
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04517-4
Commun. Math. Phys. 397, 1191–1235 (2023) Communications in

Mathematical
Physics

From Three Dimensional Manifolds to Modular Tensor
Categories

Shawn X. Cui1, Yang Qiu2, Zhenghan Wang3

1 Department ofMathematics and Department of Physics and Astronomy, Purdue University,West Lafayette,
IN 47906, USA

2 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
3 Microsoft Station Q and Dept. of Math., University of California, Santa Barbara, CA 93106, USA. E-mail:
zhenghwa@microsoft.com

Received: 14 February 2022 / Accepted: 22 August 2022
Published online: 10 November 2022 – © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: Using M-theory in physics, Cho et al. (JHEP 2020:115 (2020) recently out-
lined a program that connects two parallel subjects of three dimensional manifolds,
namely, geometric topology and quantum topology. They suggest that classical topo-
logical invariants such as Chern-Simons invariants of SL(2,C)-flat connections and
SL(2,C)-adjoint Reidemeister torsions of a three manifold can be packaged together
to produce a (2 + 1)-topological quantum field theory, which is essentially equivalent
to a modular tensor category. It is further conjectured that every modular tensor cate-
gory can be obtained from a three manifold and a semi-simple Lie group. In this paper,
we study this program mathematically, and provide strong support for the feasibility of
such a program. The program produces an algorithm to generate the potential modular
T -matrix and the quantum dimensions of a candidate modular data. The modular S-
matrix follows from essentially a trial-and-error procedure. We find premodular tensor
categories that realize candidate modular data constructed from Seifert fibered spaces
and torus bundles over the circle that reveal many subtleties in the program. We make
a number of improvements to the program based on our examples. Our main result is
a mathematical construction of the modular data of a premodular category from each
Seifert fibered space with three singular fibers and a family of torus bundles over the
circle with Thurston SOL geometry. The modular data of premodular categories from
Seifert fibered spaces can be realized using Temperley-Lieb-Jones categories and the
ones from torus bundles over the circle are related to metaplectic categories. We conjec-
ture that a resulting premodular category is modular if and only if the three manifold is a
Z2-homology sphere, and condensation of bosons in the resulting properly premodular
categories leads to either modular or super-modular tensor categories.
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1. Introduction

There are twoparallel universes in three dimensional topology for the last several decades
that do not intersect much: the classical Thurston world and the quantum Jones world.
One famous conjecture that hints a deep connection of the two worlds is the volume
conjecture. Recently M-theory in physics suggests another surprising different connec-
tion: classical topological invariants such as Chern-Simons invariants of SL(2,C)-flat
connections and SL(2,C)-adjoint Reidemeister torsions of a three manifold X can be
packaged together to produce a (2 + 1)-topological quantum field theory (TQFT) [4],
which is essentially equivalent to amodular tensor category [19]. It is further conjectured
in [4] that every modular tensor category can be obtained from a three manifold and a
semi-simple Lie group. In this paper, we study this programmathematically, and provide
strong support for such a program. The program as outlined in [4] produces an algorithm
to generate the potential modular T -matrix and the quantum dimensions of a candidate
modular data. The modular S-matrix follows from essentially a trial-and-error proce-
dure. We find premodular tensor categories that realize candidate modular data from
Seifert fibered spaces and torus bundles over the circle that reveal many subtleties in
the program. Our main result is a mathematical construction of the modular data of
a premodular category from each Seifert fibered space with three singular fibers and
some torus bundles over the circle with Thurston SOL geometry. The modular data of
the premodular categories from Seifert fibered spaces can be realized using Temperley-
Lieb-Jones categories and the ones from torus bundles over the circle are related to
metaplectic categories [9,20]. A more general study of the torus bundle case is in [6].
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We conjecture that the resulting premodular category is modular if and only if the three
manifold is a Z2-homology sphere, and condensation of bosons in the resulting properly
premodular categories leads to either modular or super-modular tensor categories.

The program from three manifolds to modular tensor categories is a far-reaching
progeny of the mysterious six-dimensional super-symmetric conformal field theories
(SCFTs) spawned by M-theory. Our strong support for the program indirectly provides
evidence for these 6d SCFTs. The dimension reduction or compactification of these 6d
SCFTs to 3d depends on a three manifold X , and in general the resulting theory T (X) is
a super-conformal field theory. When X is non-hyperbolic, it is argued in [4] that T (X)

flows to a TQFT in the infrared limit and super-symmetry is decoupled, thus we obtain
a (2+1)-TQFT labeled by X , hence a MTC BX . The program outlined in [4] centers
on an algorithm to produce the quantum dimensions and topological twists of a MTC,
and a trial-and-error algorithm for the modular S-matrix. The assumption on the three
manifolds X in [4] includes that X is non-hyperbolic and the SL(2,C) representation
variety of the fundamental group π1(X) consists of finitely many conjugacy classes
that all could be conjugated into either SU (2) or SL(2,R) subgroups of SL(2,C). Our
examples show that all but the non-hyperbolic assumption can be dropped. One subtlety
is that we need to use indecomposable reducible representations in our torus bundle over
the circle examples. We do not know whether or not MTCs could be constructed from
hyperbolic threemanifolds as the program aswe formulated in this paper ismore flexible.
The main difficulty for more examples lies in the explicit calculation of Chern-Simons
(CS) invariant and adjoint Reidemeister torsion of flat connections.

An SL(2,C)-representation of π1(X) is the same as a flat connection of the trivial
SL(2,C)-bundle. There are two well-known invariants for a flat connection: the Chern-
Simons (CS) invariant and the adjoint Reidemeister torsion. Each flat connection that
satisfies certain conditions would give rise to an anyon type and the Reidemeister torsion
is essentially the quantum dimension and the CS invariant is the conformal weight of
the anyon.

For each Seifert fibered spacewith three singular fibers, we define a potential modular
data inspired by the many examples in [4]. All those modular data can be realized
by premodular categories obtained as a Z2-graded product of Temperley-Lieb-Jones
categories. We expect that our results can be easily generalized to any number of the
singular fibers if the adjoint Reidemeister torsions of the SL(2,C)flat connections can be
calculated because the CS invariants in this case are known. It is not clear if there are new
MTCs among our examples. Going beyond Seifert fibered spaces, we analyze some torus
bundles over the circle and identify the resulting premodular categories as the integral
subcategories of SO(N )2 for odd N . An important observation for the connection to
Temperley-Lieb-Jones categories for Seifert fibered spaces is a relation between the
slope of a singular fiber and the order of the Kauffman variable A in Temperley-Lieb-
Jones theories [20]. Essentially the slope of a singular fiber determines a root of unity
A, which allows us to realize all the candidate modular data from Seifert fibered spaces
with three singular fibers.

The content of the paper is as follows. In Sect. 2, we outline our version of the program
taking into account the many subtleties that we encountered in our examples. We also
recall the definition of CS invariant and adjoint Reidemeister torsion, and collect some
known results of CS invariants of Seifert fibered spaces. In Sect. 3, we study the Seifert
fibered spaces and carry out the necessary calculations of CS and torsion invariants for
our examples, and do the same for torus bundles over the circle in Sect. 4. Finally, in
Sect. 5, we discuss some future directions and open questions.
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2. A Program from 3-Manifolds to Modular Categories

The proposed program in [4] from three manifolds to MTCs came from physics, and
the paper provides an algorithm to produce the potential modular T -matrix and all
quantum dimensions of a candidate modular data from irreducible representations of
the fundamental groups of three manifolds to SL(2,C). Our results in Sects. 3 and 4
that realize candidate modular data from Seifert fibered spaces and torus bundles over
the circle reveal many subtleties in the program as outlined in [4]. In this section, we
follow the overall program of [4] and make a number of improvements to reformulate
mathematically the construction of candidate modular data from three manifolds taking
into account these new subtleties.

2.1. Representation and character variety. Suppose X is an orientable connected closed
3-manifold and G is a semi-simple Lie group. The set of representations of the funda-
mental group π1(X)1 to G consists of all group homomorphisms from π1(X) to G,
denoted by Hom(π1(X),G), up to conjugation. The representation varietyR(X,G) of
π1(X) to G is simply Hom(π1(X),G)//G—equivalence classes of representations up
to conjugation.

In this paper, we will mainly consider the case G = SL(2,C) and its higher di-
mensional irreducible representations Sym j of dimension j + 1. Given such a repre-
sentation ρ : π1(X) → SL(n,C), its character is the function on π1(X) given by
χρ(x) = Tr(ρ(x)) for x ∈ π1(X). The character variety χ(X,SL(n,C)) of X con-
sists of all such character functions. We will also denote the representation variety
R(X,SL(2,C)) and character variety χ(X,SL(2,C)) simply as R(X) and χ(X). In
this paper, the topology of the spaces of the representation and character varieties is not
important.

There are three obvious nontrivial automorphisms of SL(2,C) by sending an element
g ∈ SL(2,C) to its complex conjuagte g∗, its transpose followed by inverse (gt )−1,
and the composition (g†)−1 of the previous two operations. For each representation of
π1(X) to SL(2,C), post-composing with one of the three automorphisms of SL(2,C)

gives rise to another representation, hence representations in R(X) come in group of
four in general. Another obvious way to change a representation ρ in R(X,G) is to
tensor ρ with a representation of π1(X) to the center Z(G) of G. Representations of
π1(X) to the center Z(G) are in one-one correspondence with cohomology classes in
the cohomology group H1(X, Z(G)).

2.2. Non-hyperbolic three manifolds. The proposed program in [4] and in this section is
to producemodular tensor categories (MTCs) from closed threemanifolds and show that
each MTC can be obtained from at least one three manifold. It is known that different
three manifolds can lead to the same MTC. As suggested in [4], we will focus on non-
hyperbolic three manifolds. There are seven non-hyperbolic geometries and six can be
realized by Seifert fibered three manifolds with the exception SOL [17]. The geometry
S
2 × R is not useful for our purpose as we need representations from the fundamental

group to SL(2,C) with non-Abelian images. We will mainly consider Seifert fibered
spaces in this paper, but in Sect. 4, we will also study torus bundles over the circle with
SOL geometry and more subtleties arise.

1 We omit the irrelevant base point.
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Fig. 1. Surgery link of Seifert fibered space with base S2

Seifert fibered three manifolds X are those that can be foliated into disjoint union
of circles and are completely enumerated [16]. In this paper, all our three manifolds
are orientable, and we will denote the Seifert fibered spaces (SFSs) by the notation
X = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)} as explainedbelow.Thequotient space
of a SFS X , called the base orbifold B, by sending each circle, called a fiber, to a point
is a topological surface. The symbol (o, g) means that the base topological surface B is
an orientable closed surface of genus g.

Each fiber has a product neighbourhood D2×S1 in the SFS X except n singular fibers
labeled by (pi , qi ), i = 1, · · · , n. The neighborhood of the i-th singular fiber is obtained
from D2 × [0, 1] by identifying the point (x, 0), x ∈ D2 with the point (rai ,pi (x), 1),
where rai ,pi is the rotation of the disk D2 by the angle 2πai/pi , where ai ∈ Z satisfies
aiqi = 1 mod pi . The pair of coprime integers (pi , qi ) are the corresponding surgery
coefficient. The fundamental group of X fits into a short exact sequence 1 → π1(F) →
π1(X) → πorb

1 (B) → 1, where π1(F) ∼= Z for a regular fiber F ∼= S
1 and πorb

1 (B)

is the orbifold fundamental group of B (not the same as the fundamental group π1(B)

of the topological surface B in general). The integer b in the notation is the obstruction
class, which is also the order of the generator of π1(F) in πorb

1 (B). Since we consider
SFSs as three manifolds up to homeomorphism rather than as fibered spaces, we may
always set b to 0.

The fundamental group of X = {b; (o, g); (p1, q1), (p2, q2), · · · , (pn, qn)} has a
presentation

π1(X) = 〈a j , b j , xi , h, j = 1, · · · , g, i = 1, · · · , n |
[a j , h] = [b j , h] = [xi , h] = x pi

i hqi = 1, x1 · · · xn[a1, b1] · · · [ag, bg] = hb〉. (1)

In particular, the fundamental group of X = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}with
base S

2 and three singular fibers, denoted simply as {b; (p1, q1), (p2, q2), (p3, q3)}
sometimes, is

π1(X) = 〈x1, x2, x3, h|x pi
i hqi = 1, xi h = hxi , x1x2x3 = hb〉.

The orientable SFS {0; (o, 0); (p1, q1), (p2, q2), · · · , (pn, qn)} with base S2 and n sin-
gular fibers has a surgery diagram shown in Fig. 1.
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2.3. Chern-Simons invariant. Given an orientable connected closed three manifold X ,
a morphism ρ of its fundamental group π1(X) to a semi-simple Lie group G can be
identified as the holonomy representation of a flat connection Aρ on the trivial principal
G-bundle over X . Therefore, in the following we will use the terms a representation ρ

and a flat connection A interchangeably via such an identification.
Let X be a closed 3-manifold and ρ : π1(X) −→ SL(2,C) be a holonomy represen-

tation. Denote by Aρ the corresponding Lie algebra sl(2,C)-valued 1-form on X . The
Chern-Simons (CS) invariant of ρ is defined as

CS(ρ) = 1

8π2

∫
X
Tr(d Aρ ∧ Aρ +

2

3
Aρ ∧ Aρ ∧ Aρ) mod 1, (2)

where the integral with its coefficient in the front is well-defined up to integers.
The CS invariant CS(ρ) depends only on the character χ(ρ) of ρ [12], hence it

descends from the representation varietyR(X) to the character variety χ(X).
Auckly computed the CS invariant of SFSs for SU(2) representations in [1]. The CS

invariant of SFSs for SL(2,C) representations may be known to experts. However, to
make the paper self-contained, we provide a proof to compute that using method from
[12].

Proposition 2.1. Let X = {0; (o, g); (p1, q1), (p2, q2), · · · , (pk, qk)} be an SFS with
the presentation of π1(X) given in Eq. (1) with b = 0. Choose integers s j and r j
such that p j s j − q jr j = 1. Suppose ρ : π1(X) → SL(2,C) is non-Abelian such that

Tr(ρ(x j )) = 2 cos
2πn j
p j

, then

CS(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k∑
j=1

r j n2j
p j

mod 1, ρ(h) = I

k∑
j=1

(
r j n2j
p j

− q j s j
4

) mod 1, ρ(h) = −I

Remark 2.2. The formula for the CS invariant in Proposition 2.1 differs from that in [1]
with a negative sign. We believe this discrepancy is due to conventions.

