Quantum Assisted Scheduling Algorithm for
Federated Learning in Distributed Networks

Xinliang Wei*, Lei Fan', Yuanxiong Guo¥, Yanmin Gong§, Zhu Han¥, Yu Wang*
*Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
TDepartment of Engineering Technology, University of Houston, Houston, TX, USA
J:Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX, USA
§Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
11Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
{xinliang.wei, wangyu } @temple.edu, Ifan8 @central.uh.edu, {yuanxiong.guo, yanmin.gong} @utsa.edu, zhan2 @uh.edu.

Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL. models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,
quantum computing (QC) has demonstrated a quantum ad-
vantage over classical computing in random quantum circuit
sampling [1], Gaussian boson sampling [2], and combinatorial
optimization [3]-[5]. In this paper, by leveraging the parallel
computing capability of quantum computing, we focus on de-
signing a new quantum-assisted scheduling algorithm to solve
a complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-
preserving machine learning (ML) paradigm [6]-[9], which
leverages both the computing capabilities and local datasets
available at the distributed clients to collaboratively train
an ML model and exchange model parameters periodically

The work is partially supported by the US National Science Foundation (un-
der Grant No. CCF-1908843, CNS-2006604, CNS-2107216, CNS-2128368,
CNS-2047761, CNS-2106761, CMMI-2222670, CMMI-2222810, and EPCN-
2045978), the US Department of Transportation, Toyota, and Amazon.

979-8-3503-3618-4/23/$31.00 ©2023 IEEE

Worker 1 PS 1 :_" | Worker 2

WorkerZ ," | Worker 3

Worker 1 “ N 9
At > Q%
Worker 3 R .
g% Distributed Server ::::: Model broadcasting & global aggregating

Local computation

Z§ % FL Models :":___E
Fig. 1: The training process of multi-model federated learning.

among the parameter server (PS) and FL clients (or workers).
FL can not only prevent the leakage of personal privacy,
but also make full use of massive computing resources on
distributed clients. However, there are two obstacles when
deploying the FL framework in distributed networks. First,
the computing capability and network resources of servers
and their data distribution are heterogeneous. Some low-
performance servers may decelerate the convergence process
and diminish the training performance. Also, the dispersed
computing resources and large network latency may lead to
high training costs. Second, for the practical scenario, training
multiple different models in the shared distributed network
simultaneously leads to competition for computing and com-
munication resources. As shown in Fig. 1, two FL models
are trained concurrently and each FL model requires one PS
and three workers for model training. In this case, which FL
model is preferentially served at which server directly affects
the total training cost of all FL. models. To this end, appropriate
participant selection and learning schedules are fairly crucial
for multi-model FL training.

Therefore, we mainly concentrate on the joint participant
selection and learning scheduling problem in multi-model FL
training scenarios. It should be emphasized that each server in
distributed networks can serve as a PS or client and the partici-
pant selection includes the selection of both the PS and clients



for each FL model. We denote a client as an FL worker in our
work for simplicity. It is worth noting that both participant
(client) selection and learning scheduling problems have been
studied in FL using classical computers recently. For instance,
Nishio and Yonetani [10] studied a client selection problem in
the decentralized FL where a set of mobile clients are chosen
to act as workers for FL and their aim is to maximize the
number of selected clients under time constraints. Zhu et al.
[11] proposed an asynchronous FL framework with adaptive
client selection to minimize the total training latency by
leveraging client availability and long-term fairness. Li et al.
[12] also considered client scheduling in FL to overcome client
uncertainties or stragglers via learning-based task replication.
Wang et al. [13] focused on FL training convergence and
adaptive control in edge computing without client selection.
They proposed a control algorithm to determine the trade-
off between local update and global parameter aggregation
so as to minimize the loss function. Jin et al. [14] studied
the joint control of local learning rate and edge provisioning
in FL to minimize the long-term cumulative cost. However,
those works concentrate on optimizing a single global FL
model rather than multiple FL. models. More importantly,
none of these works take into account the PS selection for
multiple FLL models. Recently, Wei et al. [15] considered a
joint participant selection and learning scheduling problem in
multi-model federated edge learning, and proposed multi-stage
methods to solve the joint optimization problem. However,
due to the nature of the formulated optimization as a mixed-
integer non-linear program (MINLP), the proposed methods
may not lead to optimal solutions and do not scale well when
the problem grows more complex.

To overcome the above problem, quantum computing has
recently gained prominence as a powerful tool for optimization
[3]-[5]. Such approaches, however, may not be competitive
until the shortcomings of QC, such as the limited number of
qubits, are overcome by further technological advancements.
To that end, several hybrid quantum-classical solutions [16],
[17] have been proposed to tackle optimization problems
by leveraging the complementary strengths of quantum and
classical computers. For example, Ajagekar et al. [17] pro-
posed a hybrid solution strategy for optimization problems
that uses quantum annealing (QA), but it may result in
longer computational times with no guarantee of feasibility
for large-scale scheduling problems due to the inefficient
use of quantum solution techniques. Subsequently, some re-
searchers in [18]-[20] presented the novel hybrid quantum-
classical optimization technique through the decomposition
of the problem into smaller tractable master problems and
subproblems. Inspired by the pioneers, we attempt to solve our
joint participant selection and learning scheduling problem by
the hybrid quantum-classical optimization approach combined
with decomposition techniques. Such an approach enables us
to fully utilize the capabilities of both quantum and classical
computers. In addition, in the quantum computing market,
D-wave stands out because it offers the quantum annealer
computer with the most qubits of all the candidates. With D-

wave’s quantum annealer computer, one can solve an integer
linear programming (ILP) problem by converting it into a
quadratic unconstrained binary optimization (QUBO) model,
which is inspired by the Ising model. As a result, we attempt
to develop novel hybrid quantum-classical algorithms on the
D-Wave’s quantum computer.

