
Matching DNN Compression and Cooperative
Training with Resources and Data Availability

F. Malandrino1,2, G. Di Giacomo3, A. Karamzade4, M. Levorato4, C. F. Chiasserini3,1,2
1: CNR-IEIIT, Italy – 2: CNIT, Italy – 3: Politecnico di Torino, Italy – 4: UC Irvine, USA

Abstract—To make machine learning (ML) sustainable and

apt to run on the diverse devices where relevant data is, it is

essential to compress ML models as needed, while still meeting

the required learning quality and time performance. However,

how much and when an ML model should be compressed, and

where its training should be executed, are hard decisions to make,

as they depend on the model itself, the resources of the available

nodes, and the data such nodes own. Existing studies focus on

each of those aspects individually, however, they do not account

for how such decisions can be made jointly and adapted to one

another. In this work, we model the network system focusing

on the training of DNNs, formalize the above multi-dimensional

problem, and, given its NP-hardness, formulate an approximate

dynamic programming problem that we solve through the PACT

algorithmic framework. Importantly, PACT leverages a time-

expanded graph representing the learning process, and a data-

driven and theoretical approach for the prediction of the loss

evolution to be expected as a consequence of training decisions.

We prove that PACT’s solutions can get as close to the optimum

as desired, at the cost of an increased time complexity, and that,

in any case, such complexity is polynomial. Numerical results also

show that, even under the most disadvantageous settings, PACT

outperforms state-of-the-art alternatives and closely matches the

optimal energy cost.

I. INTRODUCTION

Modern-day machine-learning (ML) models are hard to
train, as they often require considerable quantities of data
as well as computational, network and energy resources [1],
[2]. In addition, in several application scenarios, data and
resources may be located across different network nodes,
whose availability and connectivity may significantly differ,
and even vary in space and time [3]. Examples include smart
factory ML-based applications, where models are partially
trained in the cloud and then specialized by edge nodes [4], or
even more extreme settings where image classification models
are first trained by ground stations and then refined by a
spacecraft specifically for its operating environment [5].

In all the above cases, a critical technical challenge is the
mutual adaptation of the training process and the system
settings, resources and data offered by the interconnected
network nodes. We contend that existing works only address
some specific aspects but none of them tackles the joint
optimization of ML model compression and the selection of
nodes and related data. The framework we propose achieves
such goals by leveraging multiple ML models throughout
different stages of a single learning task – switching among
them as needed (e.g., via model pruning [6], or knowledge
distillation (KD) [7]) – and choosing, for each stage, the most
appropriate datasets and resources. To make an example, the
training of a complex model can start over a small set of

Gold Silver Bronze
Model 1 Model 2 Model 3

Epochs Epochs Epochsk1 k2 k3

Learning Orchestrator

Fig. 1. Cooperative training process proposed and optimized in this paper.
Subsets of nodes sequentially train compressed versions of an original
DNN model. In the picture, we categorize nodes based on their computing
capabilities and data availability, and, in the example, the training sequence is
based on nodes’ ranking (gold, silver, bronze). Our framework, named PACT
and running at the learning orchestrator, can generate arbitrary sequences: it
optimizes the set of nodes, number of epochs, and model compression along
the process.

powerful nodes; then, we can switch to a simpler, compressed
model and perform further training epochs involving additional
nodes that contribute fewer resources but more valuable data
[8] toward their specific task and domain. Model and nodes
switching, however, comes with its own costs in terms of time,
resources and, often, learning performance, hence, switching
decisions must be made only when clear gains can be obtained.

In this work, we formalize and optimize such complex
cooperative strategies for the training of deep neural networks
(DNNs), where the – heterogeneous – nodes that participate
in the training do not share their data. The training process is
illustrated in Fig. 1. In this challenging scenario, we make the
following contributions:
(1) Model and problem definition: We develop a model for
the networked system supporting the training of DNN models
capturing its most relevant aspects, and we use it to make
dynamic, joint decisions about: (i) the ML model to be used at
each epoch (e.g., the full DNN model or a compressed version
thereof); (ii) when to perform a model switch (e.g., at which
epoch the framework transitions to a compressed version of the
DNN); and (iii) the nodes to leverage at each stage, accounting
for their resources and specific local datasets. The overarching
goal is to reach a target learning quality by a desired deadline,
while minimizing the energy consumption (hence, the cost) of
the overall process. We remark that controlling all the above
aspects allows for more flexibility than existing works that just
study how to adapt one aspect (e.g., choosing the model) to
another (e.g., a given and immutable set of resources).

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
07

6

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

(2) Algorithmic framework: The decision process is further
complicated by two main issues, namely, (i) the scale of
the problem itself, and (ii) the fact that the effect of model
switching decisions cannot be, in general, known with cer-
tainty. We tackle the first issue by adopting an approximate
dynamic programming (ADP) approach, whereby only the
most promising courses of action are evaluated, and we
envision an algorithmic solution, named Performance-Aware
Compression and Training (PACT), for an efficient selection
thereof. Concerning the second, we integrate into our decision-
making approach the available results on performance charac-
terization of DNN model training. In particular, we leverage
both theoretical bounds and data-driven predictions based on
low-complexity NN architectures of the loss evolution to be
expected as a consequence of a sequence of training decisions.
Importantly, we prove that PACT can get as close as desired
to the optimum of the formulated problem (which is shown to
be NP-hard), at the cost of an increased complexity, which is
anyway polynomial at worst.
(3) Performance evaluation: We show how PACT identifies
the training strategy that best matches the available resources
and data, resulting in minimum energy consumption given
the target loss value and training process time. Also, PACT
demonstrates to be highly robust to approximate estimations
of the effects of model switching on the loss values.

In the rest of the paper, Sec. II clarifies the problem we
address, while Sec. III presents the system model and the
decisions we tackle. Sec. IV then introduces the methodology
used for estimating the loss as learning proceeds, and Sec. V
describes our algorithmic solution. The obtained results are
shown in Sec. VI; finally, Sec. VII discusses relevant related
work and Sec. VIII summarizes our conclusions.

