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ABSTRACT

The rapid growth in size of real-world graph datasets necessitates
the design of parallel and scalable graph analytics algorithms for
large graphs. Community detection is a graph analysis technique
with use cases in many domains from bioinformatics to network
security. Markov chain Monte Carlo (MCMC)-based methods for
performing community detection, such as the stochastic block par-
titioning (SBP) algorithm, are robust to graphs with a complex
structure, but have traditionally been difficult to parallelize due to
the serial nature of the underlying MCMC algorithm. This paper
presents hybrid SBP (H-SBP), a novel hybrid method to parallelize
the inherently sequential computation within each MCMC chain,
for SBP. H-SBP processes a fraction of the most influential graph
vertices serially and the remaining majority of the vertices in par-
allel using asynchronous Gibbs. We empirically show that H-SBP
speeds up the MCMC computations by up to 5.6 X on real-world
graphs while maintaining accuracy.
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1 INTRODUCTION

In real-world datasets, entities can often be grouped into clusters
based on their similarities. In some datasets, these entities are linked
via relationships, such as friendships or follows in social media
datasets, and chemical interactions in protein-protein interaction
datasets. In such datasets, often referred to as graphs, where entities
are represented by graph vertices and relationships are represented
by graph edges, such clusters are identified by looking for sets
of vertices that have a high number of within-group edges and
a low number of between-group edges. These clusters are called
communities, and community detection is the process of identifying
communities in a graph dataset. Community detection has a variety
of use cases, ranging from social media analysis [17] to identifying
functional groups in protein-protein interaction networks [21],
which has led to lots of interest and research in this field.

The structure of graph datasets can be represented using sto-
chastic blockmodels (SBMs) [11], a set of generative models that
represent the structure of a graph via the graph’s communities. In
practice, this representation manifests as a sparse matrix B of size
C x C, where C is the number of communities and B j, is either
the number of edges that originate from community a and are inci-
dent on community b, or the probability of said edges occurring,
depending on the chosen SBM representation. SBMs can be used to
generate graphs with community structure, as well as to perform
community detection in a given graph by fitting a variant of the
SBM to the given data, often via optimizing a quality function.

Stochastic block partitioning (SBP) [18, 19] is a community de-
tection algorithm based on inference over a variant of the SBM.
SBP optimizes the minimum description length (MDL) of the SBM
via the Metropolis-Hastings algorithm [8], a Markov chain Monte
Carlo (MCMC) optimization technique. This algorithm works well
on graphs that are traditionally hard to perform community de-
tection on due to a high variation of community sizes and a high
degree of between-community connectivity, but is slower and less
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scalable than alternatives, especially those based on modularity
maximization [7] and label propagation [14].

The scalability issues of SBP stem from the fact that the Metropolis-
Hastings algorithm is inherently serial. There exists an alternative
MCMC optimization technique, asynchronous Gibbs sampling [22],
which is embarrassingly parallel, but does not always converge.
Asynchronous Gibbs has been studied in various contexts [4, 5, 12],
but we are unaware of any work that has studied its applications to
community detection. In this manuscript, we present asynchronous
stochastic block partitioning (A-SBP), a variation of SBP that uses
asynchronous Gibbs instead of Metropolis-Hastings, and study how
this change affects the speedup and quality of community detection.

The asynchronous Gibbs algorithm is a conceptually promis-
ing parallel approximation of MCMC because the graph structure,
which including communities, encodes the sparse statistical de-
pendencies between vertex community memberships. Our A-SBP
results confirm that parallel MCMC can be done without sacrific-
ing much inference accuracy when the statistical dependencies are
sparse. Theoretic conditions based on the influence concept [4, 22]
have been previously proposed for predicting whether or not the
statistical dependencies are sparse, i.e. whether or not asynchronous
Gibbs sampling would work just as well as the synchronous vari-
ants in non-community detection domains, but they are non-trivial
to calculate in the SBM and community detection domain.

Based on intuitive assumptions about influence and previous
work on the information content of graph edges [10], we propose a
hybrid SBP variant, H-SBP, which divides up the vertices between
a small set of important vertices that gets processed synchronously,
and a large set of vertices that gets processed asynchronously. We
empirically show that H-SBP improves upon on the accuracy of
A-SBP in the cases where A-SBP fails to converge, at the expense of
some speedup. We also show that H-SBP matches the accuracy of
SBP in real-world graphs, while also speeding up the computation.

