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Chemical reduction behavior of the indenyl-fused corannulene bowl, monoindenocorannulene (1), was inves-
tigated using two alkali metals with different binding abilities, namely Na and Rb. The sodium-induced reaction
in THF in the presence of 18-crown-6 ether afforded a solvent-separated ion product, [Na*(18-crown-6)
(THF),]2[1%7]-THF (2-THF), which enabled structural evaluation of the “naked” dianion. The controlled addition
of the secondary ligand in rubidium-induced reduction reactions allowed modulation of metal coordination and
solid-state packing of the doubly-reduced indenocorannulene. Two products with different topologies and metal
ion binding, [Rb*(18-crown-6)]5[12"]-THF (3-THF) and [Rb"(18-crown-6)][Rb"(18-crown-6)os][12~]-4THF
(4-4THF), were isolated and characterized crystallographically. A direct comparison of 1 and 12~ using DFT
calculation methods provided insights into consequences of two-fold reduction. The significant change in
aromaticity was revealed by NICS calculations, while ACID plots showed a good agreement between the negative

charge distribution patterns and the observed metal ion binding sites.

1. Introduction

The discovery of the Cgo-fullerene [1] opened up a plethora of in-
vestigations into larger fullerenes [2-4], fullerene derivatives [5-8] and
fullerene-based materials [9-13], followed by a range of practical ap-
plications, including energy storage, superconductivity, sensing, etc.
[14-18]. Rich redox chemistry of fullerenes revealed by electrochemical
reduction [19-22] triggered extensive explorations of alkali-metal based
products and their applications, including optical response, hydrogen
storage, and superconductivity [23-26]. The M3Cgo (M =K, Rb, and Cs)
products showed superior performance and potential as nontoxic and
recyclable superconductors [27-30]. This discovery sparked special in-
terest in exploration of bowl-shaped fragments of fullerenes, also
referred to as buckybowls, carbon or z-bowls [31-34]. Buckybowls not
only exhibit multi-step reduction properties but also provide easy access
to open concave and convex faces [35-37]. Charging z-bowls with
additional electrons generates a series of bowl-shaped anions with
enhanced metal binding abilities. The smallest bowl-shaped cor-
annulene (CgoH; 0, Scheme 1), with the doubly degenerate LUMO, is able
to accept up to four electrons [38,39]. The chemical reduction of cor-
annulene was explored with all Group 1 metals, and products of all four
reduction states were isolated and fully characterized [40]. The X-ray
diffraction analysis revealed pronounced charge-dependent alkali metal
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binding preferences [41-43], reduction induced o-dimerization [44], as
well as remarkable sandwich-type self-assemblies [45,46]. The very rich
reduction and coordination chemistry of corannulene stimulated broad
investigations of redox properties of bowl-shaped polycyclic aromatic
hydrocarbons (PAHs) having different sizes, symmetry, and depth [47].

In 2018, the redox properties of a 7-expanded corannulene deriva-
tive, naphthocorannulene (CogH14, Scheme 1), were tested with Na and
Rb metals to reveal an ease of two-electron acceptance [48]. While
incorporation of planar naphthalene group decreased the depth of the
corannulene core, fusion of additional 5-membered rings further
increased the core curvature, as illustrated by the whole family of
indenocorannulenes [49]. The first member of this family, the
monoindeno-fused bowl, indenocorannulene (CygHpz, 1), exhibits a
bowl depth increase at the corannulene core to 1.065 A from 0.875 A in
corannulene [49]. The synthesis of 1 was first reported back in 1996, but
the harsh reaction conditions led to a low yield and generation of
by-products [50]. In 2003, the large-scale synthesis of 1 was developed
using improved Suzuki-Heck coupling from monobromo-substituted
corannulene [51]. The in situ chemical reduction of 1 with Li and K
metals followed by NMR spectroscopy revealed fascinating
dimerization/bond-cleavage processes for mono- and triply-reduced
indenocorannulene [52]. In 2020, the first product of the
mono-reduced 1°~ radical-anion was isolated as the thermodynamically
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Scheme 1. Depictions of corannulene, naphthocorannulene, and mono-
indenocorannulene (1) with their bowl depths.

stable dimer, [{Rb+(18—crown—6)}2(C26H12—C25H12)2_]~4THF [53],
illustrating the role of curvature and strain on radical coupling processes
of non-planar PAHSs. Despite the revealed rich redox [52,53] and inter-
esting coordination properties of indenocorannulene [54], no other
reduction states of 1 have been isolated and crystallographically
characterized.