II. A MOTIVATING EXAMPLE

In this section, we illustrate the benefits of a cooperative
training process that integrates model and nodes switching, but
also emphasize the challenges in formulating and optimizing
it. To this aim, we consider the case in which one of the most
popular cooperative learning approaches, namely, federated
learning (FL), is coupled with model pruning [6]. The latter
exploits the fact that, typically, many of a model’s parameters
have a small impact on its performance and can thus be pruned
away, resulting in a DNN with similar performance but of
lower complexity, and hence CPU and memory requirements.
In particular, we evaluate the following scenario:

• the nodes perform an image classification task using the
VGG11 DNN model [9] as a starting point;

• FL uses the cross entropy loss function, batch size equal
to 64, and the gradient descent optimizer with 10�3

learning rate and 0.9 momentum;
• the model is trained for K1 epochs on 5 highly capable

nodes (“gold” nodes), each using 8,000 randomly-chosen
images from the CIFAR-10 dataset [10];

• then, a fraction F of the model’s parameters is pruned
• finally, training resumes adding 2 more learning nodes,

which have lower computing capability and fewer data:

0 1000 2000 3000 4000 5000 6000 7000 8000

Overall training time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u
r
a
c
y

2425

3050

3186

4037

4047

4604

4645

5392k= 5 k= 25

Gold & silver

F=0.5

K1=5

Gold & bronze

F=0.9

K1=25

Fig. 2. Accuracy vs. training time for different values of pruning epoch K1
(denoted by different line styles) and percentage F (denoted by different color
shades). Note how upon pruning a sudden drop in accuracy occurs. Cold and
warm colors denote the set of nodes used for FL. Numbers in the plot indicate
the total CPU time [s], while each marker corresponds to 10 epochs.

either “silver” with half the computing resources of the
gold nodes and 2,500 local images each, or “bronze” with
one third of the computing resources of the gold nodes
and 750 local images each.

Three decisions should be made: (i) the number K1 of
epochs to execute before pruning, (ii) the percentage F of
parameters to prune, and (iii) whether to use the “silver” or
“bronze” nodes when resuming training. Notice how the first
two decisions concern selecting and switching among models,
while the third deals with the physical nodes participating in
the learning process. Fig. 2 summarizes the effects of such
decisions1, which lead to the following main remarks.
Observation 1: Pruning more (i.e., F = 0.9, orange and
light blue curves) significantly reduces both CPU consumption
(indicated by the numbers in the plot) and epoch duration
(markers are closer to each other), thus speeding up the overall
learning process and reducing its cost.
Observation 2: Larger values of K1 (solid lines) are associated
with better performance after pruning.
Observation 3: Using lower-capability (“bronze”) nodes after
pruning (warm colors) results in a larger difference between
the learning performance obtained when K1 is small (i.e.,
5) and when K1 is larger (i.e., 25). Thus, achieving better
performance while exploiting lower-capability nodes requires
switching model later.

In a nutshell, switching from a model to another may have
significant benefits in terms of time and resource consumption;
however, its effects are hard to capture and foresee. Further-
more, the benefits of involving additional, yet heterogeneous,
nodes depend upon the chosen models and the time at which
to switch between them. Thus, it is necessary to make all
the decisions on model/nodes switching jointly, accounting for
their interactions through a comprehensive system model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We now build the representation of the system we tackle,
and formulate the problem of optimally matching DNN com-
pression and training with resources/data availability.

1Only some values of F are possible, as we apply structured pruning (see
Sec. VII for further details).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

A. Model components

We envision a networked system for the compression and
training of ML models where different nodes or sets of nodes
are available, each characterized by computational and energy
resources, and local datasets. A learning orchestrator controls
the learning process. The system has two main components:

• DNN models m � M that can be used for the training
process; each model is obtained by compressing the
original DNN with a given technique or pruning ratio;

• sets n � N of nodes that can participate in the coopera-
tive learning process.

Let k indicate the current epoch, �(k) the loss function at
k, and T (k) the time at which epoch k finishes. �T (k) and
��(k) represent, respectively, the time taken by epoch k, and
the variation in the value of loss function it yielded. Finally,
�E(k) denotes the energy consumed to perform epoch k, and
E(k) the cumulative energy consumption until k.

Importantly, time and energy variations depend on the
model (m(k)) and the set of nodes (n(k)) used at epoch k;
also, they include two components each, i.e.,

�T (k)=⇥ change(m(k⇥1), n(k⇥1),m(k), n(k))

+ ⇥ run(m(k), n(k)), (1)
�E(k)=⇤change(m(k⇥1), n(k⇥1),m(k), n(k))

+ ⇤run(m(k), n(k)). (2)

In the equations above, ⇥ run (⇤run) represents the time (energy)
to execute a given model over a set of nodes (hence, with
the associated datasets), while ⇥ change (⇤change) represents the
time (energy) to change (i.e., switch) the model or nodes. In
fact, model change implies compressing the model, which
may take time and energy, while a change in the set of
nodes contributing to learning requires transferring the model.
Furthermore, not all model/nodes choices are possible, which
is reflected by setting ⇥ change, ⇤change, ⇥ run, and ⇤run to ⇤.

The evolution of the loss function is given by:

��(k)=⌅change(k,m(k⇥1),m(k))

+ ⌅run(k,m(k), n(k)). (3)

Again, (3) includes two components: ⌅change – the contribution
of transitioning from the previous to the current model (if a
model switch is performed), and ⌅run – the effect of training
that model for an epoch. The sum of these components gives
the difference between the loss at the current epoch k and that
of epoch k⇥1, i.e., the result of the action we enact at epoch k.
However, now the two components may have different signs:
⌅run ⌅ 0 (the loss decreases) in most cases, while it is possible
that ⌅change ⇧ 0, as changing model may increase the loss value
[11], [12]. Impossible transitions are associated with ⌅change =
⇤.

In the following, when no confusion arises, we will drop the
dependency of decision variables m and n from the epoch.

B. Problem definition
Given the impelling need to make ML sustainable [13],

[14], our goal is to minimize the overall learning energy
consumption, while ensuring that the loss drops below a target
value �max within time Tmax. Specifically, for each epoch k,
the learning orchestrator has to select (i) which model m(k)
to train in epoch k, and (ii) which set n(k) of nodes to
involve next in the learning process. Based on these decisions,
the values �T (k), �E(k), and ��(k) follow, expressing,
respectively, how long iteration k takes, how much energy
it consumes, and what improvement in the learning it yields.

The learning orchestrator acts based on the knowledge of
the characteristics of the network nodes that can contribute to
a learning process, and of the computational, temporal, and
energy impact of running a model. Such values can indeed
be calculated following, e.g., the methodology in [15]. Thus,
sets M and N , as well as functions ⇥ run, ⇥ change, ⇤run and
⇤change, are given from the viewpoint of our problem.

On the contrary, ⌅run and ⌅change can only be estimated by
the learning orchestrator, through estimators ⌅̂run and ⌅̂change.
This reflects the fact that understanding how training a specific
model over specific nodes (hence, also data) improves learning
is a hard problem, and, indeed, all existing works merely
provide approximations and/or bounds to such quantities. In
the following, we treat those estimators as given; then, in
Sec. IV we present the methodology used at the learning
orchestrator in order to compute them.

Owing to the discrete-time, combinatorial nature of the
problem, we propose an approximate dynamic programming
(ADP) formulation thereof, as described below. Dynamic
programming is indeed well-suited to cope with combinatorial
problems where the system state evolves over time and the
same decision process shall be repeated for multiple epochs.

