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Abstract—The multiple access channel (MAC) capacity with
feedback is considered under feedback models designed to tease
out which factors contribute to the MAC feedback capacity ben-
efit. Comparing the capacity of a MAC with “perfect” feedback,
which causally delivers to the transmitters the true channel
output, to that of a MAC with “independent” feedback, which
causally delivers to the transmitters an independent instance
of that same channel output, allows separation of effects like
cooperation from alternative feedback benefits such as knowledge
of the channel instance. Proving that the Cover-Leung (CL)
achievability bound, which is known to be loose for some chan-
nels, is achievable also under (shared or distinct) independent
feedback at the transmitters shows that the CL bound does not
require transmitter knowledge of the channel instance. Proving
that each transmitter’s maximal rate under independent feedback
exceeds that under perfect feedback highlights the potential
power of an independent look at the channel output.

I. INTRODUCTION

While feedback does not increase the capacity of point-
to-point memoryless channels [2], [3], it does significantly
increase the capacity of distributed communication systems;
examples where this occurs include the binary adder [4]-
[6] and Gaussian [7] multiple-access channel (MAC). Upper
and lower bounds on MAC feedback-capacity, e.g., [6], [8]-
[12], are not tight in general but are known to be tight for
specific MAC families (e.g., [13]). A multi-letter capacity
characterization of the MAC with feedback using the notion
of directed information appears in [14], [15]. As noted by El
Gamal and Kim in [16], “feedback can enlarge the [MAC]
capacity region by inducing statistical cooperation between
the two senders.”

Much like the information shared in MAC paradigms such
as conferencing [17], cribbing [18], and the introduction of
a cooperation facilitator [19], feedback-information informs
encoders about the messages of other encoders; this facilitates
cooperation, and that cooperation has a significant impact
on capacity in some channels. However, unlike conferencing,
cribbing, and the use of a cooperation facilitator, feedback
can do more than just transfer information between MAC
encoders; it also informs the encoders about the system real-
ization, such as the channel noise or channel output. Allowing
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encoders access to the received symbol at the decoder allows
MAC encoders to adaptively fine-tune the channel input to
fit the current state of the decoder, an action we here call
innovation since it resembles the concept of innovation in
prediction (e.g., [20]). Such innovation lies, for example, at
the heart of the celebrated capacity achieving encoding scheme
for the Gaussian MAC with feedback [7].

While the study of cooperation addresses the rate benefits
obtained from MAC encoders that share common information
in order to coordinate their channel inputs, our study of
innovation addresses the capacity benefits stemming explicitly
from the encoders’ knowledge of system realizations. In order
to distinguish the rate benefits of innovation from those of
encoder cooperation in the MAC feedback, this work asks the
following question.

Question 1: Can one isolate and analyze the impact of
innovation on MAC feedback-capacity? Specifically, is the fact
that encoders have access to the system realization crucial to
rate gains obtained by feedback?

To answer Question 1, for a given MAC, we study the
capacity region of two similar feedback models. The first is
the standard MAC feedback model, in which the encoders
have strictly causal access to the channel output received at
the decoder. We call this traditional model the perfect feedback
model. The second is a modified version of feedback in which
the encoders have strictly causal access to an outcome of
the channel using a statistically identical and independent
channel realization. In this second version of feedback, called
independent feedback, both encoders receive the same channel
output, however that output differs from the one received at the
decoder.! For example, consider the Gaussian MAC, in which
channel inputs X; and X5 yield output ¥ = X; + X5 + Z,
where Z has normal Gaussian distribution. Here, in perfect
feedback, the encoders receive Y; in independent feedback,
the encoders receive Y/ = X; + Xy + Z’, where Z and
Z' are independent and identically distributed. Notice that,
given the independent feedback Y’, the encoders can no
longer innovate as they do not gain any information about the
system realization experienced by the decoder; however, they
can still exchange information, enabling them to cooperate
much as they would with perfect feedback. Thus, while
traditional feedback can combine cooperation and innovation
in an intertwined manner, our second notion of independent
feedback filters out the impact of innovation, allowing us to
explore Question 1. Another motivation for this model is that

'We also study a subtly different model, called doubly-independent feed-
back in which each encoder receives a different, independent copy of the
channel output. All our results apply to both models.



it represents a situation where each transmitter receives a noisy
version of the other transmitter’s signal, and the noise at the
transmitters is independent from that at the receiver. In fact,
this phenomenon of each transmitter overhearing the other can
arise naturally in practice, unlike perfect feedback which at
best must be engineered. We seek to understand whether one
form of feedback is superior to the other or whether, perhaps
alternatively, the two models are incomparable.

