�
2
k1 � 2

n+1Y

k=1

�k0�k1 � �10�11T�
(n)
1

=

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

� �10�11T�
(n)
1 .

Here we will solve these equations for ↵1 and �1.

Theorem 4. For any order n, ↵1 and �1 are given by the formulas

↵1 =

 
nY

k=1

�k0 �
nY

k=1

�k1

!2

+
n�1X

`=1

(�1)`
Ỳ

k=1

�
2
k�k

 
nY

k=`+1

�k0 �
nY

k=`+1

�k1

!2

, (31)

�1 =

 
nY

k=1

�k0 �
nY

k=1

�k1

!2

+
n�1X

`=1

(�1)`
Ỳ

k=1

�k0�k1

 
nY

k=`+1

�k0 �
nY

k=`+1

�k1

!2

. (32)

Proof. Since the top index of the sum is 0 for n = 1, we can ignore the sum,
which would correspond to ↵1 = �1 = (�10��11)2, as we computed for Proposition
4. Applying the shift T to each term in the recursive equation gives us the following

expansion for the �
2
11T↵

(n)
1 :

�
2
11T↵

(n)
1 = �

2
11

 
n+1Y

k=2

�k0 �
n+1Y

k=2

�k1

!2

+ �
2
11

n�1X

`=1

(�1)`
`+1Y

k=2

�
2
k�k

 
n+1Y

k=`+2

�k0 �
n+1Y

k=`+2

�k1

!2

=
nX

`=1

(�1)`�1
Ỳ

k=1

�
2
k�k

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

.
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Applying the same approach to �10�11T�
(n)
1 gives the same sort of expansion:

�10�11T�
(n)
1 = �10�11

 
n+1Y

k=2

�k0 �
n+1Y

k=2

�k1

!2

+ �10�11

n�1X

`=1

(�1)`
`+1Y

k=2

�k0�k1

 
n+1Y

k=`+2

�k0 �
n+1Y

k=`+2

�k1

!2

=
nX

`=1

(�1)`�1
Ỳ

k=1

�k0�k1

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

.

Now we can take these results and plug them into the equations for ↵
(n+1)
1 and

�
(n+1)
1 :

↵
(n+1)
1 =

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

� �
2
11T↵

(n)
1

=

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

+
nX

`=1

(�1)`
Ỳ

k=1

�
2
k�k+1

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

,

�
(n+1)
1 =

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

� �10�11T�
(n)
1

=

 
n+1Y

k=1

�k0 �
n+1Y

k=1

�k1

!2

+
nX

`=1

(�1)`
Ỳ

k=1

�k0�k1

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

.

And this confirms our formula by induction.

Remark 3. In abuse of notation, introduce variables �00 = �01 = 1, and so we
can write the formulas as

↵
(n)
1 =

n�1X

`=0

(�1)`
Ỳ

k=0

�
2
k�k

 
nY

k=`+1

�k0 �
nY

k=`+1

�k1

!2

, (33)

�
(n)
1 =

n�1X

`=0

(�1)`
Ỳ

k=0

�k0�k1

 
nY

k=`+1

�k0 �
nY

k=`+1

�k1

!2

. (34)

Applying the shifting operation doesn’t really make sense here since �00 and �01

are not variables the shifting operator acts on. However, if we multiply by �10�11

or what respective factor is in front of the shift, all is well since this takes the place
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of the �00,�01, which are now gone:

�
2
11T↵

(n)
1 =

nX

`=1

(�1)`�1
Ỳ

k=1

�
2
k�k

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

,

�10�11T�
(n)
1 =

nX

`=1

(�1)`�1
Ỳ

k=1

�k0�k1

 
n+1Y

k=`+1

�k0 �
n+1Y

k=`+1

�k1

!2

.

We will use this notation and shifting rule when deriving the general expression for
�j and ↵j .

Plugging in for �j0 and �j1 gives the expression

�1 =

 
nY

k=1

!
2(�1)kk +

nY

k=1

!
2(�1)k+1k � 2(�1)

n(n+3)
2

!

+
n�1X

`=1

(�1)
`(`+1)

2

 
nY

k=`+1

!
2(�1)kk +

nY

k=`+1

!
2(�1)k+1k � 2(�1)

n(n+3)
2 � `(`+3)

2

!

=
n�1X

`=0

(�1)
`(`+1)

2

 
nY

k=`+1

!
2(�1)kk +

nY

k=`+1

!
2(�1)k+1k � 2(�1)

n(n+3)
2 � `(`+3)

2

!
.

