2023 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT) | 978-1-6654-9321-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/WISNET56959.2023.10046219

State-Recovery Protocol for URLLC Applications
in 5G Systems

Anas Alsoliman
University of California, Irvine
United States of America
aalsolim@uci.edu

Abstract—In 5G systems, ultra-reliable low latency commu-
nication (URLLC) services are expected to support an end-
to-end latency of up to Sms, while guaranteeing a minimum
of 99.999% packet delivery reliability. Providing such strict
service requirements is potentially difficult. As a solution, the
5G standard suggests taking advantage of the packet duplication
strategy whereby two data sessions are established between one
or two base stations and the node running the URLLC service.
However, the technical specifications of the duplication strategy
are not addressed by the standard, and thus, its implementation
is left up to the mobile network operators. In this paper, we
propose a state-recovery protocol for URLLC applications that
assists packet-duplication frameworks by recovering the state of
transmitted packets in the case of acknowledgment loss. Based
on such state information, packet-duplication frameworks can
intelligently control the duplication rate to provide URLLC-
level reliability while using as little resource as possible based
on the current network conditions. We validate our protocol
through multiple experiments on srsRAN nodes implemented on
Colosseum, the world’s largest radio frequency emulator.

I. INTRODUCTION

5G Systems (5GS) are expected to bring substantial im-
provements over its predecessor, 4G LTE. These improvements
are designed to be utilized by three main classes of applica-
tions, namely Enhanced Mobile Broadband (eMBB), Massive
Machine-Type Communications (mMTC), and Ultra-Reliable
Low-Latency Communications (URLLC). Among all three
classes, URLLC supports mission-critical applications such as
connected and autonomous vehicle applications. In URLLC,
the end-to-end latency requirement is assumed to be no more
than Sms while the reliability of packet delivery is set to be
no less than 99.999%. These two requirements are conflicting
in nature and are difficult to be jointly achieved by the current
protocols. For example, the packet retransmission scheme used
to support the reliability guarantee service of the Transmission
Control Protocol (TCP) increases the latency of delivered
packets. On the other hand, while User Datagram Protocol
(UDP) does not induce any additional latency on transmitted
packets, it does not guarantee transmission reliability. Other
transport protocols attempt to combine the best features of both
TCP and UDP. However, often these protocols are designed
with a specific application in mind and fail to meet the
reliability guarantee of URLLC applications.

This work was partially supported by NSF under Grant CNS 2134973.

Forough Shirin Abkenar
University of California, Irvine
United States of America
fshirina@uci.edu

Marco Levorato
University of California, Irvine
United States of America
levorato@uci.edu

(

(@) (jg:) (g) (

< (T) - =) >

a) Full-Duplication

)

Xx=3

b) Selective-Duplication

Fig. 1. Packet duplication schemes

In an attempt to combine these two strict and conflicting
requirements into the same URLLC service class, the system
architecture draft for the 5G System (version 16.6.0 release
16) released by the 3GPP group [1] suggests that URLLC
applications could establish two redundant data sessions over
the 5G network. This redundant connectivity scheme is re-
ferred to as Dual-Connectivity (DC) in the literature, which
is part of the general Multi-Connectivity (MC) scheme. These
two sessions can be established over two different channels
toward either the same base station (BS) or two different BSs.
Importantly, URLLC data is not split over the two channels to
increase data rate, but for the purpose of packet duplication.
That is, each packet generated by a URLLC application is
sent twice, once over each channel. This scheme is known as
Packet-Duplication (PD). Using the PD/MC scheme ensures
that a packet lost over one channel can be recovered by the
other channel without any packet retransmission. This results
in an improved packet latency and reliability, at the price of a
doubled bandwidth usage.

