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Abstract: Using M-theory in physics, Cho et al. (JHEP 2020:115 (2020) recently out-
lined a program that connects two parallel subjects of three dimensional manifolds,
namely, geometric topology and quantum topology. They suggest that classical topo-
logical invariants such as Chern-Simons invariants of SL(2, C)-flat connections and
SL(2, C)-adjoint Reidemeister torsions of a three manifold can be packaged together
to produce a (2 + 1)-topological quantum field theory, which is essentially equivalent
to a modular tensor category. It is further conjectured that every modular tensor cate-
gory can be obtained from a three manifold and a semi-simple Lie group. In this paper,
we study this program mathematically, and provide strong support for the feasibility of
such a program. The program produces an algorithm to generate the potential modular
T-matrix and the quantum dimensions of a candidate modular data. The modular S-
matrix follows from essentially a trial-and-error procedure. We find premodular tensor
categories that realize candidate modular data constructed from Seifert fibered spaces
and torus bundles over the circle that reveal many subtleties in the program. We make
a number of improvements to the program based on our examples. Our main result is
a mathematical construction of the modular data of a premodular category from each
Seifert fibered space with three singular fibers and a family of torus bundles over the
circle with Thurston SOL geometry. The modular data of premodular categories from
Seifert fibered spaces can be realized using Temperley-Lieb-Jones categories and the
ones from torus bundles over the circle are related to metaplectic categories. We conjec-
ture that a resulting premodular category is modular if and only if the three manifold is a
Z»-homology sphere, and condensation of bosons in the resulting properly premodular
categories leads to either modular or super-modular tensor categories.
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1. Introduction

There are two parallel universes in three dimensional topology for the last several decades
that do not intersect much: the classical Thurston world and the quantum Jones world.
One famous conjecture that hints a deep connection of the two worlds is the volume
conjecture. Recently M-theory in physics suggests another surprising different connec-
tion: classical topological invariants such as Chern-Simons invariants of SL(2, C)-flat
connections and SL(2, C)-adjoint Reidemeister torsions of a three manifold X can be
packaged together to produce a (2 + 1)-topological quantum field theory (TQFT) [4],
which is essentially equivalent to a modular tensor category [19]. It is further conjectured
in [4] that every modular tensor category can be obtained from a three manifold and a
semi-simple Lie group. In this paper, we study this program mathematically, and provide
strong support for such a program. The program as outlined in [4] produces an algorithm
to generate the potential modular 7'-matrix and the quantum dimensions of a candidate
modular data. The modular S-matrix follows from essentially a trial-and-error proce-
dure. We find premodular tensor categories that realize candidate modular data from
Seifert fibered spaces and torus bundles over the circle that reveal many subtleties in
the program. Our main result is a mathematical construction of the modular data of
a premodular category from each Seifert fibered space with three singular fibers and
some torus bundles over the circle with Thurston SOL geometry. The modular data of
the premodular categories from Seifert fibered spaces can be realized using Temperley-
Lieb-Jones categories and the ones from torus bundles over the circle are related to
metaplectic categories [9,20]. A more general study of the torus bundle case is in [6].
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We conjecture that the resulting premodular category is modular if and only if the three
manifold is a Zy-homology sphere, and condensation of bosons in the resulting properly
premodular categories leads to either modular or super-modular tensor categories.

The program from three manifolds to modular tensor categories is a far-reaching
progeny of the mysterious six-dimensional super-symmetric conformal field theories
(SCFTs) spawned by M-theory. Our strong support for the program indirectly provides
evidence for these 6d SCFTs. The dimension reduction or compactification of these 6d
SCFTs to 3d depends on a three manifold X, and in general the resulting theory 7 (X) is
a super-conformal field theory. When X is non-hyperbolic, it is argued in [4] that T (X)
flows to a TQFT in the infrared limit and super-symmetry is decoupled, thus we obtain
a (2+1)-TQFT labeled by X, hence a MTC By. The program outlined in [4] centers
on an algorithm to produce the quantum dimensions and topological twists of a MTC,
and a trial-and-error algorithm for the modular S-matrix. The assumption on the three
manifolds X in [4] includes that X is non-hyperbolic and the SL(2, C) representation
variety of the fundamental group 71(X) consists of finitely many conjugacy classes
that all could be conjugated into either SU (2) or SL(2, R) subgroups of SL(2, C). Our
examples show that all but the non-hyperbolic assumption can be dropped. One subtlety
is that we need to use indecomposable reducible representations in our torus bundle over
the circle examples. We do not know whether or not MTCs could be constructed from
hyperbolic three manifolds as the program as we formulated in this paper is more flexible.
The main difficulty for more examples lies in the explicit calculation of Chern-Simons
(CS) invariant and adjoint Reidemeister torsion of flat connections.

An SL(2, C)-representation of 71 (X) is the same as a flat connection of the trivial
SL(2, C)-bundle. There are two well-known invariants for a flat connection: the Chern-
Simons (CS) invariant and the adjoint Reidemeister torsion. Each flat connection that
satisfies certain conditions would give rise to an anyon type and the Reidemeister torsion
is essentially the quantum dimension and the CS invariant is the conformal weight of
the anyon.

For each Seifert fibered space with three singular fibers, we define a potential modular
data inspired by the many examples in [4]. All those modular data can be realized
by premodular categories obtained as a Zj-graded product of Temperley-Lieb-Jones
categories. We expect that our results can be easily generalized to any number of the
singular fibers if the adjoint Reidemeister torsions of the SL.(2, C) flat connections can be
calculated because the CS invariants in this case are known. It is not clear if there are new
MTCs among our examples. Going beyond Seifert fibered spaces, we analyze some torus
bundles over the circle and identify the resulting premodular categories as the integral
subcategories of SO(N), for odd N. An important observation for the connection to
Temperley-Lieb-Jones categories for Seifert fibered spaces is a relation between the
slope of a singular fiber and the order of the Kauffman variable A in Temperley-Lieb-
Jones theories [20]. Essentially the slope of a singular fiber determines a root of unity
A, which allows us to realize all the candidate modular data from Seifert fibered spaces
with three singular fibers.

The content of the paper is as follows. In Sect. 2, we outline our version of the program
taking into account the many subtleties that we encountered in our examples. We also
recall the definition of CS invariant and adjoint Reidemeister torsion, and collect some
known results of CS invariants of Seifert fibered spaces. In Sect. 3, we study the Seifert
fibered spaces and carry out the necessary calculations of CS and torsion invariants for
our examples, and do the same for torus bundles over the circle in Sect. 4. Finally, in
Sect. 5, we discuss some future directions and open questions.
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2. A Program from 3-Manifolds to Modular Categories

The proposed program in [4] from three manifolds to MTCs came from physics, and
the paper provides an algorithm to produce the potential modular 7-matrix and all
quantum dimensions of a candidate modular data from irreducible representations of
the fundamental groups of three manifolds to SL(2, C). Our results in Sects. 3 and 4
that realize candidate modular data from Seifert fibered spaces and torus bundles over
the circle reveal many subtleties in the program as outlined in [4]. In this section, we
follow the overall program of [4] and make a number of improvements to reformulate
mathematically the construction of candidate modular data from three manifolds taking
into account these new subtleties.

2.1. Representation and character variety. Suppose X is an orientable connected closed
3-manifold and G is a semi-simple Lie group. The set of representations of the funda-
mental group 71(X)! to G consists of all group homomorphisms from 71(X) to G,
denoted by Hom(rr1 (X), G), up to conjugation. The representation variety R(X, G) of
m1(X) to G is simply Hom( (X), G)// G—equivalence classes of representations up
to conjugation.

In this paper, we will mainly consider the case G = SL(2, C) and its higher di-
mensional irreducible representations Sym/ of dimension j + 1. Given such a repre-
sentation p : m(X) — SL(n, C), its character is the function on m;(X) given by
Xp(x) = Tr(p(x)) for x € m1(X). The character variety x (X, SL(n, C)) of X con-
sists of all such character functions. We will also denote the representation variety
R(X, SL(2, C)) and character variety x (X, SL(2, C)) simply as R(X) and x(X). In
this paper, the topology of the spaces of the representation and character varieties is not
important.

There are three obvious nontrivial automorphisms of SL(2, C) by sending an element
g € SL(2, C) to its complex conjuagte g*, its transpose followed by inverse (g’)~!,
and the composition (g7)~! of the previous two operations. For each representation of
w1(X) to SL(2, C), post-composing with one of the three automorphisms of SL(2, C)
gives rise to another representation, hence representations in /R(X) come in group of
four in general. Another obvious way to change a representation p in R(X, G) is to
tensor p with a representation of w1 (X) to the center Z(G) of G. Representations of
m1(X) to the center Z(G) are in one-one correspondence with cohomology classes in
the cohomology group H' (X, Z(G)).

2.2. Non-hyperbolic three manifolds. The proposed program in [4] and in this section is
to produce modular tensor categories (MTCs) from closed three manifolds and show that
each MTC can be obtained from at least one three manifold. It is known that different
three manifolds can lead to the same MTC. As suggested in [4], we will focus on non-
hyperbolic three manifolds. There are seven non-hyperbolic geometries and six can be
realized by Seifert fibered three manifolds with the exception SOL [17]. The geometry
S? x R is not useful for our purpose as we need representations from the fundamental
group to SL(2, C) with non-Abelian images. We will mainly consider Seifert fibered
spaces in this paper, but in Sect. 4, we will also study torus bundles over the circle with
SOL geometry and more subtleties arise.

1 We omit the irrelevant base point.
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p1 P2 Pn
q1 q2 dn
0

Fig. 1. Surgery link of Seifert fibered space with base s?

Seifert fibered three manifolds X are those that can be foliated into disjoint union
of circles and are completely enumerated [16]. In this paper, all our three manifolds
are orientable, and we will denote the Seifert fibered spaces (SFSs) by the notation
X =1{b; (0, ); (p1.q1), (P2,92), - -+ , (Pn, qn)} asexplained below. The quotient space
of a SFS X, called the base orbifold B, by sending each circle, called a fiber, to a point
is a topological surface. The symbol (o, g) means that the base topological surface B is
an orientable closed surface of genus g.

Each fiber has a product neighbourhood D? x S! in the SFS X except n singular fibers
labeled by (p;, gi),i = 1, - - - , n. The neighborhood of the i-th singular fiber is obtained
from D? x [0, 1] by identifying the point (x, 0), x € D? with the point (g, ,, (x), 1),
where 7, p; is the rotation of the disk D? by the angle 2 a;/ p;, where a; € Z satisfies
aiqi =1 mod p;. The pair of coprime integers (p;, g;) are the corresponding surgery
coefficient. The fundamental group of X fits into a short exact sequence 1 — 71 (F) —
(X)) — JT{’”’(B) — 1, where 71 (F) = Z for a regular fiber F = S! and nl‘”b(B)
is the orbifold fundamental group of B (not the same as the fundamental group 1 (B)
of the topological surface B in general). The integer b in the notation is the obstruction
class, which is also the order of the generator of 1 (F) in nf’b (B). Since we consider
SESs as three manifolds up to homeomorphism rather than as fibered spaces, we may
always set b to 0.

The fundamental group of X = {b; (0, g); (p1.91), (P2, q2), -+, (Pn,qn)} has a
presentation

7T1(X)= <ajabj’-xl'7hv ]= 15"' agaiz 13"' anl
[aj, h] = [bj, h] = [x;, k1 = xP"h% =1, x1 -~ xula1, b1 -~ [ag, bgl = h®). (1)

In particular, the fundamental group of X = {0; (o0, 0); (p1, q1), (P2, g2), (p3, g3)} with
base S? and three singular fibers, denoted simply as {b; (p1, q1), (P2, 92), (P3,q3)}
sometimes, is

w1 (X) = (o1, x2, %3, hIx"h% =1, xih = hxi, xix0x3 = B°).

The orientable SES {0; (0, 0); (p1,q1), (p2,42), -+ , (Pn, gn)} with base S? and n sin-
gular fibers has a surgery diagram shown in Fig. 1.
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2.3. Chern-Simons invariant. Given an orientable connected closed three manifold X,
a morphism p of its fundamental group m1(X) to a semi-simple Lie group G can be
identified as the holonomy representation of a flat connection A, on the trivial principal
G-bundle over X. Therefore, in the following we will use the terms a representation o
and a flat connection A interchangeably via such an identification.

Let X be a closed 3-manifold and p : 771 (X) —> SL(2, C) be a holonomy represen-
tation. Denote by A, the corresponding Lie algebra s[(2, C)-valued 1-form on X. The
Chern-Simons (CS) invariant of p is defined as

1 2
CS(p):W/}(Tr(dAp/\Ap+§Ap/\Ap/\Ap) mod 1, )

where the integral with its coefficient in the front is well-defined up to integers.