Two research challenges exist in developing efficient hybrid
quantum-classical techniques with decomposition schemes.
First, how to convert our original MINLP problem into an
ILP problem that can be recognized by the quantum computer?
Second, how to further convert the reformulated ILP problem
into a QUBO model as the input to the D-Wave’s quantum
computer? To handle the above challenges, we develop a
novel hybrid quantum-classical algorithm to demonstrate the
potential of such hybrid approaches. Specifically, we leverage
the linearization and Benders’ decomposition (BD) technique
which is widely employed for solving mixed integer linear
programming (MILP) problems to convert our MINLP prob-
lem into the ILP master problem and linear programming (LP)
subproblems and then present a Hybrid Quantum-Classical
Benders’ Decomposition (HQCBD) algorithm. The master
problem will be solved by the quantum computer while
subproblems will be solved by distributed classical computers.
The contributions of this paper are summarised as follows.

o We first formulate a joint participant selection (both PS
and workers) and learning scheduling problem for multi-
model FL in a distributed network as an MINLP, with
the objective to minimize the total learning costs of all
FL models. (Section II)

e We then propose a novel HQCBD algorithm to tackle
the joint optimization problem. By leveraging the combi-
nation of quantum computing and classical optimization
technique, our HQCBD algorithm can quickly converge
to the desired solution as the classical BD does but with
much fewer iterations and faster speeds. (Section III)

o« We conduct extensive simulations with real FL tasks
as well as the commercial D-Wave quantum computer
to evaluate our proposed algorithms. Numerous exper-
iments have demonstrated that our proposed HQCBD
can achieve significant advancement (up to 18% saving
of iterations and 81% reduction of computation time)
compared to the BD algorithm on classical CPUs even at
small scales. (Section IV)

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

The distributed network connecting all computing servers
is modeled as a graph G(V,E), where V = {v1,--- ,on}
and F = {ey, -+ ,er} are the sets of N servers and L direct
connection links, respectively. Generally, each server v; owns
a specific storage capacity ¢; and CPU frequency f; while
each link e; has an available bandwidth b;. Each server holds a
distinct set of datasets and can be used for local model training.
We assume that each server can hold multiple types of datasets
for FL training and the dataset used by the j-th FL model in
the i-th server is denoted by D; ;. In this paper, we focus on



the participant selection based on computing/communication
resources in the distributed network, and do not consider
training data distributions (which is another important research
topic and orthogonal to our research).

B. Federated Learning Model

We assume that parallel FL was conducted where multiple
models are trained concurrently in the network. We consider a
classical FL process that consists of a PS and multiple workers.
W FL models (M = {mq,- -+ ,mw }) are trained concurrently
and each FL model will request certain requirements for the
training task, i.e., (1) x; + 1 servers as participants including
one PS and x; workers, whose CPU and storage capacity
should be larger than its required minimal CPU frequency
x; and model size p;, respectively; and (2) the achieved
global convergence rate needs to be larger than ¢;. We further
assume that each server can only play a role as either the
PS or the worker for any FL. model at one time. The training
process of each FL. model includes three stages: (a) initializing
and broadcasting the global model of m; to each participant;
(b) each worker performs the local model computation using
its own dataset; and (c) aggregating the local models from
workers, as illustrated in Fig. 1 and detailed in the sequel.

Stage 1: Global Model Initialization. In Stage 1, we initial-
ize the global model parameter for each FL model as w; and
send the global model parameter to each selected participant.

Stage 2: Local Model Computation. Let the local parameters
of model m; on server v; be w; ; and the loss function on a
training data sample s be f; ;(w; ;,dxs,dys), where dx, is
the input feature and dy, is the required label. Then the loss
function on the whole local dataset of v; is defined as

Fi,j(wi,j) | | Z fz,] szad$s>dys)
b seD; ;

Generally, FL. will perform round by round and we denote the
total number of global aggregations, and local updates as &
and B where o and 3 are their indexes, respectively. In the
a-th round, each worker runs a number of local updates to
achieve a local convergence accuracy ¢; € (0,1). At the S-th
local iteration, each worker follows the local update rule as

WS ’*B—w 7/@ I—HVFJ( a,f— 1)

2Y) ’

where 7 is the learning rate of the loss function. This process
will run until 5
Fijwiy) = Fij < o5l Fuy(wiy) -

'L]—

Fiyl. (1)

a,0
Here, we set %‘}' = wj.

Stage 3: Global Aggregation. At this stage, one participant
has to be chosen as the PS. After 5 local updates, all workers

send their local model parameter w; 35 to the PS. The PS
performs FedAvg to aggregate global model parameters as

W — Di; We— 1B
Jj D, i ’
iESJ‘ J

where D; = J,¢ g, Dij is the total number of data sample
from x; workers and S; is the set of selected workers. The
global convergence of the global model is defined as

Gi(w$) — G < ¢[G;(w?) - g7, )

where G is the global optimum of FL model m;.

Finally, from (1) and (2), in order to achieve the desired
local convergence rate o; and global convergence rate ¢;, we
need to calculate the number of local updates B = ; and the
number of global rounds & = ¥;. From the above observation,
we can find that the global convergence rate ¢; for each FL
model can be predefined and we have to conduct enough local
updates and global aggregations to achieve that. Then we have
the following relationship between the convergence rate and
the local update as well as global iterations [14], [21]-[25].

222 1 1 1 1
- > —
b2 Fn(S)i—g 2l O
2 1., 1
> = —) 2 - 4

Where & and 6 are two variables in ranges (0, 7] and (O,
L) respectively. A is the A-Lipschitz parameter and v is the

~-strongly convex parameter. Both the values of A and  are
determined by the loss function. ¥y and g are two constants
where 9 = % and ¢y =
C. Cost Model

Our cost model consists of four parts: transmission cost,
local update cost, global aggregation cost, and participant
cost, defined as follows.