A. Related Work

Different research efforts have addressed various issues
related to URLLC applications. Research in [2] and [3] investi-
gate the effect of correlated channels on URLLC applications,
as well as approaches to find the least correlated channels. As
correlation in interference and path-loss decreases diversity,

9780*@@%&32&@3%3&90\@2&%@% UC Irvine Libraries. Downlodded on September 29,2023 at 17:46:21 UTC from IEEE Xplore. Rest%ﬁbﬁb&ﬁp@o23

a packet duplicated on two distinct but correlated channels is
likely to have a similar outcome on both channels. The authors
in [4] extend the channel correlation problem and investigate
the effect of correlated queues, i.e., the queues of different
BSs with similar buffering loads. Other contributions study the
minimization of PD/MC overhead on 5GS caused by URLLC
applications. For example, in [5] a technique is provided to
optimally decide which URLLC users are qualified to obtain
an MC privilege — and thus increase reliability — and which
users can use PD on top of MC. Other contributions, such as
[6] and [7], study a PD scheme, called selective-duplication,
where only packets that meet a set of criteria, such as poor
channel quality at the time of transmission, are tagged for
duplication. The main purpose of this scheme is to lower the
URLLC emitted traffic, which is inversely proportional to the
overall number of admissible URLLC users.

B. Problem Formulation & Contribution

As discussed earlier, a selective-duplication scheme can
reduce the bandwidth usage of URLLC applications. Figure
1 compares a full-duplication scheme (la) with its selective-
duplication counterpart (1b). In Figure 1b, it is assumed that
the delivery probability of packet 2 is below the URLLC
threshold of 99.999%, while packets 1 and 3 meet the re-
quirement. Figure la shows that the full-duplication scheme
duplicates all packets regardless of the specific network condi-
tions. On the other hand, the selective-duplication scheme only
duplicates packet 2. The latter approach reduces bandwidth
usage for the incoming packets. However, the duplication
decision (whether it is optimization-based [5] or machine
learning-based [7]) relies on channels’ feedback and overall
state (both current and previous states) of the network such as
current channel conditions and delivery statistics of previously
transmitted packets.

Different network statistics, such as signal-to-noise ratio,
can be acquired directly by the transmitter, but other important
statistics can only be reported back by the receiver in the
form of direct acknowledgments (ACKs). However, the ACK
message itself could be lost and thus, the state of the trans-
mitted packet would be lost as well. This in turn would likely
degrade the performance of selective duplication decisions for
the next packets. In other words, it is difficult to precisely
determine whether the packet or its ACK is lost - i.e., the
so-called lost acknowledgments problem (LAP). Furthermore,
the retransmission of packets (or their ACKs) is not feasible
for URLLC applications due to their strict delay requirement.

There is a plethora of research efforts [8]-[10] addressing
the LAP with the main focus on enhancing the reliability of
packet delivery or the throughput using packet retransmission.
Nonetheless, the objectives of acknowledgments in URLLC
applications are different (deriving the state of the transmitted
packets and its underlining network) than the mainstream
networked applications, where delivery guarantee comes at the
expense of a larger delay.

In this paper, we propose a state-recovery protocol for
URLLC applications. The main motivation behind the pro-

posed protocol is to aid and enhance the selective-duplication
performance by identifying whether the loss is related to the
transmitted packet or its ACK. We implemented our protocol
on the Colosseum lab [11]. The results reveal that the proposed
protocol enables a perfect selective-duplication scheme to
outperform the full-duplication scheme by enhancing channel
efficiency up to 95%. The protocol proposed in this paper is
designed to support selective duplication in the uplink (UL).
However, the protocol can be repurposed to support downlink
(DL) as well. Importantly, our protocol improves the efficiency
of the existing Selective-Acknowledgment (SACK) schemes
[12] used by modern TCP implementations. SACK requires
8-bytes to represent a single contiguous gap (maximum of
four gaps) of an unacknowledged stream of bytes, while our
protocol represents an entire unacknowledged packet with a
single bit. Furthermore, our protocol offers additional ad-
vantages such as indicating the delivery deadline state for
previous packets and combining multiple acknowledgments
from multiple BSs.

II. STATE-RECOVERY PROTOCOL

The proposed state-recovery protocol enables the differenti-
ation of the loss of a packet and its acknowledgment. To this
end, the protocol recovers the state of a transmitted packet in
the case that its ACK is not received. The state of the packets
can then be used to aid the duplication decision process of the
next packet. The design and implementation of such a process
can take the form of either an optimization-based or machine
learning-based algorithm. However, the details of this process
are out of the scope of the paper.