Before proving the proposition, we recall some facts in [12]
Let T be a torus and consider χ(T ), the character variety of T to SL(2,C). It is direct

to see that χ(T ) can be identified with Hom(π1(T ),C∗)/ ∼, where f ∼ g if f = g±1

where g−1 means point-wise inverse of g. We now describe a ‘coordinate-version’ of
χ(T ).

Let H be a group with the presentation,

H = 〈x, y, b | [x, y] = bxbx = byby = b2 = 1〉,
and define an action of H on C

2 by

x(α, β) = (α + 1, β), y(α, β) = (α, β + 1), b(α, β) = (−α,−β).

Denote the image of (α, β) ∈ C
2 in the quotient spaceC2/H by [α, β]. Let 	v = (v1, v2)

be any Z-basis of H1(T ), and define the map,

f	v : C2/H → χ(T ),
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such that f	v[α, β] ∈ χ(T ) sends

v1 
→ e2π iα, v2 
→ e2π iβ.

It can be checked that f	v is a homeomorphism. A representation of π1(T ) that induces
the character f	v[α, β] is given by,

v1 
→
(
e2π iα 0
0 e−2π iα

)
, v2 
→

(
e2π iβ 0
0 e−2π iβ

)
.

Furthermore, the homeomorphism f	v is natural in the following sense. Let 	w be another
basis such that 	w = 	vA for some A ∈ GL(2,Z) (viewing 	w and 	v as row vectors),
and define the map �	v, 	w : C2 → C

2 by right multiplying (row) vectors of C2 by A on
the right. Then �	v, 	w induces a homeomorphism, still denoted by �	v, 	w, from C

2/H to
C
2/H , and the following diagram commutes,

C
2/H C

2/H

χ(T )

�	v, 	w

f	v
f 	w

Hence, we think of each C
2/H with a choice of basis 	v as a coordinate realization

of χ(T ). In fact, χ(T ) is isomorphic to the direct limit2 of {(C2/H)	v, �	v, 	w},
χ(T ) � lim−→ (C2/H)	v,

where (C2/H)	v is a copy of C2/H indexed by 	v.
Next, we introduce aC∗ bundle over χ(T ). Define an action of H onC2 ×C

∗ lifting
that on C

2 by

x(α, β; z) = (α + 1, β; ze2π iβ),

y(α, β; z) = (α, β + 1; ze−2π iα),

b(α, β; z) = (−α,−β; z).
The canonical projection C2 × C

∗ → C
2 induces a projection

p : C2 × C
∗/H → C

2/H,

which makesC2×C
∗/H aC∗ bundle overC2/H . Given two bases 	v, 	w of H1(T )with

	w = 	vA, �	v, 	w can be covered by a bundle isomorphism. Explicitly, define �̃	v, 	w : C2 ×
C

∗/H → C
2 × C

∗/H which maps [α, β; z] to [(α, β)A; zdet(A)]. Then the following
diagram commutes,

(C2 × C
∗/H)	v (C2 × C

∗/H) 	w

(C2/H)	v (C2/H) 	w

p

�̃	v, 	w

p

�	v, 	w
(3)

2 Here all maps involved are isomorphisms, so the notion of direct limit and inverse limit do not make a
difference.
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Let Ẽ(T ) be the direct limit of {(C2 × C
∗/H)	v, �̃	v, 	w}. Then Eq. 3 induces a map

p : Ẽ(T ) → χ(T ) which makes Ẽ(T ) a C∗ bundle over χ(T ), and the diagram below
commutes,

Ẽ(T ) (C2 × C
∗/H)	v

χ(T ) (C2/H)	v

p p

f	v

We often represent an element of Ẽ(T ) by a ‘coordinate’ [α, β; z]	v with respect to a
basis 	v. Changing the basis to 	w = 	vA induces the equality

[α, β; z]	v = [(α, β)A; zdet(A)] 	w,

and when the bases involved are clear from the context, we will omit them.
We also need an ‘orientation-version’ of Ẽ(T ). Now assume T is oriented, and define

E(T ) to be the direct limit of {(C2 ×C
∗/H)	v, �̃	v, 	w} where the limit is taken only over

positive bases 	v of H1(T ), namely, those 	v such that v1∧v2 matches the orientation of T .
Apparently, E(T ) and E(−T ) are both bundles over χ(T ), and are both isomorphic to
Ẽ(T ). However, it will be of conceptual convenience for latter calculations to distinguish
E(T ) from E(−T ).

There is a fiber-wise pairing 〈 , 〉 defined on E(T ) × E(−T ) as follows. Given
e ∈ E(T ), e′ ∈ E(−T ) such that p(e) = p(e′), choose an arbitrary positive basis
	v = (v1, v2) of H1(T ) and hence 	v′ := (−v1, v2) is a positive basis of H1(−T ), and
write e = [α, β; z]	v , e′ = [−α, β; z′]	v′ (or e′ = [α,−β; z′]−	v′). Then 〈e, e′〉 := zz′. It
can be checked that the pairing is well defined.

Lastly, the above notions can be generalized to multiple tori in a natural way. Let
S = 
k

i=1Ti be a disjoint union of k oriented tori. Then χ(S) = χ(T1) × · · · × χ(Tk).
The group Hk acts on (C2)k component-wise and the quotient is a ‘coordinate-version’
of χ(S). The action of Hk can also be lifted to (C2)k × C

∗ where the i-th component
Hi in Hk acts on the i-th copy of C2 in (C2)k times C∗, and E(T ) is the quotient of
(C2)k ×C

∗ by this action. For n ≤ k, similar to the pairing above, there is a generalized
‘pairing’:

E(T1 
 · · · 
 Tk) × E(−T1 
 · · · 
 −Tm) → E(Tm+1 
 · · · 
 Tk).

With the above notations, we recall several theorems in [12]. Let X be an oriented
compact 3-manifold with toral boundaries ∂X = 
k

i=1Ti and ρ : π1(X) → SL(2,C)

be a holonomy representation. It is well-known that CS(ρ) in Eq (2) is not well defined
since X has boundary. Let

cX (ρ) = e2π i CS(ρ).

Theorem 2.3. (Theorem 3.2 of [12]) The Chern-Simons invariant defines a lifting cX :
χ(X) −→ E(∂X) of the restriction map r from the character variety of X to the
character variety of ∂X,

E(∂X)

χ(X) χ(∂X)

p
cX

r
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Moreover, if Y = X1 ∪ X2 is a closed oriented 3-manifold such that X1 and X2 are
glued along toral boundaries ∂X1 = −∂X2, then for χ ∈ χ(Y ), we have

e2π i CS(χ) = 〈cX1(χ1), cX2(χ2)〉,
where χi denotes the restriction of χ on Xi .

The following theorem is also due to [12] which the authors proved for the case
of SU(2) representations (Theorem 2.7), but an almost identical proof also works for
SL(2,C) representations.

Theorem 2.4. Let X be an oriented 3-manifold with toral boundaries ∂X = 
k
i=1Ti and

ρ(t) : π1(X) → SL(2,C) be a path of representations. Let (αi (t), βi (t)) be a lift of
χ ◦ ρ(t)|Ti to C2 with respect to some basis of H1(Ti ). Suppose

cX (ρ(t)) = [α1(t), β1(t), · · · , αk(t), βk(t); z(t)]
Then

z(1)z(0)−1 = exp

⎛
⎝2π i

k∑
j=1

∫ 1

0
(α j

dβ j

dt
− β j

dα j

dt
)

⎞
⎠

In particular, if ρ(1) is the trivial representation, then

cX (ρ(0)) =
[
α1(0), β1(0), · · · , αk(0), βk(0); exp

(−2π i
k∑
j=1

∫ 1

0
(α j

dβ j

dt
− β j

dα j

dt
)
)]

The following two facts are proved for SU(2) representations in [12] (Theorems 4.1
and 4.2, respectively). Similar methods combined with Theorems 2.3 and 2.4 above
show that they also hold for SL(2,C) representations.
Fact 1 Let X be an oriented 3-manifold with toral boundaries ∂X = 
n

i=1Ti . As-
sume H1(X) is torsion free. Choose a positive basis (μi , λi ) for H1(Ti ). Let {x j | j =
1, · · · ,m} be a basis of H1(X) and μi = ∑

ai j x j , λi = ∑
bi j x j . Suppose that

ρ : π1(X) → SL(2,C) is an Abelian representation and Tr(ρ(x j )) = e2π iγ j + e−2π iγ j

for some γ j ∈ C. Then

cX (ρ) =
[∑

a1 jγ j ,
∑

b1 jγ j , · · · ,
∑

anjγ j ,
∑

bnjγ j ; 1
]

Fact 2 Let F be a genus g oriented surface with k punctures. The fundamental group
of F has the presentation,

π1(F) = 〈a1, b1, · · · , ag, bg, x1, · · · , xk | [a1, b1] · · · [ag, bg]x1 · · · xk = 1〉,
where x j corresponds to the oriented boundary (induced from F) of the j-th puncture. Let
Y = F × S1 be endowed with the product orientation and let h̃ = ∗ × S1 be the central
element of π1(Y ) corresponding to the oriented S1 component. Then ∂Y = 
k

j=1Tj

with Tj the torus corresponding to the j-th puncture and (x j , h̃) is a positive basis
for H1(Tj ). Suppose ρ : π1(Y ) −→ SL(2,C) is a non-Abelian representation, which
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implies Tr(ρ(h̃)) = 2 cos 2πβ for some β ∈ {0, 1
2 }. Suppose Tr(ρ(x j )) = e2π iα j +

e−2π iα j for some α j ∈ C. Then

cY (ρ) =
[
α1, β, · · · , αn, β; exp(−2π iβ

k∑
j=1

α j
)]

.

Note that cY (ρ) does not change under the replacement of some α j by −α j .
The rest of the subsection is devoted to the proof of Proposition 2.1.

Proof. Let Y = F × S1 be as in Fact 2 above with the chosen generators x j and h̃.
Set h = h̃−1. Then X is obtained from Y by gluing k solid tori where the j-th solid
torus A j is glued along Tj by sending the meridian to x

p j
j hq j . The generators x j and h

match those as presented in Eq. (1). Choose a meridian-longitude pair (μ j , λ j ) for A j
such that (μ j , λ j ) is a positive basis of H1(∂A j ). The gluing of A j to Y provides the
transition of basis,

(μ j , λ j ) = (x j , h)

(
p j r j
q j s j

)
.

Since ρ is non-Abelian, ρ(h) is ±I . By assumption,

Tr(ρ(x j )) = exp(
2π in j

p j
) + exp(−2π in j

p j
), Tr(ρ(h)) = 2 cos(2πm), m = 0,

1

2
.

Therefore,

cY (ρ) = [ n1
p1

,−m, · · · ,
nk
pk

,−m; exp(2π i m
k∑
j=1

n j

p j
)
]
(x1,−h;··· ;xk ,−h)

cA j (ρ) = [0, r j n j

p j
+ s jm; 1](μ j ,λ j )

= [−q j (
r j n j

p j
+ s jm), r j n j + s j p jm; 1](x j ,h)

= [ n j

p j
− s jα j ,m + r jα j ; 1], (setting α j = n j + q jm)

=
[
n j

p j
− s jα j ,m; exp(2π i(r jα j )(

n j

p j
− s jα j )

)]

=
[
n j

p j
,m; exp(2π i(r jα j )(

n j

p j
− s jα j ) + 2π i(s jα j )m

)]

Note that the relation x
p j
j hq j = 1 implies that α j must be an integer. Applying the

pairing on cY (ρ) and each cA j (ρ) one by one, we obtain,

CS(ρ) =
k∑
j=1

(r jα j
n j

p j
+ s jα jm + m

n j

p j
)
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=
k∑
j=1

(r j n2j
p j

+ s jm(n j + α j )
)

=
k∑
j=1

(
r j n2j
p j

− s jq jm
2).

�


2.4. Adjoint reidemeister torsion. The Reidemeister torsion (R-torsion) τ(X) of a cel-
lulation KX of a manifold X uses the action of the fundamental group π1(X) on the
universal cover K̃X to measure the complexity of the cellulation of X . It is a topological
invariant of X from determinants of matrices obtained from the incidences of the cells of
K̃X . The R-torsion makes essential use of the bases in the chain complex of the universal
cover, while the homology and homotopy groups do not see the geometric information
encoded in the based chain complex. For our purpose, we need the non-Abelian general-
ization of R-torsion twisted by a representation ρ : π1(X) → G for some semi-simple
Lie group G, in particular the adjoint Reidemeister torsion for the adjoint representation
of SL(2,C). We recall some basics here, for more details, please refer to [14] and [18].

Let

C∗ = (0 −→ Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0 −→ 0)

be a chain complex of finite dimensional vector spaces over the fieldC. Choose a basis ci
of Ci and a basis hi of the i-th homology group Hi (C∗). The torsion of C∗ with respect
to these choices of bases is defined as follows. For each i , let bi be a set of vectors in Ci
such that ∂i (bi ) is a basis of Im(∂i ) and let h̃i denote a lift of hi in Ker(∂i ). Then the set
of vectors b̃i := ∂i+1(bi+1)
 h̃i 
bi is a basis of Ci . Let Di be the transition matrix from
ci to b̃i . To be specific, each column of Di corresponds to a vector in b̃i being expressed
as a linear combination of vectors in ci . Define the torsion

τ(C∗, c∗, h∗) :=
∣∣∣∣∣
n∏

i=0

det(Di )
(−1)i+1

∣∣∣∣∣

Remark 2.5. A few remarks are in order.

• The torsion, as it is denoted, does not depend on the choice of bi and the lifting of
hi .
• Here we define the torsion as the norm of the usual torsion, thus we do not need to
deal with sign ambiguities.

Let X be afiniteCW-complex and (V, ρ)be ahomomorphismρ : π1(X) −→ SL(V ).
Thevector spaceV turns into a leftZ[π1(X)]-module.Theuniversal cover X̃ has anatural
CW structure from X , and its chain complex C∗(X̃) is a free left Z[π1(X)]-module via
the action of π1(X) as covering transformations. View C∗(X̃) as a right Z[π1(X)]-
module by σ.g := g−1.σ for σ ∈ C∗(X̃) and g ∈ π1(X). We define the twisted chain
complex C∗(X; ρ) := C∗(X̃) ⊗Z[π1(X)] V . Let {eiα}α be the set of i-cells of X ordered
in an arbitrary way. Choose a lifting ẽiα of eiα in X̃ . It follows that Ci (X̃) is generated
by {ẽiα}α as a free Z[π1(X)]-module (left or right). Choose a basis of {vγ }γ of V . Then
ci (ρ) := {ẽiα ⊗ vγ } is a C-basis of Ci (X; ρ).
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Definition 2.6. Let ρ : π1(X) −→ SL(V ) be a representation.