The CS invariant CS(p) depends only on the character x (p) of p [12], hence it
descends from the representation variety 7R (X) to the character variety x (X).

Auckly computed the CS invariant of SFSs for SU(2) representations in [1]. The CS
invariant of SFSs for SL(2, C) representations may be known to experts. However, to
make the paper self-contained, we provide a proof to compute that using method from
[12].

Proposition 2.1. Let X = {0; (0, 8); (p1,q1), (P2, q2), -+ » (Pk, qx)} be an SFS with
the presentation of mw1(X) given in Eq. (1) with b = 0. Choose integers s; and r
such that pjs; — qjr; = 1. Suppose p : m(X) — SL(2, C) is non-Abelian such that

Tr(p(xj)) = 2cos Zﬂl, then
pj

j=1

Z(J Y aisi ) mod 1, p(h) = -

Jj=1

mod 1, p(h)=1
CS(p) =

Remark 2.2. The formula for the CS invariant in Proposition 2.1 differs from that in [1]
with a negative sign. We believe this discrepancy is due to conventions.

Before proving the proposition, we recall some facts in [12]

Let T be a torus and consider x (T"), the character variety of 7' to SL(2, C). It is direct
to see that x (T) can be identified with Hom (1 (T), C*)/ ~, where f ~ g if f = g*!
where g~! means point-wise inverse of g. We now describe a ‘coordinate-version’ of

x(T).
Let H be a group with the presentation,

H = <~xay’b | [X,y] = bxbx Zbyby =b2 = 1)’
and define an action of H on C2 by

x(av 13) = (a+ 17 ﬂ)s y(av ﬁ) = (avﬂ+ l)v b(av ﬁ) = (_a1 _ﬂ)

Denote the image of («, B) € C2 in the quotient space C2/ H by [a, B]. Let v = (vy, v2)
be any Z-basis of Hi(T), and define the map,

fi: C*/H — x(T),



From Three Dimensional Manifolds... 1197

such that f3[a, B] € x(T) sends

v > 2Ty s @2TIP

It can be checked that f3 is a homeomorphism. A representation of 71 (7") that induces
the character f3[w, B] is given by,

e271iot 0 62711'/3 0
V] = 0 e-2mia )" vy > 0 e—2miB )"

Furthermore, the homeomorphism f; is natural in the following sense. Let w be another
basis such that w = vA for some A € GL(2,Z) (viewing w and v as Tow vectors),
and define the map &3 ;: C? — C? by right multiplying (row) vectors of C2 by A on
the right. Then ®; 3 induces a homeomorphism, still denoted by &3 ;, from C?/H to
C?/H, and the following diagram commutes,

2y Pk o
C°/H — C°/H

lfi /fw

x(T)

Hence, we think of each C? /H with a choice of basis v as a coordinate realization
of x(T). In fact, x(T) is isomorphic to the direct limit? of {(C?/H)3, ®;.5},

x(T) = lim (C*/H)3,

where (C2/H)j is a copy of C?/H indexed by v.
Next, we introduce a C* bundle over x (7). Define an action of H on C? x C* lifting
that on C2 by

x(a, B;2) = (a + 1, B; ze*™F),
Vi@, Bi2) = (o, p+ 1 ze” 27,
b(a, B; 2) = (—a, —B; 2).
The canonical projection C2 x C* — C? induces a projection
p: C?x C*/H — C?/H,

which makes C? x C*/H a C* bundle over C?>/H. Given two bases v, w of H(T) with
w = VA, ®;_; can be covered by a bundle isomorphism. Explicitly, define ®3_ : C? x
C*/H — C? x C*/H which maps [a, B; z] to [(a, B)A; z9¢(4) ] Then the following
diagram commutes,

@54
(C? x C*/H); —% (C2 x C*/H)3

lp ll’ 3)

(C/H); —20 (€ H)g

2 Here all maps involved are isomorphisms, so the notion of direct limit and inverse limit do not make a
difference.



1198 S. X. Cui, Y. Qiu, Z. Wang

Let E(T) be the direct limit of {(C? x C*/H)3, &Dg,,;)}. Then Eq. 3 induces a map
p: E(T) — x(T) which makes E(T) a C* bundle over x (7T), and the diagram below
commutes,

E(T) +— (C* x C*/H);

I I’

x(T) «—— (C/H);

We often represent an element of E(T') by a ‘coordinate’ [«, B; z]; with respect to a
basis v. Changing the basis to W = 9 A induces the equality

[, B; 21 = [(a, B)A; 2%V,

and when the bases involved are clear from the context, we will omit them.

‘We also need an ‘orientation-version’ of E (7). Now assume 7 is oriented, and define
E(T) to be the direct limit of {(C? x C*/H)3, &)a@} where the limit is taken only over
positive bases v of H;(T'), namely, those v such that v; A v, matches the orientation of T
Apparently, E(T') and E(—T) are both bundles over x (T'), and are both isomorphic to
E(T). However, it will be of conceptual convenience for latter calculations to distinguish
E(T) from E(-T).

There is a fiber-wise pairing ( , ) defined on E(T) x E(—T) as follows. Given
e € E(T), ¢ € E(—T) such that p(e) = p(e’), choose an arbitrary positive basis
U = (vq, v2) of H{(T) and hence ¥’ := (—vy, v2) is a positive basis of H;(—T), and
write e = [, B; z]5, € = [—a, B; 2]y (or € = [a, —B; 2']_3). Then (e, ¢’) := zz/. It
can be checked that the pairing is well defined.

Lastly, the above notions can be generalized to multiple tori in a natural way. Let
S = uleTi be a disjoint union of k oriented tori. Then x (S) = x(T1) x --- x x(Ty).
The group H* acts on (C%)F component-wise and the quotient is a ‘coordinate-version’
of x(S). The action of H* can also be lifted to (C?)* x C* where the i-th component
H; in H acts on the i-th copy of C? in (C*)¥ times C*, and E(T) is the quotient of
(C*)k x C* by this action. For n < k, similar to the pairing above, there is a generalized
‘pairing’:

E(Mu---uTpy) x E(Thu---u—-Ty) > E(Tye U---UTy).

With the above notations, we recall several theorems in [12]. Let X be an oriented

compact 3-manifold with toral boundaries X = uf.‘lei and p: m(X) — SL(2,0C)

be a holonomy representation. It is well-known that CS(p) in Eq (2) is not well defined
since X has boundary. Let

CX(,O) — eZT[i CS(,D)

Theorem 2.3. (Theorem 3.2 of [12]) The Chern-Simons invariant defines a lifting cx :
X (X) —> E(0X) of the restriction map r from the character variety of X to the
character variety of X,

E@BX)
A

xX(X) == x(3X)
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Moreover, if Y = X1 U X3 is a closed oriented 3-manifold such that X1 and X, are
glued along toral boundaries 0 X1 = —3X», then for x € x(Y), we have

TS0 = (ex, (x1), cx,(X2)),

where x; denotes the restriction of x on X;.

The following theorem is also due to [12] which the authors proved for the case
of SU(2) representations (Theorem 2.7), but an almost identical proof also works for
SL(2, C) representations.

Theorem 2.4. Let X be an oriented 3-manifold with toral boundaries 0 X = I_I’I.‘=1 T; and
o(t): m(X) — SLQ2,C) be a path of representations. Let («;(t), B;i(t)) be a lift of
xop@®)lr to C2 with respect to some basis of Hi(T;). Suppose

cx (@) = [a1(2), Bi1(2), -+, ar(t), Br(1); z(1)]
Then

2(Hz(0)™! = exp 2mZ/ (a, dt ﬁ] " i)

In particular, if p(1) is the trivial representation, then

k 1 dB;:
cx(p(0)) = [m(O),ﬂﬂO),-‘- ,ak(O),ﬂk(O);eXp(—ZﬂiZ/o (o j; ﬂ, 7 ))]
j=1

The following two facts are proved for SU(2) representations in [12] (Theorems 4.1

and 4.2, respectively). Similar methods combined with Theorems 2.3 and 2.4 above
show that they also hold for SL(2, C) representations.
Fact 1 Let X be an oriented 3-manifold with toral boundaries 0X = U!_ T;. As-
sume H;(X) is torsion free. Choose a positive basis (u;, A;) for Hi(T;). Let {x; | j =
1,---,m} be a basis of H{(X) and u; = Y a;jxj,\i = Y bjjxj. Suppose that
p : w1(X) — SL(2, C) is an Abelian representation and Tr(p(x;)) = >™Vi + ¢~ 277i
for some y; € C. Then

cx(p) = [Zaljyjs Zbljij e Zanj)/j» anj)’ﬁ 1]

Fact 2 Let F be a genus g oriented surface with k punctures. The fundamental group
of F has the presentation,

mi(F) = (a1, b1, -+ ,ag,bg, x1,-+ ,x¢ | [a1, b1]---[ag, bglxy -+ xp = 1),

where x ; corresponds to the oriented boundary (induced from F) of the j-th puncture. Let
Y = F x §' be endowed with the product orientation and let 7 = % x S! be the central
element of 771(Y) corresponding to the oriented S! component. Then 3Y = L = 1 T;

with T; the torus corresponding to the j-th puncture and (x;, h) is a positive basis
for H{(T;). Suppose p : m1(¥Y) —> SL(2, C) is a non-Abelian representation, which
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implies Tr(p(h)) = 2cos27p for some B € {0, 3}. Suppose Tr(p(x;)) = > +
e~ "% for some o; € C. Then

k
ey (p) = [al,ﬂ,--- . oy, B exp(—27ip Zaj)}.
j=1
Note that cy (p) does not change under the replacement of some «; by —o;.
The rest of the subsection is devoted to the proof of Proposition 2.1.

Proof LetY = F x S! be as in Fact 2 above with the chosen generators x j and h.
Set h = h~'. Then X is obtained from ¥ by gluing k solid tori where the j-th solid
torus A; is glued along T; by sending the meridian to x;’ ’hi . The generators x jand h
match those as presented in Eq. (1). Choose a meridian-longitude pair (u;, A;) for A;

such that (i, A;) is a positive basis of Hj(dA ). The gluing of A; to ¥ provides the
transition of basis,

(j, \j) = (x, h) (Pf' rf').

4j Sj

Since p is non-Abelian, p (k) is +1. By assumption,

27Tinj 1
Tr(p(x;)) = exp( )+ exp(— ), Tr(p(h)) =2cosQam), m =0, =
pPj pPj 2
Therefore,
n ng
cy(p) = [Pl L —m, - E —m; exp2mim Zl (X1 ixpo—h)
J

o
ca; (p) =10, j’f]] +5im; Ui

rjn; .
= [_qj(T +5jm),rjnj +s;pn; 1](x_,~,h)
J

nj :
= [p—]_ —sjaj,m+rjoa;; 1], (settinga; =nj +q;m)
J

n .
— |:_]_Sja]7m exp(ZJTl(r]Ol])( _S]aJ))i|
pPj Pi

= |:—j m; exp(2m(rjotj)(— —s/oz/)+2m(sjaj)m)i|
pPj Pj

Note that the relation le? 'h% = 1 implies that o j must be an integer. Applying the
pairing on cy (p) and each c4; (p) one by one, we obtain,

CS(p) = Z(rjotj +sja/m+m—)
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k rjnz
_ J .
—Z( o +sjm(n.,+ot,))
=t
k.2
=YL = s
= D i4j
j=1

2.4. Adjoint reidemeister torsion. The Reidemeister torsion (R-torsion) 7 (X) of a cel-
lulation Ky of a manifold X uses the action of the fundamental group 71 (X) on the
universal cover K y to measure the complexity of the cellulation of X. It is a topological
invariant of X from determinants of matrices obtained from the incidences of the cells of
K x. The R-torsion makes essential use of the bases in the chain complex of the universal
cover, while the homology and homotopy groups do not see the geometric information
encoded in the based chain complex. For our purpose, we need the non-Abelian general-
ization of R-torsion twisted by a representation p : 71(X) — G for some semi-simple
Lie group G, in particular the adjoint Reidemeister torsion for the adjoint representation
of SL(2, C). We recall some basics here, for more details, please refer to [14] and [18].
Let
O A1 B

be a chain complex of finite dimensional vector spaces over the field C. Choose a basis ¢;
of C; and a basis k; of the i-th homology group H;(C,). The torsion of C, with respect
to these choices of bases is defined as follows. For each i, let b; be a set of vectors in C;
such that 9; (b;) is a basis of Im(9;) and let /; denote a lift of /; in Ker(9;). Then the set
of vectors b; := 0;11(bj+1) Uh; Lib; is a basis of C;. Let D; be the transition matrix from
¢; to b;. To be specific, each column of D; corresponds to a vector in b; being expressed
as a linear combination of vectors in ¢;. Define the torsion

n .
[T dewmn""

i=0

T(Cy, Cx, hy) ==

Remark 2.5. A few remarks are in order.
e The torsion, as it is denoted, does not depend on the choice of b; and the lifting of
h;.
e Here we define the torsion as the norm of the usual torsion, thus we do not need to
deal with sign ambiguities.

