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Abstract—Scientific discovery increasingly relies on interoper-
able, multimodular workflows generating intermediate data. The
complexity of managing intermediate data may cause perfor-
mance losses or unexpected costs. This paper defines an approach
to composing these scientific workflows on cloud services, focusing
on workflow data orchestration, management, and scalability.
We demonstrate the effectiveness of our approach with the
SOMOSPIE scientific workflow that deploys machine learning
(ML) models to predict high-resolution soil moisture using an
HPC service (LSF) and an open-source cloud-native service (K8s)
and object storage. Our approach enables scientists to scale from
coarse-grained to fine-grained resolution and from a small to a
larger region of interest. Using our empirical observations, we
generate a cost model for the execution of workflows with hidden
intermediate data on cloud services.

Index Terms—Intermediate data, Workflows, Cloud service,
High-performance computing, Object storage, Cost model

I. INTRODUCTION

Modern scientific workflows are growing in complexity,
comprising multiple interacting blocks that generate, prepro-
cess, and analyze large datasets. These workflows can trans-
form data using four modalities (Fig. 1). In the first modality,
workflows produce large output data from small input data. In
the second, workflows reduce data via processing a large input
and generating a small output. In the third, workflows process
the same input data with large data reuse. Last, workflows in
the fourth modality produce significant intermediate data that
another application reuses, resulting in smaller output data
products. Multistage workflows characterized by the fourth
modality hide the complexity of large intermediate data, and
their overall execution can be significantly affected by the
underlying computational infrastructure. The I/O bandwidth
of writing and reading that large intermediate data is a key
contributor to a long makespan for workflows in the fourth
modality.
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Fig. 1: Modalities of data used in scientific workflows (Cour-
tesy of Frank Wuerthwein, SDSC).

To study how the cloud can better serve workflows with
large intermediate data, we select two cloud services: HPC
as a service with IBM Spectrum LSF (LSF) and cloud-native
with Kubernetes (K8s). LSF is an HPC cluster in the cloud
close to on-premise HPC but on top of an IaaS platform. K8s
is a container-based PaaS platform; we can containerize and
execute HPC workflows using K8s. When scientists compose
their workflows for these two cloud services, they must answer
critical questions regarding (i) compute orchestration: type and
number of compute instances required by the workflow and
the interaction between them; (ii) data management: RAM
size, storage technology, and its connection to the compute in-
stances; and (iii) scalability: automatic allocation of resources
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as the workflow and its data grow. This paper addresses these
questions using an earth science workflow called SOMOSPIE
on the two cloud services (i.e., LSF and K8s). SOMOSPIE [1]
uses machine learning (ML) models to predict intermediate
soil moisture data from low-resolution satellite data to high-
resolution values necessary for practical use in earth sciences,
including precision forestry and agriculture, hydrology for
landscape ecology, and regeneration dynamics [2], [3]. Mainly,
we use SOMOSPIE to replicate the studies of scientists who
either scale the resolution of a region of interest up from
coarse-grained to fine-grained or scale out from a small to a
larger region of interest with a fixed resolution. In both cases,
the process translates into large intermediate data that must be
managed by the cloud services efficiently and may result in
additional costs (i.e., performance degradation and monetary
invoicing). Our contributions are:

• A description of data and scalability complexity in scien-
tific workflows with large intermediate data through the
ML-based SOMOSPIE workflow.

• A methodology to integrate scientific workflows in two
cloud services: HPC as a service with IBM Spectrum LSF
and cloud-native with Kubernetes.

• A cost model and projections based on empirical observa-
tions for workflows with hidden intermediate data through
scalability studies.

II. WORKFLOWS, RESOLUTIONS, AND PARTITIONING

A. Composable ML-based Workflows

Workflows have taken center stage in many domains of
science [4]–[8]. They allow scientists to compose complex
applications by combining heterogeneous codes; defining pa-
rameters; managing and generating input, intermediate, and
output data; and controlling dependencies. A scientific work-
flow consists of one or multiple interoperable applications with
their software stack and data (i.e., input, intermediate, and
output) that scientists can compose and run to study a scientific
problem in a well-defined execution environment. We present
an abstraction of a general workflow in Figure 2a with two
applications with input, intermediate, and output data.

We use an example of ML-based earth science workflow
(SOMOSPIE) that follows the same dataflow structure in
Figure 2b. Our SOMOSPIE workflow is composed of two
applications. The first uses ML modeling techniques to down-
scale the 27 km resolution satellite data from the ESA-CCI
soil moisture database [9] to higher resolutions necessary for
practical use in earth sciences, including precision forestry and
agriculture, hydrology for landscape ecology, and regeneration
dynamics [2], [3]. The second application performs analytics
(e.g., time series, statistical analysis, data-pattern findings)
and visualization. SOMOSPIE follows a data transformation
in the fourth modality, where it has large input data (i.e.,
low resolution, satellite-generated soil moisture values and
terrain parameters) and produces significant intermediate data
(i.e., high-resolution soil moisture predictions) that then is
processed, resulting in a smaller output (i.e., images and

statistics). We focus on ML modeling of the first application
as the large intermediate data brings challenges in terms of
resources and performance, resulting in sudden system crashes
or unexpected costs. In the first application, the satellite and
terrain parameter data are used to train and test an ML
model with K-nearest neighbors, random forest, surrogate-
based modeling, and other hybrid methods. The generated soil
moisture predictions have high resolution (up to 1 m) and are
fed into visualization tools to create geographic soil moisture
maps and statistics.
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(a) General scientific workflow
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(b) SOMOSPIE workflow

Fig. 2: Structure of (a) a general scientific workflow with one
or multiple interoperable applications with input, intermediate,
and output data; and (b) the mapping structure of the SOMO-
SPIE workflow that follows the fourth modality with large
input and intermediate data.

