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Abstract—The scheduling problem for federated learning (FL)
with multiple models in a distributed network is challenging,
as it involves NP-hard mixed-integer nonlinear programming.
Moreover, it requires optimal participant selection and learning
rate determination among multiple FL models to avoid high
training costs and resource competition. To overcome those chal-
lenges, in literature the Benders’ decomposition algorithm (BD)
can deal with mixed integer problems, however, it still suffers
from limited scalability. To address this issue, in this paper, we
present the Hybrid Quantum-Classical Benders’ Decomposition
(HQCBD) algorithm, which combines the power of quantum
and classical computing to solve the joint participant selection
and learning scheduling problem in multi-model FL. HQCBD
decomposes the optimization problem into a master problem
with binary variables and small subproblems with continuous
variables. This collaboration maximizes the potential of both
quantum and classical computing, and optimizes the complex
joint optimization problem. Simulation on the commercial D-
Wave quantum annealing machine demonstrates the effectiveness
and robustness of the proposed method, with up to 18% improve-
ment of iterations and 81% improvement of computation time
over BD algorithm on classical CPUs even at small scales.

Index Terms—Federated learning, participant selection, learn-
ing scheduling, hybrid quantum-classical optimization

I. INTRODUCTION

With the use of quantum superposition and entanglement,

quantum computing (QC) has demonstrated a quantum ad-

vantage over classical computing in random quantum circuit

sampling [1], Gaussian boson sampling [2], and combinatorial

optimization [3]±[5]. In this paper, by leveraging the parallel

computing capability of quantum computing, we focus on de-

signing a new quantum-assisted scheduling algorithm to solve

a complex joint participant selection and learning scheduling

problem for federated learning (FL) in distributed networks.

Federated learning is emerging as an effective and privacy-

preserving machine learning (ML) paradigm [6]±[9], which

leverages both the computing capabilities and local datasets

available at the distributed clients to collaboratively train

an ML model and exchange model parameters periodically
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Fig. 1: The training process of multi-model federated learning.

among the parameter server (PS) and FL clients (or workers).

FL can not only prevent the leakage of personal privacy,

but also make full use of massive computing resources on

distributed clients. However, there are two obstacles when

deploying the FL framework in distributed networks. First,

the computing capability and network resources of servers

and their data distribution are heterogeneous. Some low-

performance servers may decelerate the convergence process

and diminish the training performance. Also, the dispersed

computing resources and large network latency may lead to

high training costs. Second, for the practical scenario, training

multiple different models in the shared distributed network

simultaneously leads to competition for computing and com-

munication resources. As shown in Fig. 1, two FL models

are trained concurrently and each FL model requires one PS

and three workers for model training. In this case, which FL

model is preferentially served at which server directly affects

the total training cost of all FL models. To this end, appropriate

participant selection and learning schedules are fairly crucial

for multi-model FL training.

Therefore, we mainly concentrate on the joint participant

selection and learning scheduling problem in multi-model FL

training scenarios. It should be emphasized that each server in

distributed networks can serve as a PS or client and the partici-

pant selection includes the selection of both the PS and clients

979-8-3503-3618-4/23/$31.00 ©2023 IEEE 



for each FL model. We denote a client as an FL worker in our

work for simplicity. It is worth noting that both participant

(client) selection and learning scheduling problems have been

studied in FL using classical computers recently. For instance,

Nishio and Yonetani [10] studied a client selection problem in

the decentralized FL where a set of mobile clients are chosen

to act as workers for FL and their aim is to maximize the

number of selected clients under time constraints. Zhu et al.

[11] proposed an asynchronous FL framework with adaptive

client selection to minimize the total training latency by

leveraging client availability and long-term fairness. Li et al.

[12] also considered client scheduling in FL to overcome client

uncertainties or stragglers via learning-based task replication.

Wang et al. [13] focused on FL training convergence and

adaptive control in edge computing without client selection.

They proposed a control algorithm to determine the trade-

off between local update and global parameter aggregation

so as to minimize the loss function. Jin et al. [14] studied

the joint control of local learning rate and edge provisioning

in FL to minimize the long-term cumulative cost. However,

those works concentrate on optimizing a single global FL

model rather than multiple FL models. More importantly,

none of these works take into account the PS selection for

multiple FL models. Recently, Wei et al. [15] considered a

joint participant selection and learning scheduling problem in

multi-model federated edge learning, and proposed multi-stage

methods to solve the joint optimization problem. However,

due to the nature of the formulated optimization as a mixed-

integer non-linear program (MINLP), the proposed methods

may not lead to optimal solutions and do not scale well when

the problem grows more complex.

To overcome the above problem, quantum computing has

recently gained prominence as a powerful tool for optimization

[3]±[5]. Such approaches, however, may not be competitive

until the shortcomings of QC, such as the limited number of

qubits, are overcome by further technological advancements.