Let X be a finite CW-complex and (V, p) be ahomomorphism p : 71(X) — SL(V).
The vector space V turns into aleft Z[m; (X)]-module. The universal cover X has anatural
CW structure from X, and its chain complex Ci ()~( ) is a free left Z[m1(X)]-module via
the action of 7y (X) as covering transformations. View Ci (f( ) as a right Z[m1(X)]-
module by 0.g := g 1o foro € Cu(X) and g € m1(X). We define the twisted chain
complex Cy(X; p) := C.(X) ®z1 71 (X)] V. Let {e }o be the set of i-cells of X ordered
in an arbitrary way. Choose a lifting €., of €/, in X. Tt follows that C;(X) is generated
by {ea}a as a free Z[m; (X)]-module (left or rlght). Choose a basis of {v,}, of V. Then
ci(p) := {&, ® vy} is a C-basis of C;(X; p).
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Definition 2.6. Let p : 71(X) —> SL(V) be a representation.

1. We call p acyclicif C(X; p) is acyclic. Assume p is acyclic. The torsion of X twisted
by p is defined to be,

(X; p) = r<C*(X; £)s c*(p)).

2. Let Adj : SL(V) — SL(sl(V)) be the adjoint representation of SL(V') on its Lie
algebra s[(V). We call p adjoint acyclic if Adj o p is acyclic. Assume p is adjoint
acyclic. Define the adjoint Reidemeister torsion of p to be,

Tor(X; p) := 7(X; Adj o p).

Remark 2.7. In this paper, we will only deal with the adjoint Reidemeister torsion p. For
that matter, we simply call it the torsion of p. When no confusion arises, we abbreviate
Tor(X; p) as Tor(p).

The following tool will be useful in computing torsions.
Multiplicativity Lemma Let 0 — C, —> C, —> C —> 0 be an exact sequence

of chain complexes. Assume that C,, C,, C; are based by cy, ¢}, ¢/, respectively, and

*7 Uxo

their homology groups based by &, h, h, respectively. Associated to the short exact
sequence is the long exact sequence H, in homology

- —> Hj(CL) — Hj(Cs) —> H;(Cl) — H;_1(C}) —> ---

with the reference bases. For each i, identify ¢; with its image in C; and arbitrarily choose
a preimage ¢/ of ¢/’ in C;. If the transition matrix between the bases ¢; and ¢; L ¢/ has

determinant %1, we call ¢y, ¢}, ¢/, compatible. In this case, we have

T(Cs, Cis i) = T(CL, cl 1) ©(CY, ¢, hY)) T(Hy, {he UK, UKL},

2.5. Modular data from three manifolds. The modular data of an MTC or a pre-modular
category consist of the modular S- and 7 - matrices. Given a three manifold X with certain
conditions, [4] contains an algorithm for choosing the T-matrix and the first row of the
S-matrix, i.e. all quantum dimensions. The next step for the full S-matrix is a trial-and-
error algorithm based on finding the right loop operators for each simple object. When
all the loop operators are given, then the modular data can be computed. There are no
general algorithms to define loop operators, but in the cases of SFSs and SOL manifolds,
we find the relevant loop operators completely.

2.5.1. From adjoint-acyclic non-Abelian characters to simple object types Each pre-
modular category has a label set—the isomorphism classes of the simple objects, and
a label is an isomorphism class of simple objects, so we will refer to a label also as a
simple object type. In physics, an anyon model is a unitary MTC and a label is called an
anyon type or a topological charge.

A candidate label from a three manifold X and SL(2, C) is morally an irreducible
representation of the fundamental group 71 (X) to SL(2, C). But the precise definition
is more subtle and based on our examples later, we make the following definition. In
particular, we discover that reducible but indecomposable representations cannot be
discarded and play important roles in the construction of premodular categories from
torus bundles over the circle. Our definition is specific for representations to SL(2, C)
and we expect an appropriate generalization is needed for other Lie groups such as
SL(n,C),n > 3.
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Definition 2.8. Let x € x(X) be an SL(2, C)-character of a three manifold X.

e x is non-Abelian if at least one representation p : 71 (X) — SL(2, C) with character
x isnon-Abelian, i.e. p has non-Abelianimage in SL(2, C). The set of all non-Abelian
characters of X is denoted by x"2(X).

e A non-Abelian character y is adjoint-acyclic if each non-Abelian representation
p : m1(X) — SL(2, C) with character x is adjoint-acyclic, namely, the chain com-
plex associated with the universal cover X twisted by Adjo p is acyclic (see Definition
2.6), and furthermore, the adjoint Reidemeister torsion of all such non-Abelian rep-
resentations with character x are the same.

e A candidate label is an adjoint-acyclic non-Abelian character.

o A candidate label set L(X) from a three manifolds X is a finite set of adjoint-acyclic
non-Abelian characters in x (X) with a pre-chosen character such that the difference
of the CS invariant of each character L(X) with that of the pre-chosen character is a
rational number. The pre-chosen character is the candidate tensor unit.

Note that by definition, the adjoint Reidemeister torsion is well-defined for adjoint-
acyclic non-Abelian characters. The CS invariant only depends on characters, and is
hence also well-defined for such characters.

In this paper, our candidate label set is in general maximal in the sense it consists of
all the adjoint-acyclic non-Abelian characters of the given three manifold. It is also true
that the CS invariants of all the candidate labels including the candidate tensor unit are
all rational in our examples. We are not aware of any example of a candidate label set
for which not all CS invariants are rational numbers.

2.5.2. Vacuum choices, loop operators, and modular data Each simple object x of a
premodular category 3 has a quantum dimension dy and a topological twist 6. The set
Td(B) := UjerB)ldy;, 0x;} will be called the twist-dimension set of B, where L(B) is
the label set of B and {x;, i € L(3)} form a complete representative set of simple objects
of B. A candidate label set of a three manifold X will lead to a candidate twist-dimension
set in the following.

The choice of a tensor unit or vacuum from a collection of adjoint-acyclic non-
Abelian characters is not unique in general and it is known that different choices could
produce different premodular categories. Once a vacuum is chosen, then the adjoint
Reidemeister torsion of each character is scaled to the absolute value of normalized
quantum dimension and the difference of the CS invariant of the character with that of
the vacuum is the conformal weight of the simple object up to a sign.

Given a three manifold X and a Lie group G, a central representation of 71 (X) is
a homomorphism from 71 (X) to the center Z(G) of G. For G = SL(2, C), a central
representation of 71 (X) is simply a homomorphism from 71 (X) to Z,. The group of
central representations can be identified with H'(X, Z,). A central representation o €
HY'(X, Z>) of m1(X) naturally acts on R(X) by tensoring p € R(X), i.e. by sending
p to p ® o. Moreover, this action induces an action of central representations on the
character variety x (X).

Definition 2.9. 1. Given a candidate label set L(X) from a three manifold X, a central
representation o is bosonic with respect to L(X) if the action of o keeps L(X)
invariant and preserves the CS invariant of every candidate label. If the action of o

3 The sign and hence the negative sign in front of CS invariant below is not important and the choice is
made to be the same as in [4].
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changes the CS invariants of all candidate labels in L(X) by either O or %, then x is
called fermionic if it is not bosonic.

2. Two candidate labels are centrally related if they are in the same orbit under the action
of H'(X, Z») and they have the same CS and torsion invariant.

Given a candidate label set L(X) of X that is invariant under the action of H!(X, Z»),
the candidate symmetric center s (X) consists of all characters in L(X) that are centrally
related to the candidate tensor unit. Let Go(X) be the maximal subgroup of H (X, Z»)
such that G (X) maps the candidate tensor unit onto s (X). The action of G (X) separates
L(X) into orbits {Oyg, --- , O,,}, where each subset O; of L(X) consists of candidate
labels that are centrally related to each other, and Oy is the subset for the candidate
vacuum.

We often represent a candidate label (a character) by arbitrarily choosing a represen-
tative (a representation of w1 (M)) for it.

Definition 2.10. A candidate label set L(X) = {p} of a three manifold X with pg the
candidate vacuum is admissible if the following two equations hold with the notations
as above:

1
2 Mor(p) @

Pa€L(X)

Zexp(—27‘[iCS(,oa)) 1 [s(X)|

=— ; (5)
2Tor(pq) s +/2Tor(pp)

where s; = 1 if all central representations in G,(X) are bosonic and s; = V2 if there
is a fermionic one.

The conditions above are derived from the conjecture that the Mueger center of the
potential premodular category is a collection of Abelian anyons parameterized by the
subset Op. In the condensed category, each subset O; will be identified into a single
composite object which has the same quantum dimension as that of any simple object
in O; and which splits into a number of simple objects of the same quantum dimension.
The resulting condensed category is either modular or super-modular depending on if
there is a fermion in the candidate Mueger center. In a particular case when X is a Z
homology sphere, that is, H! (X, Z3) = 0, Eq (5) reduces to,

Zexp(—ZﬂiCS(pa)) _ 1 (6)
2Tor(py) ~ /2Tor(po)

Given an admissible candidate label set L(X) with the chosen candidate tensor unit
00, then the candidate twist-dimension set is constructed as follows:

Oy = e—2ni(CS(pa)—CS(po))’ (7)
D? = 2Tor(pp) (8)
2 D2

dy = 2Tor(pg)” )

where D? is the total dimension squared of the candidate premodular category.
Next, we discuss the construction of the S-matrix.
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Definition 2.11. Given a three manifold X, a primitive loop operator of X is a pair
(a, R), where a is a conjugacy class of the fundamental group 1 (X) of X and R a finite
dimensional irreducible representation of SL(2, C).

Given an SL(2, C)-representation p of r;(X) and a primitive loop operator (a, R),
then the weight of the loop operator (a, R) withrespectto p is Wy (a, R) := Trg(p(a)).
Denote by Sym/ the unique (j + 1)-dimensional irreducible representation of SL(2, C).
Then W, (a, Sym/) can be computed from the Chebyshev polynomial A j () defined
recursively by,

Ajar(t) = 1A (1) — Aj(1), Ao(t) = 1, Ay(1) = 1. (10)
Explicitly,
Wy(a, Sym/) = Aj(t), t=W,(a, Sym!) = Tr(p(a)). 11

From the above two equations, it follows that W, (a, Sym/) only depends on the character
x induced by p. It is direct to check that,

Aj(2cosf) =sin((j +1)0)/sin€, Aj(—t) = (-1 A, (1), (12)

A fundamental assumption in constructing the S-matrix is that each candidate label
P should correspond to a finite collection of primitive loop operators:

P > {(ag, Re)}i 13)

By choosing a sign € = +£1, we define the W-symbols

W) = [ Wepslas, Ry) = [[Trrg(e pp(@l)), pa.pp € L(X).  (14)

The W-symbols and the un-normalized S-matrix S = D S are related by,

S -
W) = S—ﬂ or Sup = W@ Wo(B), (15)
0B

where 0 denotes the tensor unit pg. In particular, the quantum dimension
dy = Wo(a). (16)

Remark 2.12. Currently it involves a guess-and-trial process to find the correspondence
between candidate labels and loop operators. One on hand, we know the absolute value
of Wy(x) from Egs. (9) and (16). On the other hand, Wy () can also be computed by
Eq. (14). Note that, to obtain Wy(«), only the loop operators corresponding to p, are
required. Hence, we can choose a set of loop operators for p, so that the two ways of
computing Wy (o) match (in absolute value). See the next remark for further validation
of choices of loop operators. We leave it as a future direction to define the rigorous
correspondence.

Remark 2.13. We expect that the resulting modular data corresponds to a MTC if and
only if H'(X, Z,) = 0. Note that, this is a purely topological condition, independent of
the choice of loop operators. Hence, if H 1 (X, Z») = 0, we can also validate a choice
of the loop operators by checking whether the resulting S and 7 matrices define a
representation to SL(2, Z).
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Before closing this section, we summarize the construction of modular data and show
various choices during the procedure. Given a closed 3-manifold X, first we choose a
candidate label set L (X) which is a finite set of adjoint-acyclic non-Abelian characters.
A special character in L(X) is prechosen as the tensor unit. The candidate label set is
required to be admissible (see Definition 2.10). Then the topological twists (7 -matrix)
and quantum dimension squared of simple objects are given in Eqgs. (7)-(9). Next, we
associate to each character in L(X) a finite collection of primitive loop operators (see
Eq. (13)) from which and a choice of € = 1 the W-symbols are defined. The S-matrix
and the W-symbols are related to each other by Eq. (15).

