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Abstract—Online optimization with memory costs has many
real-world applications, where sequential actions are made with-
out knowing the future input. Nonetheless, the memory cost
couples the actions over time, adding substantial challenges.
Conventionally, this problem has been approached by various
expert-designed online algorithms with the goal of achieving
bounded worst-case competitive ratios, but the resulting average
performance is often unsatisfactory. On the other hand, emerging
machine learning (ML) based optimizers can improve the average
performance, but suffer from the lack of worst-case performance
robustness. In this paper, we propose a novel expert-robustified
learning (ERL) approach, achieving both good average perfor-
mance and robustness. More concretely, for robustness, ERL

introduces a novel projection operator that robustifies ML actions
by utilizing an expert online algorithm; for average performance,
ERL trains the ML optimizer based on a recurrent architecture
by explicitly considering downstream expert robustification. We
prove that, for any � ≥ 1, ERL can achieve �-competitive against
the expert algorithm and � · C-competitive against the optimal
offline algorithm (where C is the expert’s competitive ratio).
Additionally, we extend our analysis to a novel setting of multi-
step memory costs. Finally, our analysis is supported by empirical
experiments for an energy scheduling application.

I. INTRODUCTION

Online optimization is a classic sequential decision problem

where the agent chooses irrevocable actions at runtime with-

out knowing the future input. Moreover, in many practical

applications, action smoothness over time is highly desired.

For example, for motion planning, a robot cannot move

arbitrarily due to velocity and/or acceleration limitations; for

data center capacity provisioning, servers cannot be turned

on/off frequently to avoid excessive wear-and-tear costs and

setup delays; and for energy scheduling in smart grids, quickly

adjusting energy production can be very costly [23], [27], [32],

[35]. Consequently, the long list of real-world applications

have led to the emergence of online optimization with memory

costs that penalize frequent action changes over time.

Adding a memory cost provides crucial regularization

for online action smoothness, but also presents significant

algorithmic challenges. More concretely, the memory cost

essentially couples the online actions across multiple time

steps, making it very challenging, if ever possible, to obtain

optimal actions without knowing the future. Conventionally,

this challenge has been approached by expert-designed online

algorithms under various settings [24], [27], [28], [35], [42].

These expert algorithms typically have worst-case perfor-

mance robustness in terms of guaranteed competitive ratios

even for adversarial inputs, but their conservative nature also

means that they may not perform very well on average in many

typical cases.

More recently, the abundance of historical data in prac-

tical applications has been fueling machine learning (ML)

approaches to solve optimization problems [3], [23], [32].

In particular, optimizers based on offline-trained recurrent

neural networks or reinforcement learning have been emerging

for various online optimization problems, including online

resource allocation [15], online knapsack [21], among others.

These ML-based optimizers exploit the statistical information

about problem inputs and the strong prediction power of neural

networks, empirically achieving unprecedented average per-

formance. But, they also have a significant drawback — lack

of performance robustness. Specifically, unlike expert online

algorithms that have guaranteed robustness, the competitive

ratio of ML-based optimizers can be arbitrarily bad, e.g.,

when training-testing distributions differ, testing inputs are

adversarial, and/or the model capacity is stringently limited

[6], [23], [32]. As a result, the lack of robustness invalidates

the existing ML-based optimizers for online optimization in

many real applications, especially those high-stake ones.

To exploit the power of both ML and expert designs, ML-

augmented online algorithms have been recently proposed [7],

[11], including in the context of online optimization with mem-

ory costs that we focus on [6], [23], [32]. The most common

goal of these studies is to achieve a finite competitive ratio (i.e.,

robustness) to bound the worst-case performance for arbitrarily

bad ML outputs and a low competitive ratio (i.e., consistency)

in order to approximately retain good average-case perfor-

mance enabled by ML models. Nonetheless, there exist sub-

stantial challenges to simultaneously achieve good robustness

and consistency for our problem setting (see broadly relevant

algorithms [6], [23], [32]), let alone that a good consistency

may not always translate into a good average performance.

Moreover, the existing ML-augmented algorithms often view

the ML model as an exogenous blackbox that is pre-trained

as a standalone model without being aware of the downstream

expert algorithm. This essentially creates a mismatch between

training and testing — the ML model is trained alone but tested

together with a downstream algorithmic procedure — which

can unnecessarily hurt the resulting average performance.

In this paper, we focus on online optimization with memory

costs and propose a novel expert-robustified learning (ERL)

approach, achieving both good average performance and guar-

anteed robustness. The key idea of ERL is to let the expert
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and ML do what they are best at respectively: for guaranteed

robustness, ERL utilizes an expert online algorithm to robustify

the ML actions by projecting them into a carefully designed

robust action space; for good average performance, ERL trains

the ML model by explicitly considering the downstream expert

robustification process, thus avoiding the mismatch between

training and testing. We prove that, for any trust hyperparam-

eter � � 1 governing how much flexibility we allow for ML

actions, ERL can achieve �-competitive against the expert on-

line algorithm and hence � ·C-competitive against the optimal

offline algorithm (where C is the expert’s competitive ratio).

The added robustification step is an implicit layer, making it

non-trivial to perform backpropagation. Thus, we also derive

gradients of the robustification step with respect to their inputs

for efficient end-to-end training, thus improving the average-

case performance. We subsequently extend our analysis to a

novel setting, where the memory cost spans multiple steps.

Finally, we run experiments to empirically validate ERL for

an energy scheduling application, demonstrating that it can

offer the best average cost and competitive ratio tradeoff.

II. RELATED WORKS

Online optimization with (single-step) memory costs has

been extensively approached under various settings by expert

algorithms, such as online gradient descent (OGD) [43], online

balanced descent (OBD) [10], and regularized OBD (R-OBD)

[17]. Additionally, expert algorithms with the knowledge of fu-

ture inputs include receding horizon control (RHC) [13] com-

mitted horizon control (CHC) [9], receding horizon gradient

descent (RHGD) [24], [26]. These algorithms are judiciously

designed to have bounded competitive ratios and/or regrets,

but they may not perform well on average.