In this work, we obtain the following results in the context
of Question 1. We first address the place of innovation in
the classic rate region of Cover-Leung [6] (here called the CL
region and denoted by Rcr). We show (in Theorem 1) that any
rate vector in the CL region, that is, any rate achievable using
perfect feedback via [6], is also achievable using independent
feedback; this implies that the CL region is achievable without
innovation. Denoting the perfect-feedback capacity by Cpr and
the independent-feedback capacity by Cip, this proves that
ReL C Cpr N Crp. 1t follows, for example, that for any MAC
in which the CL-region is tight (i.e., Cpp = RcL) the perfect-
feedback capacity is achievable using either independent feed-
back or perfect feedback, i.e., Cpp = RcL C Cig. One such
“tight” family of MACs is the family of MACs in which,
given the channel output, one user can derive the other’s
transmission [13]. In this work, we extend (in Theorem 2)
the family of MACs for which the CL-region is tight (thus
Cpr can be obtained without innovation) by enhancing known
tight MAC families with an additional erasure component.

We next turn to the question of whether one form of
feedback is superior to the other. In this context, we show that
for some channels, the independent-feedback capacity region
is not a subset of the perfect-feedback one, i.e., Cir ¢ Cpp.
This shows, perhaps surprisingly, that for certain MACs there
are rates achievable with independent feedback that are not
achievable with perfect feedback. In particular, we consider the
single-rate capacities—that is, the maximum achievable rate
for one transmitter, not considering the other rate. By posing
this problem as version of the relay channel, we show that
for many channels, the single-rate capacities with independent
feedback exceed those with perfect feedback. We present (in
Theorem 5) a sufficient condition for this to occur, and for a
sub-class of channels called additive channels we provide (in
Theorem 6) a necessary and sufficient condition for it to occur.
This observation suggests a benefit from independent feedback
that is neither cooperation (where encoders share knowledge of
each other’s messages) nor innovation (where encoders learn
about the channel instance) but pooling, where the encoders
share what they learn from the feedback to effectively give the
decoder two looks at the channel inputs.

Our notion of independent feedback is a special case of gen-
eralized feedback, e.g., [5], [21]-[27]. In generalized feedback,
the 2-user MAC has three output channels Y, Y7, Ys, where Y
is the receiver information, Y is the feedback information for
user 1, and Y5 is the feedback information for user 2. Prior
results study the case in which Y; and Y, describe channel
state (or channel noise) information (e.g., [25], [26]), the case
in which Y] and Y5, are noisy versions of Y (e.g., [5], [24]),
and other forms of non-perfect feedback (e.g., [28], [29]). An
achievable region for generalized feedback is presented in [21],

through which the study of independent feedback for the 2-
user Gaussian MAC is presented as an example. To the best
of our knowledge, the comparison between independent and
perfect feedback and notions similar to MAC-innovation have
not appeared previously in the literature.

II. MODEL

Notation: For integers n, m, and i we define [n : m| =
{n,n+1,...,m} and X* = (X1, Xa,..., X;). The robustly
typical set [16, Chapter 2] is denoted Te(") (X), where the
distribution of X is established through context. Jointly typical
sets are usually denoted just by TE("), where the relevant
variables and distribution are again established through con-
text. Entropy and mutual information are denoted by standard
notations H(-) and I(-;-). Kullback-Leibler divergence is
denoted by D(p(x)|q(x)).