B. Scaling Resolutions and Regions
For ML-based workflows, data is crucial in obtaining better

predictions. As data scales, scientists can test the limits of
their scientific discovery. We present two ways in which data
can scale. The first deals with data that grows because we
move from low to high resolutions in a given region (scale
up); the second is where data expands as we cover a larger
region (scale out). We investigate these scalability scenarios
for our SOMOSPIE workflow.

Satellite soil moisture data is collected daily at 0.25 degrees
spatial resolution, approximately 27 km [9]. This ESA-CCI
database includes records of soil moisture from 1996 until
2020. Scientists input soil moisture and terrain parameter data
combinations into SOMOSPIE across time to create different
models. Depending on the target resolution of predictions (i.e.,
from 27 km satellite soil moisture data to 10 m soil moisture
predictions) and the region of interest (i.e., from a state to
a continent or worldwide), the intermediate data (i.e., soil
moisture points on the map) generated by the ML model may
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(a) Midwest at 27 km (satellite resolution), 2× 1 data
points grid in the selected area
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(b) Midwest at 90 m, 453× 227 data points grid in
the selected area
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(c) Midwest at 10 m, 8926× 4539 data points grid in
the selected area

Fig. 3: Example of satellite resolution at (a) 27 km, (b) low
resolution of 90 m, and (c) a lower resolution at 10 m for a
selected area in the Midwest region. (Scalability: Same region
but higher resolution.)

increase exponentially. Scalability studies using SOMOSPIE
or similar workflows in earth sciences target two dimensions:
resolution and region scalability. When scaling the resolution
of soil moisture, scientists define a region of interest and scale
the resolution up to generate finer-grained soil moisture values,
resulting in more points of soil moisture values over the same
region. For example, Figure 3 shows (a) an example of a
satellite resolution of 27 km, (b) a higher resolution of 90
m, and (c) a finest-granularity resolution of 10 m for a region
centered around Oklahoma (the Midwest region). We move
from 450 to 36 M to 2.9 B data points as we increase the
resolution at which we aim to predict soil moisture. When
scaling the region, scientists define a resolution and scale out
on the map to select a larger area. In Figure 4, we scale
from the Midwest region at 10 m resolution with an area of
283,499 km2 to a much larger region, such as the Contiguous
United States (CONUS) at the same resolution with an area
of 8,080,464 km2. In this specific scenario, we move from 2.9
B to 167 B soil moisture data points.

We demonstrate the exponential growth of intermediate data
for resolution scalability in the Midwest region when scientists
predict soil moisture within the same region but scale from a
lower resolution at 90 m with 4.25 GB of total data to a higher
resolution of 10 m that increases the total data size to 420.76
GB, increasing the data by 100×. We also document the data
growth for the region scalability, where scientists scale from
the Midwest region (420.76 GB total data size) to the whole
CONUS, expanding the data to 14.93 TB while preserving
the same resolution. Table I shows three data scenarios for
SOMOSPIE that define a region of interest and a resolution at
which the scientist aims to predict the soil moisture. Each row
represents one of these scenarios: (i) Midwest region at 90 m
resolution, (ii) Midwest region at 10 m, and (iii) CONUS at 10
m. For each scenario, we break down the data transformations
(i.e., input, intermediate, and output data) and describe the
data type, number of points, and the size of each dataset. We
observe how input and intermediate data encompass most of
that total data size for all scenarios. For all data scenarios,
we train our model by using the satellite soil moisture data at
27 km. We average the soil moisture values for the month of
January 2010 to ensure the time scalability factor is constant.
The time scalability for the same regions across different
months is studied in [10].

C. Data Partitioning

Scientists apply data partitioning to process temporal and
spatial data at different scales. The partitioning enables data
parallelism, executing the same application concurrently to
different data partitions. Temporal data often exhibit dependen-
cies (e.g., predictions for one year may depend on observations
of previous years), making any partitioning along the time di-
mension often impossible without compromising the accuracy
of the ML prediction model. On the other hand, partitioning
spatial data is often feasible by considering continuity in
a region of interest; scientists can either define a buffer to
automatically add information around each partition or use
partitions with integrated overlapping neighboring information
generated during a pre-processing phase.

We leverage the second type of data partitioning for SO-
MOSPIE’s spatial data. We pre-process the USGS digital
elevation models (DEM) to generate terrain parameters of
a region of interest that can be partitioned into tiles and
deployed for predictions without needing neighbor buffers.
Consequently, given a region, we partition it into the number
of tiles (tilestotal). The tiles are independent of each other,
as they already include neighboring information in the terrain
parameters and thus can be fed independently into the ML
model. Table II presents the number of total tiles and the size
of the tiles for the Midwest region and CONUS at the two
resolutions (i.e., 90 m and 10 m). When we scale up for the
Midwest region, we use up to 225 tiles and predict at a higher
resolution such as 10 m. The data processed in the execution
scale is up to 388.98 GB. Similar data growth occurs when we
scale out up to 1,156 tiles, meaning that we go into a larger
area, such as CONUS, with the same 10 m resolution, where
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(a) Midwest at 10 m
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(b) CONUS at 10 m

Fig. 4: Example of (a) a state region, Midwest at 10 m and (b) whole country region, Contiguous United States (CONUS) at
10 m. (Scalability: Same resolution but a larger region.)