ML-augmented algorithm designs have also been emerging

in the context of online optimization with memory costs [6],

[32]. Nonetheless, these algorithms simply take the actions

produced by an exogenous ML-based optimizer as additional

inputs; they still focus on on manual designs, which cannot

achieve good worst-case and average performance simultane-

ously. For example, in order to retain the good average per-

formance of ML actions by setting a hyperparameter � ! 0,

the competitive ratio when ML actions are arbitrarily bad is

as high as
12+o(1)

�

⇣

2
↵+�(1+↵)

⌘2/(�↵)

for ↵-polyhedral cost

functions [32]. The study [23] considers a squared single-step

switching cost and trains an ML model to regularize online

actions, but its worst-case competitive ratio is unbounded.

In orthogonal contexts, by assuming a given downstream

algorithm, [16] re-trains an ML model for the count-min

sketch problem. Therefore, the novel expert robustification

(for tunable and bounded performance robustness), end-to-end

training (for good average performance), and new problem set-

tings altogether separate our work far apart from the literature.

Learning to optimize (L2O) based on offline-trained re-

current neural networks or reinforcement learning [22] has

been recently applied for online optimization, including online

resource allocation and online bipartite matching [15], [21].

Nonetheless, even with the help of adversarial training [14],

a crucial drawback of the existing ML-based optimizers is

the lack of guaranteed performance robustness, making them

inapplicable for high-stake applications. Naive techniques that

choose whichever is better between L2O and a conventional

solver [20] do not apply to online optimization due to unknown

future inputs and irrevocable actions.

ERL is relevant to the recent decision-focused learning

framework [38]. But, ERL goes beyond simply training the ML

model by proposing a novel expert robustification framework.

Moreover, ERL directly uses the robustified actions to deter-

mine the training loss, whereas the existing decision-focused

learning requires groundtruth labels in the training loss.

Finally, ERL intersects with conservative exploration in ban-

dits and reinforcement learning [40]. Conservative exploration

focuses on unknown reward functions (and transition models if

applicable) and uses an existing policy to guide the exploration

process for robustness. But, its design is dramatically different

in the sense that it does not need to account for future input

uncertainties when making an action for each step (or choosing

a policy for each episode in case of episodic reinforcement

learning), i.e., only the cumulative rewards matter. By contrast,

ERL must hold a reservation cost to ensure that it always

has a feasible solution given any future inputs, achieving a

guaranteed deterministic worst-case competitive ratio (rather

than probabilistic guarantees). This key point can also be

highlighted by noting that, even assuming perfect reward

functions (and transition models), the robustification rule used

by the the existing conservative bandits/reinforcement learning

[40] cannot apply to our problem to achieve a guaranteed

competitive ratio. Other related problems include constrained

policy optimization and safe reinforcement learning [30],

[39]. These studies focus on constraining the average safety

costs and/or avoiding certain dangerous states (possibly with

a high probability). By contrast, ERL has a different goal

and guarantees a bounded competitive ratio in any case by

introducing a novel expert robustification step.

III. FORMULATION FOR SINGLE-STEP MEMORY COST

To facilitate readers’ understanding, we begin with a single-

step memory cost (a.k.a. switching cost [27], [28], [42]).

Consider a sequence of T time steps as a problem instance.

At each step t = 1, · · · , T , the agent receives a context

vector/parameter yt 2 Y 2 R
m for the hitting cost, makes an

irrevocable action xt 2 X ✓ R
d, and then incurs a hitting cost

of f(xt, yt) � 0. To encourage smoothed actions over time,

the agent also incurs a memory cost d(xt, xt�1) � 0 defined in

terms of the distance between two adjacent actions in a metric

space. Concretely, we consider d(xt, xt�1) = kxt � xt�1k,
where k · k denotes lp norm with p � 1. Thus, the goal of

the agent is to minimize the sum of the hitting costs and the

memory costs over a sequence of T steps as follows:

min
x1,···xT

T
X

t=1

f(xt, yt) + d(xt, xt�1), (1)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 29,2023 at 17:51:08 UTC from IEEE Xplore.  Restrictions apply. 



where the initial action x0 is provided as an additional input.

While we can alternatively impose a constraint on the total

memory cost, our formulation of adding the memory cost as

a smoothness regularizer for online actions is consistent with

the existing literature [23], [27], [32], [42].

The key challenge for optimally solving Eqn. (1) comes

from the memory cost that couples online actions over time,

but yt is not revealed to the agent until the beginning of each

step t = 1, · · · , T . Given any online algorithm ⇡, we denote

its total cost for a problem instance with input context s =
(x0,y) 2 S = X ⇥ YT as cost(⇡, s) =

PT
t=1 f(x

⇡
t , yt) +

d(x⇡
t , x

⇡
t�1), where x⇡

t , t = 1, · · · , T , are the actions produced

by the algorithm ⇡. While s follows a general distribution

that can be well addressed by ML-based optimizers, it can

still contain adversarial cases. For simplicity, we will omit the

context parameters, and denote cost(x⇡
i:j) =

Pj
t=i f(x

⇡
t , yt)+

d(x⇡
t , x

⇡
t�1), where x⇡

i:j = (x⇡
i , · · · , x

⇡
j ) are the actions for

t = i, · · · , j under the algorithm ⇡.

Definition 1 (↵-polyhedral): Given a context parameter y 2
Y , the hitting cost function f(x, y) : X 7! R

+ is called ↵-

polyhedral for ↵ > 0 if it has a unique minimizer x⇤ 2 X and

satisfies f(x, y)� f(x⇤, y) � ↵ · d(x, x⇤) for any x 2 X .

Definition 2 (Competitive ratio): For � � 1, an online

algorithm ALG is called �-competitive against the algorithm

⇡ subject to an additive factor B � 0 if its total cost satisfies

cost(ALG, s)  � ·cost(⇡, s)+B, for any input s = (x0,y).

The ↵-polyhedral definition is commonly considered in

the literature [32], [42] to derive competitive ratios against

the optimal offline algorithm. The deterministic competitive

ratio in Definition 2 is general, and the additive factor B is

independent of the problem input s = (x0,y). By setting

B = 0, it becomes the strict competitive ratio [19], [31], [32].

Further, with � = 1, the additive factor B in Definition 2

captures the regret incurred by ALG with respect to the

algorithm ⇡. When ⇡ is not specified, the competitive ratio

is against the optimal offline algorithm OPT by default.

IV. ERL: EXPERT-ROBUSTIFIED LEARNING

In this section, we consider a single-step memory cost and

show the design of ERL.