To that end, several hybrid quantum-classical solutions [16],

[17] have been proposed to tackle optimization problems

by leveraging the complementary strengths of quantum and

classical computers. For example, Ajagekar et al. [17] pro-

posed a hybrid solution strategy for optimization problems

that uses quantum annealing (QA), but it may result in

longer computational times with no guarantee of feasibility

for large-scale scheduling problems due to the inefficient

use of quantum solution techniques. Subsequently, some re-

searchers in [18]±[20] presented the novel hybrid quantum-

classical optimization technique through the decomposition

of the problem into smaller tractable master problems and

subproblems. Inspired by the pioneers, we attempt to solve our

joint participant selection and learning scheduling problem by

the hybrid quantum-classical optimization approach combined

with decomposition techniques. Such an approach enables us

to fully utilize the capabilities of both quantum and classical

computers. In addition, in the quantum computing market,

D-wave stands out because it offers the quantum annealer

computer with the most qubits of all the candidates. With D-

wave’s quantum annealer computer, one can solve an integer

linear programming (ILP) problem by converting it into a

quadratic unconstrained binary optimization (QUBO) model,

which is inspired by the Ising model. As a result, we attempt

to develop novel hybrid quantum-classical algorithms on the

D-Wave’s quantum computer.

Two research challenges exist in developing efficient hybrid

quantum-classical techniques with decomposition schemes.

First, how to convert our original MINLP problem into an

ILP problem that can be recognized by the quantum computer?

Second, how to further convert the reformulated ILP problem

into a QUBO model as the input to the D-Wave’s quantum

computer? To handle the above challenges, we develop a

novel hybrid quantum-classical algorithm to demonstrate the

potential of such hybrid approaches. Specifically, we leverage

the linearization and Benders’ decomposition (BD) technique

which is widely employed for solving mixed integer linear

programming (MILP) problems to convert our MINLP prob-

lem into the ILP master problem and linear programming (LP)

subproblems and then present a Hybrid Quantum-Classical

Benders’ Decomposition (HQCBD) algorithm. The master

problem will be solved by the quantum computer while

subproblems will be solved by distributed classical computers.

The contributions of this paper are summarised as follows.

• We first formulate a joint participant selection (both PS

and workers) and learning scheduling problem for multi-

model FL in a distributed network as an MINLP, with

the objective to minimize the total learning costs of all

FL models. (Section II)

• We then propose a novel HQCBD algorithm to tackle

the joint optimization problem. By leveraging the combi-

nation of quantum computing and classical optimization

technique, our HQCBD algorithm can quickly converge

to the desired solution as the classical BD does but with

much fewer iterations and faster speeds. (Section III)

• We conduct extensive simulations with real FL tasks

as well as the commercial D-Wave quantum computer

to evaluate our proposed algorithms. Numerous exper-

iments have demonstrated that our proposed HQCBD

can achieve significant advancement (up to 18% saving

of iterations and 81% reduction of computation time)

compared to the BD algorithm on classical CPUs even at

small scales. (Section IV)

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The distributed network connecting all computing servers

is modeled as a graph G(V,E), where V = {v1, · · · , vN}
and E = {e1, · · · , eL} are the sets of N servers and L direct

connection links, respectively. Generally, each server vi owns

a specific storage capacity ci and CPU frequency fi while

each link ej has an available bandwidth bj . Each server holds a

distinct set of datasets and can be used for local model training.

We assume that each server can hold multiple types of datasets

for FL training and the dataset used by the j-th FL model in

the i-th server is denoted by Di,j . In this paper, we focus on



the participant selection based on computing/communication

resources in the distributed network, and do not consider

training data distributions (which is another important research

topic and orthogonal to our research).

B. Federated Learning Model

We assume that parallel FL was conducted where multiple

models are trained concurrently in the network. We consider a

classical FL process that consists of a PS and multiple workers.

W FL models (M = {m1, · · · ,mW }) are trained concurrently

and each FL model will request certain requirements for the

training task, i.e., (1) κj + 1 servers as participants including

one PS and κj workers, whose CPU and storage capacity

should be larger than its required minimal CPU frequency

χj and model size µj , respectively; and (2) the achieved

global convergence rate needs to be larger than ςj . We further

assume that each server can only play a role as either the

PS or the worker for any FL model at one time. The training

process of each FL model includes three stages: (a) initializing

and broadcasting the global model of mj to each participant;

(b) each worker performs the local model computation using

its own dataset; and (c) aggregating the local models from

workers, as illustrated in Fig. 1 and detailed in the sequel.

Stage 1: Global Model Initialization. In Stage 1, we initial-

ize the global model parameter for each FL model as ωj and

send the global model parameter to each selected participant.

Stage 2: Local Model Computation. Let the local parameters

of model mj on server vi be ωi,j and the loss function on a

training data sample s be fi,j(ωi,j , dxs, dys), where dxs is

the input feature and dys is the required label. Then the loss

function on the whole local dataset of vi is defined as

Fi,j(ωi,j) =
1

|Di,j |

∑

s∈Di,j

fi,j(ωi,j , dxs, dys).

Generally, FL will perform round by round and we denote the

total number of global aggregations, and local updates as α̂

and β̂, where α and β are their indexes, respectively. In the

α-th round, each worker runs a number of local updates to

achieve a local convergence accuracy ϱj ∈ (0, 1). At the β-th

local iteration, each worker follows the local update rule as

ω
α,β
i,j = ω

α,β−1
i,j − η∇Fi,j(ω

α,β−1
i,j ),

where η is the learning rate of the loss function. This process

will run until

Fi,j(ω
α,β̂
i,j )− F ∗

i,j ≤ ϱj [Fi,j(ω
α,0
i,j )− F

∗

i,j ]. (1)

Here, we set ω
α,0
i,j = ωj .

