
Augmenting Singularity to Generate Fine-grained
Workflows, Record Trails, and Data Provenance

Dominic Kennedy∗, Paula Olaya∗, Jay Lofstead†, Rodrigo Vargas‡, Michela Taufer∗

∗ University of Tennessee, Knoxville, TN, USA
† Sandia National Laboratories, Albuquerque, NM, USA

‡ University of Delaware, Newark, DE, USA

Abstract—The use of containerization technology in high
performance computing (HPC) workflows has substantially in-
creased recently because it makes workflows much easier to
develop and deploy. Although many HPC workflows include
multiple data and multiple applications, they have traditionally
all been bundled together into one monolithic container. This
hinders the ability to trace the thread of execution, thus pre-
venting scientists from establishing data provenance, or having
workflow reproducibility. To provide a solution to this problem
we extend the functionality of a popular HPC container runtime,
Singularity. We implement both the ability to compose fine-
grained containerized workflows and execute these workflows
within the Singularity runtime with automatic metadata collec-
tion. Specifically, the new functionality collects a record trail of
execution and creates data provenance. The use of our augmented
Singularity is demonstrated with an earth science workflow,
SOMOSPIE. The workflow is composed via our augmented
Singularity which creates fine-grained containers and collects the
metadata to trace, explain, and reproduce the prediction of soil
moisture at a fine resolution.

Index Terms—Scientific workflows, containers, reproducibility

I. MOTIVATION AND CONTRIBUTIONS

Container technologies are software-agnostic runtimes that

enable easy applications development and execution by

bundling entire applications and their software stack in a single

execution environment. In doing so, containers enable porta-

bility of applications across platforms. Traditionally, when

container technologies are used in HPC or cloud platforms,

an entire workflow is deployed in a single container, no

matter whether the workflow is composed of one or more

interoperable applications, each with its own software stack as

well as its own input data and output data. Deploying an entire

workflow into a single monolithic container has historically

been simpler, and therefore more prevalent. However, this

coarse-grained approach makes it difficult to precisely track

the thread of execution. Thus, identifying all the workflow

components and their interactions for building an in-depth data

lineage and record trail poses a real problem to researchers

that opt to deploy their entire workflow in one container. In

addition, such an approach does not enable workflow reusabil-

ity and composability of individual workflow components. A

better solution would be to instead decouple the workflow into

its components (application and data) and use a fine-grained

containerization approach that encapsulates each workflow

component into its own container. Then, each container can

serve as an immutable object with a unique ID for permanent

identification, enabling easy data lineage and the creation of

record trails.

Many container technologies are available, including Singu-

larity [1], that is de facto the containerization software for HPC

applications. None of the existing technologies support the

abstraction of a fine-grained workflow. However, Singularity

comes with a major advantage compared to other technologies:

it offers the possibility to add new functionalities through its

plugins. Specifically, in this work, we leverage this feature

and augment Singularity to support the concept of fine-grained

workflow. Furthermore, we augment Singularity to support the

automatic annotation of workflow components with metadata

describing the execution record trail and the data provenance.

Our work enables workflow reproducibility.

II. CONTRIBUTIONS: OUR AUGMENTED SINGULARITY

Fig. 1. Metadata partition for each containerized component of the SOMO-
SPIE workflow for Oklahoma on three resolutions (i.e., 1 km, 250 m, and 90
m) using a ML method (KNN) and visualizing these predictions.

We extend the Singularity runtime to support the concept

of fine-grained workflow: we transform a traditionally mono-

lithic workflow into a chain of fine-grained containers hosting

applications and data separately. To this end, we implement

a Singularity plugin that dynamically modifies the Singularity

runtime. We add two main operating functions to the plugin:

the ability to create a workflow that is fine-grained con-

tainerized, and the ability to execute one of these workflows

while also annotating containers with execution metadata. Our

403

2022 IEEE 18th International Conference on e-Science (e-Science)

978-1-6654-6124-5/22/$31.00 ©2022 IEEE
DOI 10.1109/eScience55777.2022.00059

20
22

 IE
EE

 1
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 e
-S

ci
en

ce
 (e

-S
ci

en
ce

) |
 9

78
-1

-6
65

4-
61

24
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

ES
CI

EN
CE

55
77

7.
20

22
.0

00
59

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 22,2023 at 19:22:07 UTC from IEEE Xplore. Restrictions apply.

plugin provides users with both data provenance and execution

record trails, thus supporting transparency, explainability, and

reproducibility.
Our plugin extends the Singularity runtime via the Singu-

larity plugin interface; it is written in Go and is compiled

with the Singularity source tree. The augmented Singularity

includes the additional command line argument workflow.