Transmission Cost: The transmission cost consists of the
FL model downloading and uploading costs. Denote /1; by the
model size of FL model m;. We leverage the shortest path
in the distributed network to calculate the transmission cost
when downloading models from the PS or uploading models
to the PS. Let p;(v;, vi;) be the transmission cost of model m;
from server v; to vy, and it can be calculated by p;(v;, vg) =
ZE[E Pi bz where P; j; is the shortest path connecting v; to
vg. For model m,, the total transmission cost is

2-0; Z Zxkj Yij- Pj(vi, V).

k=11i=1

2
(2=X8)d~"

trans __
a5t =

Here, v; and vy, are a worker and the PS of m, respectively.
In addition, x; ; or y; ; are the decision variables indicating
whether to select server v; as a parameter server or an FL
worker for the j-th FLL model.

Local Update Cost: Let ¢(-) be the function to define
CPU cycles to process the sample data D;; used by the jth
FL model and stored in server v;. So the local update cost for
the j-th FL model is defined as

Clocal j ;- Zyz,j

Global Aggregation Cost: Similarly, we use (- ) function
to define the number of CPU cycles to process the aggregation
step for the uploaded FL rnodels

19ZJ

Participant Cost: Each participant of FL model m; will
be paid a basic rental cost for utility management which is

1

global

’L



Proposed HQCBD Method

| Master Problem — IP Problem :
| Solve, x; j,y; j and z,; j via format & solve QUBO problem |
| ? i
| 2 '
P .
o o Gach threshol |
| o 3 ves r max_itr 2 I
= 3 =
| 5 3 ® V| 73
o 3 : - |
| = o < 25
I 3 & N -] |
| 5 : 5| |
3 !
| |
|
|
L _,| Subproblem — LP Problem |
: . Solve oy , i j qi,j»4; and w; via classical solver |
I |
I

Fig. 2: The proposed HQCBD framework.

related to their CPU frequency. Let p; be the unit price for
a CPU unit, accordingly, the participant cost for the j-th FL
model is defined as

Crent = Z(wm‘ + i) pj fi-

i=1
D. Problem Formulation

Under the previously introduced multi-model federated
learning scenario, we consider how to choose participants for
each of the models and how to schedule their local/global
updates. Recall that we assume that only one PS and x;
workers selected for one model, i.e., Zi\il z;; = 1 and
Zij\i1 vi; = kj. We use g; € [0.01,0.99] to represent the
maximal local convergence rate of m,;. We will use ¢; and g
to control the number of local updates and global iterations
for model m;. Note that ¢; is given by the model m; as
a requirement. Overall, z;;, y;,; and p; are the decision
variables of our optimization.

We now formulate our participant selection and learning
scheduling problem for FL in the distributed network where
we need to select the parameter server and workers for each
model as well as achieve the desired local convergence rate.
The objective of our problem is to minimize the total learning
costs of all FL. models as follows.

w
: trans local global rent
min j;(cj + Clecat 4 ot 4 opent) (5)
s.t. xz,jﬂ]/{] S Ci, xl,]Xj S fiv v’éuja (6)
Vil < ciy  YiiXs < fi, Vi, 3, (7)
N N
owig=1 > wij=r i, (8)
i=1 =1
w
> (@ijtvig) <1, Vi, (9)
j=1
1e(l,....,N),je(,...,W), (10)
z;5,Yi,; € {0,1}, 0; € [0.01,0.99]. (11)

Constraints (6) and (7) make sure that the storage and CPU
satisfy the requirements from the FL model. Constraint (8)
guarantees the number of the parameter server and FL. workers

of each model is 1 and &, respectively. Constraint (9) ensures
that each server only trains one FL. model and can only play
one role at one time. The decision variables and their ranges
are given in (10) and (11). Note that the formulated problem
(5) is a non-linear mixed-integer program, which is NP-hard
in general and challenging to solve with classical computing.

III. HYBRID QUANTUM ASSISTED BENDERS’
DEcoMPOSITION (HQCBD) METHOD

Motivated by the advances in QC, we decouple the original
problem into a master problem and a subproblem by leveraging
Benders’ decomposition [18], [20] and solving them using
quantum and classical methods, respectively. Fig. 2 shows the
framework of our proposed HQCBD.

A. Benders’ Decomposition

We first briefly introduce the basic idea of Benders’ de-
composition. Benders’ decomposition is a useful algorithm for
solving convex optimization problems with a large number
of variables. It works best when a large problem can be
decomposed into two (or more) smaller problems that are
individually much easier to solve [18]. At a high level,
the procedure will iteratively solve the master problem and
subproblem. Each iteration provides an updated upper and
lower bound on the optimal objective value. The result of
the subproblem either provides a new constraint to add to the
master problem or a certificate that no finite optimal solution
exists for the problem. The procedure terminates when no
finite optimal solution exists or when the gap between the
upper and lower bound is sufficiently small [26].

We reformulate our original problem (5) by extracting all
constant variables as below.

w 1 N N
min [ @Lijok Th.j" Yioj
z,Y,p ;1_le;i—l ©J J Yig
1
1_ Q ZCLQ .5 Yi,j
1_9 Za3z] 1’1J+Za4l a:ery”)]
J =1
(12)
st (6) — (11),

where the four sets of constant variables are ai; ;. =
Qﬁoln(%)-pj(vi,vk), agyid‘ = @Oﬁoln(é) w
ﬁoln(%) %, and Q4.5 = 5f1

Due to the non-linear term xy, ;¥; ;, it is challenging to solve
the problem directly. Thus, we introduce an additional binary
variable zj;; to linearize the product term and additional
continuous variables u; and w; to replace ;.

s Q34,5 =



w
min E E E a Z + w; E a
2w 1,4,5,k" <k,i,j 3" 2,45 Yi,j

j=1 k=1 i=1

N N
gy agg @i+ Y aa (g + yig)]

i=1 =1 (13)

st (6)— (11),

Zhig S Yigs Pk S Thj (14)
Zhyig = Ty + Yij — 1, (15)
by <wuj < by, by <wj < by, (16)

where u; = 1=, w; = ujloga(;47), b1 = 1.01, by = 100,
by — 1435 and b — 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
Uj+ 2,i.j,W;- Y; ;- Hence, we further introduce variables oy, ; ;,
p;,; and g; ; to represent the product of an integer variable and

a continuous variable as below.