TABLE I: Data scenarios for SOMOSPIE. Resolution scalability: from the Midwest region at 90 m to the Midwest region at
10 m. Region scalability: from the Midwest region at 10 m to CONUS at 10 m.

Data CharacterizationRegion Resolution Data Type Data Description Points [#] Size [B]
Input Satellite data, 27 km x 27 km 450 44,198
Input Terrain params (4 params), 90 m x 90 m 36,073,181 2.43 G
Intermediate 1 prediction, Midwest, 90 m x 90 m 36,073,181 1.42 GMidwest, 90 m x 90 m
Output 1 visualization, Midwest, 90 m x 90 m - 438,126

Total Midwest 90 m x 90 m 4.25 G
Input Satellite data, 27 km x 27 km 450 44,198
Input Terrain params (4 params), 10 m x 10 m 2,921,927,661 248.51 G
Intermediate 1 prediction, Midwest, 10 m x 10 m 2,921,927,661 135.90 GMidwest, 10 m x 10 m
Output 1 visualization, Midwest, 10 m x 10 m - 4.57 M

Total Midwest 10 m x 10 m 388.98 G
Input Satellite data, 27 km x 27 km 8,214 985,600
Input Terrain params (4 params), 10 m x 10 m 99,925,046,500 9.00 T
Intermediate 1 prediction, CONUS, 10 m x 10 m 99,925,046,500 5.12 TCONUS, 10 m x 10 m
Output 1 visualization, CONUS, 10 m x 10 m - 21.14 M

Total CONUS 10 m x 10 m 14,934.00 G

TABLE II: Data partitioning for SOMOSPIE scenarios.

Region,
Resolution Data Type Data

Description Tilestotal Size per tile [B]
Input Terrain params 1 2.43 GMidwest,

90 m x 90 m Intermediate 1 prediction 1 1.42 G
Input Terrain params 225 900 M - 1.6 GMidwest,

10 m x 10 m Predictions 1 prediction 225 350 M - 800 MB
Input Terrain params 1,156 1.1 G - 11 GCONUS,

10 m x 10 m Predictions 1 prediction 1,156 650 MB - 6.1 G

the workflow encompasses 14.9 TB of input, intermediate, and
output data. Figure 5 shows an example of tile distribution for
152 tiles used for the Midwest region and CONUS at 10 m
resolutions in our experiments. Each tile has the same number
of points.

III. INTEGRATING WORKFLOWS IN HPC ON CLOUD

A. HPC on Cloud Services

Traditionally, scientists deploy workflows with large data
transformations in HPC systems. However, as these workflows
have evolved and the focus has shifted toward scalability,
accessibility, and flexibility, the HPC systems show some lim-
itations. For example, the required resources to execute large
workflows exceed all resources available in most institutional
HPC settings, limiting scientific discovery. To overcome these

limitations, we explore two cloud services. These two services
aim to bridge the gap between HPC and cloud systems.

Our first service is an HPC service on the cloud. We select
the IBM Spectrum load sharing facility (LSF) cluster close to
on-premises HPC but on top of an IaaS platform. It provides
a fully automated and configurable deployment of LSF-based
HPC clusters in the cloud. Our second service is a cloud-
native HPC service using Kubernetes (K8s), where we have
a container-based PaaS platform on top of which we can
containerize and execute HPC workflows. K8s provides an or-
chestration solution for scheduling and automating container-
ized applications’ deployment, management, and scaling. We
execute the same application on both platforms (LSF and K8s).
On K8s, the application is containerized. LSF and K8s run on
top of a Virtual Private Cloud (VPC) with a secure software-
defined network on which scientists can request, configure,
and deploy resources on demand. For LSF, virtual machine
(VM) instances (nodes) are directly configured inside the VPC.
For K8s, Kubernetes runs on all VM instances (nodes) and
includes the control plane responsible for managing the Kuber-
netes objects (e.g., VM instances, pods, PVCs, and PV). A VM
instance hosts one or more pods, the most straightforward unit
Kubernetes object model. We run one pod per VM instance.
LSF has two VM instances: worker and admin (i.e., login
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(a) 152 tiles of the same size for the Midwest at 10 m
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(b) 152 tiles of the same size for CONUS at 10 m

Fig. 5: Tile distribution for Midwest at 10 m and the Contigu-
ous United States (CONUS) at 10 m.

instance, LSF management instances, and storage instances).
On the other hand, K8s has worker instances only. In LSF,
we use a conventional LSF batch system to schedule our
jobs; in K8s, we use the standard Kubernetes scheduler. The
standard Kubernetes scheduler ensures pods are attached to
worker nodes given the resource limitations (i.e., one pod per
worker node) but does not support batch scheduling as LSF
does.