1. We call ρ acyclic ifC∗(X; ρ) is acyclic. Assume ρ is acyclic. The torsion of X twisted
by ρ is defined to be,

τ(X; ρ) := τ

(
C∗(X; ρ), c∗(ρ)

)
.

2. Let Adj : SL(V ) → SL(sl(V )) be the adjoint representation of SL(V ) on its Lie
algebra sl(V ). We call ρ adjoint acyclic if Adj ◦ ρ is acyclic. Assume ρ is adjoint
acyclic. Define the adjoint Reidemeister torsion of ρ to be,

Tor(X; ρ) := τ(X;Adj ◦ ρ).

Remark 2.7. In this paper, we will only deal with the adjoint Reidemeister torsion ρ. For
that matter, we simply call it the torsion of ρ. When no confusion arises, we abbreviate
Tor(X; ρ) as Tor(ρ).

The following tool will be useful in computing torsions.
Multiplicativity Lemma Let 0 −→ C ′∗ −→ C∗ −→ C ′′∗ −→ 0 be an exact sequence
of chain complexes. Assume that C∗,C ′∗,C ′′∗ are based by c∗, c′∗, c′′∗ , respectively, and
their homology groups based by h∗, h′∗, h′′∗, respectively. Associated to the short exact
sequence is the long exact sequence H∗ in homology

· · · −→ Hj (C
′∗) −→ Hj (C∗) −→ Hj (C

′′∗ ) −→ Hj−1(C
′∗) −→ · · ·

with the reference bases. For each i , identify c′
i with its image inCi and arbitrarily choose

a preimage c̃′′
i of c′′

i in Ci . If the transition matrix between the bases ci and c′
i 
 c̃′′

i has
determinant ±1, we call c∗, c′∗, c′′∗ compatible. In this case, we have

τ(C∗, c∗, h∗) = τ(C ′∗, c′∗, h′∗) τ (C ′′∗ , c′′∗, h′′∗) τ (H∗, {h∗ 
 h′∗ 
 h′′∗}).

2.5. Modular data from three manifolds. Themodular data of anMTC or a pre-modular
category consist of themodular S- and T -matrices.Given a threemanifold X with certain
conditions, [4] contains an algorithm for choosing the T -matrix and the first row of the
S-matrix, i.e. all quantum dimensions. The next step for the full S-matrix is a trial-and-
error algorithm based on finding the right loop operators for each simple object. When
all the loop operators are given, then the modular data can be computed. There are no
general algorithms to define loop operators, but in the cases of SFSs and SOLmanifolds,
we find the relevant loop operators completely.

2.5.1. From adjoint-acyclic non-Abelian characters to simple object types Each pre-
modular category has a label set—the isomorphism classes of the simple objects, and
a label is an isomorphism class of simple objects, so we will refer to a label also as a
simple object type. In physics, an anyon model is a unitary MTC and a label is called an
anyon type or a topological charge.

A candidate label from a three manifold X and SL(2,C) is morally an irreducible
representation of the fundamental group π1(X) to SL(2,C). But the precise definition
is more subtle and based on our examples later, we make the following definition. In
particular, we discover that reducible but indecomposable representations cannot be
discarded and play important roles in the construction of premodular categories from
torus bundles over the circle. Our definition is specific for representations to SL(2,C)

and we expect an appropriate generalization is needed for other Lie groups such as
SL(n,C), n ≥ 3.
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Definition 2.8. Let χ ∈ χ(X) be an SL(2,C)-character of a three manifold X .

• χ is non-Abelian if at least one representation ρ : π1(X) → SL(2,C)with character
χ is non-Abelian, i.e.ρ has non-Abelian image inSL(2,C). The set of all non-Abelian
characters of X is denoted by χnab(X).

• A non-Abelian character χ is adjoint-acyclic if each non-Abelian representation
ρ : π1(X) → SL(2,C) with character χ is adjoint-acyclic, namely, the chain com-
plex associatedwith the universal cover X̃ twisted byAdj◦ρ is acyclic (seeDefinition
2.6), and furthermore, the adjoint Reidemeister torsion of all such non-Abelian rep-
resentations with character χ are the same.

• A candidate label is an adjoint-acyclic non-Abelian character.
• A candidate label set L(X) from a three manifolds X is a finite set of adjoint-acyclic
non-Abelian characters in χ(X) with a pre-chosen character such that the difference
of the CS invariant of each character L(X) with that of the pre-chosen character is a
rational number. The pre-chosen character is the candidate tensor unit.

Note that by definition, the adjoint Reidemeister torsion is well-defined for adjoint-
acyclic non-Abelian characters. The CS invariant only depends on characters, and is
hence also well-defined for such characters.

In this paper, our candidate label set is in general maximal in the sense it consists of
all the adjoint-acyclic non-Abelian characters of the given three manifold. It is also true
that the CS invariants of all the candidate labels including the candidate tensor unit are
all rational in our examples. We are not aware of any example of a candidate label set
for which not all CS invariants are rational numbers.

2.5.2. Vacuum choices, loop operators, and modular data Each simple object x of a
premodular category B has a quantum dimension dx and a topological twist θx . The set
Td(B) := ∪i∈L(B){dxi , θxi } will be called the twist-dimension set of B, where L(B) is
the label set ofB and {xi , i ∈ L(B)} form a complete representative set of simple objects
ofB. A candidate label set of a three manifold X will lead to a candidate twist-dimension
set in the following.

The choice of a tensor unit or vacuum from a collection of adjoint-acyclic non-
Abelian characters is not unique in general and it is known that different choices could
produce different premodular categories. Once a vacuum is chosen, then the adjoint
Reidemeister torsion of each character is scaled to the absolute value of normalized
quantum dimension and the difference of the CS invariant of the character with that of
the vacuum is the conformal weight of the simple object up to a sign3.

Given a three manifold X and a Lie group G, a central representation of π1(X) is
a homomorphism from π1(X) to the center Z(G) of G. For G = SL(2,C), a central
representation of π1(X) is simply a homomorphism from π1(X) to Z2. The group of
central representations can be identified with H1(X,Z2). A central representation σ ∈
H1(X,Z2) of π1(X) naturally acts on R(X) by tensoring ρ ∈ R(X), i.e. by sending
ρ to ρ ⊗ σ . Moreover, this action induces an action of central representations on the
character variety χ(X).

Definition 2.9. 1. Given a candidate label set L(X) from a three manifold X , a central
representation σ is bosonic with respect to L(X) if the action of σ keeps L(X)

invariant and preserves the CS invariant of every candidate label. If the action of σ

3 The sign and hence the negative sign in front of CS invariant below is not important and the choice is
made to be the same as in [4].
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changes the CS invariants of all candidate labels in L(X) by either 0 or 1
2 , then χ is

called fermionic if it is not bosonic.
2. Two candidate labels are centrally related if they are in the same orbit under the action

of H1(X,Z2) and they have the same CS and torsion invariant.

Given a candidate label set L(X) of X that is invariant under the action of H1(X,Z2),
the candidate symmetric center s(X) consists of all characters in L(X) that are centrally
related to the candidate tensor unit. Let G0(X) be the maximal subgroup of H1(X,Z2)

such thatG0(X)maps the candidate tensor unit onto s(X). The action ofG0(X) separates
L(X) into orbits {O0, · · · , Om}, where each subset Oi of L(X) consists of candidate
labels that are centrally related to each other, and O0 is the subset for the candidate
vacuum.

We often represent a candidate label (a character) by arbitrarily choosing a represen-
tative (a representation of π1(M)) for it.

Definition 2.10. A candidate label set L(X) = {ρα} of a three manifold X with ρ0 the
candidate vacuum is admissible if the following two equations hold with the notations
as above:

∑
ρα∈L(X)

1

2Tor(ρα)
= 1, (4)

∣∣∣∣∣
∑
α

exp(−2π i CS(ρα))

2Tor(ρα)

∣∣∣∣∣ = 1

sL

√|s(X)|√
2Tor(ρ0)

, (5)

where sL = 1 if all central representations in Go(X) are bosonic and sL = √
2 if there

is a fermionic one.

The conditions above are derived from the conjecture that the Mueger center of the
potential premodular category is a collection of Abelian anyons parameterized by the
subset O0. In the condensed category, each subset Oi will be identified into a single
composite object which has the same quantum dimension as that of any simple object
in Oi and which splits into a number of simple objects of the same quantum dimension.
The resulting condensed category is either modular or super-modular depending on if
there is a fermion in the candidate Mueger center. In a particular case when X is a Z2
homology sphere, that is, H1(X,Z2) = 0, Eq (5) reduces to,

∣∣∣∣∣
∑
α

exp(−2π i CS(ρα))

2Tor(ρα)

∣∣∣∣∣ = 1√
2Tor(ρ0)

. (6)

Given an admissible candidate label set L(X) with the chosen candidate tensor unit
ρ0, then the candidate twist-dimension set is constructed as follows:

θα = e−2π i(CS(ρα)−CS(ρ0)), (7)

D2 = 2Tor(ρ0) (8)

d2α = D2

2Tor(ρα)
, (9)

where D2 is the total dimension squared of the candidate premodular category.
Next, we discuss the construction of the S-matrix.
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Definition 2.11. Given a three manifold X , a primitive loop operator of X is a pair
(a, R), where a is a conjugacy class of the fundamental group π1(X) of X and R a finite
dimensional irreducible representation of SL(2,C).

Given an SL(2,C)-representation ρ of π1(X) and a primitive loop operator (a, R),
then the weight of the loop operator (a, R) with respect to ρ isWρ(a, R) := TrR(ρ(a)).
Denote by Sym j the unique ( j +1)-dimensional irreducible representation of SL(2,C).
Then Wρ(a,Sym j ) can be computed from the Chebyshev polynomial 
 j (t) defined
recursively by,


 j+2(t) = t
 j+1(t) − 
 j (t), 
0(t) = 1,
1(t) = t. (10)

Explicitly,

Wρ(a,Sym j ) = 
 j (t), t = Wρ(a,Sym1) = Tr(ρ(a)). (11)

From the above two equations, it follows thatWρ(a,Sym j ) only depends on the character
χ induced by ρ. It is direct to check that,


 j (2 cos θ) = sin(( j + 1)θ)/ sin θ, 
 j (−t) = (−1) j
n(t). (12)

A fundamental assumption in constructing the S-matrix is that each candidate label
ρα should correspond to a finite collection of primitive loop operators:

ρα 
→ {(aκ
α, Rκ

α)}κ . (13)

By choosing a sign ε = ±1, we define the W -symbols

Wβ(α) :=
∏
κ

Wε ρβ (aκ
α, Rκ

α) =
∏
κ

TrRκ
α
(ε ρβ(aκ

α)), ρα, ρβ ∈ L(X). (14)

The W -symbols and the un-normalized S-matrix S̃ = D S are related by,

Wβ(α) = S̃αβ

S̃0β
or S̃αβ = Wβ(α)W0(β), (15)

where 0 denotes the tensor unit ρ0. In particular, the quantum dimension

dα = W0(α). (16)

Remark 2.12. Currently it involves a guess-and-trial process to find the correspondence
between candidate labels and loop operators. One on hand, we know the absolute value
of W0(α) from Eqs. (9) and (16). On the other hand, W0(α) can also be computed by
Eq. (14). Note that, to obtain W0(α), only the loop operators corresponding to ρα are
required. Hence, we can choose a set of loop operators for ρα so that the two ways of
computing W0(α) match (in absolute value). See the next remark for further validation
of choices of loop operators. We leave it as a future direction to define the rigorous
correspondence.

Remark 2.13. We expect that the resulting modular data corresponds to a MTC if and
only if H1(X,Z2) = 0. Note that, this is a purely topological condition, independent of
the choice of loop operators. Hence, if H1(X,Z2) = 0, we can also validate a choice
of the loop operators by checking whether the resulting S and T matrices define a
representation to SL(2,Z).



1206 S. X. Cui, Y. Qiu, Z. Wang

Before closing this section, we summarize the construction of modular data and show
various choices during the procedure. Given a closed 3-manifold X , first we choose a
candidate label set L(X) which is a finite set of adjoint-acyclic non-Abelian characters.
A special character in L(X) is prechosen as the tensor unit. The candidate label set is
required to be admissible (see Definition 2.10). Then the topological twists (T -matrix)
and quantum dimension squared of simple objects are given in Eqs. (7)–(9). Next, we
associate to each character in L(X) a finite collection of primitive loop operators (see
Eq. (13)) from which and a choice of ε = ±1 theW -symbols are defined. The S-matrix
and the W -symbols are related to each other by Eq. (15).

3. Modular Tensor Categories from Seifert Fibered Spaces

In this section, we consider SFSs with three singular fibers and construct modular data
associated with premodular categories. Throughout the section, set M = {0; (o, 0);
(p1, q1), (p2, q2), (p3, q3)}, where each pair (pk, qk) are co-prime. So the underlying
2-manifold of the orbit surface � has genus 0 and both M and � are orientable.

3.1. Character varieties of seifert fibered spaces. ForM = {0; (o, 0); (p1, q1), (p2, q2),
(p3, q3)}, its fundamental group has the following presentation,

π1(M) = 〈 x1, x2, x3, h | x pk
k hqk = 1, xkh = hxk, x1x2x3 = 1, k = 1, 2, 3 〉

We look for all non-Abelian characters of π1(M) to G = SL(2,C).
Let ρ : π1(M) → G be a non-Abelian representation. Since h is in the center of

π1(M) and ρ is non-Abelian, ρ(h) must be ±I . It follows that each ρ(xk) has finite
order, and is diagonalizable in particular. Moreover, any ρ(xk) does not commute with
another ρ(x j ). This implies neither ρ(xk) can be ±I . Up to conjugation, we assume
ρ(xk) take the following form (writing ρ(xk) simply as xk),

x1 =
(
eiα1 0
0 e−iα1

)
, x2 =

(
a b
c d

)
∼
(
eiα2 0
0 e−iα2

)
, x3 ∼

(
eiα3 0
0 e−iα3

)
(17)

where 0 < αk < π , ad − bc = 1, and b and c are not simultaneously zero. We have the
following linear equations for a and d.

Tr(x2) = eiα2 + e−iα2 = a + d (18)

Tr(x3) = eiα3 + e−iα3 = aeiα1 + de−iα1 (19)

Hence, given theα′
ks, or equivalentlyTr(xk),a andd are uniquely determined, anda = d̄.