W N N
min § E E all]k0k1j+§ a2 5° Pi,j
z,Y,z,u,w,0,P,q
=1 k=11i=1

+ Z asij iy + Z agi (Tij + i) (A7)
i=1 i=1

st (6) — (11), (14) — (16),

bi2k,i; < 0pij < bazk g, (18)
Uj — 0k < ba(l — 21 5), (19)
Uj — 0k > b1(1 — 2k 5), (20)
b3yij < pij < bayij, (21)
wj —pij < ba(l—yi ), (22)
wj — pij > b3(1 —yij), (23)
bizi; < qij < boxy g, 24
uj — qij < ba(1—m;5), (25)
uj — @i > bs(1 — 5 5). (26)

So far, we have linearized the products of binary variables
(z, y, and z) as well as the products of binary and continu-
ous variables (u,w, 0, p, q), and therefore can apply Benders’
decomposition. In problem (17), for each possible choice z,
y and z, we find the best choices for u, w, o, p,q by solving
a linear program. So we regard u,w,o0,p,q as a function of
x,y,z. Then we replace the contribution of w,w,o0,p,q to
the objective with a scalar variable representing the value
of the best choice for a given z, ¥ and z. We start with a
crude approximation to the contribution of u,w,o,p,q and
then generate a sequence of dual solutions to tighten up the
approximation.

Next, we will detail the formulation of the corresponding
subproblem (LP problems) and master problem (an integer
programming (IP) problem) after the Benders’ decomposition.

B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization
where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem
for each server is defined as follows.

W N
uglén Z Zal i,5,k" Ok.i,j + @245 Pi,j +a313 qz,])
K b
(27)
st (16), (18) — (26). (28)

Let f;(z,y, ) represent the subproblem value of i-th server,
then the overall subproblem is
N

SUP(z,y,2) = Zfi($7yaz)

i=1
The subproblem for each server can be further represented
in a general form as follows.

fi(z,y,z) =min  dlY;
s.t. AY; > BX; +C,

where V; = [0k, P; j» Qi ;> Wi WilTs Xi = [Xij, ¥i j» Zhying] T
and A, B, C are coefficients in the constraints. In addition, the
dual problem of the subproblem is defined below and 7; is
the dual variable.

max (BX;+C)Tm; (29)

st. ATm < d,, (30)

m; > 0, (€2))

where d; = [& F G 0 o, & =
[al,i,l,l a1,i1,N a1,5,w,1 al,z‘,W,N],

Fi = [az,m a2,i,W}, g = [a3,i,1 a3,i,W]-

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem

Based on the dual problem of the subproblem, the master
problem can be defined as follows.

W N
min ;[; as i (zij +yig) + A (32)
s.t. (6) — (10),
Tij € {0 1} Yij € {07 1}’ Vi, J, (33)
Zkyig < Yigs Vi, 4, k, (34)
Zkij < Thj, Vi, j, k (35)
ki 2 Ty + Yig — 1, Vi, 5, k, (36)
A > Ndown, 37)
A> (BX +C)Trl, (38)

where A is the optimal value of the subproblem aggregated
from all servers at the current iteration. Constraints (37) and
(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve
the optimization problem in a QUBO formulation. To leverage
the state-of-art quantum annealers provided by D-Wave, the
master problem has to be converted to the corresponding
QUBO formulation. Due to the rule of QUBO setup, we
have to reformulate our constrained master problem as the



unconstrained QUBO by using penalties. The basic idea is to
find the best penalty coefficients of the constraints. Following
the principle of constraint-penalty pairs in [27], the constraints
are converted as follows:

I
(6):> 51 . z](xz,],u]'%] ¢+ 221 ;
1=0

where ! = [log,[c; — min(xi gkl
(6)=> & (%,JXJ fi+ ZQZ )
where 1% = [log,[f; — mm(%,ij)H-
B
(7) = & : P (yijm — CﬁZ?l ’
1=0
where [ = [logy[e; — min(y; jp1;)]]-
Yy
(7) = 54 z J yl’JXJ f" + Z 2l ’
where [* = [log,[fi — myln(yz ixi)ll-

N
(8) = Zzu
v
(8) = Zym
W r
(9) = me+y” —14 > 2],
7j=1 =0
w
where 1'° = [log,[1 — mmz xij + i)l
Jj=1
(34) = & PYi(2hig — Yij2hig)-
(35) = &9t P)i(2hiy — ThjZhiig)-

FO
(36) = &0 Pklgyj(xk:,j +yi;—1—2p;+ 2255110)2
1=0
where  I' = [log, (min(zpij — ok — i + DI
v
(37) = & PO — A4 2l
1=0
where ' = [logy (A — A%w™)].

l_12

E19: P((BX +0)Txl — N+ 2l5}2)?
l
1=0

where 1'% = [logy[A\ — min (BX +C)T=']].
T,Y,2,T
Here, P*, P; and Py, . are the predefined penalty coeffi-

cients when the correspondlng constraint is violated. s} is a
binary slack variable and [* is the upper bound of the num-
ber of slack variables. Then, the reformulated unconstrained
master problem is defined below.