3. Modular Tensor Categories from Seifert Fibered Spaces

In this section, we consider SFSs with three singular fibers and construct modular data
associated with premodular categories. Throughout the section, set M = {0; (0, 0);

(p1,q1), (P2, g2), (3, q3)}, where each pair (px, gx) are co-prime. So the underlying
2-manifold of the orbit surface ¥ has genus 0 and both M and ¥ are orientable.

3.1. Charactervarieties of seifert fibered spaces. For M = {0; (0, 0); (p1,q1), (P2, q2),
(p3, q3)}, its fundamental group has the following presentation,

mi(M) = (x1,x2, x3, h | x*h% =1, x¢h = hxg, x1x0x3 = 1,k =1,2,3)

We look for all non-Abelian characters of 71 (M) to G = SL(2, C).

Let p : m{(M) — G be a non-Abelian representation. Since # is in the center of
m1(M) and p is non-Abelian, p(h) must be £/7. It follows that each p(x;) has finite
order, and is diagonalizable in particular. Moreover, any p(xx) does not commute with
another p(x;). This implies neither p(xx) can be /. Up to conjugation, we assume
p(xy) take the following form (writing p (xx) simply as xi),

el ab e 0 e 0
= ( 0 e_i"‘l) X2 = (c d) ~ ( 0 e—iaz) SR ( 0 e—i“3> an

where 0 < ay < m,ad —bc = 1, and b and c are not simultaneously zero. We have the
following linear equations for a and d.

Tr(xy) = €2 +e7 ™ =a+d (18)

Tr(x3) = €'® + 7% = g™ 4 de™ '™ (19)

Hence, given the a; s, or equivalently Tr(x;), a and d are uniquely determined, anda = d.
Moreover, when |a| # 1 implying bc # 0, this also determines p up to conjugacy. When
la| = 1 implying bc = 0, there are precisely two conjugacy classes with

Xy = <g clz) or xp = (Cll g) (20)

It can be checked that these two representations are complex conjugate to each other
up to conjugacy, and that their characters take real values. They give rise to the same
character. There are two types of non-Abelian representations. One type is irreducible
satisfying b, ¢ # 0. Characters of representations of this type one-to-one correspond to
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conjugacy classes of representations [7]. The other type is reducible with exactly one of
b, c zero. Each character of this type corresponds to two conjugacy classes.

To summarize, the triple (o1, @2, @3) and Tr(k) uniquely determine the character.
Next, we find all possible such triples.

If h = I, each ¢/® is a py-th root of 1. If h = —1I, then /% is a py-th root of 1
if gx is even, and a pi-th root of —1 if g; is odd. We claim all triples satisfying the
above conditions can be realized by some representations. Indeed, given such a triple
(o1, 02, 3), we define p(x1) and p(x2) asin Eq. (17) and let p(x3) := (p(x)p(xa))~ L.
Eqgs. (18), (19) determine a and d, and we arbitrarily choose b and ¢ such that ad — bc =
1. Again, Egs. (18), (19) guarantee that p(x;) so defined has eigenvalues eTi% and
therefore they satisfy all the relations in the presentation of 71 (M).

Set a = 2’% and p(h) = e, A =0, 5. IfA = Oorif A = 5 and g is even,

then nj is an integer strictly between O and %. IfA = % and gi is odd, then ny is a
proper half integer strictly between 0 and %. The quadruple (n1, n2, n3, A) completely
characterizes a character.

For an integer p > 0, denote by [0--- p] the set of integers {0, 1,---, p}, and
by [0--- p]® (resp. [0--- p]°) the subset of even (resp. odd) integers in [0 - - p]. The
non-Abelian character variety of M is given as follows,

Ji+1l jo+1 j3+1 1 .
me(M):{( T e el0- - pp —21%

2 2 2 2
i1+1 jp+1 jz3+1 @b
Ji 2 J3 . R
u ) ) 70 O"' -2 )
{( > > > >|Jk€[ Dk ]}

where €, = ‘¢’ if g; is odd, and ¢, = ‘o’ otherwise. For (n1, na, n3, \) € x"(M),
2ming
a corresponding representation p has e~ 7k as the eigenvalue of p(xx) and p(h) =
2iA
e I.

The size of x™°(M) is

pi—1 pr—1 p3—1
7 1L 5 1L 5 IR

where | x| is the greatest integer less than or equal to x.
For instance, if all the q,’{s are odd, then X“ab (M) can also be written as,

mb gy — 1 2Ly 22y P2
[x (M)I—LZJLZJL2J+L

nab _ (j1+1 2+l j3+1 (i+1) modz)
2 2 2 >

ljk€l0---pr =21, 1 =j2=J3 modZ}

3.2. Torsion of seifert fibered spaces. Freed computed torsions of Brieskorn homology
spheres for the adjoint representations of irreducible SU(2) representations in [8]. Kitano
computed torsions of SFSs for irreducible SL(2, C) representations in [13]. However,
we need to compute torsions of SFSs for the adjoint representations of nonAbelian
SL(2, C) representations containing both irreducible and reducible ones. This may be
known to experts, but we did not find a reference for explicitly doing so. To make the
paper self-contained, we provide a detailed derivation of these torsions, generalizing the
work of [8] and [13].
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Let X be the SFS {0; (o, 0); (p1, q1), (P2, q2), (P3, g¢3)}. Decompose X as U?:o A; U
B along U3_, T; where B = (S? — 4pts) x S', and Ao, A;(i = 1,2,3) are solid tori
attached to B by index 1, % along Ty, T;, respectively. Let p : m1(X) — SL(2,C)
be a non-Abelian representation, V = sl(2, C) be the adjoint representation of p with

the basis
(01 (10 {00
‘0= 00/ 2= 0o-1)"“T 10

From Sect. 3.1, p is parametrized by (n1, na, n3, h) where 0 < n; < %, n; € %Z,
h=0, % Assume that r;, s; € Z, such that p;s; —rigi = 1.
Proposition 3.1. When p is nonAbelian, C+(X) @7z, (xy V is acyclic and

pP1p2pP3
]_[?_1 4sin? it
- Di

Tor(X; p) =

Proof. Denote Cyx ®z[x,(x)] V by Cy,p, twisted homology by H,, and the matrix of
element in 771 under p by the same letter.
Given CW structure on X, we have the following exact chain sequence

3 3
0 — P Cp(T) — @ Cup(Ai) & Ci p(B) —> Cs p(X) —> 0
i=0 i=0
and long exact sequence

3 3
0 — @ Hy(T;) — P H3(A) ® Hy(B) —> H3(X) —> -+
i=0 i=0
3 3
— @B Ho(T:) — @B Ho(A;) ® Ho(B) — Ho(X) —> 0
i=0 i=0
Since the Reidemeister torsion is invariant under simple homotopy, we can just con-

sider the simple homotopy types of the above spaces. A; is simple homotopy equivalent
to a 1-complex, and 7; and B are each simple homotopy equivalent to a 2-complex. Thus
we have

H3(A;) = H3(B) = H3(T;) =0, H(A;) =0.
Construct their cell structure as follows.
Co(B) =< vp >, Co(T;) =< v, >, Co(A;) =< v4; >
Ci(B) =< x1,x2,x3,h >, C(T;) =< m;, l; >, C1(A;) =< b; >
C2(B) =< uy,p,u2,p,u3,p >, Co(T;) =< ur, >
where v, are base points of connected spaces, x; generate (S2 —4pts),h = * X ste
7T1(52 — 4pts x Sl), m;,l; are meridians and longitudes of 7; respectively, b; are

longitudes of boundary of A;, u; p are squares with boundary x; hx;” Th=1, U, are squares
with boundary milimfllfl. T;(i = 1,2, 3) are attached to x; x & by identity map and
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boundary of A; by ( Si _?’). Ty is attached to x1xx3 x h and boundary of Ag by

—ri Ppi
identity map. x1, x2, x3, h generate 71 (X) as follows.

m1(X) =< x1,x2, x3, h|xPhY =1, x;h = hx;, x1x0x3 =1 >

For matrix under p, we have

0 0
xi~|01 0 |.n=1
00 ¢!

1

where ¢; is a p;-th root of unity. m; = x;, b; = xiri ,l; = h. Here we use 1-cell with ends
points attached as element in 7.

The work of [8] can be generalized to irreducible representations of SL(2, C). Thus
we focus on reducible and nonAbelian representations. According to (20), taking upper
triangular ones for example, they have the following form.

x_alo x_dzl x_al_laz_l—al
1= Oaf] X2 = Oa;] , X3 = 0" ayar

where ay, ay, a3 = al_laz_1 are roots of 1 or —1.
For adjoint representation, we have

afZO 0 a;22a;] -1
X1 = 010 , X2 = 0 1 —ar
0 0a? 0 0 a
a%a% —2ay —a1_2
x3=| 0 1 a’ay’ (22)
0 0 afzagz
4ming _ 4min;

Let w,.i be the eigenvectors of x; for eigenvalue {; = a;” Z=¢n ;“fl =e Vi
respectively and w? be the eigenvector of x; for eigenvalue 1. Then wljE are the eigen-
vectors of x; for ;iri and w? be the eigenvector of xl.r ! for 1. By scaling, assume that

|[wl.iw?]| = 1 in V. According to (22) , w?c, w, is a basis of V. Similarly, for lower

triangular ones in (20), wI—L, w; is a basis of V.
For T;(i = 1, 2, 3), we have

0 a
0 —> Ca.p(T;) — C1.p(T}) —> Co.,(T;) — 0

where

o
82=(xi_1>,81=(xi—1 O)
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We have
Hy(T}) =< iit, @ w >
H(Ty) =< i @ w). I; @ w; >

Ho(T}) =< i1, @ w? >

Choose preference basis h, for H,(7;) as above and similarly with others. Without
confusion, we omit /1, in the expression as cy.

i ® (i — DwE i @ w. [ @ wd. i ® wr
T(C*yp(]})):|[~[1®(xl )wz ml®wl l®wl m,(g)wl] |

ir, @ w?, iy, ® wl.i][ﬁrl. ®w?, vy, ® (x; — I)wii]
e = bwt o @uwl [ @ wl, i @ '
g @ w. iy @ williy @ wl, 7, ® (6 - D

=1 (23)

For T,, we have 9, = 0, 91 = 0.
Hy(Ty) =< i, ®e; > (i =1,2,3)
H\(Ty) =< 1o ® ei, lo ® e; >
Hy(Tp) =< ﬁTo Re; >
T(Cyp(To)) =1 (24)
For A;(i =1, 2, 3), we have
00— Cl’p(Al') — Co,p(A,') — 0

where 9; = x;' — 1.
‘We have

Hi(A) =< b @uw? >
Ho(Aj) =< 04, @ w) >

(b @ w?, b; ® w)
T(Cy p(A) = | = lr,- : l:l: — 0
(U4, ® (x/" — Dw;", 4, ® w)]
[bi ® w?, bi ® wi']
[04, ® (7" — Dw, 54, @ w?]
1

&7 = 11167 = 1]

(25)
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For Ag, we have 9; = 0.

Hi(Ag) =<by®e; > (i =1,2,3)
Hy(Ap) =< l~)A0 Qe >

T(Cyp(Ag)) =1 (26)

For B, we have

0 —> Cyp(B) 2 C1)(B) > Cop(B) —> 0

where
0] 0] 0
0] 0] O
0 = 0 0 0 ,31:()C1—IX2—IX3—10)
xi1—Ixp—1x3—1
‘We have

Hy(B) =< il; p @ w), (i1, p +il2, px1 + i3, pxax1) @ ¢; > (i = 1,2,3)
H(B)=<x® w?, (X1 + Xox1 +X3x2X1) @ €; >

Since the rank of matrix 9, is 3, we have Hy(B) = 0. Also, H3(B) = 0 since B is simple
homotopy equivalent to a 2-complex.

T(Cx,p(B))

= [t p @, it ® e, ii1.p D wf, g ®@wy !
[0 ® (x1 — Dy, , i3 ® (x2 — Dwy 17!
X @uw),¥®e, h® (xi — Dwi, h® (x2 — Dwy , %1 ® wi, %2 ® w; |

= |lii,p @ W, it ® e, it1,p @ Wi, il g ®wy |~
[0 ® (¢ = Dwi, T3 ®@ (&' — DHw;y 17!
F@w) i®e h® ' —Duwf,he @ — Dwy, i @ wi, k@ w; |

= |[i;p ® w,ii ® e;, 1,5 @ Wi, lap ®wy 17 [Ip @ wi, ip @ wy |~
[F@w),i®e, h@uwi, h@w,, i ®w,Hew; ]|

=1 @7

where X = f] +)?2x1 +)Z3x2x1, U= L~t1,B + 122,3)61 + I:Z3,szx1.
In the long exact sequence for twisted homology group, we have isomorphisms

3 3
0 — P HA(TH) — P He(A) ® Hu(B) — 0

i=1 i=l1

Then Cy ,(X) is acyclic as follows.
We have

3 3
0 — @B Ho(T;) — @D Ho(A;) — 0
i=0 i=0
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where (37, ® w?) = T4, @ WY, Iy, ® €;) = VA, ® ¢;, det () = 1.