Herein, we carried out chemical reduction of 1 with two alkali
metals, Na and Rb, and isolated three new products of the doubly-
reduced indenocorannulene. All products were fully characterized
with single crystal X-ray diffraction, NMR and UV-Vis spectroscopic
tools. The insights into their electronic structures and aromaticity were
obtained with the help of DFT calculations.

2. Chemical reduction of 1 and crystallographic study

Chemical reduction of 1 was investigated with sodium and rubidium
metals in THF in the presence of 18-crown-6 ether under argon atmo-
sphere at room temperature. Starting from the initial light-yellow color,
the reaction mixtures quickly changed to dark brown, followed by dark
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Fig. 1. UV-Vis absorption spectra of 1-4 in THF.
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green with sodium metal and dark purple color with rubidium metal
(Fig. 1, see ESI for more details).

Limited reaction time and controlled amount of a secondary ligand,
18-crown-6 ether, contributed to the preparation of the doubly-reduced
indenocorannulene products with both metals (Scheme 2). Slow diffu-
sion of anhydrous hexanes into the THF filtrates allowed the isolation of
good quality single crystals in moderate yields. Their X-ray diffraction
characterization revealed the formation of the doubly-reduced anions
crystallized with the corresponding alkali metal countercations, namely
[Na'(18-crown-6)(THF),]2[1>"]-THF ~ (2-THF),  [Rb'(18-crown-
6)]2[12’]-THF (3-THF) and [Rb'(18-crown-6)][Rb™(18-crown-6)g5]
[1%7]-4THF (4-4THF).

In the crystal structure of 2, each Na'-ion wrapped by an axial 18-
crown-6 molecule and two capped THF molecules remains solvent-
separated from the 12~ anion (Fig. 2). Similar sodium-based com-
pounds were also reported for corannulene and naphthocorannulene
[55,48]. The isolation of the “naked” dianion in 2 enables the evaluation
of the bowl core deformation upon addition of two electrons but without
direct alkali metal binding influence (vide infra). The Na:--Ocrown dis-
tances (2.574(2)-2.884(2) /o\) and Na---Otyr distances (2.259(3)-2.414
) f\) are close to the reported values [48,56,57]. In the solid-state
structure of 2, the C-H.--x interactions between one 12~ core and five
surrounding counterions contribute to the 1D column packing (Fig.
S11). The interstitial THF molecules fill the space between the adjacent
columns without any notable interactions.

In the crystal structure of 3 (Fig. 3), Rbl is r]s—coordinated to the 5-
membered ring of the indenyl group from the convex side of the bowl,
with the Rb---C distances of 3.147(2)-3.300(2) A. Additionally, Rb2
shows an endo-7® binding to the 6-membered ring of the same indenyl
group, with the Rb---C distances ranging from 3.221(2) to 3.389(2) A.
Both Rb*-ions are capped by 18-crown-6 ether with the Rb1--Ocrown
distances of 2.815(1)-3.079(1) A and Rb2---O¢rown distances of 2.841
(1)-3.097(2) A. All Rb---C distances and Rb---O distances are consistent

Fig. 2. Crystal structure of 2, ball-and-stick model. The H-atoms are omitted
for clarity.