B. Data Transformations with Cloud Technology Solutions
In traditional HPC systems, the large intermediate data

generated by workflows is typically pushed to parallel file
systems or scratch space. When dealing with this data in
cloud environments, cloud technology solutions can be used to
support the data transformations. We choose the cloud object
storage (COS) service, which like a distributed file system,
also grants data distribution over multiple instances to provide
proportional capacity and throughput scalability. Both LSF and
K8s operate with the same COS solution, and we leverage its
distributed property to host the input, intermediate, and output
data of our workflow into independent COS buckets. There
are different packages for mapping object storage into POSIX
namespaces, as studied in [11]. We use S3FS [12] for LSF and
K8s to map the data in object storage as a file system. S3FS
is a FUSE-based (Filesystem in USErspace, white box) file
system that enables the users to read and write data in object
storage as if they were from local or HPC file systems. When
the application calls the virtual file system (VFS), the VFS
invokes the FUSE kernel module that maps the COS bucket
data into the VM instance’s underlying file system. In LSF, we

mount the COS bucket directly to the VM instances through
S3FS. In K8s, we use Kubernetes objects, such as a PVC
(Persistent Volume Claim) and a PV (Persistent Volume) with
an S3FS storage class underneath, to mount the COS bucket
into the VM instances. We put all the computation and storage
layers together and present the architecture for LSF and K8s
with COS for a single VM instance in Figure 6.


Y]kG�$DWIEj�/j]g<OI

�Ig[IY

1hIghd<EI
�ddYQE<jQ][/Ä�/

�1/��
¥�QYIhshjIZ�Q[�1/�ghd<EI¦

6�/�
¥6Qgjk<Y�NQYI�hshjIZ¦

6!��[hj<[EI�

6+


(a) IBM Spectrum LSF (LSF)


Y]kG�$DWIEj�/j]g<OI

�Ig[IY

1hIghd<EI
�ddYQE<jQ][/Ä�/

�1/��
¥�QYIhshjIZ�Q[�1/�ghd<EI¦

6�/�
¥6Qgjk<Y�NQYI�hshjIZ¦�

+]G

+6

�ddYQE<jQ][

+6
�

6+



][j<Q[Ig

6!��[hj<[EI
�kDIg[IjIh

(b) Kubernetes (K8s)

Fig. 6: Architectures of the LSF (HPC) and K8s (cloud-native)
services with object storage to handle the data transformations
for a single VM instance.

HPC on the cloud and cloud-native services come with
default settings that scientists use in good faith, assuming
the infrastructure is tuned for their workflow. Unfortunately,
these services are tuned for different workflows (i.e., HPC
for compute-intensive applications and the cloud for web
services). Out-of-the-box settings are not optimal for scien-
tific workflows but tuning the platform’s I/O parameters can
optimize scientific workflows performance. We recommend
tuning the I/O parameters at a single instance level to ensure
performance at a large scale. I/O parameters exposed by S3FS
include parallel count, multisize part, and caching. The parallel
count refers to the number of concurrent threads requesting
the object storage. The multisize part is the size in MB of
the chunks transferred from and to the object storage. The
cache has two options: location for LSF (i.e., off-instance
block storage, RAM) and retention policy for K8s (i.e., auto-
cache and kernel-cache).
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C. Scalability in the Cloud
We select cloud services built with the scalability needs of

workflows in mind. We leverage the scalability in our cloud
infrastructure configuration to map the parallel data nature of
a workflow (Sec. II-C). We map each data partition into an
independent VM instance to obtain ideal performance when
we have the same number of VM instances as the number
of data partitions. Figure 7 illustrates mapping each input
data partition to an independent VM instance and writing the
intermediate data into a separate COS bucket. We model the
trade-off between the number of VM instances vs. the total
execution time of the application vs. cost.

We schedule our parallel jobs using the LSF batch system
for LSF. However, the standard scheduler in K8s does not sup-
port traditional batch scheduling. To address this, we schedule
the parallel jobs based on a common template, and by using
expansions, we define which partition of the data each job
processes. As we increase the number of VM instances reading
and writing data, we leverage COS’s proportional capacity
and throughput scalability to host our input, intermediate, and
output data. In Figure 7, we present the composition of a
workflow in the fourth modality (large intermediate data). We
make a representation at the VM instance level connected to
three COS buckets for the input, intermediate, and output data,
which are common resources for LSF and K8s. We provide
insights about the I/O scalability as more VM instances read
and write concurrently into independent COS buckets.

IV. SCALABILITY AND COST ON THE CLOUD

A. Tuning I/O Parameters
We integrate SOMOSPIE into two cloud services: an HPC

service in the cloud (i.e., IBM Spectrum LSF) and an open-
source cloud-native (K8s) service. We study the scalability
and the cost of running the SOMOSPIE workflow on the two
cloud services. In particular, we want to understand the effects
of scaling up the resolution (i.e., low to high) and scaling out
the region (i.e., from a state to the entire CONUS).