A MAC with two transmitters is given by a tuple
(X1 x Xo, p(y|z1,22),)), where X, Xy are input alphabets,
p(y|x1,x2) is the conditional distribution describing the op-
eration of the channel, and ) is the output alphabet. In this
paper, we are interested in the following four different versions
of the MAC model, defined formally later in this section. The
models differ in what kind of feedback is available at each
transmitter. We denote each by a two-letter abbreviation.

o No feedback (NF): The standard MAC model.

o Perfect feedback (PF): Each transmitter receives the chan-
nel output exactly.

« Independent feedback (IF): Each transmitter receives the
same independent copy feedback output.

o Doubly-independent feedback (DF): Each transmitter re-
ceives a different independent copy feedback output.

We define an (n, Ry, Re) code for each of these models as
follows. For the NF model, the encoding function at transmitter
j at time ¢ is given by

fri o [1:2M9) = &; Q)
whereas for the other three models it is
fio[L:2M) x Yt — Ay )
The decoding function is given by
g: V" — [1:2n) x [1: 2nf), 3)

The two messages Mj, My are chosen uniformly at random
from [1 : 2"F1] and [1 : 2"F2], respectively. Attime i € [1 : n],
for the NF model the channel inputs are X;; = f;;(M;), and
for the other three models they are X;; = fji(Mj,}/ji_l),
where Yj; is the feedback received at transmitters j . To
describe the feedback under each model, let Y;, Y/, Y/ be
three different, statistically identical, versions of the channel
output at time ¢; that is,

Py, v, Y| X145, X2 (yi, y7/;7 y;/|$1i, 3321‘)
= p(yilz1i, ©2:)p(Y |14, T20)p(Y) |14, T24),  (4)

where on the right-hand side, each function is the channel
model. Thus, we have the Markov chain



(Ml, MQ, Xi_lv X;_l, Y’ifl’ Y/ifl’ Y//ifl)
= (X, Xai) = (Y, YY), 5)

The three feedback models can now be described by

PF: Y, =Yy =Y, (6)
IF: Yi; =Yy =Y/ @)
DF: Y1; =Y/, Yo; =Y. 3

The message estimates are determined by (M, My) = g(Y™).
Given a code, the probability of error is

P, = P((My, My) # (M, My)). )

A rate-pair (Ry, Ro) is achievable if there exists a sequence of
(n, Ry, R) codes with probability of error going to 0. Each
capacity region Cng, Cpr, Cir, Cpr is the closure of the set of
achievable rate-pairs for the corresponding channel model.

III. THE COVER-LEUNG (CL) REGION APPLIES TO
INDEPENDENT FEEDBACK

The Cover-Leung region RcL is the set of rate-pairs
(R1, R2) that satisfy

Ry < I(X1; YU, X2), (10)
Ry < I(X2; YU, X1), Y
Ri+ Ry < I(X4, X21Y) (12)

for some p(u)p(x1|u)p(xa|u). The proof that Rcp C Cpr
appears in [6]. Intuitively, the auxiliary variable U represents
information that is known to both transmitters from the feed-
back signal. The following theorem shows that this region
is also achievable under each independent feedback model.
This theorem is a special case of the achievable region for
generalized feedback from [21]; we provide a direct proof of
it in [1]
Theorem 1: Rcr C Cir and Rcr C Cpr.

A. Extended channel families for which the CL-region is tight

Given any MAC, we modify the channel model by append-
ing an erasure channel, as follows. Let W be a random variable
with alphabet given by ) U {e}, where € is a symbol not
contained in ). With probability 1 — p, W =Y, and with
probability p, W = e (i.e., an erasure). The choice of whether
an erasure occurs is independent from all other randomness.
We use Cpp(W) to denote the capacity region with perfect
feedback for the model with W as the output, and Cpp(Y") to
denote the capacity region with perfect feedback with Y as
the output; Rcr (W) and Rer(Y) designate the Cover-Leung
regions.

Theorem 2: If Cpp(Y)
Reu(W).