[Na*(18-crown-6)(THF),1,[12- THF (2'THF)

2 eq. 18-crown-6 Yield = 50 %
“ Rb [Rb*(18-crown-6)],[12-] THF (3-THF)
O'O 2 eq. 18-crown-6 Yield = 45 %

Rb, 1 eq. 18-crown-6

30 minutes

CZGH12 (1)

[Rb*(18-crown-6)][Rb*(18-crown-6), 5|[12-]4THF (4-4THF)
Yield = 42 %

Scheme 2. Chemical reduction of 1 to afford 2-4.
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Fig. 3. Crystal structure of 3, (a) ball-and-stick (H-atoms are omitted for clarity), (b) space-filling, and (c) mixed models.

with the values previously reported [48,53,58]. In the solid-state
structure of 3, the C-H---r interactions between the 18-crown-6 mole-
cules and 1%~ core enable the formation of extended 2D layers (Fig.
$12). The interstitial THF molecules fill the voids between the adjacent
layers without notable interactions.

The insufficient amount of 18-crown-6 ether in the Rb-induced
reduction of 1 led to the formation of a centrosymmetric tetranuclear
complex 4 (Fig. 4). Similar aggregation was reported for the doubly-
reduced indacenopicene, a constitutional isomer of 1, crystallized with
Rb* counterions wrapped by 18-crown-6 [59]. In the crystal structure of
4, Rb1 is placed inside the corannulene bowl and exhibits asymmetric
coordination to the central five-membered ring and two six-membered
rings (ring A and D) of 1%~, with the Rb---C distances of 3.144(2)-
3.618(2) A. The two central Rbl ions share one 18-crown-6 ether
molecule (Rb---O¢rown, 2.932(2)-3.118(2) f\), thus forming a tetranu-
clear unit capped by two external Rb2 ions. The outer Rb2 is exo-°
bound to the 5-membered ring of the indenyl group (Rb---C, 3.241(2)-
3.424(2) A) and is also capped by 18-crown-6 ether (Rb---Ocrown, 2.835
(1)-3.011(1) A).

In the solid-state structure of 4, the C-H---x interactions are found
between the terminal 18-crown-6 ether molecule and the adjacent 12~
core. As a result, an extended 2D “fishing net” structure is formed, where
the interstitial THF molecules fill the voids as a caught “fish” without
any secondary interactions (Fig. 5).

3. Deformation analysis of indenocorannulene

In comparison to the neutral parent 1 [49], the addition of two
electrons results in the elongation of the C-C bonds of the corannulene
core with a complementary reduction of the C-C bonds of the indenyl
group. This is also accompanied by the bowl depth decrease in all three
dianions (Table 1). Compared to the “naked” dianion in 2 (1.013(4) A),
the direct metal coordination increases the bowl depth to 1.056(3) Ain3
and 1.027(4) Ain 4, with similar effect observed in the doubly-reduced
naphthocorannulene [48]. As expected, when two Rb™ ions bind the
indenyl group from opposite directions in 3, the changes of the indenyl
C-C bonds were less pronounced compared to those in 4, but the bowl
depth increase was more notable in 3. Besides, notable bond length
alternation is observed for the five-membered ring of the indenyl group,
with significant decrease of bond e (avg. 1.438 A in the dianions vs.
1.492 A in 1) and elongation of bond g (avg. 1.482 A in the dianions vs.
1.430 A in 1, Table 1). A similar trend was observed for the
doubly-reduced phenylenetetracene generated with rubidium and ce-
sium metals used as the reducing agents [60]. Additionally, the bond
distance alternation is also observed for bond h (avg. 1.453 A in the
dianions vs. 1.379 A in 1) and i (avg. 1.408 A in the dianions vs. 1.458 A
in 1). Notably, the C16 center between bond h and i is the position of
o-dimerization in the mono-reduced product [53].

Fig. 4. Crystal structure of 4, (a) ball-and-stick (H-atoms are omitted for clarity), (b) space-filling, and (c) mixed models.
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Fig. 5. (a) 2D layer packing of 4, space-filling model. The different cationic moieties are shown in different shades of orange. The interstitial THF molecules are
shown in green. (b) C-H---r interactions (2.497(3)/2.731(3) A) in 4, capped-stick model. The interstitial THF molecules are omitted for clarity.

Table 1

Selected distances (A) and angles (°) in 1 and 12" in 2-4, along with a labeling scheme.