A. Protocol Design Overview

We consider a system including one URLLC device, simply
called device, and M base stations, where 1 < m < M
indexes the m-th BS. There are a total number of M channels
in the system each assigned to one BS. s; = {r;,d;} is
the state of packet 7 (pkt;), where both r; and d; are binary
variables. r; indicates the packet delivery status, where r; is
equal to ”1” if pkt; is successfully received by the receiver,
and 70" otherwise. On the other hand, d; represents the packet
deadline status, based on the relationship between the packet’s
delivery delay (sum of the transmission and queuing delays)
dl; and a predefined deadline parameter d,. Specifically,
d; is equal to “1” if dl; < d, and “0” otherwise. These
two binary variables are attached to each acknowledgment
ACK;. Moreover, the receiver tracks the states of the last
n packets. Then, with each sent out acknowledgment AC K,
the receiver attaches the state of the last n packets to the
acknowledgment, i.e., ACK; = s;+{s;—1,...,8;—n}. Lastly,
for each BS,,, a binary status b,,; is defined, where b,, ;
is mapped to “1” if BS,, has received a copy of pkt; and
“0” otherwise. Then, b,,; is attached to ACK, such that
ACKZ =S;+ {87;,1, ey Sifn} + {bl,ia ey bM,z} Notably, it
is assumed that all BSs can communicate via a reliable channel
such as the X2 interface in LTE networks.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downlo2ded on September 29,2023 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

M = 2-bits n = 4-bits dl, sn: 8-bit word

| f \ br, dr, ar: bit mapping
%%% dl:5ms sn:100
01 | 1001 | 1101 | 00000101 I 01100100

sn =98 -> packet lost

sn =98 -> deadline missed

sn =97 -> deadline missed
BS, received sn = 100

Fig. 2. An example of the proposed ACK header

B. ACK Header Structure

Figure 2 depicts the proposed ACK header, which consists
of five fields: 1-byte sequence number (sn), 1-byte packet
delivery delay (dl), n-bits ACK array (ar), n-bits deadline
array (dr), and m-bits BS array (br). For each pkt;, sn =i
is simply the sequence number of the packet successfully
received at the BS, and dl; shows the total delivery delay in
milliseconds. Both fields can take any number ranging between
[0, 255]. ar; and dr; on the other hand are the delivery state
and the deadline state (since the reception of pkt;) of the last
n packets, respectively. For instance, for pkt; _ 5, we have
ri_o = ar;_o[—2]' and d;_o = dr;_»[—2], where the position
of each bit in the array represents the position of pkt; _ o with
respect to sn = ¢ within a series of n packets. Each bit in br;
is mapped to “1” if a BS has successfully received pkt; and
“0” otherwise.

C. Acknowledgments Duplication

The selective-duplication process requires an immediate
ACK response to determine the duplication decision for the
next packet. If an ACK is lost, the channel recovery must be
postponed until the next ACK is successfully received. This
waiting time would force the selective-duplication process to
either rely on outdated information from the last received
ACK or simply consider the previously sent packet as lost.
To mitigate this issue, every ACK sent on one channel is
duplicated over all the other channels, regardless of whether
the packet was duplicated or not. When a BS receives a packet
from the UL channel, it first duplicates the ACK to all other
BSs over a reliable backbone network, e.g., X2 interface in
LTE networks. Upon receipt of an ACK from the backbone
network, the BS relays the ACK toward its own DL channel.
To prevent sending the same ACK multiple times, the BS
backs off for d, seconds when it receives a UL packet in
order to collect ACKs from all other BSs and fills up br before
forwarding the ACK to the DL channel.

D. Protocol Scenarios via Sequence Diagram
The proposed protocol can recover the state of packets
under different scenarios. Figure 3 shows that the recovery

A negative index indicates indexing from the array tail where [-1] is the
last element in the array while [-2] is the second to last element, and so on.