W N
min Z[Z agi-(Tij +yig) + A

T,Y,z
j=1 i=1
+&+ &+ EE+HE+E+ &+ &

+ &+ & + &io + &1 + &2) (39

Variable Representation. Now consider the problem in
(39), it is still not in the QUBO formation due to the existence
of the continuous variable A. Thus, we need to represent the
continuous variable A using binary bits. We use a binary vector
w with the length of M bits to replace continuous variable A
and denote it as a new discrete variable \ € Q. In general, A
requires the binary numeric system assigning M bits to replace
continuous variable \. Then we can recover the \ by

Mg m_

A=Y 2Wiim — ) 2P wiisimem,

fi=—m 4i=0

= Aw) (40)

In (40), m4 + 1 is the number of bits for the positive integer
part Z,, m is the number of bits for the positive decimal part
and m_ + 1 is the number of bits for the negative integer part
Z_. Then, the final QUBO formulation of the master problem
is defined as follows.

W N
min Y[ @ (@i + 4ig) + Aw)

T,Y,2,w
j=1 i=1

+a+o+8+6+E6+6+Er
+ &g+ & + 10 + &1 + &2

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD and the detailed interaction
between the master problem and subproblem. The master prob-
lem is solved by a quantum computer and generates a binary
solution (x’, 3’, 2’), and then sends it to general devices for
distributed computation of subproblems by a classical solver
(e.g. Scipy). After subproblems are solved, an optimality or
feasibility cut is sent to the master problem and it continues
to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bound of the problem as well as other
parameters, e.g. convergence threshold € and the number of
maximal iterations maz_ttr (Lines 1-2). Then appropriate
penalty numbers or arrays will be generated (Line 4). After
that, we reformulate the master problem in (32) in the QUBO
format and solve the QUBO problem with a quantum computer
and update the lower bound of the problem A (Lines 5-
7). Given 2/, 3/, 2’ from the master problem, we solve the
subproblem (29) and extract ¢’ as well as update the upper
bound of the problem X\ (Lines 8-10). We finally add the
Benders’ cut to the master problem and continue the next
iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed
algorithm to solve the QUBO master problem. In addition,
the penalties also need to be carefully tuned for a decent
QUBO model. In general, a large penalty can cause the

(41)



Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-
sition (HQCBD) Method

Input: Distributed network with NV servers V, W FL mod-
els M, Coefficient of the objective function and constraints
in master problem and subproblem

Output: PS selection z’, worker selection 3’, and local
convergence rate o’

1: Initialize upper/lower bound of A\, A = 400, A = —00

2: Initialize threshold € = 0.001, max_itr = 100, itr = 1

3. while [\ — )| > € and itr < maz_itr do

4: P « Appropriate penalty numbers or arrays

5:  Q <« Reformulate both objective and constraints in (32)
and construct QUBO formulation as (41)

6: ', y’, 2z’ < Solve problem (41) by quantum computer

7.\ « Extract w and replace A with \(w) as (40)

8

9

SUP(z,y, z) < Solve problem (29) with fixed z’, ¢/, 2’

. Extract ¢’ from SUP(z,y, z)
10: A SUP(z,y,2)

11:  Add a new benders’ cut to the master problem as (38)
12: atr+ =1

13: end while

14: return z’, 3/, o

quantum annealer to malfunction due to coefficient explosion.
In contrast, a small penalty can make the quantum annealer
ignore the constraints. A well-tuned penalty will lead to a
fairly high probability of the quantum solver giving the correct
answer.

IV. PERFORMANCE EVALUATION

In this section, we simulated a distributed network environ-
ment and conducted experiments of realistic FL tasks using
publicly available datasets. To validate the feasibility of our
hybrid quantum-classical optimization algorithm, we run the
proposed algorithms on a hybrid D-Wave quantum processing
unit (QPU). We accessed the D-Wave system provided by
Leap quantum cloud service [28]. Based on the Pegasus
topology, the D-Wave system also has over 5,000 qubits and
35,000 couplers, which can solve complex problems of up to
1,000,000 variables and 100,000 constraints. We performed
a number of test cases that can be resolved in under 100
iterations, but only due to the high cost of QPU utilization
and the developer’s time constraints.

A. Simulation Setup

Network Setting: Our distributed computing environment
consists of 100 servers where the topology depends on the
real-world EUA-Dataset [29] and the Internet topology zoo
[30]. EUA-Dataset is widely used in mobile computing and
contains the geographical locations of 125 cellular base sta-
tions in the Melbourne central business district area, while the
Internet topology zoo is a popular network topology dataset
that includes a number of historical network maps all over
the world. We randomly select a set of servers from these
topology datasets to conduct simulations. In each simulation,
each server has a maximal storage capacity c;, CPU frequency

fi and link bandwidth b; belonging to the ranges of 1,024 ~
2,048GB, 2 ~ 5GHz, and 512 ~ 1,024Mbps, respectively.

Datasets and FL models: We conduct extensive experi-
ments on the following real-world datasets: California Housing
dataset [31], MNIST [32], Fashion-MNIST (FMNIST) [33],
and CIFAR-10 [34]. These are well-known ML datasets for
linear regression, logistic regression, or image classification
tasks. Two models with convex loss functions are implemented
on the above real-world datasets for performance evaluation,
which are (i) Linear Regression with MES loss on the Cali-
fornia Housing dataset and (ii) Logistic Regression with the
cross-entropy loss on MNIST. We are also interested in the
performance of our proposed methods on FL models with non-
convex loss functions. Thus, three datasets, MNIST, FMNIST,
and CIFAR-10, are used to train convolutional neural network
(CNN) models with different structures.

Benchmarks and Metrics: We compare our proposed
HQCBD with three baseline strategies: classical Benders’
decomposition (CBD), random algorithm (RAND), and two-
stage iterative optimization algorithm (TWSO) [15]. CBD uses
a classical LP solver (Gurobi [35] or Scipy [36]) to solve the
master problem and subproblems. RAND randomly generates
the random decisions on the model’s parameter server, FL
workers, and local convergence rate under certain constraints.
TWSO is a previous algorithm from [15] that decomposes the
original problem into two subproblems (participant selection
and learning scheduling) and solves them iteratively. Since
the optimization problem in [15] has a different learning cost
function, we adjust their method to our optimization problem
for fairness. The following metrics are adopted to compare the
performances of our proposed methods and the baselines: the
total cost of FL training, the loss or accuracy of FL models,
the number of iterations, and the solver accessing time.