A. A Primer on Pure ML-based Optimizers

To solve online optimization with memory costs, a nat-

ural idea is to exploit the power of ML to discover the

mapping from the available online information to actions.

More concretely, we can pre-train an ML model offline based

on a recurrent neural network (RNN) or equivalently using

reinforcement learning. We denote the ML action at time t as

x̃t = hw(x̃t�1, yt), where w is the ML model parameter. The

recurrent nature comes from sequential online optimization

with memory costs: given the previous action x̃t�1 and the

current input yt, we recurrently output an online action x̃t.

With a set of training problem instances, the ML model

parameter w can be learnt by minimizing a loss function,

which can be the sum of costs in Eqn. (1) [3].

Drawbacks: It is well-known that such ML-based optimiz-

ers have significant drawbacks — lack of robustness. Specifi-

cally, the competitive ratio can be arbitrarily bad for a variety

of reasons, such as distributional shifts, hard problem instances

or even adversarial inputs, and/or finite ML capacity [5],

[6], [32]. While distributionally robust learning can partially

mitigate the lack of robustness in an average sense [36], [41],

it still cannot guarantee that the ML model has a bounded

competitive ratio for any problem instance.

B. Expert Robustification

There have been several expert algorithms to solve online

optimization with memory costs under different settings [25],

[42]. While these algorithms may not perform well on av-

erage due to their conservative nature, they offer worst-case

performance robustness for any input. Thus, this motivates us

to leverage an expert algorithm ⇡ to robustify ML actions.

For each t, we denote the pre-robustification ML action as x̃t,

expert action as x⇡
t , and post-robustification action as xt.

A naive idea is to add a proper regularizer during the

training process that imposes penalty when the total cost

exceeds � times of the expert’s cost. But, this will not

work, because the ML actions can still violate the robustness

requirement when bad problem instances arrive during online

inference. Alternatively, one may want to constrain the robus-

tified actions such that for any t = 1, · · · , T , the cumulative

cost up to time t satisfies cost(x1:t)  �cost(x⇡
1:t) + B,

where cost(x1:t) and cost(x⇡
1:t) are the cumulative costs of

ERL and the expert (assuming that the expert would run its

algorithm alone), respectively. But, this can easily result in

an empty set of feasible actions for ERL, because the actions

are coupled over time by memory costs. To see this point, let

us consider that cost(x1:t) = �cost(x⇡
1:t) + B but xt 6= x⇡

t

at time t. Then, at time t + 1, the expert can have such

a low total cost of f(x⇡
t+1, yt+1) + d(x⇡

t+1, x
⇡
t ) that even

setting xt+1 = x⇡
t+1 (i.e., following the expert) would violate

the constraint cost(x1:t+1)  �cost(x⇡
1:t+1) + B due to the

large memory cost d(x⇡
t+1, xt). Consequently, no actions can

guarantee robustness in this case.

We now present our novel robustification framework, called

ERL. To achieve robustness, the crux of ERL is to hedge

against the risk of deviating from the expert action to account

for future uncertainty. Specifically, at each step t, we project

the ML action x̃t into a robust action space specified by the

expert ⇡ by solving:

xt = argmin
x2X

1

2
kx� x̃tk

2

s.t. cost(x1:t�1) + f(x, yt) + d(x, xt�1) + d(x, x⇡
t )

 �cost(x⇡
1:t) +B

(2)

where � � 1 and B � 0 are hyperparameters indicating the

level of robustness requirement. We denote this projection step

as xt = proj(x̃t, x
⇡
t , cost(x1:t�1), cost(x⇡

1:t)). Importantly, the

key is to add a reservation cost d(xt, x
⇡
t ) when constraining

the post-robustification cumulative cost at time t in Eqn. (2).

By doing so, we ensure that if the constraint is satisfied at
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Fig. 1: ERL. Given each online input, we first run forward

inference to obtain the ML action, and then project it into an

expert-robusitfied action space as the actual action.

Algorithm 1 Expert-Robustified Learning (ERL)

Require: � � 1, B � 0, initial x0, trained ML model

(Section IV-C), and expert online algorithm ⇡

1: for t = 1, · · · , T
2: Receive the context yt
3: Expert chooses x⇡

t and ML chooses x̃t  h(xt�1, yt)
4: xt  proj(x̃t, x

⇡
t , cost(x1:t�1), cost(x⇡

1:t)) based on

Eqn. (2) //Robustification

time t, then it will be also satisfied at time t+1 regardless of

the input — following the expert by choosing xt+1 = x⇡
t+1 is

always a feasible solution.

The ERL inference process is shown in Fig. 1 and described

in Algorithm 1. At each step t, we run the ML model to

produce an action x̃t, get the expert’s action x⇡
t , and then

project x̃t into a robustified action space by solving Eqn. (2).

Note that the expert online algorithm takes context yt as its

input and outputs its action x⇡
t independently following its own

trajectory without being affected by the ML action. Next, we

formally provide the robustness analysis for ERL.

Theorem 4.1: Let ⇡ be any expert online algorithm for the

problem in Eqn. (1). For any � � 1 and B � 0, ERL is �-

competitive against ⇡ subject to an additive factor of B, i.e.,

cost(ERL, s)  � · cost(⇡, s) +B for any input s = (x0,y).

Theorem 4.1 is proved in Appendix B and demonstrates the

power of ERL by showing that it can achieve any competitive

ratio of � � 1 with respect to any expert algorithm ⇡ for B �
0. Here, given any B � 0, the hyperparameter � � 1 can be

viewed as the trust parameter: the higher �, the more we trust

the ML action x̃t, thus potentially achieving a lower average

cost at the expense of a higher competitive ratio. The additive

factor B � 0 represents a slackness, and B = 0 reduces to

the strict competitive ratio definition. If we set � = 1 and

B sublinear in T , ERL is guaranteed to be asymptotically no

worse than the expert ⇡ even in the worst case as T !1.

Competitive ratio of ERL against OPT. One may also

desire a bounded competitive ratio against the optimal offline

algorithm OPT. To this end, we consider a state-of-the-art

expert online algorithm, called Robust, which minimizes

the hitting cost at each step without considering the memory

cost. This simple online algorithm surprisingly achieves a good

competitive ratio of max
�

2
↵
, 1
�

against OPT for ↵-polyhedral

hitting cost functions [42]. By applying Theorem 4.1, we have

the following corollary.