C. ADP formulation
First, we define the state space, set of actions, and

cost function. The state at epoch k is given by s(k) =
(k, �(k), T (k),m, n), while the set of actions available from
state s(k) is given by all possible decisions (m⇥, n⇥) �M◊N
such that the switch they entail (if any) is feasible. The
cost function C(s(k), a(k)) expresses the (immediate) cost
of executing action a while in state s at epoch k, as the
corresponding consumed energy C(s(k), a(k)) = �E(k).
Such a cost comes directly from (2), i.e., C(s(k), a(k)) =
⇤change(m,n,m⇥, n⇥) + ⇤run(m⇥, n⇥).

The value function V(s(k)), i.e., how desirable it is to be in
state s(k), requires a more sophisticated, and domain-specific,
definition. We set the value of being in state s(k) equal to
0 when, after Tmax, the loss is above �max; we set it to the
maximum value (i.e., 1) whenever �(k) < �max while T (k) ⌅
Tmax. For all other states, we compare the current loss �(k)
and time T (k) with an ideal loss-time curve �ideal(t) which:
(i) starts at �(0) for T = 0; (ii) ends at �max for T = Tmax,
and (iii) follows a power law in the between. The latter comes
from the finding invariably reported in both theoretical [16]–
[18] and experimental [19] works. Then, we can write the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

FC (15 Neurons)

FC (16 Neurons)

LSTM (hidden size: 8)Dataset and
model features

Previous
Loss Values

(a) (b)Output

FC (3 Neurons)

FC (21 Neurons)

Dataset and
model features

Output

Previous
Loss Values

Fig. 3. Architecture of the �̂run (a) and �̂change (b) estimators.

value of being in state s(k) as the difference between ideal
and real loss values, i.e.,

V(s(k)) = logistic
�
�ideal(T (k))⇥ �(k)

⇥
, (4)

where the value is normalized via a logistic function.
Dynamic programming problems can be solved in principle

by optimizing Bellman’s equation, i.e., choosing at each epoch
the action minimizing the total energy cost:

min
a(k)⇤Ak

⇤

k

C(s(k), a(k)) (5)

s.t. V(s(K)) = 1 ; T (K) ⌅ Tmax . (6)

To solve our problem in real-world scenarios, however, there
are two major challenges to face. First, the learning orchestra-
tor does not have access to the future decrease (or increase)
in the loss value ��(k), and how our decisions influence it.
A possible solution to this issue is to use traditional Deep Re-
inforcement Learning (DRL) approaches. For instance, Deep
Q-Learning algorithms would implicitly learn the probabilistic
dynamics of loss as a function of taken actions. However,
training DRL agents often requires very large datasets to
achieve satisfactory convergence, and may result in weak
generalization. Herein, we take a different approach, where
we build an ADP framework based on low-complexity neural
networks (NN) estimators of possible loss trajectories with a
finite time horizon. Second, in view of the number of possible
actions, the learning orchestrator has to identify a subset of
actions to evaluate at each epoch. Such challenges are dealt
with in Sec. IV and Sec. V, respectively.

IV. ESTIMATING THE PERFORMANCE OF LEARNING

As discussed in Sec. III-B, neither of the quanti-
ties contributing to the loss evolution (⌅change(k,m,m⇥)
and ⌅run(k,m, n)) is known exactly. We thus introduce es-
timators for ��(k). Specifically, for ⌅run(k,m, n):

• an expected-value estimator ⌅̂run
exp(k,m, n) of the loss

reduction value;
• a robust estimator ⌅̂run

rob(k,m, n), such that
⌅run(k,m, n) ⌅ ⌅̂run

rob(k,m, n) with high probability.
In general, ⌅̂run

exp(k,m, n) ⌅ ⌅̂run
rob(k,m, n), i.e., the

robust estimator is the most pessimistic. Likewise,
for ⌅change(k,m,m⇥), we can introduce the corresponding
estimators, ⌅̂change

exp (k,m,m⇥) and ⌅̂change
rob (k,m,m⇥), with

similar properties.

0 20 40 60 80 100 120
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 lo
ss

True loss
ℓ+ ̂λrun

exp

ℓ+ ̂λrun
rob

ℓ+ ̂λchange
exp

ℓ+ ̂λchange
rob

Fig. 4. Example of true loss vs expected-value and robust estimators.

To obtain both the expected-value and the robust estimator,
the learning orchestrator leverages the knowledge of the num-
ber of classes of the datasets owned by the nodes and makes
use of NN architectures that can predict the expected training
loss variation as well as determine the prediction uncertainty.
Specifically, for ⌅run(k,m, n), we take as a starting point the
Long Short-Term Memory (LSTM) model in [20] and develop
a similar, yet simpler, branched architecture, as depicted in
Fig. 3(a). The features fed to the first Fully Connected (FC)
layer are the time-independent parameters, i.e., the number of
classes and samples in the dataset of the nodes set currently
training the DNN model, and the pruning ratio F of the
current model. The input of the LSTM layer is the sequence
of loss values obtained so far in the DNN model. The NN
predicts the expected value of ⌅run(k,m, n) as well as two
associated quantiles (namely, 0.05 and 0.95), yielded by the
learning process in the next 5 epochs (thus, the FC layer output
size is 15, i.e., number of predicted metrics times number
of prediction steps). So doing, we obtain ⌅̂run

exp(k,m, n) and
⌅̂run

rob(k,m, n), with the latter given by the 0.95 quantile.
As for ⌅change(k,m,m⇥), since the goal is to predict the loss

variation of changing models, we leverage regression, using
the NN in Fig. 3(b). The NN is fed the pruning ratio and
the 5 loss values preceding the model switch. The regression
model predicts the expected value ⌅̂change

exp (k,m,m⇥) as well
as the 0.05 and 0.95 quantiles in the next epoch of the DNN
training, with ⌅̂change

rob (k,m,m⇥) being again the 0.95 quantile.
As depicted in Fig. 4 the above estimators produce very

accurate predictions (red lines and green markers for ⌅run

and ⌅change, resp.) of the true loss (black line). The figure
refers to the training loss of the VGG11 DNN model initially
trained with 45,000 samples of the CIFAR-10 dataset with 10
classes. After 25 epochs, the model is pruned with F1 = 0.75
and handed over to a set of nodes owning 5,000 samples
belonging to 13 classes, taken from the CIFAR-10 and CIFAR-
100 datasets. Likewise, after 40 more epochs, the model is
further pruned with F2 = 0.5, and passed to a third set of
nodes owing 1,500 samples belonging to 15 classes, taken
from the same combination of datasets.

Finally, to improve the reliability of the robust estima-
tor, the learning orchestrator compares the values obtained
through the above NN to the lower bounds that are available
for ⌅run(k,m, n) [21, Theorem 1] and for ⌅change(k,m,m⇥)
[11, Sec. 3]. If they result to be lower than the bounds, the

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

latter are taken as robust estimators.

V. THE PACT ALGORITHM

The goal of PACT is to let the learning orchestrator effi-
ciently find high-quality solutions to the problem in (5), which,
as shown later, is NP-hard. PACT consists of three steps:

1) Create an expanded graph representing the possible
decisions and their outcome;

2) Using such a graph, identify a set of decisions deemed
feasible based on the estimated loss trajectory;

3) By combining learning- and energy-related information,
choose the best feasible solution to enact.