3 3
0 — @5 Hi(T;) — @D Hi(Ai) @ Hi(B) — 0
i=0 i=0

where 907; ® w)) = (& — bi Q) ® wl, 3 ® w)) = bi P ® w, Iy ® e) =
(X1 +Xox + X3x102) ® €, 0o ® €) =y ®@ ¢j, Qj = Y1 x7/1i, P = '7"_01

= _xjri’
det(3) = p1pa2p3.

3
0 — @ Ha(T;) — Hr(B) — 0
i=0
where (7, ® w?) = di;,5 ® WY, d(iip ® €;) = (ii1,p + 2, px1 + U3 pX2x1) ® €,
det(9) = 1.
According to Multiplicativity lemma, Eqs. 23, 24, 25, 26, 27 and the calculations
about homology above, we have

P1p2p3
T, 4sin? 2:117#

Tor(Cyp (X)) =

3.3. Modular data from Seifert fibered spaces. We will show that the modular data
constructed from 3-component SESs are related to the Temperley-Lieb-Jones categories
at root of unit. So let us collect some basic facts about those. For references, see for
instance [20].

Let A be a complex number such that A* # 1. For an integer 1, define the quantum

integer [n]4 = A5=47". S0 [0]4 = 0, [1]a = 1, [2]4 = A2+ A2, For each 4,
usually called the Kauffman variable, such that A* is a primitive r-th root of unity for
some integer r > 2, there is an associated premodular category, called the Temperley-
Lieb-Jones category and denoted by TLJ(A). The category has the label set (simple
objects) [0--- p — 2] where the label O is the unit object. For i, j € [0--- p — 2], the

quantum dimension is
_ CA2J¥2 _ p-2)-2
dj(A) = (=D/[j+1]a= (—I)JW,
the twist is
0;(A) = (=A) 2,
and the (un-normalized) S-matrix is
8ij(A) = (D™ [ + D(j + Dla.

The total dimension can be computed directly,

V2r

D(A) = 5
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Denote by TLI(A)g (resp. TLI(A)p) the subcategory linearly spanned by even (resp.
odd) labels. We call TLJ(A)o and TLJ(A); the even and odd subcategory of TLJ(A),
respectively. The even and odd subcategory has the same dimension, both equal to %.

It is well known that if A is a primitive 4r-th root of unity, then TLJ(A) is non-
degenerate. If r is odd and A is a primitive 2r-th root of unity, then TLJ(A) is degenerate,
but the even subcategory TLJ(A)g is non-degenerate.

Now we consider the construction of modular data. As before, set M = {0; (o0, 0);
(P1,91)s (P2, q2), (p3, q3)}. Here each pair (px, gx) are co-prime. Choose integers si
and ry such that prsy — grre = 1. If gy is odd, set cx = prgrsk — ri. Otherwise, set
ck = pkqiSk — e (pk — D2 Let Ay = — exp(%ck). Note that while ¢; depends on the
choice of s and ry, Ay does not. Moreover, Ay is a primitive 4 pi-th root of unity if g
is odd, a primitive 2 pg-th root of unity if gy = 0 mod 4, and a primitive pg-th root of
unity if gx = 2 mod 4. In the latter two cases, py clearly must be odd. Hence, in all
cases, Ai is a primitive pg-th root of unity.

If some g; s are even, we re-arrange the elements of x4 (M) as follows. For (p, ¢)
co-prime, j € [0--- p — 2], let

p=1=j

npq(j) = {j+12 7

2

g even and j even
otherwise

Then from Eq. (21), x™(M) can also be written as

1
{(”pl,ql (J1): 1pyg (J2) s psy g5 (J3)s 5) |l jk€0---pr —2]°k=1,2, 3}

U {(npl,ql(jl),npz,qz(h),npg,qg(jz), 0) ljk €0 pe—21°k=1,2, 3}
(28)

Thus, the elements of x™(M) are indexed by j € ]_[i=1 [0---pr—2]° U ]_[i=1
[0--- px —2]°. Given such a j = (j1, j2, j3), denote a corresponding representation by
P7- (The choice of a representative is irrelevant.)

Proposition 3.1 shows that all non-Abelian characters of M are adjoint acyclic and
Proposition 2.1 shows that the CS invariants of non-Abelian characters are all rational.
We choose the candidate label set L(M) to be x"°(M).

We propose the correspondence between L (M) and loop operators by the following
map,

p; = {0k, Sym%) |k =1,2,3}. (29)

Moreover, we designate p; = p(0,0,0) as the unit object, which of course corresponds to
the loop operator

1=p5 > {(x*, Sym”) | k= 1,2,3). (30)

The following two lemmas are direct consequences of Propositions 2.1 and 3.1,
respectively.
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Lemma 3.2. Let M, cr, A be given as above. For each ] = (J1, j2, j3) € ]_[2:1
[0---pr —2]¢ U ]_[2:1 [0--- px — 2]° with pja corresponding representation, then

3
—Ck . 2
CS(p>) = — e+ D). 31
(07) ]; Iy, e+ D 31)
As a consequence,
e TIwD ﬂ( AU = (—A1ArA3) H 0 (Ar). (32)
k=1 k=1
Proof. Note that forf = (J1, j2, J3), Te(p(jy, jn, j3) (Xi)) = 2 cos 27m""—’_‘”(j").The formula
above then follows from Proposition 2.1. O

Lemma 3.3. Let M, cr, Ay be given as above and let D = D(A1)D(A2)D(A3)/2.
For each j = (ji, j2. j3) € [[izi[0-+- px — 21 U [[;y[0- -+ pi — 21° with p5 a
corresponding representation, then

3
Pk
Tor(ps) = —_— (33)
J ]!:[ 4Sin2(n’}’k§)j:+l))
and hence,
3
di (Ap) | d; (Ak)|
(2Tor(p7) 2 ]_[ l’)k(Ak) I ‘D’k (34)

The main result of the section is the following theorem.

Theorem 3.4. Let M = {0; (p1.q1), (P2, 92), (3, g3)} and {Ai}i=123 be given as
above. With the operators and tensor unit given in Egs. (29) and (30), respectively, the
modular data constructed from M matches that of the following pre-modular category,

8= (& 1Li(A00 ) D (B 1L A0 )

Proof. Since Ai is a primitive pg-th root of unity, the label set for 5 is clearly L :=
]_[2:1 [0---pr—2]° U ]_[2:l [0--- px —2]°, the same index set for L(M). The modular
data of B can be easily expressed in terms of that of the individual TLJ(Ag). Fori, j € L,

3 3 3
d: =[] diA0, 6 =[]6iA0, S5 =[] Sii(A0-
k=1 k=1 k=1

Also, the total dimension of Bis D = D(A{)D(A3)D(A3)/2.
Lemma 3.2 shows that, up to a global phase, the Chern-Simons invariant gives the
twist,
o ~27iCS ()

=0,
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and Lemma 3.3 shows that the torsion matches the absolute value of the normalized

quantum dimension,

i

_1
(2T0r(p7)) 2 = D

Lastly, We check the S-matrix computed from loop operators. Giveni = (i1, 12, 13),
Jj = (j1, j2, j3) € L, we have (choosing € = —1)

3
Wi () = [ | Trsymi (—0;05)).

k=1
Note that,
2 )T i+ 1
Tr(p () = 2cos roea BTy o Gt Dk
Pk Dr

where the second equality holds irrelevant of the parity of g;. Combining the previous

two equations, we get
in Gt DGt Drre

3 . 3
- (ix + Dmeg j § Dk
W:(j) = | |Ajk(—ZCOS —Pk ) = ]!_[1(—1) * gin GtDrer
= Pk

k=1
where A, () is the Chebyshev polynomial (see Eq. (12)). Therefore, the (f, ;)—entry of

the potential un-normalized S matrix is,
in Gt DGt Doy

3
Wi (DWa( = [ T(=D" ——F—
k=1 Pk
3
= ]850 i
k=1

which is precisely Sii of B. |
The premodular category produced in the previous theorem may not be modular in

general, and it depends crucially on the topology of the three manifold. For a three-

component SFS M, it is a Z; homology sphere, i.e., H! (M, Zp) = 0, if and only if

a9 g3
p1p2p3( 1+_+E)€22+1

p
Lemma 3.5. Assume that r is odd. Suppose that
T(p, j,l, %) = Z (e(j+l)mr%i _ e(j—l)mr%i _ 6‘(—j+l)mr%i +e(—j—l)mr%i>

me[pl*
where x = 1,0, and [ p]* denotes the set of odd integers from 1 to p — 1 if x is I and the

set of even integers in the same range otherwise.
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When p isodd, j #1, j +1is odd,

0 j+l#p
(=D*p j+l=p

T(p,Jj.l, %) = {
When pisodd, j #1, j +1is even,
T(p,j,l,x)=0
When p isodd, j =1,
T(p,Jj,l, %) = —
When p is even, j # 1, j +1 is odd,
T(p,j,l,x)=0

When p is even, j # 1, j +1 is even,

0 j+l#p

T i, 1 =
(Pl {(—1)*p jri=p

When p is even, j =1,

. —-p Jj+l#p
T(p’]’l’o):{ 0 j+l=p
. —-p j+l#p
T(p,J,l,1)={_2p jtl=p

Proof. We prove the lemma by direct computation.
When pisodd, j #1, j +11is odd,

p—2
T(p,j.l.,1)= Z (UM G _ =hmr§i | JG=Dp—mrgi _ G (p-m)r iy
m=1,m odd
p—2 -1
= Z (UrDmr i _ JG=hmriy Z (UDmr i _ bmr Ty
m=1,m odd m=2. even
p—1
GHDriym G=Driiy
=" Z( e 7T+ Z( e
m=1
_ { 0 j+l#p
—p ]+l =p
=-T(p,j,1.0)
Similarly, we get other cases. .

Proposition 3.6. Given a three-component SFS M, the premodular category By pro-
duced in Theorem 3.4 is modular if and only if M is a Z, homology sphere.
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Proof. Since the structure from Sect. 3 respects the change of parametrization of Seifert

fiber space, it suffices to verify the following 5 cases for (2%, 22 %).

a1’ q2’
odd odd odd_ odd odd even odd even even
odd’ odd’ odd”’ “odd’ odd’ odd "’ “odd’ odd’ odd’’
even even even) (odd odd odd
odd’ odd’ odd”’ “odd’ odd’ even
The first two cases correspond to Z-homology sphere. In the following, we will explic-
itly calculate S2, which directly implies the proposition.
When q1, g2, g3 are odd, j; = j» = j3 mod 2,/1 =l = I3 mod 2.
Up to a scalar,

3
1+ E— 4
St sntinlads) = (=D T T sin julire—
e Pk
2
(ST i jaja)srla 1)
3

i .. T, T

— E (—1)Jr+mitmi+h 1_[ sin jemyry— sin mylpr —
(m1,ma,m3) k=1 Pk Dk

ey

3
= (=1)I*h Z l—[ _%(e(]k‘*'lk)mkrk el pUkmtminc gl (kkliomiricg
(my,m2,m3) k=1

—jk—lmyry =i
+e( Je—l) kkpk)

=Moo Y+ Y .

(my,ma,m3),m; odd (my,mo,m3),m; even
3 3
= DI TP s i D+ [ ] T ks 1 00)
k=1 k=1
When p1, p2, p3 are odd,
0 (i, g2, 3) # i, 1, 13)

2
(ST, jarji) il l3) = § P1P2D3
32

U1, j2, j3) = (1, b, I3)

When p1, p» are odd, p3 is even,

X 0 (i, j2, j3) # (1, 1, 13)
(ST, jarji) i l3) = § P1P2D3
32

(1, j2, j3) = (1, 12, I3)
Thus S2 = ¢/ for the above two cases.
When p; is odd, pa, p3 are even,

p1p2p3
(SHAL. 0l = 32

(lla 127 13) = (15 17 1)9 (15 p2 — 15 pP3 — 1)

0 otherwise
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p1p2p3
2
(ST pa—1.p3—1). (1 2 13) = 32

(11712713) - (la 19 1)7 (15 p2 — la p3 — 1)
0 otherwise
SHaan = (52)(1,p2—1,p3—1)

When py, p», p3 are even,

p1p2p3
) (b)) =0, 1,1),(, pp—1,p3—1)
SHULY. A = 32
0 otherwise
pip2p3
5 (h,h,)y=(01,1,1),(d,pp—1,p3—1)
(S, pa—1,p3—1), (1o 13) = 32

0 otherwise
2 2
(S, = DA, pr—1,p3-1)

S? is degenerate for above two cases.
When q1, g» are odd, g3 is even, j; = j» mod 2,/ = I, mod 2, j3 = 0 mod 2,
I3 =0 mod 2.