Proof: See [1]. [ |

= RCL(Y), then CPF(W) =

IV. INDEPENDENT FEEDBACK MAY BE BETTER THAN
PERFECT FEEDBACK

For a given MAC and for j = 1,2, let C;xy be the
maximum achievable rate I7; in feedback model XY; that is,
CI,XY = max{Rl : (Rl,O) € ny}

ngxy = maX{Rg : (O,RQ) € ny}

13)
(14)

We show below that for many channels, independent feedback
achieves higher single-rate capacities than perfect feedback.
First we state the cut-set outer bound for this problem, which
is a straightforward application of [16, Theorem 18.4].

Proposition 3: Let XY € {PF,IF,DF}. If (Ry, R3) € Cxy,
then there exists p(x1,x2) such that

Ry < I(X1;Y,Ys|X5) (15)
Ry < I(X9;Y,Y1|XH) (16)
R+ Ry <I(X1,X2Y), (17)

where the statistical relationship between Y, Y7, Y5 depends on
the specific channel model via (6)—(8).
Next we establish the single-rate capacities for the NF and
PF models.
Proposition 4: For (j, k) € {(1,2),(2,1)},
Cj,NF = CjﬁPF = Inax I(Xj; YIXk = xk).
P(Ij)vzk
Proof: Let (j, k) = (1,2). (An analogous proof holds for
(4, k) = (2,1)). Note that as Cy nr < Cy pr, it is enough to
prove achievability for the NF model, and the converse for
PF. Achievability without feedback follows by simply sending
the constant Xo; = x2, and using a point-to-point code from
transmitter 1. The converse for the PF model follows from
(15). In particular, since Y = Y3 in the PF model, if (R1,0) €
Cpp, then

(18)

Ry < max I(X1;Y]X2) = max I(X1;Y|Xe = z2).
p(z1,22) p(z1),x2
(19)

|

For the IF and DF models, certainly the single-rate capac-
ities are at least that of the NF model. Thus, C;r and C; pr
are at least the quantity in (18). The following theorem gives a
sufficient condition under which these capacities exceed (18).
Theorem 5: Let (j,k) € {(1,2),(2,1)}. Suppose there exist
p*(z;), x}, achieving the maximum in (18), and Z;, € X}, with

I(X;; Y| Xk = 2x) + D(py|x, (yZx) Py x, (y|2}))
o, HYX;, Xy = p)
HY'Y, Xy = x;;)

) >I(X;; Y| X, =23) (20)

where X; ~ p*(z;). Then

Cjr, Cjpr > Cj NF- (21)

Proof: Let (j,k) = (1, 2). Suppose there exist p*(x1), =3,
To satisfying (20). We next show there is an achievable rate-
pair (Ry,0) where Ry > Cj np. The argument follows from
the observation that if we ignore the feedback at transmitter 1,
then the independent feedback channel with Ry = 0 is a relay
channel. That is, transmitter 2 acts as a relay, with received



signal Y5. Since we ignore the feedback at transmitter 1, the
statistical relationship between Y; and Y, does not matter, so
the argument holds for both the IF and DF models, and we can
write Y’ for the signal received at the relay. The compress-
forward bound for the relay channel now gives the lower bound

Ol,XY Z max min{I(Xl,Xg;Y) 7I(Y/;V|X1,X27Y)7
p(z1)p(w2)
p(vlz2,y")

I(X1;V,Y|X2)} (22)

for XY € {IF, DF}.

It remains to find p(x1)p(z2)p(v|xa, y2) such that the above
quantity exceeds Cy np. We let p(z1) = p*(z1). Let ¥V =
Y U {e}, assuming € is not an element of ). For parameters
a,b € [0,1], define the following distributions:

p(r2) = (1 —a)l(zg = a3) +a-1(z2 = T3), (23)
b v=1y
=< 24
p(vlze,y') {1—b, b6 24
Note that
IV VX1, X2,Y)=bH(Y'|X1, X5,Y) (25)
=bH(Y|X1,X2), (26)

where the second equality holds because Y is an independent
copy of the channel output. Moreover