Stage 3: Global Aggregation. At this stage, one participant

has to be chosen as the PS. After β̂ local updates, all workers

send their local model parameter ω
α,β̂
i,j to the PS. The PS

performs FedAvg to aggregate global model parameters as

ωαj =
∑

i∈Sj

Di,j

Dj

ω
α−1,β̂
i,j ,

where Dj =
⋃

i∈Sj
Di,j is the total number of data sample

from κj workers and Sj is the set of selected workers. The

global convergence of the global model is defined as

Gj(ω
α̂
j )− G

∗

j ≤ ςj [Gj(ω
0
j )− G

∗

j ], (2)

where G∗j is the global optimum of FL model mj .

Finally, from (1) and (2), in order to achieve the desired

local convergence rate ϱj and global convergence rate ςj , we

need to calculate the number of local updates β̂ = φj and the

number of global rounds α̂ = ϑj . From the above observation,

we can find that the global convergence rate ςj for each FL

model can be predefined and we have to conduct enough local

updates and global aggregations to achieve that. Then we have

the following relationship between the convergence rate and

the local update as well as global iterations [14], [21]±[25].

ϑj ≥
2λ2

γ2ξ
ln(

1

ςj
)

1

1− ϱj
≜ ϑ0 ln(

1

ςj
)

1

1− ϱj
, (3)

φj ≥
2

(2− λδ)δγ
log2(

1

ϱj
) ≜ φ0log2(

1

ϱj
), (4)

where ξ and δ are two variables in ranges (0, γ
λ

] and (0,
2
L

), respectively. λ is the λ-Lipschitz parameter and γ is the

γ-strongly convex parameter. Both the values of λ and γ are

determined by the loss function. ϑ0 and φ0 are two constants

where ϑ0 = 2λ2

γ2ξ
and φ0 = 2

(2−λδ)δγ .

C. Cost Model

Our cost model consists of four parts: transmission cost,

local update cost, global aggregation cost, and participant

cost, defined as follows.

Transmission Cost: The transmission cost consists of the

FL model downloading and uploading costs. Denote µj by the

model size of FL model mj . We leverage the shortest path

in the distributed network to calculate the transmission cost

when downloading models from the PS or uploading models

to the PS. Let ρj(vi, vk) be the transmission cost of model mj

from server vi to vk, and it can be calculated by ρj(vi, vk) =
∑

el∈Pi,k

µj

bl
, where Pi,k is the shortest path connecting vi to

vk. For model mj , the total transmission cost is

Ctransj = 2·ϑj

N
∑

k=1

N
∑

i=1

xk,j · yi,j · ρj(vi, vk).

Here, vi and vk are a worker and the PS of mj , respectively.

In addition, xi,j or yi,j are the decision variables indicating

whether to select server vi as a parameter server or an FL

worker for the j-th FL model.

Local Update Cost: Let ψ(· ) be the function to define

CPU cycles to process the sample data Dj,i used by the jth

FL model and stored in server vi. So the local update cost for

the j-th FL model is defined as

Clocalj = ϑj ·φj ·

N
∑

i=1

yi,j ·
ψ(Dj,i)

fi
.

Global Aggregation Cost: Similarly, we use ψ(· ) function

to define the number of CPU cycles to process the aggregation

step for the uploaded FL models.

C
global
j = ϑj ·

N
∑

i=1

xi,j ·
ψ(µj)

fi
.

Participant Cost: Each participant of FL model mj will

be paid a basic rental cost for utility management which is
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Fig. 2: The proposed HQCBD framework.

related to their CPU frequency. Let pj be the unit price for

a CPU unit, accordingly, the participant cost for the j-th FL

model is defined as

Crentj =

N
∑

i=1

(xi,j + yi,j)· pj · fi.

D. Problem Formulation

Under the previously introduced multi-model federated

learning scenario, we consider how to choose participants for

each of the models and how to schedule their local/global

updates. Recall that we assume that only one PS and κj
workers selected for one model, i.e.,

∑M
i=1 xi,j = 1 and

∑M
i=1 yi,j = κj . We use ϱj ∈ [0.01, 0.99] to represent the

maximal local convergence rate of mj . We will use ϱj and ςj
to control the number of local updates and global iterations

for model mj . Note that ςj is given by the model mj as

a requirement. Overall, xi,j , yi,j and ϱj are the decision

variables of our optimization.

We now formulate our participant selection and learning

scheduling problem for FL in the distributed network where

we need to select the parameter server and workers for each

model as well as achieve the desired local convergence rate.

The objective of our problem is to minimize the total learning

costs of all FL models as follows.

min
x,y,ρ

W
∑

j=1

(Ctransj + Clocalj + C
global
j + Crentj ) (5)

s.t. xi,jµjκj ≤ ci, xi,jχj ≤ fi, ∀i, j, (6)

yi,jµj ≤ ci, yi,jχj ≤ fi, ∀i, j, (7)

N
∑

i=1

xi,j = 1,
N
∑

i=1

yi,j = κj , ∀j, (8)

W
∑

j=1

(xi,j + yi,j) ≤ 1, ∀i, (9)

i ∈ (1, . . . , N), j ∈ (1, . . . ,W ), (10)

xi,j , yi,j ∈ {0, 1}, ϱj ∈ [0.01, 0.99]. (11)

Constraints (6) and (7) make sure that the storage and CPU

satisfy the requirements from the FL model. Constraint (8)

guarantees the number of the parameter server and FL workers

of each model is 1 and κj , respectively. Constraint (9) ensures

that each server only trains one FL model and can only play

one role at one time. The decision variables and their ranges

are given in (10) and (11). Note that the formulated problem

(5) is a non-linear mixed-integer program, which is NP-hard

in general and challenging to solve with classical computing.