Moreover, when |a| �= 1 implying bc �= 0, this also determines ρ up to conjugacy.When
|a| = 1 implying bc = 0, there are precisely two conjugacy classes with

x2 =
(
a 1
0 ā

)
or x2 =

(
a 0
1 ā

)
(20)

It can be checked that these two representations are complex conjugate to each other
up to conjugacy, and that their characters take real values. They give rise to the same
character. There are two types of non-Abelian representations. One type is irreducible
satisfying b, c �= 0. Characters of representations of this type one-to-one correspond to



From Three Dimensional Manifolds… 1207

conjugacy classes of representations [7]. The other type is reducible with exactly one of
b, c zero. Each character of this type corresponds to two conjugacy classes.

To summarize, the triple (α1, α2, α3) and Tr(h) uniquely determine the character.
Next, we find all possible such triples.

If h = I , each eiαk is a pk-th root of 1. If h = −I , then eiαk is a pk-th root of 1
if qk is even, and a pk-th root of −1 if qk is odd. We claim all triples satisfying the
above conditions can be realized by some representations. Indeed, given such a triple
(α1, α2, α3), we define ρ(x1) and ρ(x2) as in Eq. (17) and let ρ(x3) := (ρ(x1)ρ(x2))−1.
Eqs. (18), (19) determine a and d, and we arbitrarily choose b and c such that ad−bc =
1. Again, Eqs. (18), (19) guarantee that ρ(xk) so defined has eigenvalues e±iαk , and
therefore they satisfy all the relations in the presentation of π1(M).

Set αk = 2πnk
pk

and ρ(h) = e2π iλ I , λ = 0, 1
2 . If λ = 0 or if λ = 1

2 and qk is even,

then nk is an integer strictly between 0 and pk
2 . If λ = 1

2 and qk is odd, then nk is a
proper half integer strictly between 0 and pk

2 . The quadruple (n1, n2, n3, λ) completely
characterizes a character.

For an integer p > 0, denote by [0 · · · p] the set of integers {0, 1, · · · , p}, and
by [0 · · · p]e (resp. [0 · · · p]o) the subset of even (resp. odd) integers in [0 · · · p]. The
non-Abelian character variety of M is given as follows,

χnab(M) =
{(

j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
1

2

)
| jk ∈ [0 · · · pk − 2]εk

}



{(

j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
, 0

)
| jk ∈ [0 · · · pk − 2]o

}
,

(21)

where εk = ‘e′ if qk is odd, and εk = ‘o′ otherwise. For (n1, n2, n3, λ) ∈ χnab(M),

a corresponding representation ρ has e
± 2π ink

pk as the eigenvalue of ρ(xk) and ρ(h) =
e2π iλ I .

The size of χnab(M) is

|χnab(M)| = � p1
2

�� p2
2

�� p3
2

� + � p1 − 1

2
�� p2 − 1

2
�� p3 − 1

2
�,

where �x� is the greatest integer less than or equal to x .
For instance, if all the q ′

ks are odd, then χnab(M) can also be written as,

χnab =
{( j1 + 1

2
,
j2 + 1

2
,
j3 + 1

2
,
( j1 + 1) mod 2

2

)

| jk ∈ [0 · · · pk − 2], j1 = j2 = j3 mod 2

}

3.2. Torsion of seifert fibered spaces. Freed computed torsions of Brieskorn homology
spheres for the adjoint representations of irreducible SU(2) representations in [8]. Kitano
computed torsions of SFSs for irreducible SL(2,C) representations in [13]. However,
we need to compute torsions of SFSs for the adjoint representations of nonAbelian
SL(2,C) representations containing both irreducible and reducible ones. This may be
known to experts, but we did not find a reference for explicitly doing so. To make the
paper self-contained, we provide a detailed derivation of these torsions, generalizing the
work of [8] and [13].
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Let X be the SFS {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)}. Decompose X as∪3
i=0 Ai ∪

B along ∪3
i=0 Ti where B = (S2 − 4pts) × S1, and A0, Ai (i = 1, 2, 3) are solid tori

attached to B by index 1, pi
qi

along T0, Ti , respectively. Let ρ : π1(X) −→ SL(2,C)

be a non-Abelian representation, V = sl(2,C) be the adjoint representation of ρ with
the basis

e1 =
(
0 1
0 0

)
, e2 =

(
1 0
0 −1

)
, e3 =

(
0 0
1 0

)

From Sect. 3.1, ρ is parametrized by (n1, n2, n3, h) where 0 < ni <
pi
2 , ni ∈ 1

2Z,
h = 0, 1

2 . Assume that ri , si ∈ Z, such that pi si − riqi = 1.

Proposition 3.1. When ρ is nonAbelian, C∗(X̃) ⊗Z[π1(X)] V is acyclic and

Tor(X; ρ) = p1 p2 p3∏3
i=1 4 sin

2 2πri ni
pi

Proof. Denote C∗ ⊗Z[π1(X)] V by C∗,ρ , twisted homology by H∗, and the matrix of
element in π1 under ρ by the same letter.

Given CW structure on X , we have the following exact chain sequence

0 −→
3⊕

i=0

C∗,ρ(Ti ) −→
3⊕

i=0

C∗,ρ(Ai ) ⊕ C∗,ρ(B) −→ C∗,ρ(X) −→ 0

and long exact sequence

0 −→
3⊕

i=0

H3(Ti ) −→
3⊕

i=0

H3(Ai ) ⊕ H3(B) −→ H3(X) −→ · · ·

−→
3⊕

i=0

H0(Ti ) −→
3⊕

i=0

H0(Ai ) ⊕ H0(B) −→ H0(X) −→ 0

Since the Reidemeister torsion is invariant under simple homotopy, we can just con-
sider the simple homotopy types of the above spaces. Ai is simple homotopy equivalent
to a 1-complex, and Ti and B are each simple homotopy equivalent to a 2-complex. Thus
we have

H3(Ai ) = H3(B) = H3(Ti ) = 0, H2(Ai ) = 0.

Construct their cell structure as follows.

C0(B) =< vB >,C0(Ti ) =< vTi >,C0(Ai ) =< vAi >

C1(B) =< x1, x2, x3, h >,C1(Ti ) =< mi , li >,C1(Ai ) =< bi >

C2(B) =< u1,B, u2,B , u3,B >,C2(Ti ) =< uTi >

where v∗ are base points of connected spaces, xi generate π1(S2 − 4pts), h = ∗× S1 ∈
π1(S2 − 4pts × S1), mi , li are meridians and longitudes of Ti respectively, bi are
longitudes of boundary of Ai , ui,B are squareswith boundary xi hx

−1
i h−1, uTi are squares

with boundary milim
−1
i l−1

i . Ti (i = 1, 2, 3) are attached to xi × h by identity map and



From Three Dimensional Manifolds… 1209

boundary of Ai by

(
si −qi

−ri pi

)
. T0 is attached to x1x2x3 × h and boundary of A0 by

identity map. x1, x2, x3, h generate π1(X) as follows.

π1(X) =< x1, x2, x3, h|x pi hqi = 1, xi h = hxi , x1x2x3 = 1 >

For matrix under ρ, we have

xi ∼
⎛
⎝ζi 0 0
0 1 0
0 0 ζ−1

i

⎞
⎠ , h = I

where ζi is a pi -th root of unity.mi = xi , bi = xrii , li = h. Here we use 1-cell with ends
points attached as element in π1.

The work of [8] can be generalized to irreducible representations of SL(2,C). Thus
we focus on reducible and nonAbelian representations. According to (20), taking upper
triangular ones for example, they have the following form.

x1 =
(
a1 0
0 a−1

1

)
, x2 =

(
a2 1
0 a−1

2

)
, x3 =

(
a−1
1 a−1

2 −a1
0 a1a2

)

where a1, a2, a3 = a−1
1 a−1

2 are roots of 1 or −1.
For adjoint representation, we have

x1 =
⎛
⎝a

−2
1 0 0
0 1 0
0 0 a21

⎞
⎠ , x2 =

⎛
⎝a

−2
2 2a−1

2 −1
0 1 −a2
0 0 a22

⎞
⎠

x3 =
⎛
⎝a

2
1a

2
2 −2a2 −a−2

1
0 1 a−2

1 a−1
2

0 0 a−2
1 a−2

2

⎞
⎠ (22)

Let w±
i be the eigenvectors of xi for eigenvalue ζi = a−2

i = e
4π ini
pi , ζ−1

i = e
− 4π ini

pi

respectively and w0
i be the eigenvector of xi for eigenvalue 1. Then w±

i are the eigen-
vectors of xri for ζ

ri
i and w0

i be the eigenvector of xrii for 1. By scaling, assume that
|[w±

i w0
i ]| = 1 in V . According to (22) , w±

1 , w−
2 is a basis of V . Similarly, for lower

triangular ones in (20), w±
1 , w+

2 is a basis of V .
For Ti (i = 1, 2, 3), we have

0 −→ C2,ρ(Ti )
∂2−→ C1,ρ(Ti )

∂1−→ C0,ρ(Ti ) −→ 0

where

∂2 =
(

O
xi − I

)
, ∂1 = (

xi − I O
)
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We have

H2(Ti ) =< ũTi ⊗ w0
i >

H1(Ti ) =< m̃i ⊗ w0
i , l̃i ⊗ w0

i >

H0(Ti ) =< ṽTi ⊗ w0
i >

Choose preference basis h∗ for H∗(Ti ) as above and similarly with others. Without
confusion, we omit h∗ in the expression as c∗.

τ(C∗,ρ(Ti )) = | [l̃i ⊗ (xi − I )w±
i , m̃i ⊗ w0

i , l̃i ⊗ w0
i , m̃i ⊗ w±

i ]
[ũTi ⊗ w0

i , ũTi ⊗ w±
i ][ṽTi ⊗ w0

i , ṽTi ⊗ (xi − I )w±
i ] |

= | [l̃i ⊗ (ζ±1
i − 1)w±

i , m̃i ⊗ w0
i , l̃i ⊗ w0

i , m̃i ⊗ w±
i ]

[ũTi ⊗ w0
i , ũTi ⊗ w±

i ][ṽTi ⊗ w0
i , ṽTi ⊗ (ζ±1

i − 1)w±
i ] |

= 1 (23)

For T0, we have ∂2 = 0, ∂1 = 0.

H2(T0) =< ũT0 ⊗ ei > (i = 1, 2, 3)

H1(T0) =< m̃0 ⊗ ei , l̃0 ⊗ ei >

H0(T0) =< ṽT0 ⊗ ei >

τ(C∗ρ(T0)) = 1 (24)

For Ai (i = 1, 2, 3), we have

0 −→ C1,ρ(Ai ) −→ C0,ρ(Ai ) −→ 0

where ∂1 = xrii − I .
We have

H1(Ai ) =< b̃i ⊗ w0
i >

H0(Ai ) =< ṽAi ⊗ w0
i >

τ(C∗,ρ(Ai )) = | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]
[ṽAi ⊗ (xrii − I )w±

i , ṽAi ⊗ w0
i ]

|

= | [b̃i ⊗ w0
i , b̃i ⊗ w±

i ]
[ṽAi ⊗ (ζ

±ri
i − 1)w±

i , ṽAi ⊗ w0
i ]

|

= 1

|ζ rii − 1||ζ−ri
i − 1| (25)
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For A0, we have ∂1 = 0.

H1(A0) =< b̃0 ⊗ ei > (i = 1, 2, 3)

H0(A0) =< ṽA0 ⊗ ei >

τ(C∗ρ(A0)) = 1 (26)

For B, we have

0 −→ C2,ρ(B)
∂2−→ C1,ρ(B)

∂1−→ C0,ρ(B) −→ 0

where

∂2 =
⎛
⎜⎝

O O O
O O O
O O O

x1 − I x2 − I x3 − I

⎞
⎟⎠ , ∂1 = (

x1 − I x2 − I x3 − I O
)

We have

H2(B) =< ũi,B ⊗ w0
i , (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1) ⊗ ei > (i = 1, 2, 3)

H1(B) =< x̃i ⊗ w0
i , (x̃1 + x̃2x1 + x̃3x2x1) ⊗ ei >

Since the rank of matrix ∂1 is 3, we have H0(B) = 0. Also, H3(B) = 0 since B is simple
homotopy equivalent to a 2-complex.

τ(C∗,ρ(B))

= |[ũi,B ⊗ w0
i , ũ ⊗ ei , ũ1,B ⊗ w±

1 , ũ2,B ⊗ w−
2 ]−1

[ṽB ⊗ (x1 − I )w±
1 , , ṽB ⊗ (x2 − I )w−

2 ]−1

[x̃i ⊗ w0
i , x̃ ⊗ ei , h̃ ⊗ (x1 − I )w±

1 , h̃ ⊗ (x2 − I )w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ ⊗ ei , ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]−1

[ṽB ⊗ (ζ±1
1 − 1)w±

1 , ṽB ⊗ (ζ−1
2 − 1)w−

2 ]−1

[x̃i ⊗ w0
i , x̃ ⊗ ei , h̃ ⊗ (ζ±1

1 − 1)w±
1 , h̃ ⊗ (ζ−1

2 − 1)w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= |[ũi,B ⊗ w0
i , ũ ⊗ ei , ũ1,B ⊗ w±

1 , , ũ2,B ⊗ w−
2 ]−1[ṽB ⊗ w±

1 , ṽB ⊗ w−
2 ]−1

[x̃i ⊗ w0
i , x̃ ⊗ ei , h̃ ⊗ w±

1 , h̃ ⊗ w−
2 , x̃1 ⊗ w±

1 , x̃2 ⊗ w−
2 ]|

= 1 (27)

where x̃ = x̃1 + x̃2x1 + x̃3x2x1, ũ = ũ1,B + ũ2,Bx1 + ũ3,Bx2x1.
In the long exact sequence for twisted homology group, we have isomorphisms

0 −→
3⊕

i=1

H∗(Ti ) −→
3⊕

i=1

H∗(Ai ) ⊕ H∗(B) −→ 0

Then C∗,ρ(X) is acyclic as follows.
We have

0 −→
3⊕

i=0

H0(Ti ) −→
3⊕

i=0

H0(Ai ) −→ 0
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where ∂(ṽTi ⊗ w0
i ) = ṽAi ⊗ w0

i , ∂(ṽT0 ⊗ ei ) = ṽA0 ⊗ ei , det (∂) = 1.