Corollary 4.1: Consider Robust as the algorithm ⇡ that

chooses xt = argminx2X f(x, yt) for any t. Assume that

the hitting cost functions f(x, yt) are ↵-polyhedral. For any

� � 1 and B � 0, ERL is � ·max
�

2
↵
, 1
�

-competitive against

OPT subject to an additive factor of B, i.e., cost(ERL, s) 
� ·max

�

2
↵
, 1
�

· cost(OPT, s) +B for any input s = (x0,y).

C. End-to-end Training

In conventional ML-augmented algorithms [6], [12], the

ML model is trained to produce good actions on its own,

without being aware of the downstream modification (i.e.,

expert robustification in ERL). While the designed algorithm

may sometimes retain good ML actions (i.e., termed as con-

sistency [6]), this still creates a mismatch between training

and testing processes — the training process yields good pre-

robustification ML actions, but it is post-robustification actions

that are actually being used for testing [3], [23], [29], [38].

Thus, to improve the average performance of ERL, we need to

explicitly consider the projection step for ML model training.

End-to-end training is highly non-trivial, since the projec-

tion step itself is an optimization problem in Eqn. (2) and

hence an implicit layer. Additionally, unlike typical differen-

tiable optimizers [1], [4], [38], we need to derive gradients

to perform backpropagation through time due to the recurrent

nature of our online optimization problem. Let w be the weight

for each base ML model x̃t = hw(xt�1, yt) in the RNN

as illustrated in Fig. 1. We need to derive the gradient of

cost(x1:T ) with respect to w as follows:

rwcost(x1:T ) =

T
X

t=1

rw

�

f(xt, yt) + d(xt, xt�1)
�

, (3)

where xt = proj(x̃t, x
⇡
t , cost(x1:t�1), cost(x⇡

1:t)) is the post-

robustification action at step t = 1, · · · , T . Thus, the total

gradient can be calculated by summing up all the gradi-

ents over T steps. By applying the chain rule for step t,
we have rw

�

f(xt, yt) + d(xt, xt�1)
�

= rxt

�

f(xt, yt) +
d(xt, xt�1)

�

rwxt + rxt−1
d(xt, xt�1) · rwxt�1, where

rwxt =
�

rx̃t
xtrwx̃t +rcost(x1:t−1)xtrwcost(x1:t�1)

�

. The

gradients rxt

�

f(xt, yt) + d(xt, xt�1)
�

and rxt−1
d(xt, xt�1)

can be obtained given explicit forms of f and d, rwx̃t

can be calculated easily through the backpropagation within

the ML model (e.g., a neural network), and rwcost(x1:t�1)
is calculated recursively back to t = 1. Thus, the key

is to derive the gradients of the projection operator xt =
proj(x̃t, x

⇡
t , cost(x1:t�1), cost(x⇡

1:t)) with respect to the ML

action x̃t and cost(x1:t�1). We provide the result based on

KKT conditions [8] in the following proposition.

Proposition 4.2 (Gradient by KKT conditions): Assume that

xt and µ are the primal and dual solutions to Eqn. (2), respec-

tively. Let ∆11 = I + µ
⇣

rxt,xt

�

f(xt, yt) + d(xt, xt�1)
�

+

rxt,xt
d(xt, x

⇡
t )
⌘

, ∆12 = rxt

�

f(xt, yt) + d(xt, xt�1)
�

+

rxt
d(xt, x

⇡
t ), ∆21 = µ

⇣

rxt

�

f(xt, yt) + d(xt, xt�1)
�

+

rxt
d(xt, x

⇡
t )
⌘>

, ∆22 = f(xt, yt)+d(xt, xt�1)+d(xt, x
⇡
t )+
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cost(x1:t�1)� [�cost(x⇡
1:t) +B]. The gradients of the projec-

tion operation xt = proj(x̃t, x
⇡
t , cost(x1:t�1), cost(x⇡

1:t)) with

respect to x̃t and cost(x1:t�1) are

rx̃t
xt = ∆

�1
11 [I +∆12Sc(∆,∆11)

�1
∆21∆

�1
11 ],

rcost(x1:t−1)xt = ∆
�1
11 ∆12Sc(∆,∆11)

�1µ,

where Sc(∆,∆11) = ∆22 � ∆21∆
�1
11 ∆12 is the Schur-

complement of ∆11 in the blocked matrix ∆ =
⇥

[∆11,∆12], [∆21,∆22]
⇤

.

We remark that if the Schur-complement Sc(∆,∆11) is not

full-rank (e.g., ML action x̃t lies in the boundary of the action

space in Eqn. (2)) or the hitting cost function f or memory cost

d is not differentiable for certain xt, we can still approximate

the gradients based on Proposition 4.2 for backpropagation.

Concretely, the pseudo-inverse of Sc(∆,∆11) can be used if

Sc(∆,∆11) is not full-rank; if f or d is not differentiable

at xt, we can use its its subgradient as a substitute. This is

also a common technique to handle non-differentiable points

when training ML models, especially neural networks [18].

For example, we often use 0 as a subgradient for ReLu(x)
at x = 0. Importantly, Proposition 4.2 provides a practically

convenient way to perform backpropagation.

Training. As in typical ML-based approaches for online

optimization [2], [3], [14], [21], we train the ML model based

on pre-collected historical problem instances by using the

gradients in Proposition 4.2 and explicitly considering the

projection process. Additionally, we can also update the ML

model online by collecting batches of new problem instances

during online inference. The training process can be supervised

by using the total cost
P

i costi(x1:T ) as the loss where i is

the index for training problem instances.

V. EXTENSION TO MULTI-STEP MEMORY COST

Motivated by smoothness in higher-order dynamics, we now

turn to a more general case where the memory cost can

span multiple steps: d(xt, xt�q:t�1) = kxt �
Pq

i=1 Cixt�ik,
where q � 1 is the memory length and Ci 2 R

d⇥d is

problem-specific. For example, let us consider a robot mo-

tion planning problem where xt represents the position at

time t and acceleration smoothness is highly desired. In this

case, the memory cost can be written as d(xt, xt�2:t�1) =
k (xt � xt�1)� (xt�1 � xt�2) k = kxt � 2xt�1 + xt�2k, for

which we can set C1 = �2 · I , C2 = I and q = 2 where I
is the identity matrix in R

d⇥d. Note that the expert algorithm

in [35] uses the same form of multi-step memory structure,

but considers a squared memory cost along with other strong

assumptions (e.g., strongly convex hitting costs) that require

entirely different techniques [42]. To our knowledge, our work

is the first to consider multi-step memory costs in metric space.