III. HYBRID QUANTUM ASSISTED BENDERS’

DECOMPOSITION (HQCBD) METHOD

Motivated by the advances in QC, we decouple the original

problem into a master problem and a subproblem by leveraging

Benders’ decomposition [18], [20] and solving them using

quantum and classical methods, respectively. Fig. 2 shows the

framework of our proposed HQCBD.

A. Benders’ Decomposition

We first briefly introduce the basic idea of Benders’ de-

composition. Benders’ decomposition is a useful algorithm for

solving convex optimization problems with a large number

of variables. It works best when a large problem can be

decomposed into two (or more) smaller problems that are

individually much easier to solve [18]. At a high level,

the procedure will iteratively solve the master problem and

subproblem. Each iteration provides an updated upper and

lower bound on the optimal objective value. The result of

the subproblem either provides a new constraint to add to the

master problem or a certificate that no finite optimal solution

exists for the problem. The procedure terminates when no

finite optimal solution exists or when the gap between the

upper and lower bound is sufficiently small [26].

We reformulate our original problem (5) by extracting all

constant variables as below.

min
x,y,ρ

W
∑

j=1

[
1

1− ϱj

N
∑

k=1

N
∑

i=1

a1,i,j,k·xk,j · yi,j

+
1

1− ϱj
· log2(

1

ϱj
)·

N
∑

i=1

a2,i,j · yi,j

+
1

1− ϱj
·

N
∑

i=1

a3,i,j ·xi,j +

N
∑

i=1

a4,i· (xi,j + yi,j)]

(12)

s.t. (6)− (11),

where the four sets of constant variables are a1,i,j,k =

2ϑ0ln(
1
ςj
)· ρj(vi, vk), a2,i,j = φ0ϑ0ln(

1
ςj
)·
ψ(Dj,i)
fi

, a3,i,j =

ϑ0ln(
1
ςj
)·
ψ(µj)
fi

, and a4,i = δfi.

Due to the non-linear term xk,jyi,j , it is challenging to solve

the problem directly. Thus, we introduce an additional binary

variable zk,i,j to linearize the product term and additional

continuous variables uj and wj to replace ϱj .



min
x,y,z,u,w

W
∑

j=1

[uj ·
N
∑

k=1

N
∑

i=1

a1,i,j,k· zk,i,j + wj ·
N
∑

i=1

a2,i,j · yi,j

+ uj ·
N
∑

i=1

a3,i,j ·xi,j +
N
∑

i=1

a4,i· (xi,j + yi,j)]

(13)

s.t. (6)− (11),

zk,i,j ≤ yi,j , zk,i,j ≤ xk,j , (14)

zk,i,j ≥ xk,j + yi,j − 1, (15)

b1 ≤ uj ≤ b2, b3 ≤ wj ≤ b4, (16)

where uj =
1

1−ϱj
, wj = uj log2(

uj

uj−1 ), b1 = 1.01, b2 = 100,

b3 = 1.435 and b4 = 6.725.

Note that Problem (13) consists of several terms that

are the products of integer and continuous variables, e.g.

uj · zk,i,j , wj · yi,j . Hence, we further introduce variables ok,i,j ,

pi,j and qi,j to represent the product of an integer variable and

a continuous variable as below.

min
x,y,z,u,w,o,p,q

W
∑

j=1

[

N
∑

k=1

N
∑

i=1

a1,i,j,k· ok,i,j +

N
∑

i=1

a2,i,j · pi,j

+

N
∑

i=1

a3,i,j · qi,j +

N
∑

i=1

a4,i· (xi,j + yi,j)] (17)

s.t. (6)− (11), (14)− (16),

b1zk,i,j ≤ ok,i,j ≤ b2zk,i,j , (18)

uj − ok,i,j ≤ b2(1− zk,i,j), (19)

uj − ok,i,j ≥ b1(1− zk,i,j), (20)

b3yi,j ≤ pi,j ≤ b4yi,j , (21)

wj − pi,j ≤ b4(1− yi,j), (22)

wj − pi,j ≥ b3(1− yi,j), (23)

b1xi,j ≤ qi,j ≤ b2xi,j , (24)

uj − qi,j ≤ b4(1− xi,j), (25)

uj − qi,j ≥ b3(1− xi,j). (26)

So far, we have linearized the products of binary variables

(x, y, and z) as well as the products of binary and continu-

ous variables (u,w, o, p, q), and therefore can apply Benders’

decomposition. In problem (17), for each possible choice x̄,

ȳ and z̄, we find the best choices for u,w, o, p, q by solving

a linear program. So we regard u,w, o, p, q as a function of

x, y, z. Then we replace the contribution of u,w, o, p, q to

the objective with a scalar variable representing the value

of the best choice for a given x̄, ȳ and z̄. We start with a

crude approximation to the contribution of u,w, o, p, q and

then generate a sequence of dual solutions to tighten up the

approximation.