1[49] 3 4
Hub () 1.404(4)-1.424(4) 1.398(3)-1.435(4) 1.409(3)-1.445(3) 1.404(3)-1.433(3)
Spoke (b) 1.356(4)-1.397(4) 1.367(3)-1.423(4) 1.372(3)-1.430(3) 1.374(3)-1.435(3)
Flank (c) 1.429(3)-1.460(3) 1.408(4)-1.462(4) 1.405(3)-1.467(3) 1.402(3)-1.474(3)
Rim (d) 1.372(4)-1.385(4) 1.371(4)-1.450(3) 1.377(3)-1.458(2) 1.369(3)-1.459(3)
e 1.486(4)/1.498(4) 1.435(3)/1.436(3) 1.437(3)/1.439(3) 1.437(3)/1.447(3)
Ring F () 1.383(4)-1.398(4) 1.377(4)-1.411(4) 1.384(3)-1.420(3) 1.376(3)-1.415(4)
g 1.430(4) 1.482(3) 1.487(2) 1.478(3)

Bowl depth 1.065(4) 1.013(4) 1.056(3) 1.027(4)

A/F 34.1(4) 36.5(6) 39.3(1) 40.2(2)

4. Computational investigation

In order to better understand the geometric and aromaticity changes
stemming from a two-electron acquisition process, theoretical compu-
tation study was performed for neutral parent 1 and “naked” dianion
127, The geometries were optimized using the B3LYP [61-64] function
with def2-TZVP [65-69] basis set. The good match between the opti-
mized structures and corresponding crystal structures justifies the ade-
quacy of the selected functional (Table S6).

From the molecular electrostatic potential (MEP) maps of 1 (Fig. 6),
two separate electron localization areas can be seen for the corannulene
core and the indenyl group. As expected, the dianion has an overall
enhanced electronic density which is localized at the center of the whole
molecule (rings A, D, and E). This negative charge localization is in good
agreement with the Rb™ ion coordination found in 4. The optimized
structure of Rby-12~ showing the preferred binding sites for Rb* ions
also agrees well with the experimentally observed coordination in 4
(Fig. S13). In 3, the metal coordination to the indenyl group was found
less energetically favored, but it can be stabilized by the addition of two
equivalents of 18-crown-6 ether.

The change in aromaticity was further analyzed with the magnetic
nuclear independent chemical shift (NICS) calculations. The NICS(0)

values were calculated for natural aromaticity, while the NICS(1/—1)
values were calculated to reduce the influence of o-contamination and to
illustrate the difference between the concave and convex surfaces (Fig.
S14). Like corannulene and its derivatives, the neutral 1 also shows
antiaromaticity of the central five-membered ring in the corannulene
core but it is more pronounced (15.77 ppm in 1 vs. 9.22 ppm in cor-
annulene and 8.76 ppm in naphthocorannulene) [48]. The positive NICS
(0) value for the five-membered ring E also reveals the lack of shared
n-electrons between the corannulene core and indenyl group, further
supporting the co-existence of two electron density areas in the MEP
maps. Compared to the NICS(1) values, the overall larger NICS(—1)
values reveal the higher r-electron density over the concave surface
(Fig. 7a).

In the 12~ anion, the aromaticity pattern is significantly different
from the neutral parent. For the corannulene core, the central five-
membered ring changes from antiaromatic to highly aromatic, and the
outer six-membered rings change from aromatic to non-aromatic or even
antiaromatic. On the other hand, the whole indenyl group becomes
highly aromatic with large NICS values (Fig. 7b). This large diamagnetic
ring current also generates severe deshielding of the indenyl group
protons and leads to a large downfield shift, consistent with the reported
'H NMR results for the dianionic species [52]. The large increase of
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concave convex

Fig. 6. MEP maps for (a) 1 and (b) 12~. The electron density is plotted at an isosurface value of 0.0004.

Fig. 7. Calculated NICS(0) values and ACID plots for (a) 1 and (b) 12~. The diatropic ring currents are highlighted in red and the paratropic ring currents are

highlighted in blue.

aromaticity in rings A, E, and F enables stronger cation---z interactions,
which is consistent with the observations in crystal structures of 3 and 4.
The anisotropy of the induced current (ACID) plots for 1 and 12~ shows
good agreement to the calculated NICS values (Fig. 7). Moreover, the
ring current difference between the concave and convex sides also il-
lustrates the electron density difference from both directions (Fig. S15).