Our main contributions can be summed up as follows:

o We parallelize an inherently sequential MCMC method using
approximate computation via asynchronous Gibbs, leading
to 5.6 X speedup without a significant impact on accuracy.

e We provide an empirical evaluation of our parallel MCMC
method in the context of community detection. We show
that on real-world graphs, our novel hybrid stochastic block
partitioning (H-SBP) algorithm matches the accuracy of SBP
while speeding up the overall computation by up to 4.2 .

2 BACKGROUND AND RELATED WORK

In this section, we introduce background material and other work
related to this manuscript.

2.1 Stochastic Blockmodels

Stochastic blockmodels (SBMs) [11] are a set of generative models
for communities in a graph dataset. They can be used to generate
graphs with community structure, or they can be fitted to existing
graphs to infer community structure. A typical blockmodel is a
sparse matrix Mcxc, where C is the number of communities in the
graph. Depending on whether the blockmodel is microcanonical or
canonical, M, j, either holds the number of edges that originate from
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community a and are incident on community b, or the probability
of an edge forming between communities a and b, respectively.

In order to use SBMs to perform community detection, a quality
function is needed. One simple quality function is the log-likelihood
of the graph G given the blockmodel B, L(G|B). For the variant
of blockmodel we focus on, the Degree-Corrected SBM (DCSBM),
L(G|B) is given by the following equation [9, 18]:

B. .
L(GIB) = ) By log (ﬁ) (1)
i,j i 7j

where B; ; is the number of edges between vertices in communities
i and j, and dl‘zut and dli(" refer to the out- and in-edges incident on
community k, respectively.

However, L(G|B) as a quality function only works when the
number of communities is known apriori, because it will always be
maximized when every vertex is placed in a separate community.
In order to prevent that from happening, the Minimum Description
Length (MDL) is used instead. For the DCSBM, the MDL is given
by the following equation [9, 18]:

c2
MDL = Eh (—

E
where h(x) = (1+x)logl+x — xlogx, and E, V, and C are the
number of edges, vertices, and communities in the graph G, respec-
tively.

)+V10gC—L(G|B), @)

2.2 Stochastic Block Partitioning

Stochastic block partitioning (SBP) [9, 18, 19] is an iterative com-
munity detection algorithm based on inference over the stochastic
blockmodel. It comprises of two phases — the block merge phase and
the MCMC phase, which is implemented via the serial Metropolis-
Hastings algorithm [8]. In the block merge phase (see Algorithm 1),
amerge is proposed for every community in B. The merges are then
sorted by the resulting change in MDL, AMDL, and are applied
one after another until the number of communities is halved (or
otherwise reduced by a fixed amount). In the MCMC phase (see
Algorithm 2), changes in community membership are proposed for
each vertex in G. For each proposal, AMDL is calculated, and the
Metropolis-Hastings acceptance ratio is computed from the AMDL.
Based on this ratio, if the proposal is accepted, the blockmodel B
is updated in place. The overall algorithm performs a fibonacci
search by alternating between the two phases until the MDL is
minimized, and the optimal number of communities is found. It is
visually summarized in Fig. 1.

Computing AMDL and the subsequent updates to B are the two
main computational bottlenecks of SBP. The block merge phase is
embarrassingly parallel until the sort and application of merges. The
MCMC phase, on the other hand, is inherently serial because it runs
a single MCMC chain until convergence. Within this chain, every
new proposal depends on the up-to-date state of the blockmodel.
Using stale versions of the blockmodel could lead to inaccurate
proposals. Parallelizing the MCMC chain is therefore non-trivial.
Parallelizing a single MCMC chain would typically incur a lot of
communication overhead, while running multiple chains in par-
allel on the same data may lead to significant repeated "burn-in"
time as the MCMC chain stabilizes on each process [24]. There
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Figure 1: Snapshots of a graph at various stages of the stochastic block partitioning algorithm.