I(X1; VY| Xe) = I(X1; Y[ Xo) + [(X15 V[ X2,Y)  (27)
= I(X1;Y|X2) + bI(X1;Y'|X2,Y). (28)
Thus, if we maximize (22) over b, we achieve
bm[ax] min{l(Xy, X2;Y) — I(Y'; V| X1, X2,Y),
€fo,1
I(X; VY[ X2)} (29)
=I(X1;Y|X2) + max min{I(X5;Y)
be[0,1]
—bH(Y|X1, X2), bI(Xl;Y/|X2,Y)}. 30)
The optimal choice of b is
. I(X2;Y)
b= 1 31
wi L ) T )
. 1(Xy;Y)
= 1, ————— . 32
min {1, 7 7 2

In the limit as a — 0, X2 becomes deterministically equal to
x5. Thus

lim I(X9;Y) =0,

a—0
lim H(Y'|X,,Y) = H(Y'|Xy = 23,Y).
a—

(33)
(34)

In order for the sufficient condition (20) to hold, we must have
H(Y'|X2 = 25,Y) > 0. Thus, the limiting value of I(X5;Y)
is strictly smaller than that of H(Y’|X5,Y), which means
that for sufficiently small a, I(X5;Y) < H(Y’|X2,Y). Thus,
assuming that a is sufficiently small, the optimal b is given by
the ratio term in (32). This gives the achieved rate

BT g

I(Xl,Y|X2) + I(XQ,Y) <1 - H(Y’|X2’Y)

At a = 0, this quantity becomes simply Cinp. Thus it is
enough to prove that its derivative in a at a = 0 is positive. It
is not hard to show that

0

—I1(X2;Y)=D 1 . 36

5y () = Dole)lp(y) +loge. G6)
Thus, differentiating with respect to a,

d

— (XY

da ( » ) a=0

= —D(p(ylz2)llp(y)) + Dp(ylz2)lp(y))| (37

= D(p(y|z2)[p(ylz3))- (38)
Recall also that when a = 0, I(X5;Y) = 0. In addition,
d . B
%I(Xl, YlXQ) = —I(Xl; Y‘XQ = .’1,‘2)+I(X1, Y|X2 = LIZ‘Q).

(39)

Putting this together, the derivative of (35) with respect to a
ata=0is

— I(Xl; Y|X2 = l’;) + I(Xl,Y|X2 = i‘g)

_ H(Y|X1, X5 = 1a3)

D . 1-— . . (40
+ D(p(y|z2) p(yl=3)) < HY'|Y. X = 23) (40)
Therefore, if (20) holds, the derivative of the achieved rate in
(35) with respect to a is positive, so rates greater than C np
can be achieved. [ |

V. ADDITIVE CHANNELS

Unfortunately, the sufficient condition in Theorem 5 is
sometimes difficult to verify, and, in general, we do not know
if the condition is necessary. In this section, we study a
sub-class of channels in which we can identify a necessary
and sufficient condition for the single-rate capacities with
independent feedback to exceed the single-rate capacities with
no feedback or perfect feedback. In particular, many channels
of interest are additive, meaning that the channel behavior
follows the operations of a group, as defined formally next.

Definition 1: A MAC is additive if there exists a group G
with operation + and identity element O where

o« X1, XA CG,and 0 € X} N Ao,

o the Markov chain (X;7,X2) — Z — Y holds where

Z = X1 + Xs, and the alphabet of Z is

Z={z€G:x1+xy =2z for some x1 € X1, x5 € Xz},
41)
« there exists a function® + : V) x G — Y such that, for

any 91,92 € G, (y+91)+ g2 =y+(91+92), y+ 0=y,
and, for any z,2’' € Z,

pyizWlz) = pyiz(y + (2 — 2)|). (42)

The following theorem gives necessary and sufficient condi-
tions for the single-rate capacities with independent feedback
to exceed those with perfect feedback in additive channels.
The sufficient condition is derived from Theorem 5, and the
necessary condition follows from the cut-set bound, each
specialized using the algebraic structure of an additive channel.

21t is with some abuse of notation that we call this function +, but it should
be unambiguous.