Expert robustification. Given multi-step memory costs, the

input to our ML model includes yt and xt�q:t�1 and outputs

x̃t, which is then robustified by solving the following:

xt = argmin
x2X

1

2
kx� x̃tk

2

s.t. cost(x1:t�1) + f(x, yt) + d(x, xt�q:t�1)

+G(x, xt�q:t�1, x
⇡
t�q:t)  �cost(x⇡

1:t) +B,

(4)

where the reservation cost G(x, xt�q:t�1, x
⇡
t�q:t) is given by

G
�

x, xt�q:t�1, x
⇡
t�q:t

�

=

min(q,T�t)
X

k=1

�

�

�

�

�

Ckx+

q�k
X

i=1

Ck+ixt�i �

q�k
X

i=0

Ck+ix
⇡
t�i

�

�

�

�

�

.
(5)

The key insight for Eqn. (5) is that we need to account for the

potentially higher memory costs incurred by ERL compared to

the expert algorithm ⇡ over up to future q steps. By holding the

reservation cost for the cumulative cost at each step, we can

ensure that ERL can always roll back to the expert’s actions in

the future without violating the robustness requirement. The

ERL inference process still follows Algorithm 1, except for

that the projection step for expert robustification in Line 5 is

based on Eqn. (4).

Competitive ratio of Robust. Robust has a bounded

competitive ratio in the single-step memory setting [42], but

it is unclear in the multi-step setting. Here, we prove that

Robust is also competitive in the multi-step memory case.

The proof is in Appendix A.

Theorem 5.1: Assume that f(·, yt) : X 7! R

is ↵-polyhedral and that the memory cost is given by

d(xt, xt�q:t�1) = kxt �
Pq

i=1 Cixt�ik for t = 1, · · · , T ,

where Ci 2 R
d⇥d and

Pq
i=1 kCik = � with kCik being the

matrix norm induced by the lp vector norm. The Robust

algorithm that chooses xt = argminx2X f(x, yt) for any

t = 1, · · · , T is strictly max
⇣

�+1
↵

, 1
⌘

-competitive against

OPT, i.e., cost(Robust, s)  max
⇣

�+1
↵

, 1
⌘

· cost(OPT, s)

for any input s = (x0,y).

Competitive ratio of ERL. In the multi-step memory case,

Theorem 4.1 still holds. That is, for any � � 1 and B � 0,

ERL is still �-competitive against any expert online algorithm

⇡ subject to an additive factor B. Also, by combining this

result with Theorem 5.1, we obtain the following corollary

(proof in Appendix B).

Corollary 5.1: Let the expert ⇡ be Robust that chooses

xt = argminx2X f(x, yt) for any t = 1, · · · , T . Under the

same assumptions as in Theorem 5.1, for any � � 1 and

B � 0, ERL is �max
⇣

�+1
↵

, 1
⌘

-competitive against OPT

subject to an additive factor of B where � =
Pq

i=1 kCik,

i.e., cost(ERL, s)  �max
⇣

�+1
↵

, 1
⌘

· cost(OPT, s) + B for

any input s = (x0,y).

Finally, for end-to-end training, the gradients of projection

in Eqn. (4) with respect to x̃t and cost(x1:t�1) can be derived

and the ML model can be trained following the steps in

Section IV-C. Hence, we omit them for brevity.
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VI. EXPERIMENTAL RESULTS

To empirically validate ERL, we consider the dynamic

energy scheduling application in the presence of uncertain

renewables. Specifically, renewable energy such as wind and

solar energy is being massively incorporated into the power

grid for sustainability. But, their availability is highly intermit-

tent subject to a variety of factors such as weather conditions

and equipment efficiency. On the other hand, balancing the

power demand and generation is crucial to ensure grid stability

— a mismatch requires rapid offsetting using alternative and

potentially more expensive energy sources. Thus, a challeng-

ing problem faced by grid operators is how to dynamically

schedule energy production to meet net demands based on

real-time renewable availability. A mismatch between the

production xt and net demand yt needs offsetting using

expensive energy sources/storage and hence causes a hitting

cost f(xt, yt) = ↵kxt� ytk, and varying the production level

over time incurs a memory cost d(xt, xt�1) = kxt � xt�1k
(due to generator ramp-up/-down costs). Thus, this is a typical

online optimization problem with memory cost [23], [25], [42].

A. Dataset

We consider intermittent renewable energy generated using

trace data and empirical equations. Specifically, for wind

power, the amount of energy generated at step t is modeled

based on [33] as Pwind,t = 1
2wind%AsweptV

3
wind,t. The

sympols are explained as follows: wind is the conversion

efficiency (%) of wind energy, % is the air density (kg/m3),

Aswept is the swept area of the turbine (m2), and Vwind,t

is the wind speed (kW/m2) at time step t. The amount of

solar energy generated at step t is given based on [37] as

Psolar,t =
1
2solarAarrayIrad,t(1� 0.05 ⇤ (Tempt � 25)). The

symbols are explained as follows: solar is the conversion

efficiency (%) of the solar panel, Aarray is the array area

(m2), and Irad,t is the solar radiation (kW/m2), and Tempt
is the temperature (�C) at step t. Thus, at time step t, the

total energy generated by the renewables Pr,t = Pwind,t +
Psolar,t. Suppose at time step t, the net energy demand is

yt = max(Ps,t � Pr,t, 0) , where Ps,t is the demand before

renewable integration. The amount of energy generation is the

agent’s online action xt. We model the hitting cost as the

scaled l2-norm of the difference between the action xt and the

context yt, i.e. f(xt, yt) = ↵kxt�ytk. Additionally, we model

the switching cost by the l2-norm of the difference between

two consecutive actions, i.e. c(xt, xt�1) = kxt � xt�1k. The

hitting cost parameter is set as ↵ = 0.2. The parameters

for wind energy are set as wind = 30%, % = 1.23kg/m3,

Aswept = 500, 000m2. The parameters of solar energy are set

as wind = 10%, Aarray = 10, 000m2. The other parameters,

such as wind speed, solar radiation and temperature data, are

all collected from the National Solar Radiation Database [34],

which contains detailed hourly data for the year of 2015.