Data: Graph G, Blockmodel B, int x
Result: Updated Blockmodel B
initialize best_merges container;
for community c € B do in parallel
repeat x times
Propose a new community ¢’ to merge with c;
Calculate AMDL when c is merged with ¢’;
if AMDL is best obtained so far for c then
‘ Store ¢’ and AMDL for ¢ in best_merges;
end

end
end
sort best_merges on AMDL;
repeat
¢, ¢/ = best_merges.pop();
Merge c into ¢’;
until number of communities is halved,
Algorithm 1: Block Merge Phase

has been some work in parallelizing MCMC by dividing the data
between worker threads/processes and then combining the samples
once all chains are sufficiently mixed [15], but combining multiple
blockmodels is a non-trivial proposition. Consequently, the MCMC
phase in SBP is run serially, and generally takes up the majority of
algorithm runtime, as seen in Fig. 2.

2.3 Asynchronous Gibbs

Asynchronous Gibbs [22] is an alternative, parallel MCMC algo-
rithm for sampling from an unknown distribution where multiple
workers propose samples for the same Markov chain. From a com-
putational perspective, there are two main differences between
asynchronous Gibbs and Metropolis-Hastings. The first is that the
asynchronous Gibbs algorithm accepts all proposals. The second
is that changes to the underlying distribution are communicated
asynchronously, and may not be received by other workers. That
is, each worker has an incomplete and partially stale view of the
current state of the Markov chain. This limitation breaks the depen-
dency chain of MCMC algorithms, and it has been shown that the

Data: Graph G, Blockmodel B, double t, int x
Result: Updated Blockmodel B
compute MDL of B;
repeat
foreach vertexv € G do
propose new community c for v;
compute AMDL for proposed move;
compute Metropolis-Hastings ratio from AMDL;
if move is accepted then
‘ move v to ¢ and update B;
end
end
compute MDL of B;
until AMDL < t X MDL or x times;
Algorithm 2: MCMC Phase

asynchronous Gibbs is not guaranteed to converge at the optimal
solution.

There has been a substantial amount of work into understanding
when asynchronous Gibbs will converge quickly. In [4], it was
shown that asynchronous Gibbs will converge quickly when the
total influence on the system, & < 1. The value of « can be computed
using Equation 3.

a= r?gsze; o, X)) = mCY)lirv. - @)
where 7 is a probability distribution of the set of variables I, B;
is the set of all state pairs (X, Y) that only differ by the value of
variable j, and 7;(:|X(;}) is the conditional distribution of variable
i in 7z given that all other variables in state X are fixed.

However, for a complex problem like community detection, com-
puting « becomes computationally intractable — we find that a
naive implementation of the @ computation, where the vertices are
the variables in the model and the communities describe the states
that the variables can belong to, and assuming a known initial state
of the blockmodel B with C communities, is an O(V2C3) operation.
Factoring in initialization, access and updates to any underlying
data structures further worsens the computational complexity. Such
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Execution Time Breakdown on Synthetic Graphs
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Figure 2: The breakdown of SBP execution time between the MCMC phase and the rest of the algorithm. The MCMC phase

takes up to 98% of the overall SBP execution time.

a computation is infeasible on large graph datasets and real-world
scenarios where graphs may have upwards of a billion vertices and
hundreds of thousands, if not more, communities.

A more accurate version of asynchronous Gibbs is the exact
asynchronous Gibbs algorithm, as proposed in [22]. This version
of asynchronous Gibbs computes the Metropolis-Hastings ratio for
each proposed vertex move and uses a similar acceptance criterion
to the Metropolis-Hastings algorithm, at the expense of additional
communication overhead. We base our asynchronous Gibbs imple-
mentation on this exact algorithm.

3 METHODOLOGY

In this section, we describe the methods we use to parallelize a single
MCMC chain to speed up community detection. First, we describe
our asynchronous Gibbs-based algorithm. Then, we describe a hy-
brid Metropolis-Hastings and asynchronous Gibbs approach, which
process important vertices serially, and less important vertices us-
ing the faster asynchronous Gibbs approach, thereby providing a
compromise between speed and accuracy.

3.1 Asynchronous Stochastic Block Partitioning

We introduce asynchronous stochastic block partitioning (A-SBP),
our shared memory asynchronous Gibbs-based implementation
of SBP. Here, we replace the Metropolis-Hastings algorithm with
a version of asynchronous Gibbs that is suitable for blockmodel
inference. In this algorithm, the blockmodel B and graph G are
stored in shared memory and accessible to all threads without
locks. Each thread is responsible for proposing a new community
for a set of vertices, and computing the Metropolis-Hastings ratio
for each proposal. If a move is accepted, then the thread updates
the community membership of the vertex for which the move was
proposed without modifying the blockmodel. Once a pass has been
made over all vertices v € G, the blockmodel B is rebuilt using
the updated community membership information. This is repeated
until AMDL falls below a threshold ¢ or the number of iterations
reaches a threshold x. The pseudocode for the MCMC phase of
A-SBP is outlined in Algorithm 3.