Next, we will detail the formulation of the corresponding

subproblem (LP problems) and master problem (an integer

programming (IP) problem) after the Benders’ decomposition.

B. Classical Optimization for Subproblem

For the subproblem, we consider a distributed optimization

where each server can solve its own optimal subproblem.

Based on the decomposition in Section III-A, the subproblem

for each server is defined as follows.

min
u,w,o,p,q

W
∑

j=1

(
N
∑

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(27)

s.t. (16), (18)− (26). (28)

Let fi(x, y, z) represent the subproblem value of i-th server,

then the overall subproblem is

SUP (x, y, z) =

N
∑

i=1

fi(x, y, z)

The subproblem for each server can be further represented

in a general form as follows.

fi(x, y, z) = min d
⊺

i Yi

s.t. AYi ≥ BXi + C,

where Yi = [ok,i,j , pi,j , qi,j , uj ,wj ]
⊺, Xi = [xi,j , yi,j , zk,i,j ]

⊺,

and A,B, C are coefficients in the constraints. In addition, the

dual problem of the subproblem is defined below and πi is

the dual variable.

max (BXi + C)
⊺πi (29)

s.t. ATπi ≤ di, (30)

πi ≥ 0, (31)

where di =
[

Ei Fi Gi 0 · · · 0
]⊺

, Ei =
[

a1,i,1,1 ... a1,i,1,N ... a1,i,W,1 ... a1,i,W,N
]

,

Fi =
[

a2,i,1 ... a2,i,W
]

, Gi =
[

a3,i,1 ... a3,i,W
]

.

This problem can be solved by a classical LP solver.

C. Quantum Formulation for Master Problem

Based on the dual problem of the subproblem, the master

problem can be defined as follows.

min
x,y,z

W
∑

j=1

[

N
∑

i=1

a4,i· (xi,j + yi,j) + λ] (32)

s.t. (6)− (10),

xi,j ∈ {0, 1}, yi,j ∈ {0, 1}, ∀i, j, (33)

zk,i,j ≤ yi,j , ∀i, j, k, (34)

zk,i,j ≤ xk,j , ∀i, j, k, (35)

zk,i,j ≥ xk,j + yi,j − 1, ∀i, j, k, (36)

λ ≥ λdown, (37)

λ ≥ (BX + C)⊺πl, (38)

where λ is the optimal value of the subproblem aggregated

from all servers at the current iteration. Constraints (37) and

(38) are the corresponding Benders’ cuts.

QUBO Formulation. Quantum annealers are able to solve

the optimization problem in a QUBO formulation. To leverage

the state-of-art quantum annealers provided by D-Wave, the

master problem has to be converted to the corresponding

QUBO formulation. Due to the rule of QUBO setup, we

have to reformulate our constrained master problem as the



unconstrained QUBO by using penalties. The basic idea is to

find the best penalty coefficients of the constraints. Following

the principle of constraint-penalty pairs in [27], the constraints

are converted as follows:

(6)⇒ ξ1 : P 1
i,j(xi,jµjκj − ci +

l̄1
∑

l=0

2ls1l )
2,

where l̄1 = ⌈log2[ci −min
x

(xi,jµjκj)]⌉.

(6)⇒ ξ2 : P 2
i,j(xi,jχj − fi +

l̄2
∑

l=0

2ls2l )
2,

where l̄2 = ⌈log2[fi −min
x

(xi,jχj)]⌉.

(7)⇒ ξ3 : P 3
i,j(yi,jµj − ci +

l̄3
∑

l=0

2ls3l )
2,

where l̄3 = ⌈log2[ci −min
y

(yi,jµj)]⌉.

(7)⇒ ξ4 : P 4
i,j(yi,jχj − fi +

l̄4
∑

l=0

2ls4l )
2,

where l̄4 = ⌈log2[fi −min
y

(yi,jχj)]⌉.

(8)⇒ ξ5 : P 5
i,j(

N
∑

i=1

xi,j − 1)2,

(8)⇒ ξ6 : P 6
i,j(

N
∑

i=1

yi,j − κj)
2,

(9)⇒ ξ7 : P 7
i,j [

W
∑

j=1

(xi,j + yi,j)− 1 +

l̄7
∑

l=0

2ls7l ]
2,

where l̄10 = ⌈log2[1−min
x,y

W
∑

j=1

(xi,j + yi,j)]⌉.

(34)⇒ ξ8 : P 8
i,j(zk,i,j − yi,jzk,i,j).

(35)⇒ ξ9 : P 9
i,j(zk,i,j − xk,jzk,i,j).

(36)⇒ ξ10 : P 10
k,i,j(xk,j + yi,j − 1− zk,i,j +

l̄10
∑

l=0

2ls10l )2,

where l̄10 = ⌈log2[min
x,y,z

(zk,i,j − xk,j − yi,j + 1)]⌉.

(37)⇒ ξ11 : P 11(λdown − λ+

l̄11
∑

l=0

2ls11l )2,

where l̄11 = ⌈log2(λ− λ
down)⌉.

(38)⇒ ξ12 : P 12((BX + C)Tπl − λ+

l̄12
∑

l=0

2ls12l )2,

where l̄12 = ⌈log2[λ− min
x,y,z,π

(BX + C)Tπl]⌉.