We tune I/O parameters for a single tile execution because
the tile is the basic data unit we process in each independent
VM instance. We define the number of cores in a VM instance
and its RAM size based on the SOMOSPIE requirements (i.e.,
data and application). For the Midwest region at 90 m, we
require a RAM size of a minimum of 32 GB, and we select
a VM type of 4 cores and 32 GB. The default settings for
the S3FS I/O parameters: parallel count is set to 5 threads,
multisize part is 10 MB, and caching is off-instance for LSF
and auto-cache for K8s respectively. We tune the performance
on a single instance using the Midwest region at a 90 m
resolution because the region has a single tile for reading (2.43
GB) and writing (1.42 GB), fitting in a single node. We use
FIO (Flexible IO tester) [13] to explore the parametrical space
quickly and inexpensively. We run the FIO benchmark for the
write operation because it is the most time-consuming I/O
operation. We set the FIO jobs to have one sequential write
file of 1.4 GB with a block size of 52 MB to match the I/O
operation of our application.

We run the benchmark 10 times on a large VM instance
with a profile of 48 cores and 192 GB with an Intel Xeon
Processor (Skylake, IBRS). We perform an exhaustive search
with different combinations of the three S3FS parameters.
The parallel count ranges from 5 to 20 threads, the multisize
part ranges from 5 MB to 54 MB in size for the transferred
chunks to the COS, and the caching considers both a and b
for LSF and c and d for K8s. Table III presents the write
bandwidth obtained by the FIO benchmark when using the
default parameters (i.e., five threads, 10 MB chunk size for
both services, and caching off-instance for LSF and auto-cache
for K8s) and for the tuned S3FS parameters generating the best
empirically observed I/O performance (i.e., 12 threads, 10 MB
chunk size, and caching in RAM for LSF; 20 threads, 40 MB
chunk size, and kernel cache retention policy for K8s).

TABLE III: Write bandwidth statistics obtained when running
the FIO benchmark ten times with the default and the tuned
S3FS parameters generating the best empirically observed I/O
performance. PC: Parallel count. MP: Multisize part.

Cluster Default
Parameters

Write
Bandwidth
[MB/s]

Tuned
Parameters

Write
Bandwidth
[MB/s]

LSF
PC = 5
MP = 10 MB
Off-instance cache

median=255
mean=252
stdev=13

PC = 12
MP = 10 MB
Cache in RAM

median=423
mean=406
stdev=54

K8s
PC = 5
MP = 10 MB
Auto cache

median=200
mean=196
stdev=14

PC = 20
MP= 40 MB
Kernel cache

median=350
mean=338
stdev=39

Based on the results from the FIO benchmark, we make an
informed decision regarding the S3FS parameters for execut-
ing our SOMOSPIE workflow on the Midwest region at the
90 m resolution on both clusters (i.e., LSF and K8s). We use
the same instance type used for the benchmark [i.e., 48 cores
and 192 GB with an Intel Xeon Processor (Skylake, IBRS)] to
run the workflow. We run our application 10 times, measuring
the read and write bandwidth.

Figure 8 presents a boxplot of the measured bandwidth over
the 10 runs. We observe an improvement in write bandwidth of
25% for LSF when using the S3FS tuned parameters (Fig. 8a),
and 1.3% for K8s (Fig. 8b). As a consequence of tuning the
write operation, we also improve the read bandwidth of 17.8%
for LSF (Fig. 8c) and 28.4% for K8s (Fig. 8d). With the
parameter tuning, we can reduce the read and write bandwidth
variability for LSF and K8s and bring the read and write
performance closer to each other, closing the gap between
platforms. With the distributed nature of our predictions, in
which regions are cut in tiles (Sec II-C), we can use the tuned
I/O parameters to study predictions at a large scale.

B. Soil Moisture Predictions at the Large Scale
Predicting soil moisture at high resolutions or for large

regions requires scalable platforms to enable data growth.
Cloud platforms allow scientists to scale resources to support
their workflow requirements. However, the scalability conse-
quences in terms of performance for a given platform are often

388

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 29,2023 at 17:12:11 UTC from IEEE Xplore.  Restrictions apply. 



«««

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Â

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Ã

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Ä

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Å

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Æ

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
Ç

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
È

/Ä�/�+6


�dd
Â

6!��[hj<[EI�
É

/Ä�/�+6
/Ä�/�+6


�dd
Â

6!��[hj<[EI�
"�Ä

/Ä�/�+6
/Ä�/�+6


�dd
Â

6!��[hj<[EI�
"�Ã

/Ä�/�+6
/Ä�/�+6


�dd
Â

6!��[hj<[EI�
"�Â

/Ä�/�+6
/Ä�/�+6


�dd
Â

6!��[hj<[EI�
"