To generate datasets for training and testing, we use a

sliding window to generate multiple sequences of hourly data,

with each sequence length being 25 (i.e., 24 action steps

plus 1 initial step). For each sequence of 25 consecutive

hourly data, we can calculate the contextual information for

each step/hour. We define the energy generation of the first

hour as the initial action x0. The problem can be formulated

as: minx1,···xT

PT
t=1 ↵kxt � ytk + kxt � xt�1k. We use the

CVXPY Library to find the optimal offline solution.

B. Experimental Setup

We use a RNN with 2 hidden layers, each with 8 neurons.

To train this model, we use the data from the first two

months (January–February) of 2015, which contains 1440

hourly weather data samples in total. Specifically, we generate

1416 data sequences using a sliding window. We train the

RNN model for 140 epochs with batch size of 50. The model

is implemented in PyTorch Library and the training process

usually takes around 3 minutes on a 2020 MacBook Air with

8GB memory and a M1 chipset. In ERL, we set the slackness

parameter B = 0 to follow the strict definition of competitive

ratio. By default, we train ERL with � = 1.4.

To evaluate the performance of different algorithms, we

divide the remaining 10 months of 2015 into five segments,

each with two months. There are three different cases: when

ML empirically works better than Robust in terms of both av-

erage and worst-case performance; ML is better than Robust

on average but worse in the worst case; and ML is worse than

Robust both on average and in the worst case. The first case

occurs for the testing segment of March–April, because the

data in both training and testing datasets well consistent due

to their similar weather patterns. Next, we focus on the other

two cases, which are more interesting and typical since data

distributional shifts between training and testing datasets are

very common in practice. This is also consistent with our main

contribution — robustifying ML-based optimizers.

While we can also re-train/update the ML models (in

ERL, ML, and ERL-NT) based on online collected data, the

existing ML-based optimizers are typically pre-trained offline

[2], [15]. Thus, we keep the ML model unchanged when

testing its performance, in order to highlight the role of our

expert robustification step in ERL— regardless of the testing

distributions, ERL offers a provable worst-case competitive

ratio guarantee against the expert.

C. Baselines

We compare ERL with the following baselines. Optimal

offline (OPT): OPT has all the context information to optimally

solve Eqn. (1); Robust expert (Robust): Robust is the

state-of-the-art expert that chooses xt = argminx2X f(x, yt)
for t = 1, · · · , T with guaranteed competitive ratios [42]; Sim-

ple greedy (Greedy): Greedy greedily minimizes the total

hitting cost and memory cost at each step; Pure ML-based

optimizer (ML): ML uses the same recurrent neural network

as ERL but does not use expert robustification for training or

inference; Dynamic switching (Switch): Switch dynami-

cally switches between Robust and ML based on a threshold

hyperparameter [6]; ERL-NoTraining (ERL-NT): ERL-NT

uses Algorithm 1 for inference but the ML model is trained

as a standalone optimizer without end-to-end training.
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(a) September-December testing (b) May-August testing

Fig. 2: Normalized average cost vs. empirical competitive

ratio. ML is off the charts: (left): average cost 1.45 and com-

petitive ratio 50+; (right): average cost 1.367 and competitive

ratio 11.167.

Although Greedy may empirically perform better than

Robust, it does not have a provably-bounded competitive

ratio whereas Robust has one (see [42] for the single-step

memory case and our Theorem 5.1 for the multi-step memory

case). Thus, we use Robust as our expert in ERL.

D. Results

September-December testing. We obtain the empirical

results of average cost vs. competitive ratio in Fig. 2. All the

average costs are normalized with respect to the average cost

of OPT. ML achieves a lower average cost than Robust, but

its empirical competitive ratio is way larger due to the common

drawback of ML-based optimizers — lack of performance ro-

bustness. Specifically, the training and testing distributions are

rarely identical in practice, which can lead to an extremely bad

competitive ratio for ML. While Greedy empirically performs

better than Robust in this setting, it does not have any com-

petitive ratio guarantees. We see that Switch performs badly

compared to Robust, because it imposes a hard switch based

on a pre-set threshold regardless of the actual performance

of Robust or ML. Compared to ML, ERL-NT can have a

much lower competitive ratio due to expert robustification,

but the average cost also increases dramatically and can be

even higher than Robust (because the ML model training in

ERL-NT is not aware of the robustification step). On the other

hand, ERL achieves a guaranteed competitive ratio and a much

lower average cost than ERL-NT. This highlights the benefits

of training the ML model in ERL by explicitly considering

the downstream expert robustification process. Interestingly,

we also observe that by properly setting the hyperparameter �

(around 1.4 ⇠ 1.8 in our case), ERL can have an even lower

average cost than ML. This is because for those hard problem

instances that ML cannot solve well, ERL has Robust as its

guidance to provide reasonably good solutions.

Cost ratio distribution. To provide further insights, we

also show in Fig. 3 the detailed comparison between different

algorithm pairs in terms of the cost ratio distribution density.

By looking at Robust vs. ML in Fig. 3(a), we can see that ML

has low cost ratios in more cases than Robust, although it has

a long tail (not shown in the figure due to the axis limit). This

explains that ML can have good average performance than the

expert algorithm Robust, when the training-testing distribu-

tions are not very different. Nonetheless, ML still suffers from

the lack of robustness, while Robust does not. Comparing

ML with ERL-NT in Fig. 3(b), we can see that expert robusti-

fication can shift the cost ratios rightwards (i.e., increasing

the average cost), but ERL-NT has guaranteed robustness.

Next, we observe from Fig. 3(c) that the cost ratios of ERL

are shifted leftwards compared to ERL-NT, demonstrating the

importance of training ERL with explicit consideration of the

expert robustification process. Fig. 3(d) shows that ERL has

many smaller cost ratios than Robust. Again, this shows the

importance of considering expert robustficniation during the

training process.