Here, P ∗, P ∗

i,j and P ∗

k,i,j are the predefined penalty coeffi-

cients when the corresponding constraint is violated. s∗l is a

binary slack variable and l̄∗ is the upper bound of the num-

ber of slack variables. Then, the reformulated unconstrained

master problem is defined below.

min
x,y,z

W
∑

j=1

[

N
∑

i=1

a4,i· (xi,j + yi,j) + λ

+ ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7

+ ξ8 + ξ9 + ξ10 + ξ11 + ξ12] (39)

Variable Representation. Now consider the problem in

(39), it is still not in the QUBO formation due to the existence

of the continuous variable λ. Thus, we need to represent the

continuous variable λ using binary bits. We use a binary vector

w with the length of M bits to replace continuous variable λ

and denote it as a new discrete variable λ̂ ∈ Q. In general, λ̂

requires the binary numeric system assigning M bits to replace

continuous variable λ. Then we can recover the λ̂ by

λ =

m̄+
∑

ii=−m

2iiwii+m −

m̄
−

∑

jj=0

2jjwjj+1+m+m̄+
= λ̂(w) (40)

In (40), m̄+ + 1 is the number of bits for the positive integer

part Z+, m is the number of bits for the positive decimal part

and m̄−+1 is the number of bits for the negative integer part

Z−. Then, the final QUBO formulation of the master problem

is defined as follows.

min
x,y,z,w

W
∑

j=1

[
N
∑

i=1

a4,i· (xi,j + yi,j) + λ̂(w)

+ ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 + ξ7

+ ξ8 + ξ9 + ξ10 + ξ11 + ξ12] (41)

D. HQCBD Algorithm

Our proposed HQCBD is described by Algorithm 1. Fig. 2

shows the overall flow of HQCBD and the detailed interaction

between the master problem and subproblem. The master prob-

lem is solved by a quantum computer and generates a binary

solution (x′, y′, z′), and then sends it to general devices for

distributed computation of subproblems by a classical solver

(e.g. Scipy). After subproblems are solved, an optimality or

feasibility cut is sent to the master problem and it continues

to the next round.

Specifically, as shown in Algorithm 1, we first initialize

the upper and lower bound of the problem as well as other

parameters, e.g. convergence threshold ϵ and the number of

maximal iterations max itr (Lines 1-2). Then appropriate

penalty numbers or arrays will be generated (Line 4). After

that, we reformulate the master problem in (32) in the QUBO

format and solve the QUBO problem with a quantum computer

and update the lower bound of the problem λ (Lines 5-

7). Given x′, y′, z′ from the master problem, we solve the

subproblem (29) and extract ϱ′ as well as update the upper

bound of the problem λ (Lines 8-10). We finally add the

Benders’ cut to the master problem and continue the next

iteration (Lines 11-12) until it converges (Line 3).

We leverage the D-Wave solver to implement our proposed

algorithm to solve the QUBO master problem. In addition,

the penalties also need to be carefully tuned for a decent

QUBO model. In general, a large penalty can cause the



Algorithm 1 Hybrid Quantum-Classical Benders’ Decompo-

sition (HQCBD) Method

Input: Distributed network with N servers V , W FL mod-

els M , Coefficient of the objective function and constraints

in master problem and subproblem

Output: PS selection x′, worker selection y′, and local

convergence rate ϱ′

1: Initialize upper/lower bound of λ, λ = +∞, λ = −∞
2: Initialize threshold ϵ = 0.001, max itr = 100, itr = 1
3: while |λ− λ| > ϵ and itr < max itr do

4: P ← Appropriate penalty numbers or arrays

5: Q← Reformulate both objective and constraints in (32)

and construct QUBO formulation as (41)

6: x′, y′, z′ ← Solve problem (41) by quantum computer

7: λ ← Extract w and replace λ with λ̂(w) as (40)

8: SUP (x, y, z)← Solve problem (29) with fixed x′, y′, z′

9: Extract ϱ′ from SUP (x, y, z)
10: λ ← SUP (x, y, z)
11: Add a new benders’ cut to the master problem as (38)

12: itr+ = 1
13: end while

14: return x′, y′, ϱ′

quantum annealer to malfunction due to coefficient explosion.

In contrast, a small penalty can make the quantum annealer

ignore the constraints. A well-tuned penalty will lead to a

fairly high probability of the quantum solver giving the correct

answer.

IV. PERFORMANCE EVALUATION

In this section, we simulated a distributed network environ-

ment and conducted experiments of realistic FL tasks using

publicly available datasets. To validate the feasibility of our

hybrid quantum-classical optimization algorithm, we run the

proposed algorithms on a hybrid D-Wave quantum processing

unit (QPU). We accessed the D-Wave system provided by

Leap quantum cloud service [28]. Based on the Pegasus

topology, the D-Wave system also has over 5, 000 qubits and

35, 000 couplers, which can solve complex problems of up to

1, 000, 000 variables and 100, 000 constraints. We performed

a number of test cases that can be resolved in under 100
iterations, but only due to the high cost of QPU utilization

and the developer’s time constraints.