((())) ((())) link
é e «!») > é _ :zvlvnlink

BS, Device o X2 interface

1

— ~_|td, seconds timeout
% [eretotharmtiinh acs |

, br=[01] ¢

d, seconds timeout {

, br=[10]

———| all BSs ACKed

I;:[li] %

T "
Channel, Channel,
time time time

Fig. 3. Sequence diagram of the proposed protocol

starts right after successfully transmitting four packets. Note
that, dl and dr were omitted from the ACK header in Fig.
3 due to a space limitation. The first transmitted packet in
Fig. 3 starts with pkty (sn = 4) and is duplicated on both
channels. The packet and its ACK are lost in channel, and
channely respectively. However, ACK, is recovered over
channels by BSs. From br = [01] of the received ACK,
the device infers that the packet sent to BS5, and the ACK
sent by BS;, are lost. Note how BS; backed off for d,
seconds waiting for a duplicated ACK from BSs to fill its br
before sending its own ACK over channel;. Similarly, BSs
backed off for d,, seconds waiting for the UL packet to arrive.
Thereafter, the device attaches its own br before sending the
packet. This br is for optimization purposes to inform the BS
about what other BSs should have received a packet duplicate.
Hence, an ACK duplicate from other participating BSs is also
expected over the X2 interface. Next, pkts is sent over a single
channel, but is lost. Then, pkts is sent over a single channel
as well, but all its ACKs (original and duplicates) are lost.
The loss of all packet duplicates and/or its ACKs is the worst-
case scenario for the state-recovery protocol as there is no
feedback from the network. However, after sending pkty, the
device is able to recover the state of the previous two packets.
Also, neither of the BSs backed off for d, seconds since
all duplicate ACKs were received. Interestingly, the device
can infer from ACK7 that pkt; was received by both BSs
(by looking at 1s in br = [11]) and also, ACK; from B.Sy
was lost. However, if AC K7 from both BSs are lost, the next
successfully received ACK (e.g., ACKg) can only predict
that pkt; was successfully received by some BS's yet it cannot
identify which one actually received the packet. This limitation
is determined by the need to compressed information in the
ACK header. The knowledge of previously used channels, i.e.,
which BS's exactly received the previous packet, increases the
header size w.r.t br and ar from m + n to m x n bits.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downlo2ded on September 29,2023 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXPERIMENT RESULTS

Experiment 1: | Experiment 2:
-50dBFS -70dBFS

Total # of packets 37451 37459

of packets received on both channels 35350 29695

of packets received on one channel 2073 7620

of packets lost in UL 28 144

of ACKs lost in DL 0 12

Max # of continuous lost packets 2 3

III. IMPLEMENTATION & EVALUATION:

A prototype of the protocol is implemented in the Colos-
seum [11], which emulates RF signals using a network of high-
performance Software-Defined Radios (SDR), specifically,
X310 USRP radios. The protocol is built on top of srsRAN,
formerly known as srsLTE — an open-source implementation of
the LTE stack, where User Equipment (UE) devices connect
to and exchange traffic with BSs. We design an experiment
where a single device is connected to two BSs via LTE.
The device is configured to transmit a series of 1000-byte
packets on UL for five minutes. The inter-departure of the
packets is set to 8ms, which corresponds to a network traffic
of ~ 1 Mbps. During the experiment, the UE duplicates each
packet toward each BS. Then, both BSs are connected via
the Colosseum’s internal cabled network to emulate a reliable
LTE’s X2 interface for the BSs. The implementation evaluates
the effectiveness of the proposed protocol under different
channel conditions. Specifically, we test the protocol under two
experiments that use different signal decibel Full Scale (dBFS)
receive powers: -50 dBFS and -70 dBFS. For each experiment,
we compare the efficiency of the proposed protocol against
the efficiency of the full-duplication scheme. The former is
defined as the percentage of packets successfully received on
both channels, while the latter is expressed as the percentage
of packets successfully received on only one channel. In this
regard, we collect the number of packets lost in the UL, the
number of ACKs lost in the DL, and the number of packets
delivered via each channel.