Like in the Exact Asynchronous Gibbs method proposed in [22],
A-SBP computes the Metropolis-Hastings ratio and does not accept

Data: Graph G, Blockmodel B, double t, int x
Result: Updated Blockmodel B
compute MDL of B;

repeat
copy community _membership vector from B;

for vertexv € G do in parallel
propose new community ¢ for v;
compute AMDL for proposed move;
compute Metropolis-Hastings ratio from AMDL;
if move is accepted then
‘ community_membership[ov] = c;
end
end
rebuild B from community_membership;
compute MDL of B;

until AMDL < t X MDL or x times;
Algorithm 3: MCMC Phase of A-SBP

every proposed change to B. However, A-SBP does not communicate
changes to B in an asynchronous manner. Instead, the changes are
"communicated" at the end of every pass over the graph vertices,
meaning the Asynchronous Gibbs sampler is always computing
the Metropolis-Hastings ratio using a distribution that is at most
one iteration stale. This is necessary for the community detection
problem because B can be large, especially in the initial iterations,
and having each thread store a copy of B that it can independently
modify would lead to memory bandwidth issues. Moreover, the
overhead from rebuilding B would still be present using the method
in [22], since each thread would have a different version of B in
memory, and these versions would have to be consolidated in order
to compute an accurate AMDL for the updated blockmodel. This
overhead can be reduced by performing the reconstruction of B in
parallel.

3.2 Hybrid Stochastic Block Partitioning

Previous work [4] has linked the performance of asynchronous
Gibbs sampling with the total influence « in the graph G. In terms
of community detection, the value of alpha can be summarized as
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the maximum change in the probability distribution of the commu-
nity membership of any vertex i, when another vertex j changes
its community membership. Computing « is intractable on large
graphs, and thus studying influence in the real-world setting is
challenging. However, there are certain intuitive assumptions that
can be made about influence and vertex degree:

o High-degree vertices are generally the most influential ver-
tices for community detection. This assumption is somewhat
corroborated by a related finding in [10], which showed that
the community information content of an edge is propor-
tional to the product of the vertex degrees of the vertices
that make up said edge.

e Because many, if not most real-world graph degree distribu-
tions follow the power law [1], the number of highly influ-
ential vertices in a graph is going to be relatively low.

Based on these assumptions, we introduce hybrid stochastic
block partitioning (H-SBP). In H-SBP, vertices are initially sorted
by their degrees, and a set of high-degree vertices, V*, is selected.
Then, in each MCMC iteration, first one pass of the Metropolis-
Hastings algorithm is run on the vertices in V*, giving them a
chance to switch communities first. A second pass is then performed
over the remaining low-degree vertices V™~ using A-SBP. In this
manner, H-SBP trades off some of the parallelizability and runtime
improvement of A-SBP for improved convergence, which translates
into higher result quality. The pseudocode for H-SBP is shown in
Algorithm 4.

Data: Graph G, Blockmodel B, double ¢, int x
Result: Updated Blockmodel B
compute MDL of B;
repeat
copy community_membership vector from B;
foreach vertexv € V* do
propose new community ¢ for v;
compute AMDL for proposed move;
compute Metropolis-Hastings ratio from AMDL;
if move is accepted then

‘ move v to ¢ and update B;
end
end
for vertexv € V™ do in parallel
propose new community ¢ for v;
compute AMDL for proposed move;
compute Metropolis-Hastings ratio from AMDL;
if move is accepted then

‘ community_membership[v] = c;
end

end

rebuild B from community_membership;
compute MDL of B;

until AMDL < t X MDL or x times;
Algorithm 4: MCMC Phase of H-SBP
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4 EXPERIMENTAL SETUP

In this section, we outline how we conduct our experiments.