TABLE I: Iteration of CBD and HQCBD over three different
cases. Here, the set up column shows {# of servers, # of
models, # of workers per model} used in each case.

Case Set up # of Variables Itr. of CBD Itr. of HQCBD
1 {7,1,3} 63 32 31
2 {7,2,2} 126 55 45
3 {9, 2,3} 198 91 89

B. Performance of HOQCBD

To demonstrate the feasibility and performance of our
proposed HQCBD, we conduct three sets of small-scale exper-
iments with different case settings (servers are selected from
100 servers). As shown in Table I, there are three cases. The
first case includes 7 servers, 1 FL model, and 3 workers per
model with a total of 63 binary variables. The second case has
7 servers, 2 FL. models, and 2 workers per model with a total
of 126 binary variables. The third case consists of 9 servers,
2 FL models, and 3 workers per model with a total of 198
binary variables. For each case, we perform both CBD and
HQCBD. Fig. 3 and Table I show the related results of their
performances.



4500 16000
.,/'\\ A P R e Upper bound of A f
\ /e i
40007 " et 4T A s 14000 Lower bound of A i
Vi VAR / o
~ 3500 VPNV e < 12000
k] k]
g 3000 g 10000
5 2500 £ 8000 4004 b
2000
————— Upper bound of A 6000
1500 Lower bound of A 4000
10 20 30 0 10 20 30 40
Rounds Rounds
(a) Case 1 (b) Case 2
30000 I ————— Upper bound of A ° 80001 —— CBD
Lower bound of A 3 HQCBD
o o
25000 > 7000 I3
= £
o 20000 5 &
g 2 6000 3
© . [
> 15000 ] ]
» 5000 '
© X
10000 = il
4000
0 20 40 60 80 0 10 20 30 40 50

Rounds Rounds

(c) Case 3 (d) Master problem value

Fig. 3: Performance of HQCBD: its convergence.

In Figs. 3(a)-(c), the blue dashed line denotes the upper
bound of value A used in HQCBD, and the orange dashed
line denotes the lower bound of A in HQCBD. As we can
see, the upper bound and lower bound finally converge and
we obtain the non-negative lower bound at the 31st, 45th
and 89th round for each case, respectively. This result proves
that our proposed algorithm is mathematically consistent with
the classical Benders’ decomposition algorithm. In addition,
Fig. 3(d) shows the trend of the master problem value of Case
2 calculated by (39) compared with the solution of CBD. We
can see that the value of the master problem keeps increasing
until it converges. Specifically, the master problem value keeps
static in the first few rounds since only an unbounded ray is
found in the subproblem and a feasibility cut is added to the
master problem. As we run more iterations, the optimality
cut is found and added to the master problem. Once the
difference between the upper bound and lower bound reaches
a threshold, the problem is solved. The solution from HQCBD
is similar to the one from CBD. Table I further demonstrates
the detailed comparison between CBD and HQCBD in terms
of the number of iterations used to solve the problem. We
can find that HQCBD takes fewer iterations to converge to
the optimal solution compared with CBD (for example, for
Case 2, the improvement of iterations is around 18%).

TABLE 1II: Solver accessing time (ms) of CBD and HQCBD.

Case CBD HQCBD
Max./Min. Mean/Std. Max/Min. Mean/Std.
1 190.47/6.71 117.14/50.12 | 32.10/15.93  31.49/2.79
2 235.29/9.11 129.56/50.04 | 32.11/15.92 24.10/7.98
3 395.48/14.45 120.25/63.19 | 32.11/16.00 25.53/7.85

Furthermore, we show the comparison of real solver ac-
cessing time (i.e., computation time of the solvers) for CBD
and HQCBD in Table II and plot the detailed accessing
time of Case 2 in Fig. 4. The solver accessing time is the

2 -« Local - CBD Ty
0 200 QPU - HQCBD -y i Fx
£ Py R R
150 AW v
£ AN TR
2 100 fi%f“‘xx‘ RY TS
S Aot
< it
5 5o il
= L
& <z

0

0 10 20 30 40 50
Rounds

Fig. 4: Solver accessing time of CBD/HQCBD in Case 2.

real accessing time of QPU solver and local solver without
considering other overheads, such as variables setting time,
parameters transmission time, and so on. As we can see in
Table II, the minimal accessing time of CBD is relatively
lower than that of HQCBD. However, the maximal and average
accessing time as well as the standard deviation value of CBD
is significantly higher than HQCBD. For example, for Case 2,
the mean accessing time of HQCBD is 81% less than the
one of CBD, and more significantly the standard deviation
of accessing time of HQCBD is 84% less than the one of
CBD. We also confirm via Fig. 4 that the solver accessing time
of CBD in each round/iteration varies significantly while the
solver accessing time of HQCBD in each round keeps stable
and is even smaller than that of CBD. This finding proves the
efficiency and robustness of leveraging the hybrid quantum-
classical technique to solve the optimization problem in terms
of either the convergence iteration or the solver accessing time.

C. Comparison with Existing Methods

We now compare our proposed method HQCBD with the
random method (RAND) and a two-stage iterative optimiza-
tion method (TWSO) [15] in terms of solving the joint
optimization problem.