Step 1: Expanded graph. The expanded graph is a directed
graph built according to the following rules:

• The vertices represent the states of the system; they are
labeled with the current epoch k, model m(k) and set of
nodes n(k) being used, and the total elapsed time T (k)
and current loss �(k). With the aim of identifying feasible
solutions, the latter quantity is computed using the robust
estimators ⌅̂change

rob (k,m,m⇥) and ⌅̂run
rob(k,m, n);

• Elapsed time and loss values are represented, respectively,
with resolutions ⇧T and ⇧� (e.g., if ⇧� = 0.1, a vertex
with � = 0.1 or 0.2 can exist, but not with � = 0.15);

• A directed edge is drawn between two vertices if there
is an action making the system move from one corre-
sponding state to the other; each edge is labeled with the
energy consumption of the associated action, as in (2);

• Each vertex representing a feasible state of the system
(i.e., with �(k) ⌅ �max and T (k) ⌅ Tmax) is further
connected to a virtual node ⇥ through a zero-cost edge.

The graph is created through the CREATEEXPANDED-
GRAPH function, presented in Alg. 1. First, all vertices are
created, representing all valid combinations of model and set
of nodes, epoch, loss value, and elapsed time (Line 3–Line 6).
Note that the quantization parameters ⇧� and ⇧T (Line 4–
Line 6) allow us to control the trade-off between size of the
graph and quantization error.

For each vertex v, the effect of taking action a from vertex v
is determined by computing the resulting elapsed time and the
required energy (Line 12–Line 13). If either is infinite, then
taking action a while in state v is impossible, and we move on
to the next action. Otherwise, the loss �⇥ resulting from taking
the action is computed using the robust estimator (Line 16).
Now, tuple (k + 1,m⇥, n⇥, �⇥, T) would describe the state the
system lands on after performing a from v; however, due to
the way the vertices are created (i.e., using ⇧� and ⇧T), such
a tuple may not correspond to a vertex in V . Accordingly,
in Line 17–Line 18, �⇥ and T ⇥ are cast into integer multiples
of ⇧� and ⇧T . Then, vertex v⇥ representing the new state is
identified (Line 19), and an edge from v to v⇥ is added using
the appropriate energy value E as its weight. Finally, if v is
feasible, v is connected to ⇥ (Line 22).

Fig. 5 presents an example of expanded graph. The initial
vertex is associated with epoch k = 0, model m(0) = m0,
node n(0) = n0, loss �(0) = 1 and elapsed time T (0) = 0.
The learning target is �max = 0.25 and the time limit

Algorithm 1 Creating the expanded graph
1: function CREATEEXPANDEDGRAPH
2: V ⌃ {⇥} ⌃ set of vertices
3: for all m �M, n � N do

4: for all k �
⌅
1, 2, . . . ,

⇧
Tmax

⇥T

⌃⌥
do

5: for all � � [0, ⇧�, 2⇧�, . . . , �(0)] do

6: for all T � [0, ⇧T , 2⇧T , . . . , Tmax] do

7: v ⌃ (k,m, n, �, T)
8: V ⌃ V ⌥ {v}
9: E ⌃ � ⌃ set of edges

10: for all v = (k,m, n, �, T) � V do

11: for all a = (m⇥, n⇥) � A do

12: T ⇥ ⌃ T + ⇥ change(m,n,m⇥, n⇥) + ⇥ run(m,n)
13: E ⌃ ⇤change(m,n,m⇥, n⇥) + ⇤run(m⇥, n⇥)
14: if T ⇥ > Tmax E =⇤ then

15: continue ⌃ infeasible, skip this action
16: �⇥ ⌃ �+ ⌅̂change

rob (k,m,m⇥) + ⌅̂run
rob(k,m, n⇥)

17: �⇥ ⌃ ⇧�
⇧

��

⇥�

⌃

18: T ⇥ ⌃ ⇧T
⇧

T �

⇥T

⌃

19: v⇥ ⌃ (k + 1,m⇥, n⇥, �⇥, T ⇥)
20: E ⌃ E ⌥ {(v, v⇥,weight = E)}
21: if � ⌅ �max ⌦ T ⌅ Tmax

then

22: E ⌃ E ⌥ {v,⇥} ⌃ feasible state
23: return G = (V, E)

is Tmax = 1.5. Also, the resolution values are set to ⇧T = 0.1
and ⇧� = 0.1. From the current state, it is possible to change
the node (switching to more capable n1), model (switching
quicker-converging m1), both, or neither; such actions are
represented (resp.) by solid green, solid purple, dashed blue,
and dotted black edges in the figure. Different combinations
of possible switches yield different combinations of loss and
elapsed time, only one of which – the bottom, pink vertex –
is feasible, hence, connected to ⇥.

Step 2: Feasible paths. Next, PACT uses the expanded
graph to identify a set of paths deemed feasible; the first
edge of such paths represents a feasible action. To mitigate
the impact of potential errors in the loss estimation (which
in principle may jeopardize feasibility), the expanded graph
is built using the robust estimators of the loss variation,

�

k=0,m=m0

n=n0, `=1, T=0

k=1,m=m0

n=n0, `=0.8, T=1.2

k=1,m=m0

n=n1, `=0.8, T=0.6

k=1,m=m1

n=n1, `=0.6, T=0.7

k=2,m=m0

n=n0, `=0.6, T=2.4

k=2,m=m0

n=n1, `=0.6, T=1.8

k=2,m=m1

n=n1, `=0.6, T=1.5

k=2,m=m1

n=n1, `=0.2, T=1.4

Fig. 5. Example of the expanded graph generated by PACT, with resolution
values ⇥T = 0.1 and ⇥� = 0.1, learning target ⇤max = 0.25, and time limit
Tmax = 1.5. Edge colors correspond to switches made across subsequent
epochs: node only (solid green), model only (solid purple), both (dashed blue),
neither (dotted black).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Finding feasible paths
1: function FINDFEASIBLEPATHS
2: vcurr ⌃ (k,m, n, �, T)
3: P ⌃ � ⌃ feasible paths
4: for all v: (v,⇥) � E do

5: p⌃ shortestPath(vcurr, v)
6: P ⌃ P ⌥ {p,weight =

�
e⇤p weight[e]}

7: return P

which guarantees that all paths landing at a feasible node are,
indeed, feasible with high probability. Thus, using function
FINDFEASIBLEPATHS in Alg. 2, PACT seeks for paths that (i)
start from the current state, and (ii) arrive to a feasible state,
i.e., to a vertex connected to ⇥. Specifically, for each vertex v
corresponding to a feasible state, it determines the shortest
path (Line 5) from the current state vcurr to v. Such paths are
collected in set P and associated with a weight corresponding
to the sum of weights (i.e., energy consumption) of their edges.