As a result of a two-electron addition to indenocorannulene core, the
absolute NICS values of two five-membered rings were largely
increased, revealing an elevated ring current density around these areas
in accord with the increased total electron density observed in the MEP
maps [70]. At the same time, although the ring current direction
changes were observed for six-membered rings in the corannulene core,
the current intensities remained comparable to the neutral 1.

5. Conclusion

In this work, the first products of the doubly-reduced indenocor-
annulene (1) were isolated and fully characterized. The use of two alkali
metals having different coordination preferences, Na and Rb, and the
adjustment of the metal-to-secondary-ligand ratio enabled the synthesis
and crystallization of three distinct products with variable topologies
and metal coordination patterns. This has allowed a detailed structural
comparison of the “naked” dianion 12~ in 2 ys. parent 1 followed by the
analysis of direct metal ion binding effects in 3 and 4. In 3, the steric
effects and intramolecular C-H---z interactions involving 18-crown-6
supported the Rb* ion coordination to the indenyl group. In 4, the
insufficient amount of the secondary ligand led to a share of 18-crown-6
by two Rb" ions and that facilitated the engagement of the corannulene
core in metal binding. With the help of theoretical calculations, the ef-
fect of two-electron addition to 1 on molecular structure, electron dis-
tribution, and aromaticity was evaluated. The MEP maps of 12~ showed
the electron density localization over the central part of the carbon
framework which is in accord with the preferred Rb" ion binding sites
confirmed crystallographically. These results fill the gap in literature
regarding the structure and alkali metal coordination of the doubly-

reduced indenocorannulene and should contribute to exploration and
utilization of other curved 7-expanded carbon systems in organometallic
chemistry.

6. Experimental part
6.1. Materials and methods

All manipulations were carried out using break-and-seal and glove-
box techniques under an atmosphere of argon [71]. Tetrahydrofuran
(THF) and hexanes (Sigma Aldrich) were dried over Na/benzophenone
and distilled prior to use. Tetrahydrofuran-dg (>99.5 atom%D, Sigma
Aldrich) was dried over NaK; alloy and vacuum-transferred. Sodium
(99.9%), rubidium (99.5%), and 18-crown-6 ether (99%) were pur-
chased from Sigma Aldrich and used as received. CocHy2 (1) was pre-
pared according to the previously reported procedures [51] and
sublimed at 190 °C prior to use. The UV-Vis absorption spectra were
recorded on a Shimadzu UV-2600i UV-Vis spectrophotometer. The 'H
NMR spectra were recorded on a Bruker Ascend-500 spectrometer (500
MHz for 1H). Chemical shifts (5) are reported in parts per million (ppm)
and referenced to the resonances of the corresponding solvent used. The
extreme air- and moisture sensitivity of crystals 2-4, along with the
presence of loosely-bound and interstitial THF molecules, prevented
obtaining elemental analysis data.

6.2. [Na*(18-crown-6)(THF)2]2[CasH37]-THF (2-THF)

THF (2.0 mL) was added to a customized glass system containing
excess Na metal (3.0 mg, 0.130 mmol), 18-crown-6 ether (8 mg, 0.033
mmol) and 1 (5 mg, 0.015 mmol). The reaction mixture was stirred at
25 °C under argon for 24 h. The initial yellow color (neutral ligand) has
changed to dark brown in 25 min, followed by dark green in 50 min and
remained the same color until the reaction was stopped. The mixture
was filtered after 24 h, and the green filtrate was layered with 1.5 mL of
anhydrous hexanes. The ampule was sealed under argon and stored at 5
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°C. After 7 days, black needle-shaped crystals deposited in the ampule.
Yield: 10 mg, 50%. UV-Vis (THF): Amax 445, 604 nm. 'H NMR (THF-dg,
ppm, 25 °C): § = 4.90 (2H, 127), 5.27-5.29 (2H, 127), 5.51 (2H, 127),
5.61-5.63 (2H, 127), 6.76-6.77 (2H, 127), 7.78-7.80 (2H, 127).