Firstly, we focus on the necessity of the optimization
problem and study the impact of different numbers of servers.
We concurrently train 2 FL models with 2 workers per model
and the number of servers varies from 7 to 11. Fig. 5(a) shows
the results. Obviously, RAND has the worst performance
due to its randomness. Our HQCBD algorithm gets further
improvements compared with TWSO and demonstrates the
effectiveness of the HQCBD algorithm. In addition, as the
number of servers increases, the total cost of HQCBD first
decreases and increases then decreases again. This is because
the topology may change when the server number varies and
lead to the change of selection decision as well as the total
cost.

Next, we investigate the impact of different numbers of
FL workers on total costs. We set the number of servers
and FL models to 15 and 2, respectively. The number of
FL workers is in the range of [2,6]. As shown in Fig. 5(b),
the total costs increase as the number of workers increases.
This is obvious since the more workers, the more total costs
consumed. Our proposed HQCBD still outperforms RAND
and TWSO algorithms. With more qubits supporting, we



1500, ™ RAND B _ 1 2000{ M RAND
= TWSO I I I  TWSO
1250
= HQCBD I I 1500/ ™= HQCED
1000| 8

Total Costs
g~
o vl
o o
-
-
-
[
——
I
-
——
-
Total Costs
=
o
o
o

7 8 9 10 11 2 3 4 5 6
Number of Servers Number of Workers

N
3
o
«
o
o
N

o
o

(a) Impact of server number (b) Impact of worker number

Fig. 5: Performance comparison with existing methods given
different numbers of servers or FL. workers.

0.8

1.0

0.9

0.6
9 0.8

f=
II II 06

0257 T
=05

2 3 4 5 6 ] 20 40 60 80 100
Number of Workers Iterations

R2 Score
o
ES

0.270151

(a) R2 score (b) LR over CA housing

2.2
021
2.0

ing Los.

c1l9

Accuracy

rai

=18

1.7

0 20 40 60 80 100
Iterations

(d) LR over MNIST

Number of Workers

(¢) Accuracy

Fig. 6: Training loss of linear and logistic regression models
and impact from worker numbers: (a)(b) R2 scores and loss of
linear regression model over California housing dataset; (c)(d)
accuracy and loss of logistic regression model over MNIST
dataset.

expect that the speed of HQCBD will have a more significant
advantage over TWSO on large-scale optimization problems.

D. Performance of FL Model

Now, we look into the performance of our proposed methods
in the real FL training process. We concurrently train 2 FL
models with convex loss functions on the non-IID dataset
settings: (i) Linear Regression with MSE loss over the Cal-
ifornia Housing dataset, (ii) Logistic Regression with cross-
entropy loss over the MNIST dataset. Each dataset is split
into 15 servers unequally and the number of global training
rounds is set to 100 for clear comparison. We further introduce
the R2 score metric to evaluate the performance of linear
regression model training. R2 score is the proportion of the
variance in the dependent variable that is predictable from
the independent variable(s). As shown in Fig. 6(a), the R2
score of the linear regression model rises as the number of
workers increases. Also, with more FL. workers, the training
loss of the linear regression model decreases as illustrated in
Fig. 6(b). Similarly, the accuracy of the logistic regression

=N CIFAR10

50
— FMNIST I l l : {
80 - MNIST il il il 40 WW

Accuracy
[=))
o
Training Accuracy
w
o

[marneeeA K=3
40
20 80 90 — k=4
40 / =5
/ — Ki=6
10 !
2 3 4 5 6 0 20 40 60 80 100

Iterations

(b) CNN over CIFAR-10

Number of Workers

(a) Accuracy

100
>80 = o
g / g 80
=] =]
570 = S -
< 5 k=2 < 97.5 K=2
o k=3 o 60 I K=3
60 8o{ V" s £ 95.0 o
= | 80 90 5= = 80 90 9=
£ — k=5 E 40 — k=5
— K =6 — k=6
0 20 40 60 80 100 0 20 40 60 80 100

Iterations

(d) CNN over MNIST

Iterations

(c) CNN over FMNIST

Fig. 7: Training accuracy of CNN models (non-convex) and
impact from the number of workers: (a) accuracy of all CNN
models; (b) accuracy of CNN over CIFAR-10 dataset; (c)
accuracy of CNN over FMNIST dataset; (d) accuracy of CNN
over MNIST dataset.

model also increases with more FL. workers while the training
loss declines with the rise of the number of workers as shown
in Figs. 6(c)-(d). These results further indicate the feasibility
and effectiveness of our proposed algorithm.

Finally, to demonstrate the performance of our proposed
algorithms on FL models with non-convex loss functions, we
conduct two sets of FL training with CNN models: (i) CNN
models over CIFAR-10 and FMNIST datasets, and (ii) CNN
models over CIFAR-10 and MNIST datasets. The experimental
setting is similar to that in the convex experiment. Fig. 7(a)-
(d) show the training accuracy of all CNN models under
different numbers of workers. Obviously, with more workers,
the training accuracy also increases, especially for the CIFAR-
10 dataset as illustrated in Figs. 7(a) and (b). However,
the training accuracy of FMNIST and MNIST datasets keep
similar when the number of workers is larger than 2 as shown
in Figs. 7(c) and (d). This is mainly due to the non-IID setting
and simplicity of FMNIST and MNIST datasets since MNIST
and FMNIST are both grayscale images from 10 categories.

V. CONCLUSION

In this paper, a joint participant selection and learning
scheduling problem for multi-model FL has been studied.
Motivated by the powerful parallel computing capabilities of
quantum computers, we proposed a quantum-assisted HQCBD
algorithm by employing the complementary strengths of clas-
sical optimization and quantum annealing to optimally select
participants (both PS and FL workers) and determined the
learning schedule to minimize the total cost of all FL models.
Extensive simulations on the D-Wave quantum annealing
machine demonstrated the efficiency and robustness of our
proposed HQCBD algorithm which not only achieved the same



result as the classical algorithm but also took much fewer
iterations (up to 18% improvement) and less accessing time
(up to 81% reduction) to obtain the desired solution even at
relevantly small scales. With the new development of robust
quantum computers with more qubits, we believe that the
proposed HQCBD-based method will have great applications
in the joint learning scheduling of distributed machine learning
in the near future.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al, “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, Oct. 2019.