Theorem 6: Consider an additive MAC. Let j € {1,2}.
Cjir = Cjpr = Cj nr if either of the following hold:
D mMaxpy(zy,xs) I(Xh XQ; Y) = C’j,NFu
2) For any p(z) with support in X, there exists a random
variable K where H(K|Z) = H(K|Y) =0, and Z —
K — Y is a Markov chain.
Conversely, if neither of the above holds, then Cjr, C;pr >
Cj,NF-
Proof: See [1]. [ |
The following examples illustrate additive channels for
which the conditions of Theorem 6 are or are not satisfied.
Example 1: (Binary additive erasure MAC) Let X} = Xy =
{0,1}, ¥ = {0,1,2,e}. The channel is given by

1-p, y=z +a2
p(ylz1,22) = S s y=e (43)
0, otherwise

where + denotes regular integer addition. This channel is
additive with respect to the integer addition group, since we
may take Z = X7 + Xo, and (42) is satisfied if we define

y+g, yeL
e, y=e.

y+g= (44)
For this channel, for j € {1,2}, Cjn¢ = 1 — p, whereas
mMaxXp(z, 2,) (X1, X2;Y) = (1 — p)log3. Thus, the first
condition in the theorem holds iff p = 1. The second condition
holds iff p € {0,1}. In particular, for any 0 < p < 1,
Cj,IF7Cj7DF > Cj,NF~ Moreover, for p = 0 (i.e., without
erasures), this channel satisfies the sufficient condition from
[13], so Cpr = RcL. By Theorem 1, the same holds for any
p. Therefore, for any 0 < p < 1, Cpg is a strict subset of
Cie N Cok.

Example 2: (Binary symmetric MAC) Let X1 = Xy =) =
{0,1}. The channel is given by Y = X; & X5 & N, where
N ~ Ber(p), and & denotes mod-2 addition. This channel
is additive with respect to the mod-2 addition group, with
Z = X1 ® X5. However, condition 1 of the theorem holds,
since for j € {1,2},

Cine= max I(X1,X2;Y)=1—H(p)

p(z1,22)

(45)

where H(p) is the binary entropy function. (Condition 2 of
the theorem holds iff p = 0.) Thus C} ¢ = C;pr = Cj nF-

VI. CONCLUSIONS AND OPEN PROBLEMS

Below, we list some problems left open in this work. Ques-
tion 1, and, in particular, the result in Section IV, compare the
MAC capacity region with perfect and independent feedback.
The original intuition of the authors was that perfect feedback
would be superior to independent feedback, as the former
holds the potential for innovation. However, the results of Sec-
tion IV give examples for which this intuition is incorrect. The
advantage obtained in Section IV for independent feedback
stems from the fact that an independent view of the channel
output allows, for example, transmitter 2 to act like a relay,
aiding the transmission of messages in cases where no such
aid would be possible using perfect feedback. Specifically, for

independent feedback, we exhibit a tradeoff in rates between
encoders implying that Cig ¢ Cpp.

A Dbetter understanding of the relationship between Cig
and Cpg, and thus a better understanding of the answer to
Question 1, is left open in this work. Several questions arise
naturally. First, are there example MACs for which perfect
feedback outperforms independent feedback (Cpr ¢ Cig), or,
perhaps, is it always the case that Cpr C Cig. Is it the case,
given a MAC, that either Cpp C Cig or Cig C Cpg; or are
there MACs for which both Cig ¢ Cpr and Cpr ¢ Crr, rending
the capacity regions incomparable. The Gaussian MAC is
an interesting example here: the perfect feedback capacity
region was found in [7], which uses an achievable scheme
that specifically makes use of feedback as innovation. As
such, we have not found a way to achieve the same rates
with independent feedback.? It is also interesting to focus on
the sum-rate and ask if there are example MACs for which
perfect feedback has a sum-rate advantage over independent
feedback (or, perhaps, vice-versa). In fact, we have yet to find
any example for which we can even prove that maximum
achievable sum-rate differs between the two models.

Another open question has to do with the relationship
between Cig and Cpg, which differ in that in the IF model
both transmitters receive the same feedback signal, whereas
in the DF model the transmitters receive different independent
feedback signals. All of our results apply to both models
equally, and so it is natural to ask whether their capacity
regions could ever differ. These and other questions are a
subject of future studies.
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