Step 3: Making the best decision. Once the set of feasible
paths, and associated feasible actions, has been identified,
using robust estimators to choose the decision to enact would
be overly cautious, possibly resulting in unnecessarily higher
energy costs. Thus, PACT accounts for two additional aspects
when selecting an action: an opportunity and a risk factor.
Such factors and the path weight are integrated into a score,
and the action corresponding to the lowest score is enacted.

For every path p � P , scores are computed in the
CHOOSEACTION function in Alg. 3. The opportunity factor,
opp ⇧ 1, is given by the ratio of (i) the sum of the expected
loss to (ii) the sum of the robust loss associated with the
edges in p (Line 9). The intuition is to make it easier to
choose actions with a good expected loss, since the robust
estimator may be too pessimistic. As for the risk factor, its
high-level purpose is to avoid undoing decisions. To this end,
PACT seeks for paths on the expanded graph that lead from
the first node of p, to a vertex v � V associated with the
current model m (Line 10), and thence to ⇥. The risk factor,
risk ⇧ 1, associated with path p is then computed in Line 12
as the ratio of the minimum among the weights of such paths
to the weight of p (defined in Alg. 2).

The score of path p is obtained in Line 13 as p’s weight,
divided by the opportunity factor, and multiplied by the risk
factor. Then the action associated with the minimum-score
path is returned. It is important to underline that the shortest
path going from the current state to ⇥ represents the lowest-
cost decision since edge weights are set to the energy cost of
the corresponding actions. Thus, the ultimate outcome of this
step is the action with the lowest energy cost to enact.

A. Problem and algorithm analysis

Property 1: The problem of optimizing (5) is NP-hard.
The proof is based on a reduction in polynomial time from the
generalized assignment problem (GAP) [22], which is known
to be NP-hard. Furthermore, we prove that:

Property 2: PACT’s time complexity is polynomial.

Algorithm 3 Choosing the next action
1: function CHOOSEACTION
2: scores⌃ {}
3: for all p � P do

4: w ⌃ 0 ⌃ opportunity
5: Le⌃ 0 ; Lr⌃ 0
6: for all ((k,m, n, �, T), (k⇥,m⇥, n⇥, �⇥, T ⇥)) � p do

7: Le⌃Le+⌅̂change
exp (k,m,m⇥)+⌅̂run

exp(k,m, n⇥)

8: Lr⌃Lr+⌅̂change
rob (k,m,m⇥)+⌅̂run

rob(k,m, n⇥)
9: opp⌃ Le/Lr

10: V ⌃ {v � V : v[1] = m} ⌃ risk
11: Wr⌃minv⇤V weight(shortestPath(p[1],⇥,via v)
12: risk⌃ Wr/weight[p]
13: scores[p]⌃ weight[p] · risk/opp
14: p⇤ ⌃ argminp⇤P score[p]
15: return a = (p[1][1], p[1][2])

Proof: PACT’s complexity is given by the sum of the
complexity of Alg. 1–Alg. 3. In Alg. 1, the first loop is run at
most |V| = MN

⇧
Tmax

⇥T

⌃2⇧
�(0)
⇥�

⌃
times, and the second one for

at most |V|MN times. Alg. 2 computes at most |V|2 shortest
paths, each of which (e.g., using Dijkstra’s algorithm [23])
incurs a polynomial complexity. Alg. 3 iterates over set P of
feasible paths, whose number cannot exceed |V| (as per Alg. 2,
Line 4). Thus, Alg. 1 represents the dominating contribution
to PACT’s complexity, which proves the thesis.
Importantly, Property 2 concerns the worst-case time com-
plexity of PACT, which in practice has substantially lower
complexity. In particular, the shortest-path routines used in
Alg. 2 and Alg. 3 have been heavily optimized, and perform
very efficiently in practice [23].

At last, we prove the following property about how good
PACT’s solutions are at minimizing the objective in (5).

Property 3: If predictions are exact, their time horizon
is sufficiently long, and all �� and �T values are integer
multipliers of ⇧� and ⇧T , then PACT is optimal.

Proof: The proof comes from inspection of Alg. 1–
Alg. 3, which consider all possible options, hence, no feasible
solutions are ignored. Further, the shortest-path problem in
Alg. 2 and Alg. 3 can be efficiently solved to the optimum.
If the hypothesis holds, then the ceiling operators in Alg. 1
(Line 17 and Line 18) have no effect, hence, there is no
possible source of suboptimality.
An important consequence of Property 3 is that, by varying ⇧�
and ⇧T , we can effectively trade off how close to the optimum
the solution gets with PACT’s time complexity.

VI. PERFORMANCE RESULTS

We first describe in Sec. VI-A how we implement the loss
prediction. Then we compare the performance of PACT against
the optimum and state-of-the-art approaches in Sec. VI-C,
under the scenario and settings described in Sec. VI-B.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

A. Loss prediction implementation
To collect the training loss data necessary for the training

of the estimators for ⌅change and ⌅run, we consider a scenario
with three sets of nodes: the gold set has 45,000 samples
of the CIFAR-10 belonging to 10 classes; the silver one has
5,000 samples out of the CIFAR-10 and CIFAR-100 datasets,
belonging to 13 classes; and the bronze set has 1,500 samples
out of the CIFAR-10 and CIFAR-100 datasets, belonging to
15 classes. Experiments always start with the gold set of
nodes training a full model. Then both the cases of one
and two pruning occurrences (i.e., two and three models)
are considered, with pruning being performed as described
in Sec. II. In the former case, after K1 epochs, the model is
pruned with pruning ratio F1 and hand it over to the silver
or the bronze set, which continues the training. In the second
case, after the second set of nodes trains the pruned model
for K2 more epochs, and then prunes the model again with
ratio F2, it sends it to the last set of nodes, which completes
the training. Experiments have been run for all combinations
of pruning/training and of the involved parameters; specifi-
cally, we have considered: K1,K2 � [5, 15, 25, 40, 60, 100],
F1 � [0.5, 0.75] and F2 � [0.25, 0.5]. Notice that these are the
combinations we leverage for our training, and do not limit in
any way the decisions that PACT or its benchmarks can make.
For the training of the NNs used for prediction, we used the
Adam optimizer with learning rate of 10�3, and set the batch
size to 16. The loss is given by the Mean Square Error (MSE),
with titled loss to compute the quantiles [24].

To assess the quality of prediction, we evaluate: the Mean
Absolute Error (MAE), the Mean Interval Length (MIL) (i.e.,
the average width of the prediction interval), and the Interval
Coverage Percentage (ICP) (i.e., the fraction of true values
falling within the relative prediction interval), with the latter
two indicating the quality of the quantiles prediction. The
excellent results we get are presented in Tab. I, which reports
the mean and the standard deviation of the three metrics, com-
puted over all possible combinations of pruning and training
configurations, and executing 10 runs for each of such cases.
MIL and ICP are calculated for the 90% prediction interval,
as the considered quantiles are 0.05 and 0.95.