0 −→
3⊕

i=0

H1(Ti ) −→
3⊕

i=0

H1(Ai ) ⊕ H1(B) −→ 0

where ∂(m̃i ⊗ w0
i ) = (x̃i − b̃i Qi ) ⊗ w0

i , ∂(l̃i ⊗ w0
i ) = b̃i Pi ⊗ w0

i , ∂(m̃0 ⊗ ei ) =
(x̃1 + x̃2x1 + x̃3x1x2) ⊗ ei , ∂(l̃0 ⊗ ei ) = b̃0 ⊗ ei , Qi = ∑qi

j=1 x
− jri , Pj = ∑pi−1

j=0 x jri ,
det (∂) = p1 p2 p3.

0 −→
3⊕

i=0

H2(Ti ) −→ H2(B) −→ 0

where ∂(ũTi ⊗ w0
i ) = ũi,B ⊗ w0

i , ∂(ũ0 ⊗ ei ) = (ũ1,B + ũ2,Bx1 + ũ3,Bx2x1) ⊗ ei ,
det (∂) = 1.

According to Multiplicativity lemma, Eqs. 23, 24, 25, 26, 27 and the calculations
about homology above, we have

Tor(C∗,ρ(X)) = p1 p2 p3∏3
i=1 4 sin

2 2πri ni
pi

�


3.3. Modular data from Seifert fibered spaces. We will show that the modular data
constructed from 3-component SFSs are related to the Temperley-Lieb-Jones categories
at root of unit. So let us collect some basic facts about those. For references, see for
instance [20].

Let A be a complex number such that A4 �= 1. For an integer n, define the quantum
integer [n]A = A2n−A−2n

A2−A−2 . So [0]A = 0, [1]A = 1, [2]A = A2 + A−2. For each A,

usually called the Kauffman variable, such that A4 is a primitive r -th root of unity for
some integer r ≥ 2, there is an associated premodular category, called the Temperley-
Lieb-Jones category and denoted by TLJ(A). The category has the label set (simple
objects) [0 · · · p − 2] where the label 0 is the unit object. For i, j ∈ [0 · · · p − 2], the
quantum dimension is

d j (A) = (−1) j [ j + 1]A = (−1) j
A2 j+2 − A−2 j−2

A2 − A−2 ,

the twist is

θ j (A) = (−A) j ( j+2),

and the (un-normalized) S-matrix is

S̃i j (A) = (−1)i+ j [(i + 1)( j + 1)]A.

The total dimension can be computed directly,

D(A) =
√
2r

|A2 − A−2| .
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Denote by TLJ(A)0 (resp. TLJ(A)0) the subcategory linearly spanned by even (resp.
odd) labels. We call TLJ(A)0 and TLJ(A)1 the even and odd subcategory of TLJ(A),
respectively.The even and odd subcategory has the same dimension, both equal to D(A)√

2
.

It is well known that if A is a primitive 4r -th root of unity, then TLJ(A) is non-
degenerate. If r is odd and A is a primitive 2r -th root of unity, then TLJ(A) is degenerate,
but the even subcategory TLJ(A)0 is non-degenerate.

Now we consider the construction of modular data. As before, set M = {0; (o, 0);
(p1, q1), (p2, q2), (p3, q3)}. Here each pair (pk, qk) are co-prime. Choose integers sk
and rk such that pksk − qkrk = 1. If qk is odd, set ck = pkqksk − rk . Otherwise, set
ck = pkqksk − rk(pk − 1)2. Let Ak = − exp( 2π i4pk

ck). Note that while ck depends on the
choice of sk and rk , Ak does not. Moreover, Ak is a primitive 4pk-th root of unity if qk
is odd, a primitive 2pk-th root of unity if qk = 0 mod 4, and a primitive pk-th root of
unity if qk = 2 mod 4. In the latter two cases, pk clearly must be odd. Hence, in all
cases, A4

k is a primitive pk-th root of unity.
If some q ′

ks are even, we re-arrange the elements of χnab(M) as follows. For (p, q)

co-prime, j ∈ [0 · · · p − 2], let

n p,q( j) =
{

p−1− j
2 , q even and j even

j+1
2 , otherwise

Then from Eq. (21), χnab(M) can also be written as

{
(n p1,q1( j1), n p2,q2( j2), n p3,q3( j3),

1

2
) | jk ∈ [0 · · · pk − 2]e, k = 1, 2, 3

}



{
(n p1,q1( j1), n p2,q2( j2), n p3,q3( j3), 0) | jk ∈ [0 · · · pk − 2]o, k = 1, 2, 3

}

(28)

Thus, the elements of χnab(M) are indexed by 	j ∈ ∏3
k=1[0 · · · pk − 2]e 
 ∏3

k=1
[0 · · · pk − 2]o. Given such a 	j = ( j1, j2, j3), denote a corresponding representation by
ρ 	j . (The choice of a representative is irrelevant.)

Proposition 3.1 shows that all non-Abelian characters of M are adjoint acyclic and
Proposition 2.1 shows that the CS invariants of non-Abelian characters are all rational.
We choose the candidate label set L(M) to be χnab(M).

We propose the correspondence between L(M) and loop operators by the following
map,

ρ 	j 
→ {
(xckk ,Sym jk ) | k = 1, 2, 3

}
. (29)

Moreover, we designate ρ	0 = ρ(0,0,0) as the unit object, which of course corresponds to
the loop operator

1 = ρ	0 
→ {
(xckk ,Sym0) | k = 1, 2, 3

}
. (30)

The following two lemmas are direct consequences of Propositions 2.1 and 3.1,
respectively.
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Lemma 3.2. Let M, ck, Ak be given as above. For each 	j = ( j1, j2, j3) ∈ ∏3
k=1

[0 · · · pk − 2]e 
 ∏3
k=1[0 · · · pk − 2]o with ρ 	j a corresponding representation, then

CS(ρ 	j ) =
3∑

k=1

−ck
4pk

( jk + 1)2. (31)

As a consequence,

e−2π iCS(ρ 	j ) =
3∏

k=1

(−Ak)
( jk+1)2 = (−A1A2A3)

3∏
k=1

θ jk (Ak). (32)

Proof. Note that for 	j = ( j1, j2, j3), Tr(ρ( j1, j2, j3)(xi )) = 2 cos
2πn pi ,qi ( ji )

pi
. The formula

above then follows from Proposition 2.1. �

Lemma 3.3. Let M, ck, Ak be given as above and let D = D(A1)D(A2)D(A3)/2.
For each 	j = ( j1, j2, j3) ∈ ∏3

k=1[0 · · · pk − 2]e 
 ∏3
k=1[0 · · · pk − 2]o with ρ 	j a

corresponding representation, then

Tor(ρ 	j ) =
3∏

k=1

pk

4 sin2(πrk ( jk+1)
pk

)
, (33)

and hence,

(
2Tor(ρ 	j )

)− 1
2 = 2

3∏
k=1

∣∣∣∣d jk (Ak)

D(Ak)

∣∣∣∣ = |∏3
k=1 d jk (Ak)|

D
. (34)

The main result of the section is the following theorem.

Theorem 3.4. Let M = {0; (p1, q1), (p2, q2), (p3, q3)} and {Ak}k=1,2,3 be given as
above. With the operators and tensor unit given in Eqs. (29) and (30), respectively, the
modular data constructed from M matches that of the following pre-modular category,

B :=
(

�3
k=1TLJ(Ak)0

)⊕(
�3

k=1TLJ(Ak)1

)

Proof. Since A4
k is a primitive pk-th root of unity, the label set for B is clearly L :=∏3

k=1[0 · · · pk −2]e 
 ∏3
k=1[0 · · · pk −2]o, the same index set for L(M). The modular

data ofB can be easily expressed in terms of that of the individual TLJ(Ak). For	i, 	j ∈ L ,

d 	j =
3∏

k=1

d jk (Ak), θ 	j =
3∏

k=1

θ jk (Ak), S̃	i 	j =
3∏

k=1

S̃ik jk (Ak).

Also, the total dimension of B is D = D(A1)D(A2)D(A3)/2.
Lemma 3.2 shows that, up to a global phase, the Chern-Simons invariant gives the

twist,

e−2π iCS(ρ 	j ) = θ 	j ,



From Three Dimensional Manifolds… 1215

and Lemma 3.3 shows that the torsion matches the absolute value of the normalized
quantum dimension,

(
2Tor(ρ 	j )

)− 1
2 = d 	j

D
.

Lastly, We check the S-matrix computed from loop operators. Given 	i = (i1, i2, i3),	j = ( j1, j2, j3) ∈ L , we have (choosing ε = −1)

W	i ( 	j) =
3∏

k=1

TrSym jk (−ρ	i (x
ck
k )).

Note that,

Tr
(
ρ	i (x

ck
k )
) = 2 cos

2n pk ,qk (ik)πck
pk

= 2 cos
(ik + 1)πck

pk
,

where the second equality holds irrelevant of the parity of qk . Combining the previous
two equations, we get

W	i ( 	j) =
3∏

k=1


 jk (−2 cos
(ik + 1)πck

pk
) =

3∏
k=1

(−1) jk
sin (ik+1)( jk+1)πck

pk

sin (ik+1)πck
pk

,

where 
 jk (·) is the Chebyshev polynomial (see Eq. (12)). Therefore, the ( 	j,	i)-entry of
the potential un-normalized S matrix is,

W	i ( 	j)W	0(	i) =
3∏

k=1

(−1)ik+ jk
sin (ik+1)( jk+1)πck

pk

sin πck
pk

=
3∏

k=1

S̃(Ak) jk ik ,

which is precisely S̃	j 	i of B. �

The premodular category produced in the previous theorem may not be modular in

general, and it depends crucially on the topology of the three manifold. For a three-
component SFS M , it is a Z2 homology sphere, i.e., H1(M,Z2) = 0, if and only if

p1 p2 p3(
q1
p1

+
q2
p2

+
q3
p3

) ∈ 2Z + 1

Lemma 3.5. Assume that r is odd. Suppose that

T (p, j, l, ∗) =
∑

m∈[p]∗

(
e( j+l)mr π

p i − e( j−l)mr π
p i − e(− j+l)mr π

p i + e(− j−l)mr π
p i
)

where ∗ = 1, 0, and [p]∗ denotes the set of odd integers from 1 to p− 1 if ∗ is 1 and the
set of even integers in the same range otherwise.



1216 S. X. Cui, Y. Qiu, Z. Wang

When p is odd, j �= l, j + l is odd,

T (p, j, l, ∗) =
{

0 j + l �= p

(−1)∗ p j + l = p

When p is odd, j �= l, j + l is even,

T (p, j, l, ∗) = 0

When p is odd, j = l,

T (p, j, l, ∗) = −p

When p is even, j �= l, j + l is odd,

T (p, j, l, ∗) = 0

When p is even, j �= l, j + l is even,

T (p, j, l, ∗) =
{

0 j + l �= p

(−1)∗ p j + l = p

When p is even, j = l,

T (p, j, l, 0) =
{−p j + l �= p

0 j + l = p

T (p, j, l, 1) =
{ −p j + l �= p

−2p j + l = p

Proof. We prove the lemma by direct computation.
When p is odd, j �= l, j + l is odd,

T (p, j, l, 1) =
p−2∑

m=1,m odd

(e( j+l)mr π
p i − e( j−l)mr π

p i + e( j−l)(p−m)r π
p i − e( j+l)(p−m)r π

p i )

=
p−2∑

m=1,m odd

(e( j+l)mr π
p i − e( j−l)mr π

p i ) +
p−1∑

m=2, even

(e( j−l)mr π
p i − e( j+l)mr π

p i )

= −
p−1∑
m=1

(−e( j+l)r π
p i )m +

p−1∑
m=1

(−e( j−l)r π
p i )m

=
{

0 j + l �= p

−p j + l = p

= −T (p, j, l, 0)

Similarly, we get other cases. �

Proposition 3.6. Given a three-component SFS M, the premodular category BM pro-
duced in Theorem 3.4 is modular if and only if M is a Z2 homology sphere.
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Proof. Since the structure from Sect. 3 respects the change of parametrization of Seifert
fiber space, it suffices to verify the following 5 cases for (

p1
q1

,
p2
q2

,
p3
q3

).

(
odd

odd
,
odd

odd
,
odd

odd
), (

odd

odd
,
odd

odd
,
even

odd
), (

odd

odd
,
even

odd
,
even

odd
),

(
even

odd
,
even

odd
,
even

odd
), (

odd

odd
,
odd

odd
,
odd

even
)

The first two cases correspond to Z2-homology sphere. In the following, we will explic-
itly calculate S2, which directly implies the proposition.

When q1, q2, q3 are odd, j1 = j2 = j3 mod 2, l1 = l2 = l3 mod 2.
Up to a scalar,

S( j1, j2, j3),(l1,l2,l3) = (−1) j1+l1
3∏

k=1

sin jklkrk
π

pk

(S2)( j1, j2, j3),(l1,l2,l3)

=
∑

(m1,m2,m3)

(−1) j1+m1+m1+l1
3∏

k=1

sin jkmkrk
π

pk
sinmklkrk

π

pk

= (−1) j1+l1
∑

(m1,m2,m3)

3∏
k=1

−1

4
(e

( jk+lk )mkrk
π
pk

i − e
( jk−lk )mkrk

π
pk

i − e
(− jk+lk )mkrk

π
pk

i

+ e
(− jk−lk )mkrk

π
pk

i
)

= (−1) j1+l1(
∑

(m1,m2,m3),mi odd

+
∑

(m1,m2,m3),mi even

)...

= (−1) j1+l1(
3∏

k=1

T (pk, jk, lk, 1) +
3∏

k=1

T (pk, jk, lk, 0))

When p1, p2, p3 are odd,

(S2)( j1, j2, j3),(l1,l2,l3) =
⎧⎨
⎩

0 ( j1, j2, j3) �= (l1, l2, l3)
p1 p2 p3
32

( j1, j2, j3) = (l1, l2, l3)

When p1, p2 are odd, p3 is even,

(S2)( j1, j2, j3),(l1,l2,l3) =
⎧⎨
⎩

0 ( j1, j2, j3) �= (l1, l2, l3)
p1 p2 p3
32

( j1, j2, j3) = (l1, l2, l3)

Thus S2 = cI for the above two cases.
When p1 is odd, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =
⎧⎨
⎩

p1 p2 p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise
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(S2)(1,p2−1,p3−1),(l1,l2,l3) =
⎧⎨
⎩

p1 p2 p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

When p1, p2, p3 are even,

(S2)(1,1,1),(l1,l2,l3) =
⎧⎨
⎩

p1 p2 p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,p2−1,p3−1),(l1,l2,l3) =
⎧⎨
⎩

p1 p2 p3
32

(l1, l2, l3) = (1, 1, 1), (1, p2 − 1, p3 − 1)

0 otherwise

(S2)(1,1,1) = (S2)(1,p2−1,p3−1)

S2 is degenerate for above two cases.
When q1, q2 are odd, q3 is even, j1 = j2 mod 2, l1 = l2 mod 2, j3 = 0 mod 2,
l3 = 0 mod 2.