Now we confirm that the expression for �1 simplifies to �1/�0 = �1 from Theorem
1.

Theorem 5. For any order n, we have �1/�0 = �1.

Proof. Note that (�1)
`(`+1)

2 � `(`+3)
2 = (�1)`. We can consider this identity in two

cases. For n = 2m, note that we can simplify the last term as follows:

(�1)
n(n+3)

2 = (�1)
2m(2m+3)

2 = (�1)m.

Therefore we can simplify the above expression for �1 to

=) �
(2m)
1 =

2m�1X

`=0

(�1)
`(`+1)

2

 
2mY

k=`+1

!
2(�1)kk +

2mY

k=`+1

!
2(�1)k+1k

!
� 2(�1)m+`

.

Since we are summing over an even number of terms, we have thatP2m�1
`=0 2(�1)m+` = 2(�1)m

P2m�1
`=0 (�1)` = 0. Say that ` = 2l, then the first

two terms simplify to

2mY

k=2l+1

!
2(�1)kk +

2mY

k=2l+1

!
2(�1)k+1k = !

2(m�l) + !
�2(m�l) = 2 cos((m� l)✓).

The sign in front of these terms is given by (�1)
`(`+1)

2 = (�1)l(2l+1) = (�1)l.
Similarly for ` = 2l � 1 we have

2mY

k=2l

!
2(�1)kk +

2mY

k=2l

!
2(�1)k+1k = !

2(m+l) + !
�2(m+l) = 2 cos((m+ l)✓).



September 29, 2023 17:3 WSPC/INSTRUCTION FILE output

22 C. Gri�n & S. Cui

The sign in front of these terms is also given by (�1)
`(`+1)

2 = (�1)l(2l�1) = (�1)l.
Note that we get the term cos ✓ for ` = 2m � 2 and cos(2m✓) for ` = 2m � 1. We
have a positive sign in front of cos(m0

✓) for m0 = m, and as we increase or decrease
m

0 we alternate signs. Therefore we can write �1 as

�
(2m)
1 = 2(�1)m

2mX

k=1

(�1)k cos(k✓).

Since �
(2m)
0 = (�1)m we have that by Lemma A.1

v
(2m)
1 = �

(2m)
1 /�

(2m)
0 = 2

2mX

k=1

(�1)k cos(k✓) = �1.

For n = 2m� 1, we simplify powers and evaluate the products in the sum. This
time we have (�1)

n(n+3)
2 = (�1)m+1:

�
(2m�1)
1 =

2m�2X

`=0

(�1)
`(`+1)

2

 
2m�1Y

k=`+1

!
2(�1)kk +

2m�1Y

k=`+1

!
2(�1)k+1k

!
� 2(�1)m+`+1

.

Similar to before, the alternating sign cancels with itself except for ` = 0, which
gives �2(�1)m+1. Now we consider whether ` is even or odd, like before. The sign

given by (�1)
`(`+1)

2 is the same as before. For ` = 2l, we have

2m�1Y

k=2l+1

!
2(�1)kk +

2m�1Y

k=2l+1

!
2(�1)k+1k = !

�2(m+l) + !
2(m+l) = 2 cos((m+ l) ✓).

Similarly for ` = 2l � 1 we have
2m�1Y

k=2l

!
2(�1)kk +

2m�1Y

k=2l

!
2(�1)k+1k = !

�2(m�l) + !
2(m�l) = 2 cos((m� l) ✓).

Once again the remaining terms combine together in the same way. We get a cos ✓
term from ` = 2m � 3 and a cos((2m � 1)✓) term from ` = 2m � 2. Additionally,
the cos(m0

✓) term has a positive sign for m
0 = m, and as we increase or decrease

m
0 the sign alternates. Therefore we rewrite �1 as

�
(2m�1)
1 = �2(�1)m+1 + 2(�1)m

2m�1X

k=1

(�1)k cos(k✓)

= (�1)m+1

 
�2� 2

2m�1X

k=1

(�1)k cos(k✓)

!

= 2(�1)m+1
2m�1X

k=0

(�1)k+1 cos(k✓).

Factoring out �(2m�1)
0 = (�1)m+1 yields

�1/�
(2m�1)
0 = 2

2m�1X

k=0

(�1)k+1 cos(k✓) = �1.
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We have covered both cases, so this completes the proof.