B. Reference scenario
To assess PACT’s performance, we focus on a smart factory-

based application using the VGG11 DNN. Three models are
considered (called L, M, and S), corresponding to (resp.) a
full DNN, a DNN pruned with F = 0.5, and a DNN further
pruned with F = 0.75. Again, we consider that gold, silver,
and bronze sets of nodes are available, located (resp.) in the
cloud, in the far edge of the network infrastructure, and in
the near edge covering the smart-factory premises. To match
the model size with the nodes’ capability, each model best
runs on one of the sets, hence, switching between models
also implies changing the set of nodes to use. To reflect the
real-world capabilities of (resp.) NVIDIA Ampere A100 [25]
(gold nodes), NVIDIA RTX A4000 [26] (silver nodes), and
Raspberry Pi’s Videocore 6 [27] (bronze nodes) GPUs, (i) the

TABLE I
LOSS PREDICTION: MEAN AND STANDARD DEVIATION

Model MAE MIL ICP
�̂change 0.13± 0.01 0.52± 0.05 0.87± 0.05

�̂run 0.0173± 0.0004 0.078± 0.003 0.90± 0.01

duration and energy cost required for M to be trained by the
silver set for one epoch are one fifth and a half (resp.) smaller
than those experienced when the L model is trained by the gold
set, and (ii) such values reduce to a half and to one fifth (resp.)
when S is trained by the bronze nodes. Further, for simplicity,
we set a very long time limit of Tmax = 1, 000 time units.

Benchmark solutions. We compare the performance of
PACT against the following benchmarks: (i) Optimum: the
optimal decisions yielding the minimum cost, found through
brute-force search and using the true loss evolution; (ii)
StaticLearn: model switching is made so as to obtain similar
loss decrease under all three models; (iii) OneSwitch: only
two models are used. For both the StaticLearn and OneSwitch
solution, we consider the best decisions they yield for each
value of �max. Specifically, for StaticLearn, we consider the
lowest energy cost, feasible strategy obtaining similar (within
5% margin) loss improvement from the three models. For
OneSwitch, we consider the lowest energy cost, feasible strat-
egy changing once, considering all combinations of models
and changing epochs. Note that most state-of-the-art works [7],
[28], [29] envision pruning once, hence, their performance
would be represented by OneSwitch.

C. PACT performance

First, we evaluate PACT’s effectiveness, i.e., how the cost
(i.e., the consumed energy E(K)) it yields compares to that
of the benchmarks. To this end, Fig. 6(left) shows the cost
associated with each strategy, for different loss targets �max.
We can observe that, when �max is relatively high, all strategies
result in very similar performance; on the other hand, they
diverge as �max decreases, i.e., as the conditions become
more challenging. In particular, PACT outperforms the al-
ternative solutions, and closely matches the optimum. Also,
only switching models once has the worst performance, a sign
that switching across multiple models and nodes is indeed
beneficial when learning constraints are tight.

Fig. 6(center) depicts the time evolution of the loss �(k)
for �max = 0.15. We can notice a power-law behavior –
well captured by our predictors (see Fig. 4) and consistent
with existing literature [19], [30], combined with the peaks
due to the loss variation incurred when switching models.
Remarkably, PACT makes virtually the same decisions as the
optimum, i.e., performs the model switching at (almost) the
same times. OneSwitch can only switch once, hence, does so
later. As for StaticLearn, in order to achieve similar loss gains
under all models, it has to switch from L to M earlier than it
should, and from M to S later, achieving the learning target
much later than the alternatives. Interestingly, PACT achieves
the learning target earlier than the optimum, which would seem
counterintuitive until we recall that cost is the optimization

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5

Target loss value ℓmax

0

20

40

60

80

100
C
o
s
t
E(
k)

 [
u
n
it
s
]

optimum

PACT

StaticLearn

OneSwitch

0 20 40 60 80 100 120 140

Elapsed time T(k)
0.0

0.2

0.4

0.6

0.8

1.0

lo
s
s
 ℓ
(k
)

optimum: twoswitches_21_45

PACT: twoswitches_21_46

StaticLearn: twoswitches_17_49

OneSwitch: oneswitch_LM_30

0 20 40 60 80 100 120 140

Elapsed time T(k) [units]

0

10

20

30

40

50

C
u
m

u
la

ti
v
e
 c

o
s
t
E(
k)

 [
u
n
it
s
]

optimum: E(K) = 38.7
PACT: E(K) = 38.8
StaticLearn: E(K) = 40.3
OneSwitch: E(K) = 44.5

Fig. 6. PACT and benchmark strategies: cost for different values of ⇤max (left); evolution of the loss (center) and cost (right) when ⇤max = 0.15.

0 5 10 15 20 25 30 35 40
Energy cost [units]

optimum

PACT

StaticLearn

model L model M model S

0 5 10 15 20 25 30 35 40
Energy cost [units]

optimum

PACT

StaticLearn

model L
model M
model S

0 5 10 15 20 25 30 35 40
Energy cost [units]

optimum

PACT

StaticLearn

model L
model M
model S

Fig. 7. PACT vs. benchmark strategies: energy cost incurred by using different models when ⇤max = 0.15 (left), ⇤max = 0.3 (center), ⇤max = 0.45 (right).

objective (5), while time is a mere constraint. Accordingly,
Fig. 6(right) highlights how the optimum indeed takes slightly
longer than PACT to reach the objective but does so at a
(marginally) lower cost (see the position of the last marker
on the y-axis). This also underlines the importance of making
joint decisions about learning and networking aspects, e.g., in
this case, to consider both the performance of the models and
the cost of the nodes they run on.

Fig. 7 sheds further light on how different strategies use the
network infrastructure. Plots therein show how much energy
is spent running each of the three models under the optimum,
PACT, and StaticLearn strategies; different plots correspond to
different values of �max. Consistently with Fig. 6(left), when
�max is high or moderate, all strategies make very similar
decisions. When �max is low, as in Fig. 7(left), the differ-
ence between PACT and StaticLearn emerges more clearly;
interestingly, the former spends more energy using model L
and less using model S. Notice that model L has the highest
cost, hence, one would expect it to be wise to use that for
as short as possible. Instead, both PACT and the optimum
correctly account for the fact that the quicker learning progress
occurring under that model compensates the higher cost it
incurs. Even more interestingly, when �max is low, PACT and
the optimum do not use model S, i.e., they only switch once.
This is consistent with the fact that, as per Fig. 6(left), PACT
and OneSwitch have the same performance, and highlights
the flexibility of PACT in deciding not only when to switch
models, but also on whether to do so.