Impacts of �. While both ERL and ERL-NT can guaran-

tee robustness due to the expert robustification step during

inference, the ML model in ERL is trained with explicit

consideration of the expert whereas ERL-NT simply trains the

ML model as a standalone optimizer. Thus, ERL can further

improve the average performance compared to ERL-NT. To

further highlight the necessity of being aware of the expert

robustification step in the training of ERL, we show the results

for different algorithms in Table I. By training ERL using the

same � as testing it, we can obtain both the best average

cost and the best competitive ratio empirically. In particular,

the difference in terms of the average performance is more

prominent when � = 1.4 than when � = 1.2. This can be

explained by noting that with a larger � � 1, the expert plays

a less significant role by placing less emphasis on robustness

and providing the ML model with more freedom. Then, when

� = 1.4, the average performance is better than when � = 1.2,

although its guaranteed competitive ratio is higher (which is

also empirically verified in Table I). For reference, we also

show the performance of other algorithms that are not affected

by � � 1.

May-August testing. Next, we turn to a more challenging

case in which ML is outperformed by Robust both on average

and in the worst case (May–August, due to the different

weather patterns and hence large training-testing distributional

shifts). This is not uncommon in practice, since ML models

can have arbitrarily bad performances due to the lack of

robustness. We show the results in Fig. 2(b). All the average

values are normalized with respect to the average cost of OPT.

Again, ML is off the charts, with its competitive ratio

as 11.167 and average cost as 1.367 (both normalized with

respect to OPT). Like in the previous case, Switch is not as

good as Robust, since it utilizes a hard switching between

Robust and ML whenever a pre-defined threshold is reached

without looking at the actual performance of Robust or ML.

Due to the lack of robustness guarantees, Greedy is also

worse than Robust in this setting. By varying � � 1, we see

that ERL-NT can have very large average costs (even larger

than ML), although its competitive ratio is still guaranteed to be

�-competitive against the expert Robust. On the other hand,

ERL, which is trained with � = 1.4 and tested with different

� � 1 has a much lower average cost than ERL-NT, while

also being able to guarantee competitive ratios. This shows the

importance of being aware of expert robustification during the

training stage. Moreover, ERL has a lower average cost than
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(a) (b) (c) (d)

Fig. 3: Cost ratio probability distribution for September-December testing. The density values are obtained by dividing the

number of testing instances within each bin by the total number of instances and the bin width. We use � = 1.4 for testing

ERL-NT and ERL. The horizontal axis is limit to 4 for better visualization, and cost ratios larger than 4 are off the charts.

ERL-NT ERL (� = 1.4) ERL (� = 1.2) Switch Robust Greedy

� for Testing Avg CR Avg CR Avg CR Avg CR Avg CR Avg CR

� = 1.4 1.6977 6.0912 1.3903 6.0910 1.4343 6.0910 1.7454 6.4130 1.5336 5.000 1.5030 4.800
� = 1.2 1.6457 5.5457 1.4832 5.5456 1.4587 5.5456 1.7454 6.4130 1.5336 5.000 1.5030 4.800

TABLE I: September-December testing. “Avg” and “CR” represent the empirical average cost and competitive ratio (normalized

w.r.t. OPT), respectively. Bold texts mean the best AVG performance. ERL (� = x) means we train ERL with � = x.

ML: even in the presence of large training-testing distributional

discrepancies, the expert can help correct many of the bad pre-

robustification actions, thus significantly improving the aver-

age performance of ERL over ML. Interestingly, the average

performance of ERL is not monotonic in the parameter of

� � 1 used for testing. This is partly because � is different

for training and testing, and partly because the large training-

testing distributional discrepancies result in irregular average

performance for the ML model used by ERL. By � = 1, we

essentially have no trust on the ML model in ERL, and hence

ERL will follow the expert Robust at each step.

Summary. Our experiments highlight the key point that

ERL guarantees worst-case robustness in terms of the compet-

itive ratio by utilizing expert robustification, while exploiting

the power of ML to improve the average performance. Natu-

rally, when training-testing distributions are reasonably similar,

we expect the average performance of ERL (and other ML-

based optimizers like ML) to be better than that of Robust.

But, even when the pure ML performs arbitrarily badly, ERL

can still offer a good average cost performance due to the

introduction of expert robustification. Last but not least, with

explicit awareness of the expert robustification process, ERL

has a much better average performance than otherwise (i.e.,

ERL-NT).

VII. CONCLUSION

In this paper, we propose ERL, a novel expert-robustified

learning approach to solve online optimization with memory

costs. For guaranteed robustness, ERL introduces a projection

operator that robustifies ML actions by utilizing an expert

online algorithm; for good average performance, ERL trains

the ML optimizer based on a recurrent architecture by explic-

itly considering downstream expert robustification process. We

prove that, for any � � 1, ERL can achieve �-competitive

against the expert algorithm for any problem inputs. We also

extend our analysis to a novel setting of multi-step memory

costs. Finally, we run experiments for an energy scheduling

application to validate ERL, showing that ERL can offer the

best tradeoff in terms of the average and worst performance.
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APPENDIX

In the more general case, the memory cost may span mul-

tiple steps (e.g. acceleration smoothness), which has not been

well studied. We first show that Robust is still an competitive

expert, by providing its competitive ratio in the multi-step

memory setup in Appendix A. Then, in Appendix B, we prove

that ERL is still �-competitive against any expert, and this

automatically proves Theorem 4.1 for the single-stem memory

case.

A. Proof of Theorem 5.1

When t � q, Robust satisfies the following condition:

f(x⇡
t , yt) + ||x⇡

t �

q
X

i=1

Cix
⇡
t�i||

f(x⇡
t , yt) + ||x⇤

t �

q
X

i=1

Cix
⇤
t�i||+ ||x⇡

t � x⇤
t ||

+

q
X

i=1

||Ci|| · ||x
⇡
t�i � x⇤

t�i||

f(x⇡
t , yt) + ||x⇤

t �

q
X

i=1

Cix
⇤
t�i||+

1

↵

�

f(x⇤
t , yt)� f(x⇡

t , yt)
�

+
1

↵

q
X

i=1

||Ci||
�

f(x⇤
t�i, yt�i)� f(x⇡

t�i, yt�i)
�

.