Table I lists the results of both experiments. In the first
experiment, the total number of packets successfully received
is 37423, where 35,350 packets are received on both chan-
nels and 2073 ones are received on only one channel. This
results in an efficiency of 94.5% and 5.5% for the protocol-
assisted selective-duplication and the full-duplication strategy,
respectively. In the second experiment, the efficiency of the
full-duplication strategy increases to 20.4%, and our protocol
improves efficiency up to 79.6%. This observation further
motivates the usefulness of the selective-duplication scheme,
and thus, the need for a state-recovery protocol to support an
efficient duplication decision strategy.

In the first experiment, 28 packets are lost on both channels.
The missing ACKs of these 28 packets provide an indication
that the packets are lost. However, the UE device cannot
determine with certainty whether the packets or its ACKSs

were lost in the absence of additional feedback enabling the
recovery of the actual states of these missing packets. In the
second experiment, 156 packets have missing ACKs, even
though only 12 packets were actually lost. To recover the past
packet and network states, n should be selected carefully as it
indicates the maximum number of packets that are expected
to be lost in a sequence. Moreover, the maximum number of
contiguous packets lost in experiments 1 and 2 are 2 and 3
packets, respectively.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a state-recovery protocol that
tracks the state of previously lost packets to address the Lost
Acknowledgement Problem (LAP), that is, the problem of
differentiating between a lost packet and a lost ACK. This
protocol is intended to be utilized by frameworks that require
precise network feedback such as the selective-duplication
frameworks for 5G’s URLLC applications. Notably, the proto-
col has the potential for additional improvements in the future,
such as 1) embedding the reading of the current buffer size of
network slices, 2) dedicating a field in the header for reporting
individual channel states, 3) introducing an adaptive header
size for adding extra network statistics in the case of poor
channel conditions, 4) using ACK timeouts, and 5) involving
the sender in the message exchange. The latter is beneficial
to report the scheduled transmission time of the next packet,
whereby the receiver can reply with a triggered ACK if no
packet is received within the scheduled time limit.

REFERENCES

[1] 3GPP, “System architecture for the 5g system (5gs),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 2020.

[2] Y. Chen et al., “Impact of correlated fading on multi-connectivity,” IEEE
Transactions on Wireless Communications, vol. 20, no. 2, pp. 1011-
1022, 2020.

[3] J. Rao and S. Vrzic, “Packet duplication for urllc in 5g: Architectural
enhancements and performance analysis,” IEEE Network, vol. 32, no. 2,
pp. 3240, 2018.

[4] C.-Y. Chen and H.-Y. Hsieh, “Does queue correlation matter in 5g multi-
connectivity with packet duplication?,” IEEE Wireless Communications
Letters, 2022.

[5] J. Elias et al., “Multi-connectivity in 5g new radio: Optimal resource
allocation for split bearer and data duplication,” Available at SSRN
4102694.

[6] M. Centenaro et al., “System-level study of data duplication enhance-
ments for 5g downlink urlle,” IEEE Access, vol. 8, pp. 565-578, 2019.

[71 D. Segura et al., “Dynamic packet duplication for industrial urllc,”
Sensors, vol. 22, no. 2, p. 587, 2022.

[8] B. Kim and J. Lee, “Retransmission loss recovery by duplicate acknowl-
edgment counting,” [EEE Communications Letters, vol. 8, no. 1, pp. 69—
71, 2004.

[9]1 B. Sinopoli et al., “Optimal linear lqg control over lossy networks

without packet acknowledgment,” Asian Journal of Control, vol. 10,

no. 1, pp. 3-13, 2008.

S. Chandra et al., “Hybrid buffer-based optical packet switch with

negative acknowledgment for multilevel data centers,” Journal of Optical

Communications, 2020.

L. Bonati et al., “Colosseum: Large-Scale Wireless Experimentation

Through Hardware-in-the-Loop Network Emulation,” in Proc. of IEEE

Intl. Symp. on Dynamic Spectrum Access Networks (DySPAN), Decem-

ber 2021.

E. Blanton et al., “A conservative loss recovery algorithm based on

selective acknowledgment (sack) for tcp,” tech. rep., 2012.

[10]

(11]

[12]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downlo23ed on September 29,2023 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