(S2)( j1, j2, j3),(l1,l2,l3) =
2∏

k=1

T (pk, jk, lk, 1)T (p3, j3, l3, 0) +
3∏

k=1

T (pk, jk, lk, 0)

When p1, p2, p3 are odd,

(S2)(1,1,2),(l1,l2,l3) =
⎧⎨
⎩

− p1 p2 p3
32

(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

(S2)(p1−1,p2−1,2),(l1,l2,l3) =
⎧⎨
⎩

− p1 p2 p3
32

(l1, l2, l3) = (1, 1, 2), (p1 − 1, p2 − 1, 2)

0 otherwise

S2 is degenerate. �

It is worth noting even if every TLJ(Ak) appearing in the construction of BM in

Theorem 3.4 is not modular, BM could still be modular. For instance, for the SFS
M0 = (0; (o, 0); (5, 1), (3, 2), (5, 4)), the corresponding Kauffman variables are A1 =
−e

iπ
10 , A2 = −e

iπ
3 , A3 = −e

2iπ
5 . It is direct to see that TLJ(A1) ismodular, but TLJ(A2)

and TLJ(A3) are not. However, M0 is a Z2 homology sphere, by Proposition 3.6, BM0

is modular, a rank-8 MTC.

3.4. Examples: realization of SU(2)k . Here we study a special class of SFSs with three
components, namely, M(r) := {0; (o, 0); (3, 1), (3, 1), (r, 1)}. We show explicitly that
different choice of characters as the unit object may lead to different theories. In fact, it

will be proved that from M(r)we can construct either the MTC SU(2)r−2 or TLJ(e
2π i
4r ).

For each integer r ≥ 2, there is a unitary MTC, usually denoted by SU(2)r−2 [3],
which is closely related to the Temperley-Lieb-Jones categories. Here r −2 is called the

level of the MTC. It has the same label set as TLJ(e
2π i
4r ), but differs from it in modular
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data by some signs. Explicitly, setting A = e
2π i
4r , the modular data for SU(2)r−2 is given

as follows,

θ j = A j ( j+2) = e
2π i j ( j+2)

4r ,

S̃i j = [(i + 1)( j + 1)]A = sin (i+1)( j+1)π
r

sin π
r

.

In particular, its quantum dimensions are all positive (since it is unitary),

d j = [ j + 1]A = sin ( j+1)π
r

sin π
r

,

and the total dimension is

D =
√
r

2

1

sin π
r

.

Note that d j = |d j (A)| and D = D(A), where d j (A) and D(A) are the quantum
dimension of j and total dimension of TLJ(A), respectively.

We will use notations from Sects. 3.1 and 3.3. The non-Abelian characters of M(r)
is given by

χnab(M(r)) =
{(

1

2
,
1

2
,
j + 1

2
,
1

2

)
| (0, 0, j) ∈ {0} × {0} × [0 · · · r − 2]e

}



{(

1, 1,
j + 1

2
, 0

)
| (1, 1, j) ∈ {1} × {1} × [0 · · · r − 2]o

}
.

(35)

Thus, each j ∈ [0 · · · r − 2] corresponds to a non-Abelian character indexed by
( j mod 2, j mod 2, j). We denote the corresponding representation by ρ j (instead of

using the triple as the subscript). The eigenvalues of ρ j (x3) are e± ( j+1)π i
r . The eigenvalues

of ρ j (x1) and those of ρ j (x2) are both e± a j π i
3 , where a j = 1 if j even and a j = 2

otherwise.
Also, it is direct to see that c1 = c2 = c3 = 1, and A1 = A2 = −e

π i
6 , A3 = −e

2π i
4r .

In Sect. 3.3, we chose the candidate label set L(M(r)) to be χnab(M(r)), and defined
the following map from χnab(M(r)) to loop operators,

ρ j = 
→ {
(x1,Sym

j mod 2), (x2,Sym
j mod 2), (x3,Sym

j )
}
. (36)

It can be checked directly that for i, j ∈ [0 · · · r − 2], Tr(ρi (x1)) = Tr(ρi (x2)) = ±1,
and it follows that,

Wi ( j) = TrSym j mod 2(−ρi (x1))TrSym j mod 2(−ρi (x2))TrSym j (−ρi (x3))

= TrSym j (−ρi (x3)).

Hence, we may as well choose a simplified map to loop operators,

ρ j 
→ {(x3,Sym j )}. (37)
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The unit object was chosen to be ρ0 which corresponds to the loop operator (x3,Sym0).
By Theorem 3.4, the modular data match that of the premodular category,

BM(r) =
(

�3
k=1TLJ(Ak)0

)⊕(
�3

k=1TLJ(Ak)1

)
. (38)

Note that TLJ(A1) = TLJ(−e
π i
6 ) has label set {0, 1}, the twists θ0 = 1, θ1 = i , and

un-normalized S-matrix,

S̃ =
(

1 −1

−1 −1

)
.

This means that BM(r) has the same twists for even labels and S-matrix as TLJ(A3). The
twists for odd labels differ by aminus sign between the two theories. Let A(r) = −A3 =
e
2π i
4r . Note that a change of the Kauffman variable from A to −A does not change the

S-matrix. It follows that BM(r) and TLJ(A(r)) has the same modular data. In fact, they
are isomorphic.

Therefore, by using the loop operator correspondence in Eq. (37) and letting ρ0 be
the unit object, we recover the MTC TLJ(A(r)).

Nowweexamine an alternative choice of the unit object. SinceM(r) is aZ2 homology
sphere, a potential unit object ρα0 can be determined by the equation,

∣∣∣∣∣∣
∑

ρ∈χnab(M(r))

exp(−2π iCS(ρ))

2Tor(ρ)

∣∣∣∣∣∣ = (2Tor(ρα0))
− 1

2 . (39)

Such a ρα0 would have quantum dimension in absolute value equal to 1 in any MTC
produced by M(r). Since we already know that we can produce TLJ(A(r)) from M(r)
and the only non-unit object in TLJ(A(r)) whose quantum dimension is 1 in absolute
value is ρr−2, we can choose ρr−2 as the unit object in a new theory.

In this case, we reverse the previous order of the simple objects. Denote by ρ̃ j :=
ρr−2− j , j ∈ [0 · · · r−2]. Set ρ̃0 = ρr−2 as the unit object. The correspondence between
characters and loop operators is now defined as,

ρ̃ j 
→ (x3,Sym
j ). (40)

We claim that with above choice of unit object and loop operators, the modular data
produced from M(r) matches that of SU(2)r−2 where ρ̃ j corresponds to j in the label
set of SU(2)r−2. See Sect. 3.3 for a collection of facts about SU(2)r−2.

Firstly, by Lemma 3.2, up to an irrelevant phase factor,

CS(ρ j ) = − j ( j + 2)

4r
+
1 − (−1) j

4
mod 1. (41)

Then rewriting above equation in terms of ρ̃ j , we get, again up to an irrelevant factor,

CS(ρ̃ j ) = − j ( j + 2)

4r
mod 1. (42)
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Thus,

e−2π iCS(ρ̃ j ) = e
2π i j ( j+2)

4r (43)

is the twist θ j of SU(2)r−2.
Next, we check the S-matrix.

W0( j) = TrSym j (−ρ̃0(x3)) = 
 j (2 cos
π

r
) = sin ( j+1)π

r

sin π
r

, (44)

and the ( j, i)-entry of the potential S-matrix is,

Wi ( j)W0(i) = TrSym j (−ρ̃i (x3))W0(i) (45)

= 
 j (2 cos
(i + 1)π

r
)
i (2 cos

π

r
) (46)

= sin (i+1)( j+1)π
r

sin π
r

, (47)

which is S̃ j i of SU(2)r−2.
Lastly, by Lemma 3.3,

(
2Tor(ρ̃ j )

)− 1
2 = (

2Tor(ρr−2− j )
)− 1

2 = |dr−2− j (A3)|
D(A3)

, (48)

wherewe used the fact that in TLJ(A1) = TLJ(A2), the two simple objects have quantum
dimensions ±1 and thus the dimension of the category is D(A1) = √

2. Also note that

A3 = −e
2π i
4r , then |dr−2− j (A3)| = |d j (A3)| and D(A3) are equal to the quantum

dimension d j and the total dimension D, respectively, in SU(2)r−2. Hence, the torsion
invariant computes the normalized quantum dimension,

(
2Tor(ρ̃ j )

)− 1
2 = d j

D
. (49)

To summarize, for the SFS M(r), two choices of the unit object together with appro-

priate definition of loop operators produce the MTCs TLJ(e
2π i
4r ) and SU(2)r−2, with the

former non-unitary and the latter unitary.

3.5. Graded product of graded premodular categories. In Sect. 3.3, we have seen that
the premoduar category resulting from three-component SFSs is formed from three
Temperley-Lieb-Jones categories, by taking the Deligne product of the even sectors,
that of the odd sectors, and suming them up. Here we generalize the operation.

Definition 3.7. Let C = ⊕g∈GCg andD = ⊕g∈GDg be twoG-graded premodular tensor
categories for some finite group G (which must be Abelian). The graded product of C
and D is again a G-graded premodular category C �gr D = ⊕g∈G(C �gr D)g such that
(C �gr D)g := Cg � Dg .
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The monoidal and braiding structure on C�gr D is defined in the obvious way which
make it into a premodular category. Another way to see this is that C �gr D is a full
subcategory of the premodular category C � D and is closed under tensor product and
braiding. The graded product operation �gr is associative up to canonical equivalence.

For aKauffmanvariable A, TLJ(A) is aZ2-gradedpremodular categorywithTLJ(A)0
spanned by even labels and TLJ(A)1 odd labels. Hence, Theorem 3.4 states that, for a
three-component SFS M = {0; (o, 0); (p1, q1), (p2, q2), (p3, q3)} with Ak, k = 1, 2, 3
defined as in Sect. 3.3, the premodular category resulting from M isBM = TLJ(A1)�gr
TLJ(A2) �gr TLJ(A3).

The graded product operation provides method to construct new premodular cate-
gories from old ones. A very interesting question is when the graded product of two

pre-modular categories is modular. For instance, take A1 = −e
iπ
6 , A2 = −e− iπ

5 . Here
A1 is a primitive 12-th root of unity and A2 a primitive 5-th root of unity. Hence TLJ(A1)

is modular of rank 2 and TLJ(A2) is none modular of rank 4. Their S-matrices are given
by,

S̃(A1) =
(

1 −1
−1 −1

)
, S̃(A2) =

⎛
⎜⎝

1 ϕ ϕ 1
ϕ −1 −1 ϕ

ϕ −1 −1 ϕ

1 ϕ ϕ 1

⎞
⎟⎠ , (50)

where ϕ = 1
2 (1 − √

5). Then the S-matrix of TLJ(A1) �gr TLJ(A2) with its simple
objects ordered as {0 � 0, 0 � 2, 1 � 1, 1 � 3} is,

S̃ =
⎛
⎜⎝

1 ϕ −ϕ −1
ϕ −1 1 −ϕ

−ϕ 1 1 −ϕ

−1 −ϕ −ϕ −1

⎞
⎟⎠ , (51)

which canbe checked straightforwardly to benon-degenerate. ThusTLJ(A1)�grTLJ(A2)

is modular.
We leave the question of when the graded product of two arbitrary graded (and more

generally multiple) premodular categories is modular as a future direction. In the rest
of this section, we focus on the case where the group is Z2 and study a special class of
Z2-graded modular categories, namely SU(2)k . For basic facts, see Sect. 3.4.

Let C = C0 ⊕ C1 be a Z2-graded MTC. Denote by I the label set of C and partition
I = I0
 I1 where Iα consists of objects of I that are in the Cα sector. To avoid confusion,
when there is more than one MTC present, we write I (C), S̃(C), etc.

Proposition 3.8. Let C and D be two Z2-graded MTCs. Then C �gr D is a proper (i.e.,
degenerate) premodular category if and only if there exist i ∈ I (C), j ∈ I (D), scalars
c0(C), c1(C), c0(D), and c1(D), such that,

1. i and j belong to sectors of the same parity;
2. the following equations concerning S-entries hold:

S̃(C)ik =
{
c0(C)dk(C) k ∈ I0(C)

c1(C)dk(C) k ∈ I1(C)
S̃(D) jk =

{
c0(D)dk(D) k ∈ I0(D)

c1(D)dk(D) k ∈ I1(D)

3. c0(C)/c1(C) = c1(D)/c0(D) �= 1.
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Proof. The main idea is to show that the conditions presented in the statement of the
proposition are equivalent to the property that in the S-matrix of C�gr D, the row corre-
sponding to the object i � j is proportional to the first row (i.e., the row corresponding
to the unit object). �

Remark 3.9. In the above proposition, the conditions c0(C)/c1(C) �= 1 and c1(D)/c0(D)

�= 1 are used to eliminate the trivial case where i and j are both the unit object. When
neither of i nor j is the unit object, those conditions automatically hold since otherwise
the S-matrix of C or D would be degenerate. Also, note that if either C0 or D0 is non-
degenerate, then i and j must be in the sector of odd parity.

For m ≥ 0, SU(2)m is a Z2-graded MTC with (SU(2)m)0 spanned by even labels
and (SU(2)m)1 by odd labels.

Theorem 3.10. For m, n ≥ 0, SU(2)m �gr SU(2)n is an MTC if and only if the pair
(m, n) have different parity. In particular, SU(2)m �gr SU(2)m is always degenerate.

Proof. In SU(2)m , the un-normalized S-matrix is given by,

S̃ab = sin (a+1)(b+1)π
m+2

sin π
m+2

.