5.1. Applications to n=3

Here we consider some special cases of the formulas above, namely for order n = 3,
which corresponds to the angle ✓ = ⇡/7. Our recursive equations for j = 2 are the
set

↵
(n+1)
2 = �

2
10T↵

(n)
1 + �

2
11T↵

(n)
1 � 2�10�11T�

(n)
1 + �

2
10T↵

(n)
2 ,

�
(n+1)
2 = �

2
10T↵

(n)
1 + �

2
11T↵

(n)
1 � 2�10�11T�

(n)
1 + �10�11T�

(n)
2 .

(35)

By Theorem 2, we have �0 = (�1)
3(3+3)

2 = (�1)9 = �1. By Theorems 3 and 5 we
respectively have that �1/�0 = �1 and �3/�0 = (�1)3 = �1, therefore �1 = �3 = 1.
In Appendix B we explicitly calculated the formulas for �0, �1, �2, and �3 in terms
of the �jl’s. For �2 we have

�2 = (�11 � �10)
2(�20�30 � �21�31)

2 � (�11�20 � �10�21)
2(�30 � �31)

2

+ �10�11(�20 � �21)
2(�30 � �31)

2
.

Note that �k0�k1 = (�1)k+1 and (�k0 � �k1)2 = �
2
k0 + �

2
k1 � 2�k0�k1 = !

2k +
!
�2k � 2(�1)k+1 = 2 cos(k✓) + 2(�1)k. The remaining factors can be evaluated as

(�20�30 � �21�31)
2 = (!2 · !�3 � (�!

�2) · !3)2 = 2 cos ✓ + 2

(�11�20 � �10�21)
2 = (! · !2 � !

�1 · (�!
�2))2 = 2 cos 3✓ + 2.

Therefore �2 can be expressed in terms of ✓ as

�2 = (2 cos ✓ � 2)(�20�30 � �21�31)
2 � (�11�20 � �10�21)

2(2 cos 3✓ � 2)

+ (cos 2✓ + 2)(cos 3✓ � 2),

= (2 cos ✓ � 2)(2 cos ✓ + 2)� (2 cos 3✓ � 2 cos 2✓)(2 cos 3✓ � 2).

Now we evaluate �2.

Lemma 2. For ✓ = ⇡/7,

�2 = (2 cos ✓ � 2)(2 cos ✓ + 2)� (2 cos 3✓ � 2 cos 2✓)(2 cos 3✓ � 2) = �2.

Proof. To start, 2 cos 3✓ � 2 cos 2✓ = 1 � 2 cos ✓ by Lemma A.1, and (2 cos ✓ �
2)(2 cos ✓ + 2) = 2 cos 2✓ � 2 by double angle identities.

�2 = (2 cos 2✓ � 2)� (1� 2 cos ✓)(2 cos 3✓ � 2)

= �4 cos ✓ + 2 cos 2✓ � 2 cos 3✓ + 4 cos ✓ cos 3✓

= �4 cos ✓ + 2 cos 2✓ � 2 cos 3✓ + 2 cos 2✓ + 2 cos 4✓

= �4 cos ✓ + 4 cos 2✓ � 4 cos 3✓ = �2.
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From these results we get that (�0,�1,�2,�3) = (�1, 1,�2, 1). This matches
Theorem 1 as �1 = ��0, �2 = �0

�3�1
3�2

�
= �2, and �3 = ��0

�3�1�1
3�2�1

�
= 1. To

confirm the property of Conjecture 1 directly, substituting each value for �j gives

Bk = �0 + |ak|2(�1 � |bk|2(�2 + |ak|2�3))

= �0 + |ak|2(�1 + �2(�|bk|2) + �3(�|bk|2 + |bk|4)).

Observe that from Section 4 we showed that the required matrix system to guar-
antee Bk = �0|bk|6 is given by M3v = �e:

M3v =

2

4
1 0 0
0 �1 �1
0 0 1

3

5

2

4
�1/�0

�2/�0

�3/�0

3

5 =

2

4
�1
�1
�1

3

5 =)

2

4
�1/�0

�2/�0

�3/�0

3

5 =

2

4
�1
2
�1

3

5 .

The coe�cients �j equal the solution to this system, therefore we should expect
that Bk has the desired property from Conjecture 1. And indeed it does:

Bk = �1 + |ak|2(1� 2(�|bk|2) + (�|bk|2 + |bk|4))
= �1 + (1� |bk|2)(1 + |bk|2 + |bk|4) = �1 + (1� |bk|6) = �|bk|6.