We register the new command line argument workflow
within the plugin and inject it at runtime. The argument allows

users to either create a new fine-grained workflow (through the

--create flag) or execute an existing fine-grained workflow

(though the --run flag). The command singularity
workflow --create spins up a web service on the local

machine at port 5000. The web service facilitates the user

with the generation of the fine-grained workflow. It does

so by asking the user to provide the definition file of an

application (i.e., application executable and software stack);

the number, location, and size of each input data; and the

expected size of the output data. The plugin uses this informa-

tion to construct the workflow with its individual application

and data containers. For the application containers, the plugin

encapsulates the application executables and the software stack

in a squashFS partition. For the data containers, the plugin

encapsulates and compresses the data in an Ext3 file system

partition. Both types of containers include metadata in a JSON

generic file system partition. The command singularity
workflow --run [workflow_description].json
grants the user the ability to execute a fine-grained workflow.

It takes in a workflow description, previously created by the

workflow creation command, and proceeds to execute the

workflow described in the file. The plugin does this by first

locating all of the containers, then executes the application

container while mapping in the filesystems of the input data

containers and output data containers. The execution may then

continue as usual with all of the appropriate file systems

linked. After execution has completed, data containers are

dynamically annotated with a metadata partition that reflects

the data provenance as well as any application that is used to

produce the results.

III. APPLICATION TO A REAL WORKFLOW

We demonstrate the use of our augmented Singularity to

build a fine-grained workflow and collect its provenance using

SOMOSPIE [2], an earth science workflow. This workflow

uses a suite of machine learning modeling techniques to

downscale the 27 km resolution satellite data from the ESA-

CCI soil moisture database to finer-grain resolutions necessary

for practical use in earth sciences including precision forestry

and agriculture, hydrology for landscape ecology, and regen-

eration dynamics. The workflow consists of two applications:

(i) machine learning methods [i.e., k-nearest neighbors (KNN),

random forest (RF), and surrogate based modeling (SBM)] that

transform satellite data into finer-resolution, gap-free predic-

tions; and (ii) visualization methods that transform predictions

into images and other graphical representations.
We use our augmented Singularity function to generate

the fine-grained workflow for predicting soil moisture at

different resolutions (1 km, 250 m, and 90 m) for Okla-

homa (a rich agricultural area). We use four input data: one

for the 27 km satellite data (training data) and three for

the finer-resolutions 1 km, 250 m, and 90 m (evaluation

data). We create the definition files with the software stack

(i.e., libraries, packages) and executables for the three ML

methods (KNN, RF, and SBM) and the visualization stage.

Finally, we provide the expected size of the output data. After

the creation of the fine-grained containerized SOMOSPIE

workflow, we use our singularity workflow --run
somospie.json operating function to execute the workflow

and automatically capture the execution record trail and the

data provenance. Figure 1 presents the metadata partitions

generated by our Singularity extension for the execution of

one ML method (KNN) on the three finer-resolutions input

data containers followed by the visualization of the generated

soil moisture predictions. With the metadata information, the

scientists can understand the provenance of the data sources,

as well as the applications that were used to produce the

intermediary and final results. Furthermore, having the con-

tainerized components with their identifications makes it easier

for the scientists to retrieve those containers and use them to

reproduce the results or generate new studies.

IV. BROADER IMPACTS

Our work facilitates domain scientists to generate and exe-

cute fine-grained containerized workflows while automatically

and seamlessly providing provenance information about the

execution environment. The fine-grained containerization of

the workflow components (i.e., applications and data) en-

ables easy retrieval for reusability and reproducibility, as well

as portability across a broad spectrum of platforms. The

provenance information enables traceability, explainability,

and trustworthiness in the scientific discovery. With the data

lineage and execution record trails, automatically generated

by our extensions, domain scientists are able to 1) trace and

understand the data transformations along the execution and

2) explain the different results by linking them to the specific

methodology. All this combined allows users to earn trust in

the data, software, and environment wrapped in the scientific

discovery loop.

CODE AVAILABILITY

The code implementing the augmented Singularity can be found at:
https://github.com/TauferLab/ContainerizedEnv.

ACKNOWLEDGEMENTS

The authors acknowledge the support of Sandia National Laboratories;
the National Science Foundation through the awards #1841758, #1941443,
#2103845, #2028923, #2138811, and #2103836. The authors want to thank
Cedric Clerget and Ian Kaneshiro, for their support with Singularity.

REFERENCES

[1] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, 05 2017.

[2] D. Rorabaugh, M. Guevara, R. Llamas, J. Kitson, R. Vargas, and
M. Taufer, “SOMOSPIE: A Modular SOil MOisture SPatial Inference
Engine Based on Data-Driven Decisions,” in Proc. of the 2019 15th
International Conference on eScience, 2019, pp. 1–10.

404

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on September 22,2023 at 19:22:07 UTC from IEEE Xplore. Restrictions apply.