Hence, S̃mb = (−1)b S̃0b = (−1)bdb. For (m, n) with the same parity, with the notation
from the statement of Proposition 3.8, we choose i = m, j = n. Then the relevant
constants are c0(SU(2)m) = c0(SU(2)n) = 1, c1(SU(2)m) = c1(SU(2)n) = −1 which
satisfies the conditions stated in that proposition, and hence SU(2)m �gr SU(2)n is
degenerate. For the converse direction, it can be seen that the only non-unit simple object
in SU(2)m for which c0(SU(2)m) and c1(SU(2)m) exist is the object m. Therefore, if
(m, n) have different parity, the only pair of indexes for (i, j) is (m, n)which contradicts
the first condition of Proposition 3.8. This implies that SU(2)m �gr SU(2)n is non-
degenerate. �

Example 3.11. By Theorem 3.10, SU(2)2 �gr SU(2)3 is an MTC of rank 6. Its un-
normalized S-matrix and T -matrix are given by,

S̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

1+
√
5√

2

√
2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1 −√
2 1+

√
5√

2

1 1
2

(
1 +

√
5
)

1 1
2

(
1 +

√
5
)

− 1+
√
5√

2
−√

2

1
2

(
1 +

√
5
)

−1 1
2

(
1 +

√
5
)

−1
√
2 − 1+

√
5√

2
1+

√
5√

2
−√

2 − 1+
√
5√

2

√
2 0 0√

2 1+
√
5√

2
−√

2 − 1+
√
5√

2
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 e
4iπ
5 0 0 0 0

0 0 −1 0 0 0

0 0 0 −e
4iπ
5 0 0

0 0 0 0 e
27iπ
40 0

0 0 0 0 0 −ie
3iπ
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Since SU(2)2 �gr SU(2)3 contains the even part of SU(2)3 as a subcategory which is
itself anMTC (Fibonacci), SU(2)2�gr SU(2)3 must split. In fact, SU(2)2�gr SU(2)3 �
Fib � TLJ(−ie

π i
8 ).

4. Modular Tensor Categories from SOL Geometry

4.1. Character varieties of torus bundles over the circle. One of the non-hyperbolic
geometries is SOL and some examples of closed manifolds are torus bundles over the
circle with Anosov monodromy maps.

Let M be a torus bundle over S1 with the monodromy map

(
a b
c d

)
∈ SL(2,Z)where

|a + d| > 2. Its fundamental group has the presentation,

π1(M) = 〈x, y, h | xa yc = h−1xh, xb yd = h−1yh, xyx−1y−1 = 1〉, (52)

where x and y are the meridian and longitude, respectively, on the torus, and h corre-
sponds to a loop around the S1 component. We consider non-Abelian characters of M
to SL(2,C). Let ρ : π1(M) → SL(2,C) be a non-Abelian representation.

First, we consider the case where ρ(x) is diagonalizable. Up to conjugation, assume
ρ(x) is diagonal. Since y commutes with x , ρ(y) is also diagonal, and moreover, ρ(x)
and ρ(y) cannot be both contained in the center {±I }. (Otherwise, the image of ρ would
be Abelian.) If ρ(x) �= ±I , it follows from the relation xa yc = h−1xh that ρ(h), up
to conjugation, simply permutes the two eigenvectors of ρ(x). The same conclusion is
obtained if ρ(y) �= ±I . Hence, wemay assume ρ takes the following form (abbreviating
ρ(x) simply as x),

x =
(

α 0
0 α−1

)
, y =

(
β 0
0 β−1

)
, h =

(
0 1

−1 0

)
, (53)

where Im(α) ≥ 0 and either α �= ±1 or β �= ±1. The presentation of π1(M) yields the
following equations for ρ,

αa+1βc = αbβd+1 = 1, (54)

from which we deduce the relations,

αa+d+2 = βa+d+2 = 1. (55)

Let N = |a+d+2|. Hence α and β are both N -th root of unity. Set α = e
2π i k
N , β = e

2π i l
N

such that 0 ≤ k ≤ N
2 , 0 ≤ l < N , and either k �= 0, N

2 or l �= 0, N
2 . Then, Eq. (54) can

be equivalently written as,

(a + 1) k + c l = 0 mod N

b k + (d + 1) l = 0 mod N
(56)

The solutions to Eq. (56) depend on a number of conditions involving a, b, c, and
d. When at least one of a + 1, c, b, d + 1 is co-prime to N , there is a compact form
to organize all the solutions. For instance, when (c, N ) are co-prime, the solutions are
simply given by,

l = −c̃(a + 1)k mod N , k = 1, · · · , �N − 1

2
�, (57)
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where c̃ is the multiplicative inverse of c in ZN . The representations thus obtained are
all irreducible.

Now we consider the case where ρ(x) is not diagonalizable. Then neither is ρ(y)
diagonalizable. Up to conjugation, we may assume that ρ(x) and ρ(y) are both upper
triangular, each have a single eigenvalue +1 or −1 lying on the diagonal, and ρ(h) is
diagonal. Thus, ρ takes the form,

x = (−1)εx
(
1 1
0 1

)
, y = (−1)εy

(
1 u
0 1

)
, h =

(
v 0
0 v−1

)
, (58)

where εx , εy ∈ {0, 1} and u �= 0. From the presentation of π1(M), we deduce the
equations to be satisfied,

(a + 1) εx + c εy = 0 mod 2

b εx + (d + 1) εy = 0 mod 2
(59)

c u2 + (a − d)u − b = 0, v2 = 1

cu + a
. (60)

Equation 60 is equivalent to,

(v + v−1)2 = a + d + 2, u = v−2 − a

c
. (61)

From Eq. (61), we see that for each fixed εx and εy , there are four inequivalent repre-
sentations, but only two characters. We choose a representative for each character by
setting,

u = d − a +
√

(a + d)2 − 4

2c
, v2 = 1

cu + a
= a + d −√

(a + d)2 − 4

2
. (62)

The solution set to Eq. (59) depends on the parity of the entries of the monodromy
matrix. Let P be the quadruple that records the parity of the entries (a, d; b, c) and we
use ‘e’ to denote for ‘even’ and ‘o’ for ‘odd’. For instance, P = (e, e; o, e) means b is
odd and the rest are even. The solutions contain the following possible values for εx and
εy ,

• εx = 0, εy = 0;
• εx = 1, εy = 1, only if P = (e, e; o, o) or P = (o, o; e, e);
• εx = 0, εy = 1, only if P = (o, o; o, e) or P = (o, o; e, e);
• εx = 1, εy = 0, only if P = (o, o; e, o) or P = (o, o; e, e).

Note that the last three cases above all imply that N = |a +d +2| is even and all possible
configurations of P that have N even are contained in one (or more) of the last three
cases.

To summarize, the non-Abelian characters of M contain two types, the irreducible
and the reducible ones. The irreducible characters take the form of Eq. (53) and are
determined by Eq. (56). The reducible characters take the form of Eq. (58) and are
determined by Eq. (62) and the possible values of εx and εy discussed above.
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xayc

xbyd

Φ =
a b
c d

v x

y

h

Fig. 2. A cell structure for the torus bundle with monodromymatrix� For convenience but no other purposes,
mark the vertical edges green, the horizontal on the top face red, and the 45o-slope edges on the top face
blue. Edges of the same color and the same arrow are identified. The front and back faces are identified by the
obviousmap, and so are the left and right side faces. The bottom face is identified to the top via themonodromy
map �. Hence, the single-arrow edge and the double-arrow edge at the bottom face are homotopic to xa yc

and xb yd , respectively

4.2. Torsion and Chern-Simons invariant of torus bundles. In this subsection, we com-
pute the torsion and Chern-Simons invariant for the torus bundle over the circle M with

the monodromy map

(
a b
c d

)
∈ SL(2,Z) where |a + d| > 2. Its fundamental group has

a presentation given in Eq. (52).
Construct a cell structure for M as follows. See Fig. 2. The cell structure contains,

• a single 0-cell v;
• three 1-cells corresponding to the generators x, y, and h in the presentation of
π1(M);

• three 2-cells corresponding to the three relations in the presentation of π1(M).
Explicitly, denote them by s1, s2 and s3 such that ∂s1 = yxy−1x−1, ∂s2 = h−1

xh(xa yc)−1, and ∂s3 = h(xb yd)h−1y−1. Graphically, s1, s2 and s3 correspond to
the top face, the back face, and the left face, respectively, in Fig. 2 with the induced
orientation of the cube.

• a single 3-cell t . Think of a 3-cell as a cube. Then the attaching map is determined
by the identification of faces described in Fig. 2.

Let V be a representation ρ : π1(M) → GL(V ), and let {v j | j = 1, 2, · · · } be
an arbitrary basis of V . We now construct the chain complex. For simplicity, assume
that a, b, c, d ≥ 0, a ≥ c, b ≥ d. Other cases can be dealt similarly. Fix an arbitrary
preimage ṽ of v. For each other cell σ , fix a lifting σ̃ starting at the base point ṽ. We
have the following chain complex,

0 −→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 −→ 0

where Ci = Ci (M̃) ⊗Z[π1(M)] V . As a vector space, Ci has the following basis, C3 =
span{t̃ ⊗ v j | j = 1, 2, · · · }, C2 = span{s̃i ⊗ v j | i = 1, 2, 3, j = 1, 2, · · · }, C1 =
span{σ̃ ⊗ v j | σ = x, y, h, j = 1, 2, · · · }, C0 = span{ṽ ⊗ v j | j = 1, 2, · · · }. We
present the boundary map ∂i as a block matrix with each entry a dim(V ) × dim(V )

block. Also, denote S : Z[π1(M)] → Z[π1(M)] the antipode map that sends a group
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element g ∈ π1(M) to its inverse g−1 and linearly extends to the whole ring. Lastly, for
a matrix A with entries in Z[π1(M)], ρ ◦ S(A) is meant applying ρ ◦ S to every entry
of A. With the above conventions, the boundary map is given by,

∂3 = ρ ◦ S

⎛
⎝1 − hw(x, y)

1 − y
1 − x

⎞
⎠

∂2 = ρ ◦ S

⎛
⎝y − 1 1 − h

∑a−1
i=1 xi h

∑b−1
i=1 xi

1 − x −hxa
∑c−1

i=1 yi hxb
∑d−1

i=1 yi − 1
0 x − 1 1 − y

⎞
⎠

∂1 = ρ ◦ S
(
x − 1 y − 1 h − 1

)
where w is a polynomial of x, y with the sum of its coefficients equal to 1.

For each of the non-Abelian characters of π1(M) to SL(2,C), we will compute its
torsion below and show (implicitly) that the associated chain complex is always acyclic
and the torsion does not depend on the representation chosen in the equivalence class of
a character.

For an irreducible representation ρ given in Eq. (53) that satisfies Eq. (56), its adjoint
representation has the form,

x =
⎛
⎝α2 0 0

0 1 0
0 0 α−2

⎞
⎠ , y =

⎛
⎝β2 0 0

0 1 0
0 0 β−2

⎞
⎠ , h =

⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠

Denote by I and O and 3 × 3 identity matrix and zero matrix, respectively, and let

A =
⎛
⎝1 0 0
0 0 0
0 1 0

⎞
⎠ , B =

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ .

Define the block matrices,

K1 =
⎛
⎝A
O
B

⎞
⎠ , K2 =

⎛
⎝O A

I O
O B

⎞
⎠ , K3 = (

I
)
.

It can be checked directly that the columns (as vectors in Ci−1) of ∂i Ki is a basis of
Im(∂i ). Set K4 = K0 to be the empty matrix. Now for i = 0, 1, 2, 3, let

Ai = (
∂i+1Ki+1 Ki

)
,

then the columns of Ai give a basis for Ci . By direct calculations, we obtain the torsion,

Tor(ρ) =
∣∣∣∣det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ = |a + d + 2|
4

.

Now we compute the torsion of the reducible representations ρ given in Eq. (58).
The associated adjoint representation takes the form,

x =
⎛
⎝ 1 −2 −1
0 1 1
0 0 1

⎞
⎠ , y =

⎛
⎝ 1 −2u −u2

0 1 u
0 0 1

⎞
⎠ , h =

⎛
⎝ v2 0 0

0 1 0
0 0 1

v2

⎞
⎠ ,
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which are clearly independent on the sign terms εx and εy . Let,

A =
⎛
⎝0 0 0
1 0 0
0 1 0

⎞
⎠ , B =

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ , C =

⎛
⎝0 0 0
0 0 0
1 0 0

⎞
⎠ ,

D =
⎛
⎝0 0 0
0 1 0
0 0 1

⎞
⎠ , E =

⎛
⎝0 0 0
0 0 0
0 0 1

⎞
⎠ , F =

⎛
⎝1 0 0
0 0 0
0 1 0

⎞
⎠ .

Define the block matrices,

K1 =
⎛
⎝E
O
F

⎞
⎠ , K2 =

⎛
⎝A O
B C
O D

⎞
⎠ , K3 = (

I
)
.

The matrices Ki have the same properties as outlined in the case of irreducible rep-
resentations above, and in the same way define the matrices Ai . It can be computed
that,

Tor(ρ) =
∣∣∣∣det(A1) det(A3)

det(A0) det(A2)

∣∣∣∣ = |a + d + 2|.

Some details for the derivation are as follows, where the condition cu2+(a−d)u−b = 0
is used to simplify expressions,

Tor(ρ) = | (2cu + a − d)(b − u + du)(a − b + 1 + (c − d − 1)u)

u(1 − cu − a)2(u − 1)
|

= | (2cu + a − d)(b − u + du)(a − b + 1 + (c − d − 1)u)

(cu2 + (a − 1)u)(cu2 + (a − 1 − c)u − a + 1)
|

= | (2cu + a − d)(b − u + du)(a − b + 1 + (c − d − 1)u)

((d − 1)u + b)((d − c − 1)u + b − a + 1)
|

= | (d − c − 1)u + b − a + 1

2(c − d − 1)cu2 + (2c(a − b + 1) + (a − d)(c − d − 1))u + (a − d)(a − b + 1)
|

= | (2c(a − b + 1) − (a − d)(c − d − 1))u + (a − d)(a − b + 1) + 2b(c − d − 1)

(d − c − 1)u + b − a + 1
|

= | (a + d + 2)((d − c − 1)u + b − a + 1)

(d − c − 1)u + b − a + 1
|

= |a + d + 2|.
Now, we compute the CS invariant of M . Any irreducible representation of π1(M)

to SL(2,C) can be conjugated to one into SU(2) (see Eq. 53), and Kirk and Klassen
computed its CS invariant in [11]. Here we use methods in Sect. 2.3 to compute the CS
invariant of both irreducible and reducible but indecomposable ones, the latter of which
can not be conjugated to SU(2).

Let Ti (i = A, B) be two copies of the torus, and I be the interval [0, 1]. Then M
is obtained by gluing the two Ti × I such that TB × {0} is glued to TA × {1} via the

identity map and TB × {1} is glued to TA × {0} via the map

(
a b
c d

)
. Let (μi , λi ) be a

positive basis of H1(Ti ) so that, under the embedding Ti × I ↪→ M , μi and λi are sent
to x and y, respectively. For κ = 0, 1, denote by μκ

i the element of H1(Ti × {κ}) that
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corresponds to μi in H1(Ti × I ), and by λκ
i in a similar way. Then (μ1

i , λ
1
i ) is a positive

basis for H1(Ti × {1}) and (−μ0
i , λ

0
i ) is a positive basis for H1(Ti × {0}). These basis

are identified as follows,

(μ0
B, λ0B) = (μ1

A, λ1A), (μ1
B, λ1B) = (μ0

A, λ0A)

(
a b
c d

)
.