«

�<j<�+<gjQjQ][ 5HDG :ULWH

«

�[jIgZIGQ<jI�
G<j<

/Ä�/�+6


�dd
Ã

6!��[hj<[EI�
"ÛÂ

$kjdkj
�G<j<

�[dkj
G<j<

kjkjkjkj
<j<j<

�dd�dd
Â

/Ä�/�+�/�+6
/Ä�/Ä�/

!��[hj<[EI

Ä�/�+6
6


6!��[hj<6

/Ä�/�+6
+6
/Ä�//Ä�/�+

�dd
Â

dd
Â

/Ä�/�/�+/�+6


Â Â ÂÂ
�dd

Â
�dd

««««««««

6


6!��[hj<[EI

�dd

ÆÆ
6

�dd
Â

/Ä�/�+6
/Ä�/�+6


6!I�
ÆÆ

6

��dd
Â


6


Â

6!��[hjI�
ÇÇ

6

/Ä�/�+6
/Ä�/�+

�dd

[hj<[EI

�dd
Â

/

! �[hj

+6
�+6


�d

6!I�
ÈÈ

6

/Ä�/�+6
/Ä�/�+6


�dd
Â

6!��[hj<[EI66!6

/�+6
�/�+6
IGQ<IGQ<
j<j<

gZIgZI
G<jG<jG

[[j[jIjI��I�
ÉÉ

G<G
[[j�

/Ä�/�+6
/Ä�/�+6
/Ä�/�+6


�dd
Â

�dd

/Ä

�d
Â

�dd
Â

/Ä�/�+6
/Ä�/�+6
/Ä�/�+6
/Ä�/�+6
6


�dddd
Â


6


�dd
Â

�dd
Â

/Ä�/�+6/Ä�/�/Ä�//Ä�/Ä� 
6
�+6
Ä�/�+6


�dd
Â

�+6
/�+6
�/�+6Ä�/

�dd
Â

"�Ä"�Ä
6!��[hj<[EI

Â
�dd

Â
�dddd��dd �dd

Â
�dd

"�Ã"�Ã
6!��[hj<[EI 6! �[hj<[EI

��d �dd
Â

"�Â"�Â 6!��[hj<[EI�I�
"""

Fig. 7: Composition of a workflow with large intermediate data (fourth modality) using the cloud services (i.e., VM instances
from each HPC on cloud service connected to three different COS buckets through S3FS).
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Fig. 8: SOMOSPIE write and read bandwidth comparison on the LSF and K8s deployment clusters before and after tuning the s3fs
parameters when executing for the Midwest region at 90 m resolution. The smaller images zoom into the boxplots to outline the difference
in I/O performance.

unknown to application teams. We study the I/O performance
of the object storage as we scale the soil moisture predictions
in resolution (from 90 m to 10 m in the Midwest region) and
region (from Midwest to CONUS at 10 m).

We decompose the data into tiles, 225 for Midwest at 10

m and 1,156 for CONUS at 10 m (Table II). We process each
tile in an independent VM instance. We use 2 cores and 16
GB for Midwest at 10 m, and 8 cores and 64 GB VM type
for CONUS at 10 m. Figure 9 presents the multi-instances
configuration.
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Fig. 9: Multiple VM instances configuration for the Midwest
region and CONUS at 10 m resolution.

As we scale the number of VM instances to match the
number of tiles to process them in parallel, we increase the
number of I/O requests to the two COS buckets. We measure
the I/O performance as we read multiple tiles at the time
from the terrain parameters COS bucket and write multiple
tiles with the soil moisture predictions to the SM predictions
COS bucket. We do a weak scaling test for the object storage
solution. In other words, we measure how the read and write
bandwidth varies with the number of VM instances processing
a tile with the same size per instance.

We present the weak scaling results for the Midwest region
at 10 m resolution in Figure 10. We consider up to 225
tiles that read 1.2 GB of data per tile and write 685 MB
(Figure 5a). The number of tiles, and the associated number
of VM instances, range as follows: 8, 16, 24, 32, 48, 94,
152, and 225 (the entire Midwest region). We apply some
resource constraints on the HPC service in the cloud to mimic
the scientists having access to on-premise HPC systems (i.e.,
limited allocations and computational nodes). On LSF, our
experiments are constrained to 200 cores that can be split
between the worker and admin instances. We use a worker
VM instance of 2 cores and 16 GB; by eliminating the cores
for the admin VM instances, we scale up to 94 VM instances
in LSF. Instead, in the cloud-native service, K8s, we do not
have any restrictions in terms of computational resources,
so we can scale up to the number of VM instances. For
LSF, the COS bucket maintains I/O performance when we
write 64.4 G (Figure 10a) and read 112.8 GB (Figure 10c)
of data in parallel from 94 nodes for LSF for the Midwest
region at 10 m resolution. For K8s, we observe that the I/O
performance of the object storage scales as we write 135.9
G (Figure 10b) and read 248 GB (Figure 10d) of data in
parallel from 225 nodes. We translate the performance into
accumulated bandwidth across all VM instances. For LSF,
we reach 864.8 MB/s write bandwidth and 5.6 GB/s read
bandwidth, having 94 VM instances. For K8s, we reach 2.4
GB/s write bandwidth and 11.2 GB/s read bandwidth having
225 VM instances. Overall, we observe no I/O performance
degradation in the object storage as we increase the number of

instances of reading and writing in parallel for LSF and K8s.
We note higher bandwidth variability (Figures 10b and 10d)
in the K8s service that is attributed to the additional layers in
the cloud-native service architecture and the virtualization of
resources.