A. Simulation Setup

Network Setting: Our distributed computing environment

consists of 100 servers where the topology depends on the

real-world EUA-Dataset [29] and the Internet topology zoo

[30]. EUA-Dataset is widely used in mobile computing and

contains the geographical locations of 125 cellular base sta-

tions in the Melbourne central business district area, while the

Internet topology zoo is a popular network topology dataset

that includes a number of historical network maps all over

the world. We randomly select a set of servers from these

topology datasets to conduct simulations. In each simulation,

each server has a maximal storage capacity ci, CPU frequency

fi and link bandwidth bj belonging to the ranges of 1, 024 ∼
2, 048GB, 2 ∼ 5GHz, and 512 ∼ 1, 024Mbps, respectively.

Datasets and FL models: We conduct extensive experi-

ments on the following real-world datasets: California Housing

dataset [31], MNIST [32], Fashion-MNIST (FMNIST) [33],

and CIFAR-10 [34]. These are well-known ML datasets for

linear regression, logistic regression, or image classification

tasks. Two models with convex loss functions are implemented

on the above real-world datasets for performance evaluation,

which are (i) Linear Regression with MES loss on the Cali-

fornia Housing dataset and (ii) Logistic Regression with the

cross-entropy loss on MNIST. We are also interested in the

performance of our proposed methods on FL models with non-

convex loss functions. Thus, three datasets, MNIST, FMNIST,

and CIFAR-10, are used to train convolutional neural network

(CNN) models with different structures.

Benchmarks and Metrics: We compare our proposed

HQCBD with three baseline strategies: classical Benders’

decomposition (CBD), random algorithm (RAND), and two-

stage iterative optimization algorithm (TWSO) [15]. CBD uses

a classical LP solver (Gurobi [35] or Scipy [36]) to solve the

master problem and subproblems. RAND randomly generates

the random decisions on the model’s parameter server, FL

workers, and local convergence rate under certain constraints.

TWSO is a previous algorithm from [15] that decomposes the

original problem into two subproblems (participant selection

and learning scheduling) and solves them iteratively. Since

the optimization problem in [15] has a different learning cost

function, we adjust their method to our optimization problem

for fairness. The following metrics are adopted to compare the

performances of our proposed methods and the baselines: the

total cost of FL training, the loss or accuracy of FL models,

the number of iterations, and the solver accessing time.

TABLE I: Iteration of CBD and HQCBD over three different

cases. Here, the set up column shows {# of servers, # of

models, # of workers per model} used in each case.

Case Set up # of Variables Itr. of CBD Itr. of HQCBD

1 {7, 1, 3} 63 32 31

2 {7, 2, 2} 126 55 45

3 {9, 2, 3} 198 91 89

B. Performance of HQCBD

To demonstrate the feasibility and performance of our

proposed HQCBD, we conduct three sets of small-scale exper-

iments with different case settings (servers are selected from

100 servers). As shown in Table I, there are three cases. The

first case includes 7 servers, 1 FL model, and 3 workers per

model with a total of 63 binary variables. The second case has

7 servers, 2 FL models, and 2 workers per model with a total

of 126 binary variables. The third case consists of 9 servers,

2 FL models, and 3 workers per model with a total of 198
binary variables. For each case, we perform both CBD and

HQCBD. Fig. 3 and Table I show the related results of their

performances.



Fig. 3: Performance of HQCBD: its convergence.

In Figs. 3(a)-(c), the blue dashed line denotes the upper

bound of value λ used in HQCBD, and the orange dashed

line denotes the lower bound of λ in HQCBD. As we can

see, the upper bound and lower bound finally converge and

we obtain the non-negative lower bound at the 31st, 45th

and 89th round for each case, respectively. This result proves

that our proposed algorithm is mathematically consistent with

the classical Benders’ decomposition algorithm. In addition,

Fig. 3(d) shows the trend of the master problem value of Case

2 calculated by (39) compared with the solution of CBD. We

can see that the value of the master problem keeps increasing

until it converges. Specifically, the master problem value keeps

static in the first few rounds since only an unbounded ray is

found in the subproblem and a feasibility cut is added to the

master problem. As we run more iterations, the optimality

cut is found and added to the master problem. Once the

difference between the upper bound and lower bound reaches

a threshold, the problem is solved. The solution from HQCBD

is similar to the one from CBD. Table I further demonstrates

the detailed comparison between CBD and HQCBD in terms

of the number of iterations used to solve the problem. We

can find that HQCBD takes fewer iterations to converge to

the optimal solution compared with CBD (for example, for

Case 2, the improvement of iterations is around 18%).

TABLE II: Solver accessing time (ms) of CBD and HQCBD.

Case
CBD HQCBD

Max./Min. Mean/Std. Max/Min. Mean/Std.

1 190.47/6.71 117.14/50.12 32.10/15.93 31.49/2.79
2 235.29/9.11 129.56/50.04 32.11/15.92 24.10/7.98
3 395.48/14.45 120.25/63.19 32.11/16.00 25.53/7.85

Furthermore, we show the comparison of real solver ac-

cessing time (i.e., computation time of the solvers) for CBD

and HQCBD in Table II and plot the detailed accessing

time of Case 2 in Fig. 4. The solver accessing time is the

Fig. 4: Solver accessing time of CBD/HQCBD in Case 2.

real accessing time of QPU solver and local solver without

considering other overheads, such as variables setting time,

parameters transmission time, and so on. As we can see in

Table II, the minimal accessing time of CBD is relatively

lower than that of HQCBD. However, the maximal and average

accessing time as well as the standard deviation value of CBD

is significantly higher than HQCBD. For example, for Case 2,

the mean accessing time of HQCBD is 81% less than the

one of CBD, and more significantly the standard deviation

of accessing time of HQCBD is 84% less than the one of

CBD. We also confirm via Fig. 4 that the solver accessing time

of CBD in each round/iteration varies significantly while the

solver accessing time of HQCBD in each round keeps stable

and is even smaller than that of CBD. This finding proves the

efficiency and robustness of leveraging the hybrid quantum-

classical technique to solve the optimization problem in terms

of either the convergence iteration or the solver accessing time.