Therefore we get |(Uk+1)21| = |bkBk| = |bk| · |bk|6 = |bk|7, which is our desired
relation. By multiplying by the constant (↵0)�1 and writing D(✓) = diag(1, ei✓) we
can also construct the sequence

Uk+1 = UkD(✓)U�1
k D(✓)5UkD(✓)3U�1

k D(✓)3UkD(✓)5U�1
k D(✓)Uk. (36)

By Proposition 3, this sequence has the same property because we distribute a
�
�1
j0 to each Dj , giving Dj�

�1
j0 = diag(1, (�1)j+1

e
i✓p(�1)j+1j). So D1�

�1
10 = D(✓),

D2�
�1
20 = D(✓)5, and D3�

�1
30 = D(✓)3 by using the identity e

j⇡i = (�1)j . Since
these sequences di↵er by an additional phase multiplied at the end, they both have
the conjectured property by Proposition 3.

5.2. Arbitrary Order

Now we derive the complete solution to the recursive equations 16 and 17 We give
the following result, which describes the complete solution to these equations.

Theorem 6. The general solution for ↵
(n)
j and �

(n)
j for j  n is given by the

following. Denote L
j2
j1

=
Pj2

j=j1
`j, where `j are indices of summation. Then for

j � 1,

↵
(n)
j =

n�jX

`j=0

2

4
`jY

k=0

�
2
k,�j�k

3

5
n�j�Lj

jX

`j�1=0

n�j�Lj
j�1X

`j�2=0

. . .

n�j�Lj
2X

`1=0

0

@
nY

k=Lj
1+j

�k0 �
nY

k=Lj
1+j

�k1

1

A
2

⇥
"

jY

µ=1

(�1)�µ`µ

#
⇥

2

64
j�1Y

µ=1

0

B@
Lj

µ+j�µY

k=Lj
1+µ+j�µ

�k,(�µ�k) �
Lj

µ+j�µY

k=Lj
1+µ+j�µ

�k,(1��µ�k)

1

CA

23

75 ,

(37)
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�
(n)
j =

n�jX

`j=0

2

4
`jY
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3

5
n�j�Lj

jX

`j�1=0

n�j�Lj
j�1X

`j�2=0

. . .

n�j�Lj
2X

`1=0

0

@
nY

k=Lj
1+j

�k0 �
nY

k=Lj
1+j

�k1

1

A
2

⇥
"

jY

µ=1

(�1)�µ`µ

#
⇥

2
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j�1Y

µ=1

0

B@
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µ+j�µY

k=Lj
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�k,(�µ�k) �
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�k,(1��µ�k)
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(38)

Proof. The proof is by double induction, using the base cases (j, n) = (1, n) and
(n, n), and we will use the recursive equations to prove the formulas are true for
(j, n+1), assuming (j�1, n) and (j, n). Plugging in j = 1 leaves only the first sum,
with `2 = 0. The second product can be ignored, and L

j
1 + j = `1 +1. This reduces

exactly to the correct formulas for j = 1 given in equations 33 and 34, similarly so
for j = n.

(1) If j = 2i, then the equation we are considering is

↵
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 + �

2
10T↵j

(n)
,

�
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 + �10�11T�

(n)
j .

It su�ces to just check ↵j since the di↵erence between the two formulas is just
the factors in front. The first three terms can be written as follows since j � 1
is odd.

�
2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1

=
n�j+1X

`j�1=0

0

@
`j�1+1Y

k=1

�k�k+1 �
`j�1+1Y

k=1

�k�k

1

A
2 n�j+1�Lj�1

j�1X

`j�2=0

. . .

n�j+1�Lj�1
2X

`1=0

⇥

0

@
n+1Y

k=Lj�1
1 +j

�k0 �
n+1Y

k=Lj�1
1 +j

�k1

1

A
2

⇥
"
j�1Y

µ=1

(�1)�µ`µ

#

⇥

2
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j�2Y

µ=1

0

B@
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µ +j�µY
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�k,(�µ�k) �
Lj�1

µ +j�µY

k=Lj�1
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�k,(1��µ�k)

1
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75 .

Each of the product indices are raised by 1 due to T , and the terms in the
last factors of the expression are swapped from this operation, although the
expression is the same. Now we can place the factor in the front into the product
at the end, where it takes the place of µ = j � 1. We also raise the powers of
negative signs by 1 since j is even, and so we are just multiplying by 1. Let
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`j = 0 so that we can write the index sum L
j�1
⇤ as Lj

⇤:

=
n�j+1X

`j�1=0
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j�1X
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. . .
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⇥
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75 .