4.1 Datasets

Table 1: Synthetically Generated Graphs

ID Vv E
S1 198101 321071
S2 199643 425466
S3 197894 322196
S4 199219 436203

S5 225999 4463267
S6 225999 5864094
S7 225999 4536499
S8 225999 6327321

S9 197552 321509
S10 199564 425382
S11 196287 323076
S12 199564 426813

S13 225999 4502604
S14 225999 5891353
S15 225999 4495263
S16 225999 6277133

S17 199285 322338
S18 201169 427949
S19 198875 322236
S20 201506 447244

S21 225999 4481133
S22 225999 5896200
S23 225999 4523706
S24 225999 6247681

= = = = = = = U TGO UT U T UT DWW W W0 W W W Y

We use a DCSBM-based graph generator, implemented via the
‘graph-tool’ library [20], to generate several synthetic graphs with
known community memberships. We vary the degree distribution
and strength of community structure in said graphs by modifying
several input parameters to the generator, including minimum and
maximum vertex degree, power law exponent of the degree distribu-
tion, and the ratio of within-to-between community edges r in the
DCSBM. The parameters of the resulting graphs are summarized in
Table 1. Note that because the generator function is stochastic and
tries to fit both the DCSBM and the provided degree distribution,
the final graphs are close to, but do not correspond exactly to the
input parameters provided.

We also select 14 unweighted, directed real-world graph datasets
from the SuiteSparse Matrix Collection [3] from different domains
(see Table 2). Their community information is unknown, and as a
result so are their r values.

4.2 Experiments

For each synthetic and real-world graph, we run SBP, A-SBP, and
H-SBP 5 times, and select the result that leads to the lowest MDL.
In all the runs, the block-merge phase is run in parallel, so any
differences in runtime can be attributed solely to the change in
the algorithm used in the MCMC phase. For H-SBP, we reserve
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NMI vs Normalized MDL
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Figure 3: Comparison of the correlation between NMI and Modularity (left), and NMI and Normalized MDL (right). Normalized

MDL is more strongly correlated with NMI than Modularity.

Table 2: Real-World Graphs

ID \4 E

rajat01 6847 43262
wiki-Vote 7115 103689
barth5 15622 61498
cit-HepTh 27770 352807
p2p-Gnutella31 62586 147892
soc-Epinions1 75879 508837
soc-Slashdot0902 82168 948464
cnr-2000 325557 3216152
amazon0505 410236 3356824
higgs-twitter 456626 14855842
Stanford-Berkeley 683446 7583376
web-BerkStan 685230 7600595
amazon-2008 735323 5158388
flickr 820878 9837214

15% of the highest-degree vertices to be processed in sequential
order. To compute MCMC phase speedup, we measure the total
time taken by the MCMC phase across all MCMC iterations on
all runs. Additionally, we measure the total time taken up by the
community detection algorithm, including the block merge phase,
to compute the overall speedup.

We also run a strong scaling experiment using H-SBP on the soc-
Slashdot0902 graph, where we vary the number of parallel threads
from 1 to 128, and record the resulting total MCMC phase runtime.

On synthetic graphs with known ground truth, we measure the
normalized mutual information (NMI) [13] between the community
memberships in the ground truth and those found by the commu-

nity detection algorithm. We calculate NMI as NMI = %,
where I(X,Y) is the mutual information between two sets of com-
munity memberships X and Y, and H(X) is the entropy of the
community memberships X.

In the case of the real-world graphs, where there is no known
ground truth, we measure the MDL of the blockmodel that forms
the algorithm’s solution. MDL has previously been used to evaluate

graphs with no ground truth [23], but it varies greatly with graph

size. In order to make the MDL values comparable, we expand
on this work by presenting the normalized version of the MDL —
MDL""™ — which is normalized via a structure-less null block-
model. We choose the null blockmodel to be one where every vertex
belongs to the same community. The normalized MDL is therefore
given by MDL"™™ = _MDL, where MDL™!! is the MDL of
the null blockmodel for a given graph. We find that MDL"°"™ not
only correlates strongly with NMI on synthetic graphs, but is also
comparable across graphs. Furthermore, it is a direct measure of
how well the SBP algorithm performs at minimizing MDL. For
the sake of completeness, we also present the Newman’s Modular-
ity [16] scores for the same runs. However, Modularity has been
previously shown to a) not always be able to separate graphs with
very different structure [2], and b) not always correspond to the
most semantically appropriate community labels [6]. In our ex-
periments, we find that Modularity does correlate with NMI on
synthetic graphs, but not as strongly as MDL"®"™ (see Fig. 3).