We increase the tile size to demonstrate I/O performance
with a similar number of VM instances (i.e., 8, 16, 24, 32,
48, 94, 152) but a larger problem size (larger tiles) using the
CONUS at 10 m scenario. We increase the tile size by 4 and
now read tiles of size 5.1 GB and write 2.8 GB soil moisture
predictions for each tile. We use a worker VM instance of 8
cores and 64 GB for this scenario. By eliminating the cores for
the admin VM instances, we can scale up to 24 VM instances
in LSF before hitting the platform’s resource constraints. We
scale to 152 for the CONUS and stop because of budget
allocation limits. We observe that the I/O performance of the
object storage scales up when writing 425.6 GB of SM data
point in parallel with 152 VM instances in K8s (Figure 11b).
For LSF, the object storage I/O performance scales as we write
67.2 GB (Figure 11a) and read 122.4 GB (Figure 11c) of data
in parallel from 24 nodes for CONUS at 10 m resolution. The
reading in K8s (Figure 11d) scales up to 94 VM instances
(479.4 GB); when we reach 152 VM instances (775.2 GB),
the performance drops from 80 MB/s to 65 MB/s. This is an
empirical trend that can be further investigated in future work.
We translate the performance into accumulated bandwidth
across all VM instances. For LSF, we reach around 240 MB/s
write bandwidth and 1.8 GB/s read bandwidth, having 24
VM instances. For K8s, we reach 1.6 GB/s write bandwidth
and 10.6 GB/s read bandwidth having 152 VM instances. We
obtain limited scalability performance results when we limit
the number of VM instances for LSF, mimicking the limited
access to educational resource allocations. Alternatively, we
demonstrate scalability with K8s (cloud-native service) as we
stretch the resources under stress conditions.

C. Modeling Costs for Soil Moisture Prediction

As we scale the data in the workflow, the prediction costs
grow. When scaling to higher resolutions or larger regions, a
workflow like SOMOSPIE allows for saturating all resources
available in most institutional settings. The consequence of
this limit is that we have to preprocess the tiles in multiple
batches one after another. A benefit of cloud environments
is that we can assume virtually infinite resources, allowing
us to preprocess all tiles in parallel in constant time. We
aim to understand the tradeoff between time and cost for
all the resources. We develop a model for calculating the
costs of predicting soil moisture in LSF and K8s. Our model
measures the total cost for the computational, I/O, and storage
resources. The storage cost for the object storage technology
is coststorage =

$USD
hour ∗ capacity, where capacity is the total

data stored in the bucket. The storage cost is the same for LSF
and K8s.

We establish our computational and I/O cost model with
ttile as our basic unit. This is the time in hours that it takes to
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(a) Weak scale write bandwidth for Midwest at 10 m on LSF.
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(b) Weak scale write bandwidth for Midwest at 10 m on K8s.
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(c) Weak scale read bandwidth for Midwest at 10 m on LSF.
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(d) Weak scale read bandwidth for Midwest at 10 m on K8s.

Fig. 10: I/O bandwidth scalability as we increase the number of VM instances (from 8 to 225) for reading a size 1.2GB tile and writing
685MB soil moisture predictions for each tile for the Midwest region at 10 m resolution.

7
gQ
jI
��
<[

Gq
QG
jP

�§!
�
�h
¨

É�Q[hj<[EIh ÂÇ�Q[hj<[EIh ÃÅ�Q[hj<[EIh ÄÃ�Q[hj<[EIh ÅÉ�Q[hj<[EIh ÊÅ�Q[hj<[EIh ÂÆÃ�Q[hj<[EIh

(a) Weak scale write bandwidth for CONUS at 10 m on LSF.
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(b) Weak scale write bandwidth for CONUS at 10 m on K8s.
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(c) Weak scale read bandwidth for CONUS at 10 m on LSF.
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(d) Weak scale read bandwidth for CONUS at 10 m on K8s.

Fig. 11: I/O bandwidth scalability as we increase the number of VM instances (from 8 to 152) for reading a tile of size 5.1 GB and writing
2.8 GB soil moisture predictions for each tile for the CONUS at 10 m resolution.

TABLE IV: Modeling costs apply to our three SOMOSPIE data scenarios: Midwest 90 m, Midwest 10 m, and CONUS 10m
on the two deployment clusters: LSF and K8s. We list the times in seconds for readability purposes, but when calculating the
cost, we convert them into hours.

Cluster Data Scenario tilestotal NworkerV Ms Ncores RAMsize ttile[s] ttotal[s] costtotal[$]

LSF
Midwest 90m 1 1 4 32 331.5 331.5 0.5
Midwest 10 m 225 94 2 16 155.7 466.8 16.0
CONUS 10 m 1156 24 8 64 868.4 42483.0 1484.1

K8s
Midwest 90m 1 1 4 32 330.9 330.6 0.2
Midwest 10 m 225 225 2 16 153.5 153.5 12.3
CONUS 10 m 1156 1156 8 64 984.8 984.8 1638.7

read, infer high-resolution soil moisture values (computation),
and write the predictions for a single tile (Eq. 1).

ttile = tread + tcompute + twrite (1)

We establish the cost of a VM as in Eq. 2. Depending on
the size of the tile, we define a VM type for our worker
instances in terms of the number of cores (Ncores) and the
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RAM capacity (RAMsize). Each cloud vendor has a $USD
hour

rate for the CPU and memory in the VM instance.

costVM = (
$USDcpu

hour
∗Ncores +

$USDmem

hour
∗RAMsize)

(2)
When we scale to all the tiles for a region of interest, we

consider the number of tiles in the region (tilestotal) and the
number of worker VM instances available in the LSF and
K8s clusters (NworkerVMs). With these two variables, we can
calculate the ratio of batches of tiles that will be processed
in parallel as

⌈
tilestotal

NworkerV Ms

⌉
. We multiply this ratio by the

ttile to obtain the total time (ttotal) that it takes all worker
VM instances in the cluster to execute the application. We
determine the computational cost once we have the time for
all tiles. To this end, we use the cost for the VM type we define
for our worker instances (costworkerVM ) and the number of
worker instances available (NworkerVMs). Combining the time
it takes to execute all tiles, the cost of a worker VM, and the
number of worker instances, we define the computational cost
for all tiles in a region as in Eq. 3.