The last term is �2
10T↵

(n)
j , which can be written as

=
n�jX

`j=0

2

4
`j+1Y

k=0

�
2
k0

3

5
n�j�Lj
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`j�1=0
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⇥
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=
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�
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jX
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n�j+1�Lj
j�1X

`j�2=0

. . .

n�j+1�Lj
2X

`1=0

0

@
n+1Y

k=Lj
1+j

�k0 �
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⇥
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Adding the terms together yields our desired result by letting `j = 0 in the

formula for �
2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1. These terms take the `j

place in the total sum.

↵
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⇥
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⇥
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(2) If j = 2i+ 1, then the equation we are considering is

↵
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 � �

2
11T↵

(n)
j ,

�
(n+1)
j = �

2
10T↵

(n)
j�1 + �

2
11T↵

(n)
j�1 � 2�10�11T�

(n)
j�1 � �10�11T�

(n)
j .
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It su�ces to check ↵j , for the same reasons as above. In this case j� 1 is even,
so we get

�
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As before, we have let `j = 0 above to make the expression easier to combine
with the last term, which can be written as

��
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Adding together yields the formula

↵
(n+1)
j =

n�j+1X

`j=0

2

4
`jY

k=0

�
2
k�k

3

5
n�j+1�Lj

jX

`j�1=0

n�j+1�Lj
j�1X

`j�2=0

. . .

n�j+1�Lj
2X

`1=0

⇥

0

@
n+1Y

k=Lj
1+j

�k0 �
n+1Y

k=Lj
1+j

�k1

1

A
2

⇥
"

jY

µ=1

(�1)�µ`µ

#

⇥

2

64
j�1Y

µ=1

0

B@
Lj

µ+j�µY

k=Lj
1+µ+j�µ

�k,(�µ�k) �
Lj

µ+j�µY

k=Lj
1+µ+j�µ

�k,(1��µ�k)

1

CA

23

75 .

The formula holds for j even or odd, and so this concludes the proof.

All that remains is to prove the identities we desire, which seem likely to be
true but di�cult to show. We make the following conjecture:

Conjecture 2. For any order n, the above formula in equation 38 for �j

yields the relations �1 = �(�1)
n(n+3)

2 , �2i = (�1)
n(n+3)

2

�n�i
i

�
, and �2i+1 =

�(�1)
n(n+3)

2

�n�i�1
i

�
for i 2 N.

It remains an open question as to whether this conjecture is true, hopefully to
be proven in a later paper. However, if this conjecture is proven, it would directly
imply Conjecture 1 since Theorem 1 shows that the two are equivalent statements.

5.3. Additional Considerations

In order for these sequences to actually converge to a single diagonal matrix, we
must apply one modification, due to the choice of �jl we made. Recall that the
leading term in Ak is ↵0 =

Q
�
2
k0. As bk ! 0, the higher order terms vanish, and

↵0 will only remain as the factor on ak, but this factor means that ak will rotate on
the unit circle endlessly, and if we don’t want this, we need to apply an additional
matrix to the end of our sequence. Say that our diagonalizing sequence is {Uk+1} for
some order n, then multiply by a matrix F = diag(↵�1

0 ,↵0) = diag(
Q

�
2
k1,
Q

�
2
k0).
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So our sequence is now Ũk+1 = Uk+1F , and so our sequences are now multiplied by
↵
�1
0 . Since this is just a factor with magnitude 1, this still maintains the property

|bk+1| = |bk|N . The benefit to this factor is that now Ak takes the form Ak =
1� |bk|2(. . .) ! 1 as k ! 1. What this means is that the sequence {U (n)

k }1k=0 will
now converge to the identity gate instead of ak rotating on the complex unit circle
as k ! 1.

6. Composing Convergent Sequences for Composite Angles

Recall that we are looking for sequences of the form Uk+1 = AN (Uk; ✓), where
AN is some multiplicative function of Uk, U

�1
k , and some diagonal matrices. Here

N � 3 is an odd number, ✓ is a given angle, and we want to have this sequence to
satisfy the conjectured property |bk+1| = |bk|N . If N is composite, then there is a
näıve way to find a convergent sequence, which is by taking sequence composition.
By sequence composition we mean taking two convergent sequences defined by the
relations Uk+1 = Ap1(Uk; ✓p1) and Uk+1 = Ap2(Uk; ✓p2) respectively and defining a
new sequence using the composition Uk+1 = Ap2(Ap1(Uk; ✓p1); ✓p2). This is a very
di↵erent (and simple) approach to the above, but it is an e↵ective strategy if the
only desired outcome is this diagonalization.