6.3. [Rb"(18-crown-6)],[C2H32]-THF (3-THF)

THF (2.0 mL) was added to a customized glass system containing
excess Rb metal (3.0 mg, 0.035 mmol), 18-crown-6 ether (8 mg, 0.033
mmol) and 1 (5 mg, 0.015 mmol). The reaction mixture was stirred at
25 °C under argon for 1 h. The initial yellow color (neutral ligand) has
changed to dark brown in 5 min, followed by greenish purple in 15 min
and remained the same color until the reaction was stopped. The
mixture was filtered after 1 h, and the purple filtrate was layered with
1.5 mL of anhydrous hexanes. The ampule was sealed under argon and
stored at 5 °C. After 7 days, black block-shaped crystals formed in the
ampule. Yield: 8 mg, 45%. UV-Vis (THF): Amax 449, 590 nm. 'H NMR
(THF-dg, ppm, 25 °C): § = 5.46 (2H, 127), 5.57 (2H, 127), 5.71-5.73
(2H, 127), 5.85-5.87 (2H, 1%7), 6.86-6.88 (2H, 1>7), 7.92-7.94 (2H,
1°7).

6.4. [Rb"(18-crown-6)][Rb™(18-crown-6)¢s][1 2-1.4THF (4-4THF)

THF (2.0 mL) was added to a customized glass system containing
excess Rb metal (3.0 mg, 0.035 mmol), 18-crown-6 ether (4 mg, 0.016
mmol) and 1 (5 mg, 0.015 mmol). The reaction mixture was stirred at
25 °C under argon for 30 min. The initial yellow color (neutral ligand)
has changed to dark brown in 5 min, followed by dark purple in 10 min
and remained the same color until the reaction was stopped. The
mixture was filtered after 30 min, and the purple filtrate was layered
with 1.5 mL of anhydrous hexanes. The ampule was sealed under argon
and stored at 5 °C. After 7 days, purple block-shaped crystals deposited
in the ampule. Yield: 7 mg, 42%. UV-Vis (THF): Apax 449, 590 nm. 'H
NMR (THF-dg, ppm, 25 °C): § = 5.46 (2H, 127), 5.57 (2H, 127),
5.71-5.73 (2H, 1?7), 5.85-5.87 (2H, 127), 6.86-6.88 (2H, 127),
7.92-7.94 (2H, 127).

6.5. Crystal structure determinations and refinement of 2—4

Single crystals of 2 — 4 were mounted on a MiTeGen 20 ym sample
aperture and cooled to 100(2) K using an Oxford Instruments Cryojet
cryostat. Data collections were performed on a Bruker D8 VENTURE X-
ray diffractometer with a PHOTON 100 CMOS shutterless mode detector
equipped with a Mo-target X-ray tube (1 = 0.71073 A) and a Cu-target X-
ray tube (A = 1.54178 /o\). Diffraction data were collected with frames of
0.5° using w and ¢ scans. Data reduction and integration were per-
formed with the Bruker software package SAINT (version 8.38A) [72].
All data were corrected for absorption effects using the empirical
methods as implemented in SADABS (version 2016/2) [73]. The struc-
tures were solved by SHELXT (version 2018/2) [74] and refined by
full-matrix least-squares procedures using the Bruker SHELXTL (version
2019/2) [75] software package through the OLEX2 [76] graphical
interface. All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms were included at calculated positions and refined as
riders with Ujso(H) = 1.2 Ueq(C). In 2, all five THF and two 18-crown-6
ether molecules were found to be disordered. In 4, two THF molecules
were disordered. All disordered molecules were modeled with two ori-
entations with their relative occupancies refined. The geometries of the
disordered parts were restrained to be similar. The anisotropic
displacement parameters of the disordered molecules were restrained to
have the same Uj; components, with a standard uncertainty of 0.01 A% 1n
3, the structure was refined as a 2-domain twin with a twin law of —1
0001000 —1 and the BASF value was refined to 0.166(3). Crystal-
lographic data and details of the data collection and structure refine-
ment are listed in Table S2.
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