C. Comparison with Existing Methods

We now compare our proposed method HQCBD with the

random method (RAND) and a two-stage iterative optimiza-

tion method (TWSO) [15] in terms of solving the joint

optimization problem.

Firstly, we focus on the necessity of the optimization

problem and study the impact of different numbers of servers.

We concurrently train 2 FL models with 2 workers per model

and the number of servers varies from 7 to 11. Fig. 5(a) shows

the results. Obviously, RAND has the worst performance

due to its randomness. Our HQCBD algorithm gets further

improvements compared with TWSO and demonstrates the

effectiveness of the HQCBD algorithm. In addition, as the

number of servers increases, the total cost of HQCBD first

decreases and increases then decreases again. This is because

the topology may change when the server number varies and

lead to the change of selection decision as well as the total

cost.

Next, we investigate the impact of different numbers of

FL workers on total costs. We set the number of servers

and FL models to 15 and 2, respectively. The number of

FL workers is in the range of [2, 6]. As shown in Fig. 5(b),

the total costs increase as the number of workers increases.

This is obvious since the more workers, the more total costs

consumed. Our proposed HQCBD still outperforms RAND

and TWSO algorithms. With more qubits supporting, we



Fig. 5: Performance comparison with existing methods given

different numbers of servers or FL workers.

Fig. 6: Training loss of linear and logistic regression models

and impact from worker numbers: (a)(b) R2 scores and loss of

linear regression model over California housing dataset; (c)(d)

accuracy and loss of logistic regression model over MNIST

dataset.

expect that the speed of HQCBD will have a more significant

advantage over TWSO on large-scale optimization problems.

D. Performance of FL Model

Now, we look into the performance of our proposed methods

in the real FL training process. We concurrently train 2 FL

models with convex loss functions on the non-IID dataset

settings: (i) Linear Regression with MSE loss over the Cal-

ifornia Housing dataset, (ii) Logistic Regression with cross-

entropy loss over the MNIST dataset. Each dataset is split

into 15 servers unequally and the number of global training

rounds is set to 100 for clear comparison. We further introduce

the R2 score metric to evaluate the performance of linear

regression model training. R2 score is the proportion of the

variance in the dependent variable that is predictable from

the independent variable(s). As shown in Fig. 6(a), the R2

score of the linear regression model rises as the number of

workers increases. Also, with more FL workers, the training

loss of the linear regression model decreases as illustrated in

Fig. 6(b). Similarly, the accuracy of the logistic regression

Fig. 7: Training accuracy of CNN models (non-convex) and

impact from the number of workers: (a) accuracy of all CNN

models; (b) accuracy of CNN over CIFAR-10 dataset; (c)

accuracy of CNN over FMNIST dataset; (d) accuracy of CNN

over MNIST dataset.

model also increases with more FL workers while the training

loss declines with the rise of the number of workers as shown

in Figs. 6(c)-(d). These results further indicate the feasibility

and effectiveness of our proposed algorithm.

Finally, to demonstrate the performance of our proposed

algorithms on FL models with non-convex loss functions, we

conduct two sets of FL training with CNN models: (i) CNN

models over CIFAR-10 and FMNIST datasets, and (ii) CNN

models over CIFAR-10 and MNIST datasets. The experimental

setting is similar to that in the convex experiment. Fig. 7(a)-

(d) show the training accuracy of all CNN models under

different numbers of workers. Obviously, with more workers,

the training accuracy also increases, especially for the CIFAR-

10 dataset as illustrated in Figs. 7(a) and (b). However,

the training accuracy of FMNIST and MNIST datasets keep

similar when the number of workers is larger than 2 as shown

in Figs. 7(c) and (d). This is mainly due to the non-IID setting

and simplicity of FMNIST and MNIST datasets since MNIST

and FMNIST are both grayscale images from 10 categories.

V. CONCLUSION

In this paper, a joint participant selection and learning

scheduling problem for multi-model FL has been studied.

Motivated by the powerful parallel computing capabilities of

quantum computers, we proposed a quantum-assisted HQCBD

algorithm by employing the complementary strengths of clas-

sical optimization and quantum annealing to optimally select

participants (both PS and FL workers) and determined the

learning schedule to minimize the total cost of all FL models.

Extensive simulations on the D-Wave quantum annealing

machine demonstrated the efficiency and robustness of our

proposed HQCBD algorithm which not only achieved the same



result as the classical algorithm but also took much fewer

iterations (up to 18% improvement) and less accessing time

(up to 81% reduction) to obtain the desired solution even at

relevantly small scales. With the new development of robust

quantum computers with more qubits, we believe that the

proposed HQCBD-based method will have great applications

in the joint learning scheduling of distributed machine learning

in the near future.
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