Theorem 7. Provided two sequences AN1(Uk;
⇡
N1

) and AN2(Uk;
⇡
N2

) satisfying the
property from Conjecture 1, we can take the composition of the sequences such that
Uk+1 = AN1N2(Uk;

⇡
N1N2

) has the property that |bk+1| = |bk|N1N2 .

Proof. Let V = AN1(Uk;⇡/N1), with the element b = V21 having the prop-
erty that |b| = |bk|N1 . Then we plug this into the next sequence and get
Uk+1 = AN2(V ;⇡/N2), and since AN1 preserves the unitary property we have
|bk+1| = |b|N2 = |bk|N1N2 . The only part remaining is to manipulate our sequences
slightly, since each angle has to be ✓ = ⇡

N1N2
. Here, let N = N1N2, and we can

write our sequence as

Uk+1 = AN2

✓
AN1

✓
Uk; ✓

N

N1

◆
; ✓

N

N2

◆
. (39)

Plugging in ✓ = ⇡/N yields our desired relation.

By generously applying this theorem, we can construct a prime factorization for
a sequence of any composite angle.

Corollary 1. Let pj be odd primes such that for all j = 1, . . . , `, there exists a
sequence such that Uk+1 = Apj (Uk;⇡/pj) converges as |bk+1| = |bk|pj . Then we
can compose these sequences together in any order and obtain a sequence Uk+1 =
AN (Uk; ✓), where N = p

m1
1 . . . p

m`
` and ✓ = ⇡

N , where mj are nonnegative integers.
This sequence converges as |bk+1| = |bk|N .

One way to write this formula is as follows, where A
m
p is to denote function

composition of Ap with itself m times (assume that the angle applied is the same
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every time):

U
(N)
k+1 = AN (Uk; ✓)

= A
m1
p1

✓
A

m2
p2

✓
. . .

✓
A

m`
p`

✓
Uk; ✓

N

p`

◆
. . .

◆
; ✓

N

p2

◆
; ✓

N

p1

◆
=) |bk+1| = |bk|N .

(40)
This corollary also has an interesting consequence: for any composite N , we can
construct additional sequences alongside the diagonalizing sequence given from the
definition that all converge as |bk+1| = |bk|N , implying that the diagonalizing se-
quence is not unique up to a phase angle.

Constructing in this manner allows for a simple method of producing sequences
for angles of composite N . In order to keep the same angle all the way through, you
take every instance of ✓ in either of the individual sequences and multiply by N/pj ,
that way you have a modified sequence that can converge for ✓ = ⇡/N instead of
⇡/p1. This is quite an abstract formulation, so an example helps.

Example 3. We can construct a sequence for N = 15 by using the first two
diagonalizing sequences:

Uk+1 = UkD1(✓3)U
�1
k D1(✓3)Uk

Uk+1 = UkD1(✓5)U
�1
k D2(✓5)UkD2(✓5)U

�1
k D1(✓5)Uk.

Our combined angle is ✓ = ⇡/15, so ✓3 = 5✓ and ✓5 = 3✓. We can take the compo-
sition we defined above, plugging the order 3 sequence into the order 5 sequence:

Vk(5✓) = UkD1(5✓)U
�1
k D1(5✓)Uk, V

�1
k = U

�1
k D

�1
1 (5✓)UkD

�1
1 (5✓)U�1

k .

Combining everything, we get (dropping (5✓) from Vk(5✓) for brevity)

Ũk+1 = VkD1(3✓)V
�1
k D2(3✓)VkD2(3✓)V

�1
k D1(3✓)Vk.

If we plug in ✓ = ⇡/15, we get exactly what we want: |bk+1| = |bk|15. There is
another interesting property of this sequence: it is not equivalent to the conjec-
tured diagonalizing sequence for n = 15 up to a factor, despite having the same
convergence rate. The conjectured formulation we have used throughout the paper
applies multiples of angles m✓ for m = 1, . . . , n, whereas this example consists of
applied angles 3✓ and 5✓. Despite yielding more or less the same end result, the
process by which the sequences do so is di↵erent.

7. Conclusion

We have provided several results on the nature of these families of diagonalizing
sequences, although a few remain to be shown. This paper primarily concerned
itself with the critical angles for the sequence for optimal convergence, not the
analysis of the behavior in a neighborhood of the angle. Establishing bounds on
convergence rates for any ✓ 2 (0,⇡/2) would be helpful for implementation. Also,
these diagonalizing sequences are also being proposed as the optimal algorithm for
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demonstrating the conjectured convergence rate, but there are likely sequences of
this form which converge globally but not optimally. One possible example is given
by replacing every diagonal matrix with D(✓) = diag(1, ei✓), which appears to still
guarantee convergence for any input matrix, just not optimally.