3

2
(M1, ottty = [ | T(Prs s s DT (p3, 3, 13, 0) + [ | T(prs i I 0)
k=1 k=1

When p1, p2, p3 are odd,

pP1p2p3
2 T AA (11712713):(15172)7(171_17p2_172)
(S7)1,1,2), (1) = 32
0 otherwise
pP1p2p3
5 - (1, b, 3)=0,1,2),(p1—1,p2—1,2)
(S (pr1=1.p2=1,2). 1 o 13) = 32
0 otherwise
S? is degenerate. O

It is worth noting even if every TLI(Ax) appearing in the construction of By in
Theorem 3.4 is not modular, B, could still be modular. For instance, for the SFS
Mo = (0; (o, 0); (5 1), (3,2), (5 4)), the corresponding Kauffman variables are A; =

—e 10, Ay = —e K , A3 = —e . Itisdirectto see that TLJ(A1) is modular, but TLJ (A7)
and TLJ(A3) are not. However, M is a Z, homology sphere, by Proposition 3.6, Ba,
is modular, a rank-8 MTC.

3.4. Examples: realization of SU(2),. Here we study a special class of SFSs with three
components, namely, M (r) := {0; (0, 0); (3, 1), (3, 1), (r, 1)}. We show explicitly that
different choice of characters as the unit object may lead to different theories. In fact, it
will be proved that from M () we can construct either the MTC SU(2),_, or TLJ (ez%).

For each integer r > 2, there is a unitary MTC, usually denoted by SU(2),_» [3],
which is closely related to the Temperley-Lieb-Jones categories. Here r — 2 is called the

level of the MTC. It has the same label set as TLJ (e%), but differs from it in modular
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data by some signs. Explicitly, setting A = e%, the modular data for SU(2),_ is given
as follows,

0] _ A/(j+2) _ ew

s

sin +DH(j+D)m

Sij =G+ DG+ Dl = ———F—

In particular, its quantum dimensions are all positive (since it is unitary),

sin U*DT

di = [j+1]p = —L—,
j [J 1a sin%

D—\/7 1
- 2sin T

Note that d; = |d;j(A)| and D = D(A), where d;(A) and D(A) are the quantum
dimension of j and total dimension of TLJ(A), respectively.

We will use notations from Sects. 3.1 and 3.3. The non-Abelian characters of M (r)
is given by

and the total dimension is

nab (L Ll ; 2
X (M(r))—{(z,z, > ,2>|<0,0,J>e{0}><{0}><[0 r 2]}

j+1 .
u {(1,1,T,O> |(1,l,])€{1}><{1}><[O~-~r—2]o}.

(35)

Thus, each j € [0---r — 2] corresponds to a non-Abelian character indexed by
(j mod 2, j mod 2, j). We denote the corresponding representation by p; (instead of

:l:(j+l

using the triple as the subscript). The eigenvalues of p; (x3) are e = . The eigenvalues

of p;(x1) and those of p;(xz) are both ei]T, where a; = 1if j evenand a; = 2
otherwise. L ot
Also, itis directtoseethatci =cpy =c3=1,and Ay = A = —e 6, A3 = —e 4 .
In Sect. 3.3, we chose the candidate label set L (M (r)) to be X““"(M (r)), and defined
the following map from x (M (r)) to loop operators,

pj = > {(x1, Sym’ ™42), (xp, Sym’ ™4 2), (x3, Sym’)}. (36)

It can be checked directly that for i, j € [0---r — 2], Tr(p; (x1)) = Tr(p;(x2)) = £1,
and it follows that,

Wi(j) = Trgyms moa2 (= pi (x1)) Trgyp,jmoa2 (—pi (x2)) Trgy i (—pi (x3))
= Trgyi (=pi (x3)).

Hence, we may as well choose a simplified map to loop operators,

pj > {(x3, Sym/)}. (37)
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The unit object was chosen to be pg which corresponds to the loop operator (x3, Sym®).
By Theorem 3.4, the modular data match that of the premodular category,

By = (B TLI(A00 ) €D (B LA ). (38)

Note that TLJ(A() = TLJ(—e%i) has label set {0, 1}, the twists 8g = 1, §; = i, and
un-normalized S-matrix,
5 1 -1
T\=1-1)

This means that B () has the same twists for even labels and S-matrix as TLI(A3). The
twists for odd labels differ by a minus sign between the two theories. Let A(r) = — Az =

¢ . Note that a change of the Kauffman variable from A to —A does not change the
S-matrix. It follows that By and TLI(A(r)) has the same modular data. In fact, they
are isomorphic.

Therefore, by using the loop operator correspondence in Eq. (37) and letting po be
the unit object, we recover the MTC TLI(A(r)).

Now we examine an alternative choice of the unit object. Since M (r) is a Z; homology
sphere, a potential unit object py, can be determined by the equation,

S SRCETOWOD | ogor(p,, . (39)

2Tor
pEX (M (r)) (o)

Such a pg4, would have quantum dimension in absolute value equal to 1 in any MTC
produced by M (r). Since we already know that we can produce TLI(A(r)) from M (r)
and the only non-unit object in TLI(A(r)) whose quantum dimension is 1 in absolute
value is p,_3, we can choose p,_» as the unit object in a new theory.

In this case, we reverse the previous order of the simple objects. Denote by p; :=
or—2—j,Jj €10---r—2].Set pg = p,—7 as the unit object. The correspondence between
characters and loop operators is now defined as,

pj > (x3,Sym/). (40)

We claim that with above choice of unit object and loop operators, the modular data
produced from M (r) matches that of SU(2),_, where p; corresponds to j in the label
set of SU(2),_5. See Sect. 3.3 for a collection of facts about SU(2), .

Firstly, by Lemma 3.2, up to an irrelevant phase factor,

jG+2) 1= (D)

dl. 41
4r 4 o @1

CS(p)) = —

Then rewriting above equation in terms of o;, we get, again up to an irrelevant factor,

CS(5)) = —

JU+D . (42)
4r
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Thus,

—27i 5 2 j(j+2)
e ZJTICS(,O]) = ¢ ar (43)

is the twist 6; of SU(2),_».
Next, we check the S-matrix.

T sin Utbz (]+1)7'[
Wo(j) = Trgyni(=po(x3)) = Aj;(2cos 7) ﬁ (44)
and the (j, i)-entry of the potential S-matrix is,
Wi (j)Wo (i) = Trgy,i (—pi(x3)) Wo(i) 45)
(i + D
= Aj(2cos )YA; (2 cos —) (46)
in (i+1)(j+l)rr
=—F (47

sin &
-

which is S;; of SU(2),_».
Lastly, by Lemma 3.3,

1 —1_ ldr2—j(A3)]

(2Tor(5;)) "% = (2Tor(pr—2—;)) DAy (48)

where we used the fact thatin TLI(A1) = TLJ(A3), the two simple objects have quantum
dimensions £1 and thus the dimension of the category is D(A}) = V2. Also note that
A3 = —e%, then |d, > j(A3)| = |d;(A3)| and D(A3) are equal to the quantum

dimension d; and the total dimension D, respectively, in SU(2),_>. Hence, the torsion
invariant computes the normalized quantum dimension,

oyt U
(2Tor(5)) "2 = = (49)

To summarize, for the SFS M (r), two choices of the unit object together with appro-

priate definition of loop operators produce the MTCs TLJ (e £ ) and SU(2),_», with the
former non-unitary and the latter unitary.

3.5. Graded product of graded premodular categories. In Sect. 3.3, we have seen that
the premoduar category resulting from three-component SFSs is formed from three
Temperley-Lieb-Jones categories, by taking the Deligne product of the even sectors,
that of the odd sectors, and suming them up. Here we generalize the operation.

Definition 3.7. LetC = @4e6Cy and D = @46 D, be two G-graded premodular tensor
categories for some finite group G (which must be Abelian). The graded product of C
and D is again a G-graded premodular category C M, D = @¢ec (C Mg D), such that
(C Xy, D) :=Cq XDy
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The monoidal and braiding structure on C X, D is defined in the obvious way which
make it into a premodular category. Another way to see this is that C X, D is a full
subcategory of the premodular category C X D and is closed under tensor product and
braiding. The graded product operation X, is associative up to canonical equivalence.

For aKauffman variable A, TLJ(A) is a Z;-graded premodular category with TLJ(A)q
spanned by even labels and TLJ(A); odd labels. Hence, Theorem 3.4 states that, for a
three-component SFS M = {0; (0, 0); (p1,q1), (P2, q2), (P3, q3)} with Ay, k =1,2,3
defined as in Sect. 3.3, the premodular category resulting from M is By = TLI(A1) X,
TLI(A>) X, TLI(A3).

The graded product operation provides method to construct new premodular cate-
gories from old ones. A very interesting question is when the graded product of two

pre-modular categories is modular. For instance, take A} = —e s , Ay = —e™ 5. Here
A is a primitive 12-th root of unity and A; a primitive 5-th root of unity. Hence TLJ(A})
is modular of rank 2 and TLJ(A3) is none modular of rank 4. Their S-matrices are given
by,

1 ¢ ¢ 1
—1—-1¢
—1-1¢
1 ¢ ¢ 1

I -1

S(Ar) = (_1 _1), S(A2) = , (50)

< S

where ¢ = %(1 — «/3). Then the S-matrix of TLI(A1) Mg, TLI(A3) with its simple
objects ordered as {0 X 0,0 X 2, 1 X 1, 1 X 3} is,

1 ¢ —p —1

c_ | ¢ -1 1 —9

S=1_201 1 | (51)
—1—¢—¢ -1

which can be checked straightforwardly to be non-degenerate. Thus TLJ(A )X, TLI(A2)
is modular.

We leave the question of when the graded product of two arbitrary graded (and more
generally multiple) premodular categories is modular as a future direction. In the rest
of this section, we focus on the case where the group is Z; and study a special class of
Zp-graded modular categories, namely SU(2). For basic facts, see Sect. 3.4.

Let C = Cp @ C; be a Zy-graded MTC. Denote by I the label set of C and partition
I = Iyu I where I, consists of objects of [ that are in the C,, sector. To avoid confusion,
when there is more than one MTC present, we write 1 (C), S(0), etc.

Proposition 3.8. Let C and D be two Z-graded MTCs. Then C Wy, D is a proper (i.e.,
degenerate) premodular category if and only if there existi € 1(C), j € I(D), scalars
co(C), ¢1(C), co(D), and c| (D), such that,

1. i and j belong to sectors of the same parity;
2. the following equations concerning S-entries hold:

co(O)dr(C) k € Io(C)
c1(O)dr(C) k € II(O)

co(D)dk(D) k € In(D)

SOk = c1(D)dy (D) k € I1(D)

S(D)jx = {

3. c0(C)/c1(C) = c1(D)/co(D) # 1.
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Proof. The main idea is to show that the conditions presented in the statement of the
proposition are equivalent to the property that in the S-matrix of C X, D, the row corre-
sponding to the object i X j is proportional to the first row (i.e., the row corresponding
to the unit object). O

Remark 3.9. In the above proposition, the conditions ¢g(C) /c1(C) # 1 and c1 (D) /co(D)
# 1 are used to eliminate the trivial case where i and j are both the unit object. When
neither of i nor j is the unit object, those conditions automatically hold since otherwise
the S-matrix of C or D would be degenerate. Also, note that if either Cy or Dy is non-
degenerate, then i and j must be in the sector of odd parity.

For m > 0, SU(2),, is a Z,-graded MTC with (SU(2),,), spanned by even labels
and (SU(2),,); by odd labels.

Theorem 3.10. For m,n > 0, SU(2),, Mg, SU(2),, is an MTC if and only if the pair
(m, n) have different parity. In particular, SU(2),;, Mg, SU(2), is always degenerate.

Proof. In SU(2),,, the un-normalized S-matrix is given by,

(a+D)(b+D)

Sin m+2

ab = sin -1

Hence, Sy, = (—1)?Sop = (—1)2dy,. For (m, n) with the same parity, with the notation
from the statement of Proposition 3.8, we choose i = m, j = n. Then the relevant
constants are co(SU(2),,) = co(SUQR),) =1, ¢1(SU2),,) = ¢1(SUQR),,) = —1 which
satisfies the conditions stated in that proposition, and hence SU(2),, X, SU(2), is
degenerate. For the converse direction, it can be seen that the only non-unit simple object
in SU(2),, for which ¢o(SU(2),,) and ¢ (SU(2),,) exist is the object m. Therefore, if
(m, n) have different parity, the only pair of indexes for (i, j) is (m, n) which contradicts
the first condition of Proposition 3.8. This implies that SU(2),, X, SU(2), is non-
degenerate. O

Example 3.11. By Theorem 3.10, SU(2); X, SU(2)3 is an MTC of rank 6. Its un-
normalized S-matrix and 7-matrix are given by,

3(+v3) 1 L(1+v5) BE 2
1 - 1 — _ 145
F(1+v3) -1 3(14v5) -1 \/3 =
1 1 1 5
‘_ I z(1+\/§) | §(1+\/§)—+ﬁ )
N I _ 1 _ _1+J5
G e
+ +
1+4/5 1+v/5
V2 e -2 —1 0 0
I 0 0 0 0 0
0 % 0 0 0 0
0 0 -1 0 0 0
T = aix
0 0 0 —% 0 0
0 0 0 0 e 0
0 0 0 0 0 —ieF
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Since SU(2), Mg, SU(2)3 contains the even part of SU(2)3 as a subcategory which is
itself an MTC (Fibonacci), SU(2)2 X, SU(2)3 must split. In fact, SU(2), X, SU(2)3 =~

Fib X TLI(—ie¥ ).