H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo,
J. Qin, D. Wu, X. Ding, Y. Hu et al., “Quantum computational advantage
using photons,” Science, vol. 370, no. 6523, pp. 1460-1463, Dec. 2020.
S. Niu and A. Todri-Sanial, “Effects of dynamical decoupling and pulse-
level optimizations on IBM quantum computers,” IEEE Transactions on
Quantum Engineering, vol. 3, pp. 1-10, Aug. 2022.

0. Salehi, A. Glos, and J. A. Miszczak, “Unconstrained binary models
of the travelling salesman problem variants for quantum optimization,”
Quantum Information Processing, vol. 21, no. 2, p. 67, Jan. 2022.

D. An and L. Lin, “Quantum linear system solver based on time-optimal
adiabatic quantum computing and quantum approximate optimization
algorithm,” ACM Transactions on Quantum Computing, vol. 3, no. 2,
pp. 1-28, Jun. 2022.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, Ft. Lauderdale, FL, Apr. 2017.

S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and selective
masking for communication-efficient federated learning,” IEEE Intelli-
gent Systems, vol. 37, no. 02, pp. 27-34, Mar. 2022.

F. Sattler, S. Wiedemann, K.-R. Miiller, and W. Samek, ‘“Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400-3413, Nov. 2019.

X. Wei, J. Liu, X. Shi, and Y. Wang, “Participant selection for hierarchi-
cal federated learning in edge clouds,” in I[EEE International Conference
on Networking, Architecture, and Storage (NAS), Philadelphia, PA, Oct.
2022.

T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in IEEE International
Conference on Communications, Shanghai, China, May 2019.

H. Zhu, Y. Zhou, H. Qian, Y. Shi, X. Chen, and Y. Yang, “Online client
selection for asynchronous federated learning with fairness considera-
tion,” IEEE Transactions on Wireless Communications, Oct. 2022, doi:
10.1109/TWC.2022.3211998.

Y. Li, FE Li, L. Chen, L. Zhu, P. Zhou, and Y. Wang, “Power of
redundancy: Surplus client scheduling for federated learning against user
uncertainties,” IEEE Transactions on Mobile Computing, May 2022, doi:
10.1109/TMC.2022.3178167.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205-1221, Mar. 2019.

Y. Jin, L. Jiao, Z. Qian, S. Zhang, and S. Lu, “Learning for learning: Pre-
dictive online control of federated learning with edge provisioning,” in
IEEE Conference on Computer Communications (INFOCOM), Virtual,
May 2021.

X. Wei, J. Liu, and Y. Wang, “Joint participant selection and learning
scheduling for multi-model federated edge learning,” in [EEE 19th
International Conference on Mobile Ad Hoc and Smart Systems (MASS),
Denver, CO, Oct. 2022.

T. Tran, M. Do, E. Rieffel, J. Frank, Z. Wang, B. O’Gorman, D. Ven-
turelli, and J. Beck, “A hybrid quantum-classical approach to solving
scheduling problems,” in Proceedings of the International Symposium
on Combinatorial Search, New York, USA, Jul. 2016.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(32]

(33]

[34]
[35]

[36]

A. Ajagekar, T. Humble, and F. You, “Quantum computing based hy-
brid solution strategies for large-scale discrete-continuous optimization
problems,” Computers & Chemical Engineering, vol. 132, p. 106630,
Jan. 2020.

Z. Zhao, L. Fan, and Z. Han, “Hybrid quantum benders’ decomposition
for mixed-integer linear programming,” in IEEE Wireless Communica-
tions and Networking Conference (WCNC), Austin, TX, Apr. 2022.

A. Ajagekar, K. Al Hamoud, and F. You, “Hybrid classical-quantum op-
timization techniques for solving mixed-integer programming problems
in production scheduling,” IEEE Transactions on Quantum Engineering,
vol. 3, pp. 1-16, Jun. 2022.

L. Fan and Z. Han, “Hybrid quantum-classical computing for future
network optimization,” IEEE Network, vol. 36, no. 5, pp. 72-76, Nov.
2022.

Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, and X. Wang, “Resource-
efficient and convergence-preserving online participant selection in
federated learning,” in IEEE International Conference on Distributed
Computing Systems (ICDCS), Singapore, Feb. 2020.

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269-283, Oct. 2020.

Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935-1949, Nov. 2020.

C. Ma, J. Kone¢ny, M. Jaggi, V. Smith, M. I. Jordan, P. Richtarik,
and M. Taka¢, “Distributed optimization with arbitrary local solvers,”
Optimization Methods and Software, vol. 32, no. 4, pp. 813-848, Feb.
2017.

O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate newton-type method,” in
International conference on machine learning (ICML), Beijing, China,
Jun. 2014.

R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The benders
decomposition algorithm: A literature review,” European Journal of
Operational Research, vol. 259, no. 3, pp. 801-817, Jun 2017.

F. Glover, G. Kochenberger, R. Hennig, and Y. Du, “Quantum bridge
analytics i: a tutorial on formulating and using qubo models,” 4OR-Q J
Oper Res, vol. 17, pp. 335-371, Nov. 2019.

D-wave hybrid solver service: An overview. [Online]. Available:
https://www.dwavesys.com/resources/white-paper/d-wave-hybrid-
solver-service-an-overview/

P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in International Conference on Service-
Oriented Computing, Hangzhou, China, Nov. 2018.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765-1775, Oct. 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, Feb. 2011.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” ArXiv, vol.
abs/1708.07747, Aug. 2017.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., Apr. 2009.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
Jan. 2023. [Online]. Available: https://www.gurobi.com

P. Virtanen, R. Gommers et al., “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261-272,
Feb. 2020.