The first and second inequalities come from the triangle

inequality of lp norm, and the third inequality comes from

the ↵-polyhedral assumption of the hitting cost function. For
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t < q, since x⇡
t = x⇤

t = xt, 8t 2 [�q + 1, 0], the above

inequality also holds. We sum up all the single-step costs:

T
X

t=1

f(x⇡
t , yt) +

�

�

�

�

�

x⇡
t �

q
X

i=1

Cix
⇡
t�i

�

�

�

�

�


T
X

t=1

f(x⇡
t , yt) +

T
X

t=1

�

�

�

�

�

x⇤
t �

q
X

i=1

Cix
⇤
t�i

�

�

�

�

�

+
1

↵

T
X

t=1

�

f(x⇤
t , yt)� f(x⇡

t , yt)
�

+
1

↵

q
X

i=1

kCik
T
X

t=1

�

f(x⇤
t�i, yt�i)� f(x⇡

t�i, yt�i)
�



T
X

t=1

f(x⇡
t , yt) +

T
X

t=1

�

�

�

�

�

x⇤
t �

q
X

i=1

Cix
⇤
t�i

�

�

�

�

�

+
1

↵

T
X

t=1

�

f(x⇤
t , yt)� f(x⇡

t , yt)
�

+
1

↵

q
X

i=1

kCik

T
X

t=1

�

f(x⇤
t , yt)� f(x⇡

t , yt)
�

=
T
X

t=1

f(x⇡
t , yt) +

T
X

t=1

�

�

�

�

�

x⇤
t �

q
X

i=1

Cix
⇤
t�i

�

�

�

�

�

+
1

↵
(1 +

q
X

i=1

kCik)

T
X

t=1

�

f(x⇤
t , yt)� f(x⇡

t , yt)
�

,

where the second inequality holds because x⇡
t = x⇤

t =
xt, 8t 2 [�q + 1, 0] and f(x⇤

t , yt) � f(x⇡
t , yt) � 0. Thus,

we have

T
X

t=1

f(x⇡
t , yt) +

�

�

�

�

�

x⇡
t �

q
X

i=1

Cix
⇡
t�i

�

�

�

�

�

(1�
1 + �

↵
)

T
X

t=1

f(x⇡
t , yt) +

T
X

t=1

�

�

�

�

�

x⇤
t �

q
X

i=1

Cix
⇤
t�i

�

�

�

�

�

+
1 + �

↵

T
X

t=1

f(x⇤
t , yt)

(6)

If ↵  1+�, then 1� 1+�
↵
 0, the inequality (6) becomes

T
X

t=1

f(x⇡
t , yt) +

�

�

�

�

�

x⇡
t �

q
X

i=1

Cix
⇡
t�i

�

�

�

�

�


1 + �

↵

T
X

t=1

f(x⇤
t , yt) +

T
X

t=1

�

�

�

�

�

x⇤
t �

q
X

i=1

Cix
⇡
t�i

�

�

�

�

�

.

If ↵ > 1 + �, since x⇡
t = vt minimizes f(·, yt), then

f(x⇡
t , yt)  f(x⇤

t , yt) and, based on (6), Robust is optimal.

This completes the proof.

B. Proof of Theorem 4.1 and Corollary 5.1

We denote the accumulated cost of the first t1 steps as

cost(x1:t1) =
Pt1

t=1

�

f(xt, yt) + d̃(xt,
Pq

i=1 Cixt�i)
�

. When

t = 1, x⇡
1 is clearly a feasible solution to (4). Then, suppose

that for t � 1, x1:t�1 satisfies the constraint, i.e. cost(x1:t�1)+
G(xt�1, xt�q�1:t�2, x

⇡
t�q�1:t�1)�

�

�cost(x⇡
1:t�1) +B

�

 0.
We need to prove that x⇡

t is a feasible solution of the projection

(4). By the constraint in the projection, we have

�

cost(x1:t�1) + f(x⇡
t , yt) + d̃(x⇡

t ,

q
X

i=1

Cixt�i)
�

+G(x⇡
t , xt�q:t�1, x

⇡
t�q:t)�

�

�cost(x⇡
1:t) +B

�

=cost(x1:t�1)�
�

�cost(x⇡
1:t�1) +B

�

+G(x⇡
t , xt�q:t�1, x

⇡
t�q:t)

+ d̃(x⇡
t ,

q
X

i=1

Cixt�i)� d̃(x⇡
t ,

q
X

i=1

Cix
⇡
t�i).

By the triangular inequality, we have d̃(x⇡
t ,
Pq

i=1 Cixt�i) �
d̃(x⇡

t ,
Pq

i=1 Cix
⇡
t�i)  d̃(

Pq
i=1 Cixt�i,

Pq
i=1 Cix

⇡
t�i) and

�

cost(x1:t�1) + f(x⇡
t , yt) + d̃(x⇡

t ,

q
X

i=1

Cixt�i)
�

+G(x⇡
t , xt�q:t�1, x

⇡
t�q:t)�

�

�cost(x⇡
1:t) +B

�

cost(x1:t�1)�
�

�cost(x⇡
1:t�1) +B

�

+G(x⇡
t , xt�q:t�1, x

⇡
t�q:t)

+ d̃(

q
X

i=1

Cixt�i,

q
X

i=1

Cix
⇡
t�i)

=cost(x1:t�1)�
�

�cost(x⇡
1:t�1) +B

�

+

q
X

k=1

d̃(

q�k
X

i=1

Ck+ixt�i,

q�k
X

i=1

Ck+ix
⇡
t�i)

+ d̃(

q
X

i=1

Cixt�i,

q
X

i=1

Cix
⇡
t�i)

=cost(x1:t�1) +G(xt�1, xt�q�1:t�2, x
⇡
t�q�1:t�1)

�
�

�cost(x⇡
1:t�1) +B

�

 0,

(7)

where the first inequality is because of the triangular inequality

of lp norm, the first equality is from

G(x⇡
t , xt�q:t�1, x

⇡
t�q:t)

=

q
X

k=1

d̃(

q�k
X

i=1

Ck+ixt�i,

q�k
X

i=1

Ck+ix
⇡
t�i),

(8)

and the second equality is from

q
X

k=1

d̃(

q�k
X

i=1

Ck+ixt�i,

q�k
X

i=1

Ck+ix
⇡
t�i)

+ d̃(

q
X

i=1

Cixt�i,

q
X

i=1

Cix
⇡
t�i)

=

q
X

k=0

d̃(

q�k
X

i=1

Ck+ixt�i,

q�k
X

i=1

Ck+ix
⇡
t�i)

=G(xt�1, xt�q�1:t�2, x
⇡
t�q�1:t�1)

(9)

Thus, Theorem 4.1 is proved by setting q = 1. By Theo-

rem 5.1, we also prove Corollary 5.1.
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