4. Modular Tensor Categories from SOL Geometry

4.1. Character varieties of torus bundles over the circle. One of the non-hyperbolic
geometries is SOL and some examples of closed manifolds are torus bundles over the
circle with Anosov monodromy maps.

Let M be a torus bundle over S! with the monodromy map <Z Z) e SL(2, Z) where

|a +d| > 2. Its fundamental group has the presentation,
T (M) = (x,y,h | xy¢ = h~'xh, X’y =7 yn, xyx~ly7 = 1), (52)

where x and y are the meridian and longitude, respectively, on the torus, and & corre-
sponds to a loop around the S component. We consider non-Abelian characters of M
to SL(2, C). Let p : 71 (M) — SL(2, C) be a non-Abelian representation.

First, we consider the case where p (x) is diagonalizable. Up to conjugation, assume
p(x) is diagonal. Since y commutes with x, p(y) is also diagonal, and moreover, p (x)
and p(y) cannot be both contained in the center {£1}. (Otherwise, the image of p would
be Abelian.) If p(x) # +1, it follows from the relation x*y¢ = h~'xh that p(h), up
to conjugation, simply permutes the two eigenvectors of p(x). The same conclusion is
obtained if p(y) # £1.Hence, we may assume p takes the following form (abbreviating
p(x) simply as x),

=@h) = 60) =)

where Im(a) > 0 and either o # +£1 or 8 # +£1. The presentation of 71 (M) yields the
following equations for p,

aa+lﬁc — abﬂd+1 — 1 (54)

from which we deduce the relations,
aa+d+2 — ﬂa+d+2 — 1 (55)
2mik 2mil

Let N = |a+d+2|. Hence o and 8 are both N-th root of unity. Seta = e W , B=e N
such that0 <k < &, 0 </ < N,and eitherk # 0, 5 or! # 0, 5. Then, Eq. (54) can
be equivalently written as,

(@+1D)k+cl=0 mod N

bk+@+1)I=0 mod N (56)

The solutions to Eq. (56) depend on a number of conditions involving a, b, ¢, and
d. When at least one of a + 1, ¢, b, d + 1 is co-prime to N, there is a compact form
to organize all the solutions. For instance, when (c, N) are co-prime, the solutions are
simply given by,

N -1

| =—&a+ 1k mod N, k:l,m,LTJ, (57)
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where ¢ is the multiplicative inverse of ¢ in Zy. The representations thus obtained are
all irreducible.

Now we consider the case where p(x) is not diagonalizable. Then neither is p(y)
diagonalizable. Up to conjugation, we may assume that p(x) and p(y) are both upper
triangular, each have a single eigenvalue +1 or —1 lying on the diagonal, and p (%) is
diagonal. Thus, p takes the form,

x= (=D <(1) }) L y=D0 (5 ”{) b= (3 v(_)l), (58)

where €,,€, € {0,1} and u # 0. From the presentation of 7| (M), we deduce the
equations to be satisfied,

(@+1)ex+cey, =0 mod 2

59
bex+(d+1)e, =0 mod 2 (59)
1
cu’+(@a@a—-du—-b=0, v>= . (60)
cu+a
Equation 60 is equivalent to,
1.2 v 2—a
w+v ) =a+d+2, u= . (61)
c

From Eq. (61), we see that for each fixed €, and €y, there are four inequivalent repre-
sentations, but only two characters. We choose a representative for each character by
setting,

d—a+(a+d?>-4 1 a+d—/(a+d)?—4
= Ve = = .
2

= , = 62
2c cu+a 62)

The solution set to Eq. (59) depends on the parity of the entries of the monodromy
matrix. Let P be the quadruple that records the parity of the entries (a, d; b, ¢) and we
use ‘e’ to denote for ‘even’ and ‘o’ for ‘odd’. For instance, P = (e, e; 0, €) means b is
odd and the rest are even. The solutions contain the following possible values for €, and

€y,

€ =0, ¢ =0

e&x =1, e,=1,onlyif P = (e,e;0,0)0or P = (0,0; e, e);
€ =0, ¢, =1,onlyif P = (0,0;0,¢e) or P = (0,0; ¢, e);
ex =1, €,=0,onlyif P =(0,0;e,0) or P = (0,0; ¢, e).

Note that the last three cases above all imply that N = |a +d +2] is even and all possible
configurations of P that have N even are contained in one (or more) of the last three
cases.

To summarize, the non-Abelian characters of M contain two types, the irreducible
and the reducible ones. The irreducible characters take the form of Eq. (53) and are
determined by Eq. (56). The reducible characters take the form of Eq. (58) and are
determined by Eq. (62) and the possible values of €, and €, discussed above.
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a b
c d

Fig. 2. A cell structure for the torus bundle with monodromy matrix ® For convenience but no other purposes,
mark the vertical edges green, the horizontal on the top face red, and the 45°-slope edges on the top face
blue. Edges of the same color and the same arrow are identified. The front and back faces are identified by the
obvious map, and so are the left and right side faces. The bottom face is identified to the top via the monodromy
map . Hence, the single-arrow edge and the double-arrow edge at the bottom face are homotopic to x4 y©
and x? yd , respectively

4.2. Torsion and Chern-Simons invariant of torus bundles. In this subsection, we com-
pute the torsion and Chern-Simons invariant for the torus bundle over the circle M with

the monodromy map (ccl Z) € SL(2, Z) where |a + d| > 2. Its fundamental group has

a presentation given in Eq. (52).
Construct a cell structure for M as follows. See Fig. 2. The cell structure contains,

e asingle O-cell v;

e three 1-cells corresponding to the generators x, y, and % in the presentation of
w1 (M);

e three 2-cells corresponding to the three relations in the presentation of 1 (M).
Explicitly, denote them by sy, s> and s3 such that ds; = yxy_lx_l, dsy = h!
xh(x“y")’l, and 0s3 = h(xbyd)h’ly’l. Graphically, s;, s2 and s3 correspond to
the top face, the back face, and the left face, respectively, in Fig. 2 with the induced
orientation of the cube.

e asingle 3-cell . Think of a 3-cell as a cube. Then the attaching map is determined
by the identification of faces described in Fig. 2.

Let V be a representation p : 71(M) — GL(V),and let {v; | j = 1,2,---} be
an arbitrary basis of V. We now construct the chain complex. For simplicity, assume
thata,b,c,d > 0,a > ¢, b > d. Other cases can be dealt similarly. Fix an arbitrary
preimage v of v. For each other cell o, fix a lifting ¢ starting at the base point v. We
have the following chain complex,

0—C3 -2 020 2 cp— 0

where C; = C,-(Il?) ®zix (m)] V. As a vector space, C; has the following basis, C3 =
span{f @ v; | j = 1,2,--+},Co = spanf§; ® vj | i = 1,2,3, j=1,2,---},C; =
span{c @ v; | o =x,y,h, j=1,2,---},Co =span{v ®v; | j =1,2,---}. We
present the boundary map 9; as a block matrix with each entry a dim(V) x dim(V)
block. Also, denote S : Z[m(M)] — Z[mx1(M)] the antipode map that sends a group
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element g € 771 (M) to its inverse g~ and linearly extends to the whole ring. Lastly, for

a matrix A with entries in Z[71(M)], p o S(A) is meant applying p o S to every entry
of A. With the above conventions, the boundary map is given by,

1 —hw(x,y)
dB=poS 1—y
1 —x

y—ll—hZ,lx hZ,lx'
D=poS|1—x—mx*Y ]y hxt YTy —1
0 x—1 1—y

=poSkx—1y—1h—1)

where w is a polynomial of x, y with the sum of its coefficients equal to 1.

For each of the non-Abelian characters of 71 (M) to SL(2, C), we will compute its
torsion below and show (implicitly) that the associated chain complex is always acyclic
and the torsion does not depend on the representation chosen in the equivalence class of
a character.

For an irreducible representation p given in Eq. (53) that satisfies Eq. (56), its adjoint
representation has the form,

> 0 0 g2 0 0 0 0 -1
x=|l0 1 o0 },y=[{0 1 O ]),Ah=]l0 -1 0
0 0 a2 0 0 B2 -1 0 0

Denote by I and O and 3 x 3 identity matrix and zero matrix, respectively, and let

1 0 O 0 0 O
A=]0 0 0],B=]0 0 1
0O 1 0 0 0 O
Define the block matrices,
A 0O A
Ki=|0O]|,Kxa=|1O0], Kz= (1)
B OB

It can be checked directly that the columns (as vectors in C;_1) of 9; K; is a basis of
Im(9;). Set K4 = K to be the empty matrix. Now fori = 0, 1, 2, 3, let

Ai = (911Kis1 Ki),
then the columns of A; give a basis for C;. By direct calculations, we obtain the torsion,

det(A))det(A3)| _ |a+d+2|
det(Ao) det(Az) 4

Tor(p) =

Now we compute the torsion of the reducible representations p given in Eq. (58).
The associated adjoint representation takes the form,

1 -2 -1 1 —2u —u? v 00
x=]0 1 1 ]1,y=10 1 u ,h=|0 1 0],
0 0 1 0 0 1 0 0 &%
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which are clearly independent on the sign terms €, and €. Let,

000 000 000
A=|100],B=(001}),C=1]000],
010 000 100
000 000 100
D=|010), E=(000], F=]000
001 001 010

Define the block matrices,

E A O
Ki=|O|. K= |BC|, Ks=(1)
F oD

The matrices K; have the same properties as outlined in the case of irreducible rep-
resentations above, and in the same way define the matrices A;. It can be computed
that,

det(A1) det(A3)

Tor(p) = | et (Ag) det(An)

= la+d+2]|.

Some details for the derivation are as follows, where the condition cu?+(a —d)u—b = 0
is used to simplify expressions,

QReu+a—dyYb—u+du)a—b+1+(c—d— Du)
ull—cu—a)?w—-1)

_ QRcu+a—d)Yb—u+du)a—b+1+(c—d— Du)

B (cu?+(@a—Du)(cu>+a—1—cu—a+1)
QRcu+a—d)Yb—u+du)a—b+1+(c—d— Du)

- (d=Du+b)(d—c—Du+b—a+1)

d—c—Du+b—a+1

2c—d—Deu +Qcla—b+D+@—d)c—d—D)u+@—dya—b+1)

Qc@a—b+1)—(a—d)c—d—1Du+(a—d)a—b+1)+2b(c—d—1)

= d—c—Du+b—a+1 !
(a+d+2)((d—c—Du+b—a+1)

= d—c—Du+b—a+1 !

=la+d+2|.

Tor(p) = | |

Now, we compute the CS invariant of M. Any irreducible representation of 71 (M)
to SL(2, C) can be conjugated to one into SU(2) (see Eq. 53), and Kirk and Klassen
computed its CS invariant in [11]. Here we use methods in Sect. 2.3 to compute the CS
invariant of both irreducible and reducible but indecomposable ones, the latter of which
can not be conjugated to SU(2).