costcompu =NworkerVMs ∗ costworkerVM

∗
⌈

tilestotal
NworkerVMs

⌉
∗ ttile

(3)

The computational cost in K8s for all tiles is the same as
K8scosttotal = costtotal because the K8s cluster has only
worker instances. However, the LSF cluster and the worker
instances include the admin instances. Our LSF cluster has
one login, two management, and one storage instance. We
have the same VM type for all of them and refer to its cost
as costadminVM . Therefore, we define the computational cost
for LSF as the sum of the worker instances and the LSF admin
VMs, as in Eq. 4.

LSFcosttotal =(4 ∗ costadminVM

+NworkerVMs ∗ costworkerVM )

∗
⌈

tilestotal
NworkerVMs

⌉
∗ ttile

(4)

We apply our model to the three data scenarios and present
the computational costs for LSF and K8s in Table IV. Each
cloud vendor provides a rate for their instances in terms
of CPU ( $USDcpu

hour ) and memory ( $USDmem
hour ). After checking

different cloud vendors rates, we define $USDcpu

hour = 8cents/h
and $USDmem

hour = 7cents/h. For LSF, we establish the same
type of VM for our admin VM instances with two cores and
8 GB of RAM. We calculate the ttile by taking the geometric
mean across all tiles and different runs for each stage (i.e.,
read, compute, and write) and data scenario. We observe that
given the worker VM instances in the clusters, the total time
processing all the tiles is higher in LSF than in K8s since in
K8s we can run all tiles in parallel. A second remark is that the
computational cost for K8s is lower than LSF for Midwest at
90m and 10 m. As there are more tiles, like in the CONUS at
10 m example, two factors seem to penalize the cost for K8s,

making it higher than for LSF. The first factor is the time per
tile because 1156 instances in parallel in the cloud augment the
variability and decrease the compute performance. The second
factor is the number of VM instances; even though in LSF the
24 worker VM instances would take around 11.8 hours, there
is a tax for the amount of worker VM instances in K8s.

V. RELATED WORK

Our work is part of a broader effort to develop tools and
best practices for supporting HPC and cloud convergence for
scientific workflows. Several efforts have addressed porting
scientific workflows traditionally run in HPC and HTC (high-
throughput computing) systems into the cloud across domains
such as astronomy [14], bioinformatics [15], biology [16], and
engineering [17]. In earth sciences, Pangeo [18] prototypes an
architecture composed of a cloud object storage and compute
cluster. The external cloud storage is dedicated to the easy
retrieval of large-volume datasets. K8s provisions the compute
cluster, and Dask enables computation parallelism. As cloud
technology evolves, new services in the cloud (e.g., HPC
services and cloud-native services) and storage technologies
(e.g., block storage, object storage) emerge to overcome
past challenges. One of these challenges is leveraging those
services originally tailored for applications far from those
in scientific domains. Our work studies the issue of data
movement and the associated parameter tuning. Although our
study is applied to an earth science application, the proposed
approach and model can be transferred to other applications. In
other words, our work complements theoretical studies [19],
[20] addressing significant data transformation in the cloud
by offering a practical approach for scientists to explore and
tune the cloud for their workflows. There is a growing need
for developing persistent scientific workflows to seamlessly
connect and integrate software stacks and data services across
cloud platforms supported by virtualization and data prove-
nance [21]. Containerization of scientific workflow enables
reusability, portability, and reproducibility of results [4], [22]
as well as ease of system maintenance efforts [23]–[26]. Our
work supports these efforts as the containers can be integrated
into any cloud-native services. As cloud-native services, such
as K8s, gain popularity, our work joins other approaches [27],
[28] that enable distributed computation of scientific work-
flows. We emphasize tuning the default settings and parameters
for scalability improvements and cost mitigation.

VI. CONCLUSIONS

In this paper, we study the composition of large-scale
scientific workflows that deal with large intermediate data on
two HPC on cloud services. The first one is LSF, an HPC as a
service on cloud resources, close to on-premise HPC but on top
of an IaaS platform. The second is K8s, a container-based PaaS
platform where workflows are containerized and executed. We
provide best practices on cloud infrastructure to enable the
shareability and scalability of scientific workflows, increase
the productivity of scientists, and accelerate scientific discov-
ery. We demonstrate the scalability of the cloud infrastruc-
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ture for an exemplary ML-based scientific workflow in earth
sciences called SOMOSPIE. SOMOSPIE uses ML models to
predict satellite soil moisture data to a resolution necessary
for policymaking and precision agriculture. Specifically, we
measure performance when scaling up the resolution (i.e., low
to high) and scaling out the region (i.e., from a state to the
entire CONUS). We reach an accumulated write bandwidth
of 864.8 MB/s and 5.6 GB/s accumulated read bandwidth
having 94 VM instances in LSF. We obtain 2.4 GB/s write
bandwidth and 11.2 GB/s read bandwidth having 225 VM
instances in K8s. Future work includes continuing the HPC
and cloud convergence initiative by focusing on scheduling
policies on Kubernetes and offering operators that facilitate
the automatic composition of scientific workflows.
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