Some mathematical details to the nature of these sequences are needed. In
particular, the identity in Conjecture 2 is a very complicated result to show, one
that to our knowledge has never been proven. A good mathematical explanation
as to why these identities simplify is needed. In addition, the prime factorization
argument we provided disproves uniqueness of roots �jl for composite angles, but
it is still unknown for prime angles ⇡/p. If it is unique, then what is special about
those roots?

Variants of this scheme can likely be applied for arbitrary states |si and |ti,
providing an e�cient subroutine for a variety of algorithms with minimal usage of
gates.
Acknowledgments. S.X.C is partially supported by NSF CCF 2006667, ARO
MURI, and Quantum Science Center (DOE).

Appendix A. Trigonometric Identities

Here are all of the trigonometric identities used, as well as a proof since most of
them are not commonly used.

Lemma 1. For ✓ = ⇡/ (2n+ 1), 8n 2 N,
nX

k=0

(�1)k cos(k✓) =
1

2
. (A.1)

Proof. We can convert this sum into a well-known identity:

nX

k=0

(�1)k cos(k✓) =
nX

k=0

cos(k(✓ + ⇡)) =
sin((n+ 1)(✓ + ⇡)/2)

sin((✓ + ⇡)/2)
cos(n(✓ + ⇡)/2).

✓ + ⇡ = (2n + 2)⇡/(2n + 1), and using the well known trigonometric identity
2 sin ✓ cos' = sin(✓ + ') + sin(✓ � ') we obtain

=
sin
⇣

(n+1)2

2n+1 ⇡

⌘

sin
⇣

n+1
2n+1⇡

⌘ cos

✓
n
2 + n

2n+ 1
⇡

◆

=
1

2 sin
⇣

n+1
2n+1⇡

⌘

sin

✓
2n2 + 3n+ 1

2n+ 1
⇡

◆
+ sin

✓
n+ 1

2n+ 1
⇡

◆�

=
1

2 sin
⇣

n+1
2n+1⇡

⌘

sin

✓
(2n+ 1)(n+ 1)

2n+ 1
⇡

◆
+ sin

✓
n+ 1

2n+ 1
⇡

◆�
=

1

2
.
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Lemma 2. For n 2 N:
nY

k=1

sin

✓
(2k � 1)⇡

4n+ 2

◆
=

1

2n
. (A.2)

Proof. To prove this last step, we transform the product as

nY

k=1

sin

✓
(2k � 1)⇡

4n+ 2

◆
=

nY

k=1

cos

✓
⇡

2
� (2k � 1)⇡

4n+ 2

◆

=
nY

k=1

cos

✓
(n+ 1� k)⇡

2n+ 1

◆
=

nY

k=1

cos

✓
k⇡

2n+ 1

◆
⌘ P.

Multiply by the sine counterpart:

Q ⌘
nY

k=1

sin

✓
k⇡

2n+ 1

◆
,

P ·Q =
nY

k=1

cos

✓
k⇡

2n+ 1

◆
sin

✓
k⇡

2n+ 1

◆
=

nY

k=1

1

2
sin

✓
2k⇡

2n+ 1

◆

=
1

2n

Y

kn
2

sin

✓
2k⇡

2n+ 1

◆ Y

k>n
2

sin

✓
2k⇡

2n+ 1

◆

=
1

2n

Y

kn
2

sin

✓
2k⇡

2n+ 1

◆ Y

k>n
2

sin

✓
(2n+ 1� 2k)⇡

2n+ 1

◆
.

The first product covers every even numbered index, and the second handles all of
the odd numbered cases, and so this reduces to

=
1

2n

nY

k=1

sin

✓
k⇡

2n+ 1

◆
=

1

2n
Q

=) P ·Q =
1

2n
Q =) P =

nY

k=1

cos

✓
k⇡

2n+ 1

◆
=

1

2n
.