Let T; i = A, B) be two copies of the torus, and I be the interval [0, 1]. Then M
is obtained by gluing the two 7; x I such that Tp x {0} is glued to T4 x {1} via the

identity map and Tp x {1} is glued to T4 x {0} via the map Z Z . Let (i, Aj) be a

positive basis of H;(T;) so that, under the embedding 7; x I < M, u; and A; are sent
to x and y, respectively. For k = 0, 1, denote by uf the element of H;(T; x {«}) that
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corresponds to u; in H1(T; x I), and by 7\;.‘ in a similar way. Then (Ml-l, 7\1-1) is a positive
basis for H(7; x {1}) and (—M?, 7\?) is a positive basis for H1(7; x {0}). These basis
are identified as follows,

b
(B3 AD) = o AW, (i Ap) = (%, A% (‘c‘ d) :

Set N = |a +d +2|. For an irreducible representation p in Eq. (53) where o = e%

2nil
and B = e N , we have

k I k I
crix1(p) = [ﬁ’ Na N, N; 1](,111’)\’1)’(“?’)\?)
k 1 k1
=y v TN v el ab.catay
Hence,
crax1(p)
k1 k I
=l v v 7 Hud A
k 1 ak+cl bk+dl
= [ﬁv N, N ’ N s 1](ML’AL)’(/“}}?>>‘}}?)
[k l k bk +dl Qi )bk+dl)] ( (a+l)k+cl)
=[—, —, ——, sexpRui(—v)——)], (v i= ——
NN NN TP N N
k 1 k l bk + dli k bk + (d + 1)l
=[ﬁ,ﬁ,—ﬁ,—ﬁ;eXp(2ni(—v) N +2ni(—u)ﬁ)], (= +)
k 1 k 1 .
= [ﬁ, NN ﬁ§ exp(znlf)](ui«,ﬂk),(—M}g,ﬂg)
where,
¥ bk+dl+ k k,u—lv+
=—v— — = V.
N THN N
Note that, by Eq. (56), i and v are both integers. Also,
k I k1
crgx1(p) = [ﬁ» N» _N7 N, 1](”9’7\}3),(_“%,)\%)
k 1 k1
= [Ny N& _Nv N? 1](M2,)\};),(_M}4’)\}4)
By taking the pairing on ¢, x7(p) and c7,x 7 (p), we obtain that,
ku —1lv
CS(p) = f = N (63)

For reducible representations pe, e, in Eq. (58) depending on the values of €, and
€y (see Sect. 4.1), the computation of the CS invariant proceeds in the exactly the same
way as for irreducible representations by making the substitution,

k €y [

€y
- =, — > =
N 2 N 2
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Consequently, by setting

_ (a+1Dex +cey _ bey + (d + 1)ey
- 2 T 2 ’
we obtain that,
Ex[b — €YV ExfL+ €YV
CS = =
(,Oex,ey) ) )
_ (a+d+2)ex:y + bey +cey, (64)

It can be checked that CS (,oex,e_‘.) € %Z.

4.3. Modular data from torus bundles over the circle. In this subsection, let M be a
torus bundle over the circle with the monodromy map given by a matrix,

(i Z) € SL2,7).

We assume that N := a +d +2 > 4 is odd and (c, N) are co-prime. It is direct to see
that b and c are both odd, while @ and d have different parity. Set N = 2r + 1. Denote
by ¢ € Zy the multiplicative inverse of ¢ in Zy.

The non-Abelian character variety of M to SL(2, C) consists of the representations
Xnab(M) = {p+, p—, pr, k =1, -+, r} which are defined as follows. For p,

1 1 1 u v O
xr—)(o 1), yl—)(o 1), h|—>(0 vf) (65)

where
d—a++/(a+d)?—4 1
U= , Vg =F—0u—. 66
2c * Jeu+a (66)
For px, k=1,---,r,

2711\;'1( 0 72711'%1”1)1{ 0 01
e e

i ’ = wic(a+Dk | o h— 67
X = ( 0 e_2Nk> y ( 0 e2 x])k) (_1 0) (67)

In Sect. 4.1, we computed the adjoint torsion and CS of representations of w1 (M).
In particular, it implies that all non-Abelian characters are adjoint-acyclic and their CS
invariants are all rational numbers. As with the example of SFSs, we choose the candidate
label set L(M) = Xnab (M). According to Sect. 4.1, the torsion of these representations
are given by

N
Tor(p+) = N, Tor(px) = . (68)

The Chern-Simons invariant of py is 0 by Eq. (64).
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Lemma4.1. Fork =1, - -- , r, the Chern-Simons invariant of py is given by,
CS(pr) = e (69)
PK) = N
Proof. This can be derived from Eq. (63). O

We will show below that the premodular categories obtained from the torus bundles
are related to quantum group categories associated with s02,41.
For an odd integer N = 2r + 1 > 0, let soy (Type B) be the Lie algebra of SO(N).

Giveng = 2% such that g? is a primitive 2N -th root of unity (thus m is odd and (m, N)
are co-prime), there is an associated premodular category C(son, g, 2N) of rank r + 4.
See [15] and references therein. When m = 1, the corresponding category is always an
MTC, and is denoted by SO(N); in physics literature. The MTC has the label set,

1. Z}uf{r, -, Y u{Xi, Xo}. (70)
We will mainly be interested in the (adjoint) monoidal subcategory C(son, g, 2N )44 lin-
early spanned by the objects 1, Z, Y1, - - - , Y;. So only modular data on this subcategory

is given below.
The twists are,

br=07=1, Oy =¢* V) k=1, r an
The un-normalized S-matrix is,
~ 1l ae{l,Z},Be{l,Z
Sup = {1,Z},pe{1,Z} 72)
2 O(G{l,Z},ﬁE{Y],~-~,Yr}
- - ) . 2 kj
S+ = Sry, = 2" +g7H) = 4cos T (73)

N
In particular, there are only two values for quantum dimensions, dy = dz = 1 and

dr := dy, = 2. The total dimension is D = +/2N. Note that C(son, g, 2N)aq is a
proper premodular category of rank r + 2.

Remark 4.2. The label set as ordered in Eq. (70) correspond to the labels {0, 2A1, Ay, - - -,
A1, 2)\,, Ary Ar + At} in [15]. Although the S-matrix in [15] is only given for the root

q = eV, the case for other roots can be easily deduced by either applying a Galois
action to the original S-matrix or using the formula

Sne =050 NY.,O0d.
v

Now, for the torus bundle defined at the beginning of the subsection, recall that
N =a+d+2isodd,andcc = 1 € Zy.Letm = —2¢ — N € Z which is well defined up

mmi

to multiples of 2N. For clarity, fix an arbitrary representative for m, and let ¢ = e 2v .
Note that m is odd and co-prime to 2N . Hence ¢ is a primitive 2N-th root of unity.
We propose the following correspondence between x " (M) and loop operators,

— (x, Sym?),
p+ > ( ky ) 1 (74)
ok +> (x™F, Sym®).
and designate p. as the unit object,

pr =1+ (x,Sym®). (75)
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Theorem 4.3. Let M be the torus bundle over the circle with the monodromy matrix
<ccl Z) such that N = a+d +2 > 4is odd and (c, N) are co-prime. With the choice

of loop operators and unit object in Egs. (74) and (775), respectively, and q as above,
the modular data constructed from M matches that of C(son, q,2N)a4, the adjoint
subcategory of C(soy, q, 2N).

Proof. For convenience, we also write p4 and pj simply as £ and k, respectively. The
correspondence between x " (M) and label set of C(soy, ¢, 2N)aq is,

pr<1l, p_<Z, <Y, k=1,---,r
We first check the twists. By Eq. (71),

: 2 =2
2mi Nk—k ~ - ck
— R 7 (26+N) eZm—CN )

2
by, = ¢V — ¢

Note that in the last equality, we used the fact that (Nk — k%) /2 is an integer. By Lemma
4.1, we immediately have

9Yk — 672niCS(pk) )

Of course, for p4, a similar relation to the above holds trivially.
Next, we verify quantum dimension.

Wi(d) = 1, Wak) = Trgy (04 (") = 2. (76)

This means that the total dimension is D = +/2N (equal to the dimension of
C(son, q,2N)aq), and by Eq. (68), for each p € x™P°(M), the normalized quantum
dimension matches the torsion,
W.(p)
D

Lastly, for the S-matrix computed from the W matrix,

= (2Tor(p)) 2.

Sep=1, a,B e+ —}.
Sak = Wi(@)Wa (k) =2,
Ske = Wa(l)Wi(a) =2, € {+ —}.

~ . mk 2nmkj .
St = Wi Wa(j) = 2 Trgyp () (2"™)) = dcos === ko j=1.--- ..

This matches the S-matrix of C(soy, g, 2N).q in Egs. (72) and (73). |

Torus bundles are not Z; homology sphere by Eq. (52), and the adjoint subcategory of
C(son, g, 2N) is a properly premodular category by Eq. (72). Hence the above theorem
verifies the conjecture on the non-degeneracy of the resulting premodular category for
torus bundles considered in this paper.

Remark 4.4. In this subsection, we restricted ourselves to the case where N = a+d+2 >
4 is odd and (c, N) are co-prime. In other cases, it seems less straightforward to derive
the character variety and the structure of the character variety depends on the parity of
N (among other factors). This is expected, since we conjecture in the general case the
corresponding premodular category is also related to the adjoint subcategory of some
C(son, q, 1) whose structure varies dramatically depending on the parity of N and the
value of N modulo 4 in the case of even N. We leave this as a future direction.
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5. Full Data of Modular Categories and Beyond

The structure theory of MTCs is naturally divided into two parts: one is the classification
of modular data (MD), and the other is for a fixed modular data, the classification of
modular isotopes (MIs)*. The missing steps in the program from three manifolds to
MTC:s are then an algorithm to define loop operators for an admissible candidate label
set, hence a candidate MD, and the F-matrices for the fusion structures beyond MD.

Physics point to a framework that is a generalization of gauging finite group sym-
metries [2,5] to continuous non-Abelian Lie group symmetries such as SU(2). One hint
from physics is the form of the primitive loop operators in this paper: a pair (a, R),
where a is a conjugacy class of the fundamental group, some kind of flux, and R is
an irreducible representation of SU(2), some charge of the SU(2) symmetry. The F-
matrices are difficult to find, so we wonder if they depend on more than topology: some
geometric information of the given three manifolds.

5.1. Towards the full data.

5.1.1. From non-Abelian characters to loop operators The identification of a simple
object type with a non-Abelian character is based on the relation between a simple
object type and a loop operator in the solid torus. In a (2 + 1)-TQFT, the rank of an
MTC is the same as the dimension of the vector space V(T?) associated to the torus
T2 from the TQFT. One basis {e,} of the vector space V(T?) consists of labeled core
curves of a solid torus by a complete representative set of simple objects {a}. Then each
basis element e, can be obtained as the image of a loop operator O, on ep—the basis
element associated to the vacuum, i.e. |e, >= O,leg >.

Suppose a non-Abelian character corresponds to a primitive loop operator (a, R) of
the three manifold X . Then a can be represented by aknot K, in X. The knot complement
of K, in X determines a vector in V (T%) from the reduction of 6d SCFT onto X, which
should be related to e,, hence a simple object type eventually.

5.1.2. From flatness equations to pentagons One possible relation between pentagon
equations and flatness is that the flatness of SL(2, C)-connections corresponding to the
fundamental group representations can be translated into pentagon equations for the
F-matrices. It is known that pentagon equations can be interpreted as flatness equations
for bi-unitary connections on finite graphs (see e.g. [10]).

5.2. Towards gauging SU(2) R-symmetry. AnR-symmetry of a super-symmetric theory
is an outer automorphism of the super-Poincare group that fixes the Poincare group. It
is pointed out in [4] that the R-symmetries in infrared could be different from those in
ultra-violet. Hence we could have an SU(2) R-symmetry for the residual topological
theory in infrared, which is probably often trivial. We believe that the MTCs obtained
from three manifolds in this program are actually the results of gauging such SU(2)
R-symmetries of the residual topological theory in infrared, which generalizes gauging
of finite group symmetries [2,5].

‘A terminology due to C. Delaney: distinct MTCs with the same MD are called modular isotopes of each
other.
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5.3. Towards quantum double of infinite discrete groups. An interesting class of MTCs
comes from the representation categories of quantum doubles of finite groups. A naive
generalization to infinite discrete groups does not work. The program in this paper can
be regarded as a first step in this direction for the class of 3-manifold groups. The choice
of the simple Lie group serves as an analogue of a level in quantum groups.

5.4. Climbing the dimension ladder. Two interesting classes of quantum algebras are
vertex operator algebras (VOAs) and MTCs. The bulk-edge correspondence of topolog-
ical phases of matter makes them into a unified theory of two and three dimensions.
The program in this paper suggests an inversion of dimensions: MTCs and VOAs could
also fit into a unified theory of three and four dimensional manifolds, where 4-manifolds
with 3-manifold boundaries could give rise to VOAs that realize the boundary MTCs.

5.5. Open questions. There are many other interesting open questions in this program.
One obvious one is to extend our results to more examples such as Seifert fibered
spaces with more than three fibers and the remaining cases of our torus bundles over
the circle examples. It is also not clear how to obtain MTCs which are not self-dual. As
mentioned in Sect. 2, representations of SL(2, C) come in group of four and a natural
guess is that one of the four is the dual anyon type. If so, then which one? The dual
representation is a candidate. Another general direction is what operations on MTCs
that standard topological constructions of three manifolds such as connected sum and
torus decomposition correspond to. Connect sum should correspond to Deligne product.

Our adjoint-acyclic condition for a representation p is closely related to H'! (7, Adjo
p) = 0. Are they equivalent? It should be equivalent for irreducible representations, but
for the indecomposable reducible ones, it is not clear.
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