Next, we assess the impact of ⇧� and ⇧T , which control
the trade-off between PACT’s complexity and representation’s
granularity. Fig. 8(left) shows that, while a larger value of ⇧�
does indeed decrease PACT’s performance, such an effect is
limited: even increasing ⇧� by an order of magnitude does not
impact PACT’s ability to outperform StaticLearn, especially in

the most challenging cases when �max is small.
Fig. 8(center), referring to the case �max = 0.15, provides

some insight on how a higher ⇧� affects the decisions made
by PACT; specifically, the higher the value of ⇧�, the later
switches are made. The reason lies in Line 17 of Alg. 1,
and more exactly in the ceiling operator therein. Increasing ⇧�
leads to overestimating the loss resulting from a particular
action, hence, to assume that further gains could be made
under the current model, while that is not the case. For
the same value of �max, Fig. 8(right) highlights how these
later switches result in a higher cost – though, similarly to
Fig. 6(right), not necessarily in a longer learning time.

Finally, we further assess how well PACT can deal with loss
estimation errors, by adding a bias to the prediction output for
model L. Fig. 9(left) shows that positive and negative biases
yield similar performance decrease. Also, except for the simple
cases when �max is very large, PACT outperforms StaticLearn
even in the presence of a bias. Fig. 9(center), referring to
the case �max = 0.15, shows how biases on the loss varia-
tions prediction influence PACT’s decisions. Consistently with
Fig. 8(center), underestimating L’s performance leads to a later
switch, while overestimating it has the opposite effect. It is also
worth noting the times of the second switch, from M to S:
PACT can leverage its bias-free knowledge of the performance
of M and S, compensating for the misguided decisions it made
earlier. Fig. 9(right) underlines, similarly to Fig. 8(right), that
switching earlier results in a longer training time, though this
does not necessarily result in a higher energy cost.

VII. RELATED WORK

Model switching and compression. The two most popular
techniques for model compression are KD and pruning. In
KD [7], a small-size (student) model does not learn directly
from data, but mimics the behavior of the large (teacher)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

0.0 0.1 0.2 0.3 0.4 0.5
Target loss value ℓmax

0

20

40

60

80

100
Co

st
 E
(k
) [

un
its

]
optimum
PACT, γℓ=10−3
PACT, γℓ=5 ⋅ 10−3
PACT, γℓ=10−4
StaticLearn

0 20 40 60 80 100 120 140
Elapsed time T(k)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

 ℓ
(k
)

PACT, γℓ=10−3: twoswitches_25_53
PACT, γℓ=5 ⋅ 10−3: twoswitches_22_49
PACT, γℓ=10−4: twoswitches_21_46

0 20 40 60 80 100 120 140
Elapsed time T(k) [units]

0

10

20

30

40

50

Cu
m

ul
at

iv
e

co
st

 E
(k
) [

un
its

]

PACT, γℓ=10−3: E(K) = 41.7
PACT, γℓ=5 ⋅ 10−3: E(K) = 39.4
PACT, γℓ=10−4: E(K) = 38.8

Fig. 8. Impact of ⇥� on PACT’s performance: energy cost for different values of ⇤max (left); evolution of the loss (center) and cost (right) when ⇤max = 0.15.

0.0 0.1 0.2 0.3 0.4 0.5
Target loss value ℓmax

0

20

40

60

80

100

Co
st

 E
(k
) [

un
its

]

optimum
PACT, no bias
PACT, 0.05 bias
PACT, -0.05 bias
StaticLearn

0 20 40 60 80 100 120 140
Elapsed time T(k)

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

 ℓ
(k
)

PACT, no bias: twoswitches_21_46
PACT, 0.05 bias: twoswitches_16_50
PACT, -0.05 bias: twoswitches_30_49

0 20 40 60 80 100 120 140
Elapsed time T(k) [units]

0

10

20

30

40

50

Cu
m

ul
at

iv
e

co
st

 E
(k
) [

un
its

]

PACT, no bias: E(K) = 38.8
PACT, 0.05 bias: E(K) = 41.7
PACT, -0.05 bias: E(K) = 43.4

Fig. 9. Impact of quality of �̂run: PACT’s energy cost for different values of ⇤max (left); loss (center) and cost (right) evolution for ⇤max = 0.15.

model. Studies focus on task generalization [28], and data
heterogeneity [29]. As for pruning, a very effective technique
is structured pruning [6], which removes whole parts of a DN
(e.g., rows or columns of the parameter matrix). Finally, recent
work [31] proposes the use of RL to control pruning.
Hybrid approaches. Some works explore how to alternate
distributed learning schemes such as Split Learning (SL),
FL, and KD. An example is [32], which splits the DNN
architecture into head and tail, and replaces the former with
its distilled version. [33] seeks to reduce the network de-
lay incurred by FL by performing communication and local
learning concurrently. In a similar setting, [34] optimizes the
computation, communication, and cooperation aspects of FL
in resource-constrained scenarios.
Resource-aware distributed ML. In the context of FL, several
works focus on selecting the participating nodes, accounting
for their speed [35], [36], quantity [36], [37], [37], [38] and
quality [38], [39] of local data, the speed and reliability of
their network [33], [35] as well as trust [40]. The basic trade-
off balances the need to learn more during each epoch with the
need to shorten the duration of epochs. Other works [14], [41]
target a more general scenario, where DNN layers can be run,
and possibly be duplicated, at different nodes. This requires
balancing the opportunity to use fast learning nodes with the
network delays resulting from moving data between nodes.
Interestingly, recent work (e.g., [42]) has aimed at creating
energy-efficient DNN architectures, offering better trade-offs
between energy efficiency and learning effectiveness.
Distributed learning characterization. Early work [43] studies
the convergence of distributed learning, identifying the latent
trade-off between involving more nodes and exploiting fewer,
faster nodes. The experiments in [19] report a power-law

behavior, with the exponent depending on the quantity of data,
and the model architecture shifting the error, but not reducing
the exponent itself. Other works focus on FL and derive
exponential bounds on the loss [21], [30]. Studies focusing
on KD are more rare. Examples include [44], which models
the teacher-to-student translation as a price to pay on the loss,
and [45] that provides a per-iteration characterization of KD.

VIII. CONCLUSIONS

We addressed the problem of matching the training and
compression of DNN models, with the aim to minimize
energy consumption while meeting learning performance and
system constraints. To do so, we used approximate dynamic
programming and developed the PACT algorithmic framework
to overcome the problem’s NP-hardness. PACT uses a time-
expanded graph to model the system and leverages both a
data-driven and a theoretical approach for predicting the loss
behavior as training decisions are made. Results show that
PACT matches the minimum energy consumption very closely
(with worst-case polynomial complexity), while meeting the
learning quality and time requirements.

ACKNOWLEDGEMENT

Parts of this work have been performed in the framework of
the Horizon Europe project CENTRIC (Grant No. 101096379).
It was also supported by the European Union’s NextGenera-
tionEU instrument, under the Italian National Recovery and
Resilience Plan (NRRP), Mission 4 Component 2 Investment
1.3, enlarged partnership “Telecommunications of the Future”
(PE0000001), program “RESTART”. Marco Levorato’s and
Armin Karamnzade’s work was partially supported by NSF
under grants CNS 2134567 and CNS 2003237.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Callegaro and M. Levorato, “Optimal edge computing for
infrastructure-assisted uav systems,” IEEE Transactions on Vehicular
Technology, 2021.