Set N = |a + d + 2|. For an irreducible representation ρ in Eq. (53) where α = e
2π i k
N

and β = e
2π i l
N , we have

cTi×I (ρ) = [ k
N

,
l

N
,
k

N
,
l

N
; 1](μ1

i ,λ
1
i ),(μ

0
i ,λ

0
i )

= [ k
N

,
l

N
,− k

N
,
l

N
; 1](μ1

i ,λ
1
i ),(−μ0

i ,λ
0
i )

Hence,

cTA×I (ρ)

= [ k
N

,
l

N
,
k

N
,
l

N
; 1](μ1

A,λ1
A),(μ0

A,λ0
A)

= [ k
N

,
l

N
,
ak + cl

N
,
bk + dl

N
; 1](μ1

A,λ1
A),(μ1

B ,λ1
B )

= [ k
N

,
l

N
,− k

N
,
bk + dl

N
; exp(2π i(−ν)

bk + dl

N
)], (ν := (a + 1)k + cl

N
)

= [ k
N

,
l

N
,− k

N
,− l

N
; exp(2π i(−ν)

bk + dl

N
+ 2π i(−μ)

k

N
)], (μ := bk + (d + 1)l

N
)

= [ k
N

,
l

N
,− k

N
,
l

N
; exp(2π i f )](μ1

A,λ1
A),(−μ1

B ,λ1
B )

where,

f = ν
bk + dl

N
+ μ

k

N
= kμ − lν

N
+ μν.

Note that, by Eq. (56), μ and ν are both integers. Also,

cTB×I (ρ) = [ k
N

,
l

N
,− k

N
,
l

N
; 1](μ1

B ,λ1
B ),(−μ0

B ,λ0
B )

= [ k
N

,
l

N
,− k

N
,
l

N
; 1](μ1

B ,λ1
B ),(−μ1

A,λ1
A)

By taking the pairing on cTA×I (ρ) and cTB×I (ρ), we obtain that,

CS(ρ) = f = kμ − lν

N
. (63)

For reducible representations ρεx ,εy in Eq. (58) depending on the values of εx and
εy (see Sect. 4.1), the computation of the CS invariant proceeds in the exactly the same
way as for irreducible representations by making the substitution,

k

N
→ εx

2
,

l

N
→ εy

2
.
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Consequently, by setting

ν = (a + 1)εx + cεy
2

, μ = bεx + (d + 1)εy
2

,

we obtain that,

CS(ρεx ,εy ) = εxμ − εyν

2
= εxμ + εyν

2

= (a + d + 2)εxεy + bεx + cεy
4

(64)

It can be checked that CS(ρεx ,εy ) ∈ 1
2Z.

4.3. Modular data from torus bundles over the circle. In this subsection, let M be a
torus bundle over the circle with the monodromy map given by a matrix,

(
a b
c d

)
∈ SL(2,Z).

We assume that N := a + d + 2 > 4 is odd and (c, N ) are co-prime. It is direct to see
that b and c are both odd, while a and d have different parity. Set N = 2r + 1. Denote
by c̃ ∈ ZN the multiplicative inverse of c in ZN .

The non-Abelian character variety of M to SL(2,C) consists of the representations
χnab(M) = {ρ+, ρ−, ρk, k = 1, · · · , r} which are defined as follows. For ρ±,

x 
→
(
1 1
0 1

)
, y 
→

(
1 u
0 1

)
, h 
→

(
v± 0
0 v−1±

)
(65)

where

u = d − a +
√

(a + d)2 − 4

2c
, v± = ± 1√

cu + a
. (66)

For ρk , k = 1, · · · , r ,

x 
→
(
e
2π ik
N 0

0 e− 2π ik
N

)
, y 
→

(
e

−2π i c̃(a+1)k
N 0

0 e
2π i c̃(a+1)k

N

)
, h 
→

(
0 1

−1 0

)
(67)

In Sect. 4.1, we computed the adjoint torsion and CS of representations of π1(M).
In particular, it implies that all non-Abelian characters are adjoint-acyclic and their CS
invariants are all rational numbers. Aswith the example of SFSs,we choose the candidate
label set L(M) = χnab(M). According to Sect. 4.1, the torsion of these representations
are given by

Tor(ρ±) = N , Tor(ρk) = N

4
. (68)

The Chern-Simons invariant of ρ± is 0 by Eq. (64).
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Lemma 4.1. For k = 1, · · · , r , the Chern-Simons invariant of ρk is given by,

CS(ρk) = − c̃k2

N
. (69)

Proof. This can be derived from Eq. (63). �

We will show below that the premodular categories obtained from the torus bundles

are related to quantum group categories associated with so2r+1.
For an odd integer N = 2r + 1 > 0, let soN (Type B) be the Lie algebra of SO(N ).

Given q = e
mπ i
2N such that q2 is a primitive 2N -th root of unity (thusm is odd and (m, N )

are co-prime), there is an associated premodular category C(soN , q, 2N ) of rank r + 4.
See [15] and references therein. When m = 1, the corresponding category is always an
MTC, and is denoted by SO(N )2 in physics literature. The MTC has the label set,

{1, Z} 
 {Y1, · · · ,Yr } 
 {X1, X2}. (70)

Wewill mainly be interested in the (adjoint) monoidal subcategory C(soN , q, 2N )ad lin-
early spanned by the objects 1, Z ,Y1, · · · ,Yr . So only modular data on this subcategory
is given below.

The twists are,

θ1 = θZ = 1, θYk = q2(Nk−k2), k = 1, · · · , r. (71)

The un-normalized S-matrix is,

S̃αβ =
{
1 α ∈ {1, Z}, β ∈ {1, Z}
2 α ∈ {1, Z}, β ∈ {Y1, · · · ,Yr } (72)

S̃k j : = S̃YkY j = 2(q4k j + q−4k j ) = 4 cos
2πm kj

N
. (73)

In particular, there are only two values for quantum dimensions, d1 = dZ = 1 and
dk := dYk = 2. The total dimension is D = √

2N . Note that C(soN , q, 2N )ad is a
proper premodular category of rank r + 2.

Remark 4.2. The label set as ordered inEq. (70) correspond to the labels {0, 2λ1, λ1, · · · ,

λr−1, 2λr , λr , λr + λ1} in [15]. Although the S-matrix in [15] is only given for the root

q = e
π i
2N , the case for other roots can be easily deduced by either applying a Galois

action to the original S-matrix or using the formula

S̃λμ = θ−1
λ θ−1

μ

∑
ν

N ν
λ∗μθνdν .

Now, for the torus bundle defined at the beginning of the subsection, recall that
N = a+d +2 is odd, and c̃c = 1 ∈ ZN . Letm = −2c̃−N ∈ Zwhich is well defined up

to multiples of 2N . For clarity, fix an arbitrary representative for m, and let q = e
mπ i
2N .

Note that m is odd and co-prime to 2N . Hence q2 is a primitive 2N -th root of unity.
We propose the following correspondence between χnab(M) and loop operators,

ρ± 
→ (x,Sym0),

ρk 
→ (xmk,Sym1).
(74)

and designate ρ+ as the unit object,

ρ+ = 1 
→ (x,Sym0). (75)
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Theorem 4.3. Let M be the torus bundle over the circle with the monodromy matrix(
a b
c d

)
such that N = a + d + 2 > 4 is odd and (c, N ) are co-prime. With the choice

of loop operators and unit object in Eqs. (74) and (75), respectively, and q as above,
the modular data constructed from M matches that of C(soN , q, 2N )ad , the adjoint
subcategory of C(soN , q, 2N ).

Proof. For convenience, we also write ρ± and ρk simply as ± and k, respectively. The
correspondence between χnab(M) and label set of C(soN , q, 2N )ad is,

ρ+ ↔ 1, ρ− ↔ Z , ρk ↔ Yk, k = 1, · · · , r.

We first check the twists. By Eq. (71),

θYk = q2(Nk−k2) = e− 2π i
N

Nk−k2
2 (2c̃+N ) = e2π i

c̃k2
N .

Note that in the last equality, we used the fact that (Nk− k2)/2 is an integer. By Lemma
4.1, we immediately have

θYk = e−2π iCS(ρk ).

Of course, for ρ±, a similar relation to the above holds trivially.
Next, we verify quantum dimension.

W+(±) = 1, W+(k) = TrSym1(ρ+(x
mk)) = 2. (76)

This means that the total dimension is D = √
2N (equal to the dimension of

C(soN , q, 2N )ad ), and by Eq. (68), for each ρ ∈ χnab(M), the normalized quantum
dimension matches the torsion,

W+(ρ)

D
= (2Tor(ρ))−

1
2 .

Lastly, for the S-matrix computed from the W matrix,

S̃αβ = 1, α, β ∈ {+,−}.
S̃αk = Wk(α)W+(k) = 2,

S̃kα = Wα(k)W+(α) = 2, α ∈ {+,−}.
S̃k j = Wj (k)W+( j) = 2 TrSym1(ρ j (x

mk)) = 4 cos
2πm kj

N
, k, j = 1, · · · , r.

This matches the S-matrix of C(soN , q, 2N )ad in Eqs. (72) and (73). �

Torus bundles are notZ2 homology sphere by Eq. (52), and the adjoint subcategory of

C(soN , q, 2N ) is a properly premodular category by Eq. (72). Hence the above theorem
verifies the conjecture on the non-degeneracy of the resulting premodular category for
torus bundles considered in this paper.

Remark 4.4. In this subsection, we restricted ourselves to the case where N = a+d+2 >

4 is odd and (c, N ) are co-prime. In other cases, it seems less straightforward to derive
the character variety and the structure of the character variety depends on the parity of
N (among other factors). This is expected, since we conjecture in the general case the
corresponding premodular category is also related to the adjoint subcategory of some
C(soN , q, l) whose structure varies dramatically depending on the parity of N and the
value of N modulo 4 in the case of even N . We leave this as a future direction.
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5. Full Data of Modular Categories and Beyond

The structure theory ofMTCs is naturally divided into two parts: one is the classification
of modular data (MD), and the other is for a fixed modular data, the classification of
modular isotopes (MIs)4. The missing steps in the program from three manifolds to
MTCs are then an algorithm to define loop operators for an admissible candidate label
set, hence a candidate MD, and the F-matrices for the fusion structures beyond MD.

Physics point to a framework that is a generalization of gauging finite group sym-
metries [2,5] to continuous non-Abelian Lie group symmetries such as SU(2). One hint
from physics is the form of the primitive loop operators in this paper: a pair (a, R),
where a is a conjugacy class of the fundamental group, some kind of flux, and R is
an irreducible representation of SU(2), some charge of the SU(2) symmetry. The F-
matrices are difficult to find, so we wonder if they depend on more than topology: some
geometric information of the given three manifolds.

5.1. Towards the full data.

5.1.1. From non-Abelian characters to loop operators The identification of a simple
object type with a non-Abelian character is based on the relation between a simple
object type and a loop operator in the solid torus. In a (2 + 1)-TQFT, the rank of an
MTC is the same as the dimension of the vector space V (T 2) associated to the torus
T 2 from the TQFT. One basis {ea} of the vector space V (T 2) consists of labeled core
curves of a solid torus by a complete representative set of simple objects {a}. Then each
basis element ea can be obtained as the image of a loop operator Oa on e0—the basis
element associated to the vacuum, i.e. |ea >= Oa |e0 >.

Suppose a non-Abelian character corresponds to a primitive loop operator (a, R) of
the threemanifold X . Then a can be represented by a knot Ka in X . The knot complement
of Ka in X determines a vector in V (T 2) from the reduction of 6d SCFT onto X , which
should be related to ea , hence a simple object type eventually.

5.1.2. From flatness equations to pentagons One possible relation between pentagon
equations and flatness is that the flatness of SL(2,C)-connections corresponding to the
fundamental group representations can be translated into pentagon equations for the
F-matrices. It is known that pentagon equations can be interpreted as flatness equations
for bi-unitary connections on finite graphs (see e.g. [10]).

5.2. Towards gauging SU(2)R-symmetry. AnR-symmetry of a super-symmetric theory
is an outer automorphism of the super-Poincare group that fixes the Poincare group. It
is pointed out in [4] that the R-symmetries in infrared could be different from those in
ultra-violet. Hence we could have an SU(2) R-symmetry for the residual topological
theory in infrared, which is probably often trivial. We believe that the MTCs obtained
from three manifolds in this program are actually the results of gauging such SU(2)
R-symmetries of the residual topological theory in infrared, which generalizes gauging
of finite group symmetries [2,5].

4 A terminology due to C. Delaney: distinct MTCs with the same MD are called modular isotopes of each
other.



1234 S. X. Cui, Y. Qiu, Z. Wang

5.3. Towards quantum double of infinite discrete groups. An interesting class of MTCs
comes from the representation categories of quantum doubles of finite groups. A naive
generalization to infinite discrete groups does not work. The program in this paper can
be regarded as a first step in this direction for the class of 3-manifold groups. The choice
of the simple Lie group serves as an analogue of a level in quantum groups.

5.4. Climbing the dimension ladder. Two interesting classes of quantum algebras are
vertex operator algebras (VOAs) and MTCs. The bulk-edge correspondence of topolog-
ical phases of matter makes them into a unified theory of two and three dimensions.
The program in this paper suggests an inversion of dimensions: MTCs and VOAs could
also fit into a unified theory of three and four dimensional manifolds, where 4-manifolds
with 3-manifold boundaries could give rise to VOAs that realize the boundary MTCs.

5.5. Open questions. There are many other interesting open questions in this program.
One obvious one is to extend our results to more examples such as Seifert fibered
spaces with more than three fibers and the remaining cases of our torus bundles over
the circle examples. It is also not clear how to obtain MTCs which are not self-dual. As
mentioned in Sect. 2, representations of SL(2,C) come in group of four and a natural
guess is that one of the four is the dual anyon type. If so, then which one? The dual
representation is a candidate. Another general direction is what operations on MTCs
that standard topological constructions of three manifolds such as connected sum and
torus decomposition correspond to. Connect sum should correspond to Deligne product.

Our adjoint-acyclic condition for a representation ρ is closely related to H1(π,Adj◦
ρ) = 0. Are they equivalent? It should be equivalent for irreducible representations, but
for the indecomposable reducible ones, it is not clear.
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