Lemma 3. For ✓ = ⇡/ (2n+ 1), 8n 2 N,
nY

k=1

�
2 cos(k✓) + 2(�1)k

�
= (�1)

n(n+1)
2 . (A.3)

Proof. This statement is equivalent to saying that for m � 0, if n = 2m or 2m+1,
we have

2mY

k=1

�
2 cos(k✓) + 2(�1)k

�
= (�1)m,

2m+1Y

k=1

�
2 cos(k✓) + 2(�1)k

�
= (�1)m+1

.
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For n = 2m, we can split this product using 2 sin2(✓/2) = 1 � cos(✓) and
2 cos2(✓/2) = 1 + cos(✓):

2mY

k=1

�
2 cos(k✓) + 2(�1)k

�
=

mY

k=1

(2 cos ((2k � 1) ✓)� 2) (2 cos (2k✓) + 2)

=
mY

k=1

�16 sin2
✓
(2k � 1)✓

2

◆
cos2 (k✓) = 24m(�1)m

mY

k=1

sin2
✓
(2k � 1)✓

2

◆
cos2 (k✓) .

It remains to just prove that

1

22m
=

mY

k=1

sin

✓
(2k � 1)✓

2

◆
cos (k✓) =

mY

k=1

sin

✓
(2k � 1)⇡

8m+ 2

◆
cos

✓
k⇡

4m+ 1

◆

=
mY

k=1

sin

✓
(2k � 1)⇡

8m+ 2

◆
sin

✓
(4m+ 1� 2k)⇡

8m+ 2

◆
.

Reversing the product order for the second sine, we get that we can combine the
products as

=
2mY

k=1

sin

✓
(2k � 1)⇡

8m+ 2

◆
=

nY

k=1

sin

✓
(2k � 1)⇡

4n+ 2

◆
=

1

2n
=

1

22m
.

As for the odd case, it is much of the same setup:

2m+1Y

k=1

�
2 cos(k✓) + 2(�1)k

�
=

m+1Y

k=1

(2 cos((2k � 1)✓)� 2)
mY

k=1

(2 cos(2k✓) + 2)

= 24m+2(�1)m+1
m+1Y

k=1

sin2
✓
(2k � 1)✓

2

◆ mY

k=1

cos2 (k✓) .

It remains to prove that

1

22m+1
=

m+1Y

k=1

sin

✓
(2k � 1)✓

2

◆ mY

k=1

cos (k✓) =
m+1Y

k=1

sin

✓
(2k � 1)⇡

8m+ 6

◆ mY

k=1

cos

✓
k⇡

4m+ 3

◆

=
m+1Y

k=1

sin

✓
(2k � 1)⇡

8m+ 6

◆ mY

k=1

sin

✓
(4m+ 3� 2k)⇡

8m+ 6

◆
.

Again, reversing the product order in the second product allows us to combine these
together:

=
2m+1Y

k=1

sin

✓
(2k � 1)⇡

8m+ 6

◆
=

nY

k=1

sin

✓
(2k � 1)⇡

4n+ 2

◆
=

1

2n
=

1

22m+1
.
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Appendix B. Explicit Calculations For n=1,2,3.

Here is a reference for the explicitly calculated forms for ↵(n)
j and �

(n)
j for n = 1, 2, 3.

For order 1 we have the coe�cients

↵
(1)
0 = �

2
10, �

(1)
0 = �10�11, ↵

(1)
1 = �

(1)
1 = (�10 � �11)

2
.

For order 2 we have the coe�cients

↵
(2)
0 = �

2
10�

2
20, �

(2)
0 = �10�11�20�21, ↵

(2)
2 = �

(2)
2 = (�10 � �11)

2(�20 � �21)
2
,

↵
(2)
1 = (�10�20 � �11�21)

2 � �
2
11(�20 � �21)

2
,

�
(2)
1 = (�10�20 � �11�21)

2 � �10�11(�20 � �21)
2
.

In order 3 we have the coe�cients

↵
(3)
0 = �

2
10�

2
20�

2
30, �

(3)
0 = �10�11�20�21�30�31,

↵
(3)
3 = �

(3)
3 = (�10 � �11)

2(�20 � �21)
2(�30 � �31)

2
,

↵
(3)
1 = (�10�20�30��11�21�31)

2��10�11(�20�30��21�31)
2+�10�11�20�21(�30��31)

2
,

�
(3)
1 = (�10�20�30��11�21�31)

2��10�11(�20�30��21�31)
2+�10�11�20�21(�30��31)

2
.

↵
(3)
2 =(�11 � �10)

2(�20�30 � �21�31)
2 � (�11�20 � �10�21)

2(�30 � �31)
2

+ �
2
10(�20 � �21)

2(�30 � �31)
2
,

�
(3)
2 =(�11 � �10)

2(�20�30 � �21�31)
2 � (�11�20 � �10�21)

2(�30 � �31)
2

+ �10�11(�20 � �21)
2(�30 � �31)

2
.
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