[2] P. Tehrani, F. Restuccia, and M. Levorato, “Federated deep reinforcement
learning for the distributed control of nextg wireless networks,” in IEEE
DySPAN, 2021.

[3] D. Callegaro, F. Restuccia, and M. Levorato, “Smartdet: Context-aware
dynamic control of edge task offloading for mobile object detection,”
arXiv preprint arXiv:2201.04235, 2022.

[4] E. Russo, M. Palesi, S. Monteleone, D. Patti, A. Mineo, G. Ascia, and
V. Catania, “Dnn model compression for iot domain-specific hardware
accelerators,” IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6650–
6662, 2022.

[5] H. Guo, Q. Yang, H. Wang, Y. Hua, T. Song, R. Ma, and H. Guan,
“Spacedml: Enabling distributed machine learning in space information
networks,” IEEE Network, 2021.

[6] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, 2016.

[7] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, 2021.

[8] S. Fu, Z. Li, K. Liu, S. Din, M. Imran, and X. Yang, “Model compression
for iot applications in industry 4.0 via multiscale knowledge transfer,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6013–
6022, 2020.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[11] E. Yvinec, A. Dapogny, M. Cord, and K. Bailly, “RED++: Data-
Free Pruning of Deep Neural Networks via Input Splitting and Output
Merging,” arXiv preprint arXiv:2110.01397, 2021.

[12] Y. Gong, Z. Zhan, Z. Li, W. Niu, X. Ma, W. Wang, B. Ren, C. Ding,
X. Lin, X. Xu et al., “A privacy-preserving-oriented dnn pruning and
mobile acceleration framework,” in ACM GLSVLSI, 2020.

[13] M. Osta, M. Alameh, H. Younes, A. Ibrahim, and M. Valle, “Energy
efficient implementation of machine learning algorithms on hardware
platforms,” in IEEE ICECS, 2019, pp. 21–24.

[14] C. W. Zaw, S. R. Pandey, K. Kim, and C. S. Hong, “Energy-aware
resource management for federated learning in multi-access edge com-
puting systems,” IEEE Access, 2021.

[15] T. Abtahi, A. Kulkarni, and T. Mohsenin, “Accelerating convolutional
neural network with fft on tiny cores,” in IEEE Circuits and Systems (
ISCAS, 2017, pp. 1–4.

[16] S. Oymak and M. Soltanolkotabi, “Toward moderate overparameter-
ization: Global convergence guarantees for training shallow neural
networks,” IEEE Journal on Selected Areas in Information Theory, 2020.

[17] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks,” arXiv
preprint arXiv:1312.6120, 2013.

[18] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” Advances
in neural information processing systems, 2019.

[19] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. Patwary, Y. Yang, and Y. Zhou, “Deep learning scaling is predictable,
empirically,” arXiv preprint arXiv:1712.00409, 2017.

[20] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory
prediction,” in IEEE Transportation Systems (ITSC, 2017, pp. 353–359.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-iid data,” in ICLR, 2020.

[22] D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for
the generalized assignment problem,” European Journal of Operational
Research, 1992.

[23] M. L. Fredman, “New bounds on the complexity of the shortest path
problem,” SIAM Journal on Computing, 1976.

[24] F. Rodrigues and F. C. Pereira, “Beyond expectation: Deep joint mean
and quantile regression for spatiotemporal problems,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 31, no. 12, pp. 5377–
5389, 2020.

[25] “NVIDIA A100 datasheet,” https://bit.ly/3O6jWxj, accessed: 2021-07-
30.

[26] “NVIDIA RTX A4000 datasheet,” https://bit.ly/3ceeUS8, accessed:
2021-07-30.

[27] “Broadcom VideoCore VI technical details,” https://bit.ly/3z5bytK, ac-
cessed: 2021-07-30.

[28] Z. Gao, K. Xu, B. Ding, H. Wang, Y. Li, and H. Jia, “Knowru: Knowl-
edge reusing via knowledge distillation in multi-agent reinforcement
learning,” arXiv preprint arXiv:2103.14891, 2021.

[29] T. Zhang, X. Wang, B. Liang, and B. Yuan, “Catastrophic interference
in reinforcement learning: A solution based on context division and
knowledge distillation,” arXiv preprint arXiv:2109.00525, 2021.

[30] N. Zeulin, O. Galinina, N. Himayat, S. Andreev, and R. W. Heath Jr,
“Dynamic Network-Assisted D2D-Aided Coded Distributed Learning,”
arXiv preprint arXiv:2111.14789, 2021.

[31] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in ECCV,
2018.

[32] Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, 2020.

[33] Y. Zhou, Q. Ye, and J. C. Lv, “Communication-Efficient Federated
Learning with Compensated Overlap-FedAvg,” IEEE Transactions on
Parallel and Distributed Systems, 2021.

[34] A. Chopra, S. K. Sahu, A. Singh, A. Java, P. Vepakomma, V. Sharma,
and R. Raskar, “Adasplit: Adaptive trade-offs for resource-constrained
distributed deep learning,” arXiv preprint arXiv:2112.01637, 2021.

[35] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
2019.

[36] A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A.
Fahmy, “Resource-Efficient Federated Learning,” arXiv preprint
arXiv:2111.01108, 2021.

[37] O. Marfoq, G. Neglia, R. Vidal, and L. Kameni, “Personalized federated
learning through local memorization,” in ICML, 2022.

[38] F. Malandrino and C. F. Chiasserini, “Federated learning at the network
edge: When not all nodes are created equal,” IEEE Communications
Magazine, 2021.

[39] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Transactions on Cognitive Communications and Net-
working, 2021.

[40] A. Imteaj and M. H. Amini, “Fedar: Activity and resource-aware
federated learning model for distributed mobile robots,” in IEEE ICMLA,
2020.

[41] F. Malandrino, C. F. Chiasserini, and G. Di Giacomo, “Energy-efficient
training of distributed dnns in the mobile-edge-cloud continuum,” in
IEEE/IFIP WONS, 2022.

[42] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convo-
lutional neural networks,” in ICML, 2019.

[43] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network
topology for distributed machine learning,” in IEEE INFOCOM, 2019.

[44] M. Phuong and C. Lampert, “Towards understanding knowledge distil-
lation,” in PMLR International Conference on Machine Learning, 2019.

[45] A. Rahbar, A. Panahi, C. Bhattacharyya, D. Dubhashi, and M. H.
Chehreghani, “On the unreasonable effectiveness of knowledge distilla-
tion: Analysis in the kernel regime,” arXiv preprint arXiv:2003.13438,
2020.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on September 29,2023 at 17:49:52 UTC from IEEE Xplore. Restrictions apply.