We run these experiments on the Virginia Tech Tinkercliffs
cluster. Each node on the cluster contains an AMD EPYC 7702
CPU with 128 cores and 256 GB of memory. We use OpenMP to
parallelize the parallel loops in Algorithms 1, 3 and 4 with 128
threads in all experiments unless stated otherwise.

5 RESULTS

In this section, we discuss the results obtained from the previously
described experiments. For the sake of brevity, we redact results
of 6 synthetic graphs on which all 3 algorithms failed to converge
due to a combination of low r values and low density, leading to
too little community structure being present in the graph.

5.1 Accuracy Results on Synthetic Graphs

Our results show that A-SBP matches the accuracy, in terms of NMI,
of SBP on 10 out of the 18 graphs, but fails to properly converge
otherwise. H-SBP, on the other hand, matches the accuracy of SBP
on all graphs on which SBP converges, making it the more versatile
approach. A summary of these results is shown in Fig. 4a.

On two of the graphs, S9 and S11, A-SBP and H-SBP achieve
higher NMI than SBP. On S9, SBP fails to converge entirely, while
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(a) NMI results with SBP, H-SBP, and A-SBP on the synthetic graphs. A-SBP matches the scores obtained with SBP on approximately
half of the synthetic graphs, while H-SBP performs as well as SBP on all 18 graphs.
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(b) MCMC phase speedup results with SBP, H-SBP, and A-SBP on the synthetic graphs. A-SBP provides significant speedups over SBP
on all graphs, up to just over 6X. H-SBP also provides a significant speedup on most graphs, up to approximately 2.3X.

Figure 4: Experimental results on synthetic graphs, showing NMI results (top) and MCMC phase speedup results (bottom).

A-SBP achieves an NMI of approximately 0.4. On S11, both algo-
rithms converge, but A-SBP achieves a higher NMI score. However,
both of these graphs are very sparse and as a result have little
community structure; both of their true MDL™°""™ values are very

A-SBP.

close to 1.0, meaning there is not much more structural information

in the ground truth labels than in placing all vertices in a single
community. On these two graphs, H-SBP behaves similarly to A-
SBP, showing NMI values in between those obtained with SBP and
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Normalized MDL Analysis on Real-World Graphs
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Figure 5: Normalized MDL (top) and Modularity (bottom) results with SBP and H-SBP on the real-world graphs. H-SBP matches
the result quality of SBP on all graphs, in terms of both Normalized MDL and Modularity.

5.2 Speedup results on synthetic graphs true whether or not A-SBP converges, and we see the same speedup
Our results on synthetic graphs show that A-SBP significantly behavior even in the 6 redacted graphs where all 3 algorithms fail
speeds up the MCMC phase speedups over SBP on all graphs, rang- to converge.

ing from approximately 1.7 X on S15 to 7.6 X on S8. The MCMC
phase runtime of H-SBP is generally in between that of SBP and
A-SBP, with the highest speedup being just 2.7 X on S8. This is de-
spite the fact that both A-SBP and H-SBP require significantly more
MCMC iterations to converge on the synthetic graphs (see Fig. 8a
in Appendix A). The speedup results are summarized in Fig. 4b.
Due to Amdahl’s Law, the overall speedup over SBP, including the
block merge phase, ranges from 1.5 X to 5.7 X for A-SBP, and 0.9 X
to 2.6 x for H-SBP.

H-SBP does lead to slight slowdown over SBP on $23 and matches
the runtime of S21. However, it provides speedups over SBP on all
other graphs, and we do not observe a consistent trend between
graph size or density and speedup with either A-SBP or H-SBP. It is
also interesting to note that the speedups incurred with A-SBP hold

5.3 Accuracy results on real-world graphs

On real-world graphs, our results show that H-SBP matches the
accuracy obtained by SBP on all 12 graphs, both in terms of Mod-
ularity and Normalized MDL, as seen in Fig. 5. Given that these
graphs cover a large number of domains, this strongly suggests
that the paralle] H-SBP algorithm is a viable option for speeding
up community detection in real-world scenarios.

On the p2p-Gnutella31 graph, all 3 algorithms fail to converge.
The algorithms result in a MDL"®"™ > 1, suggesting that it has
little-to-no inherent community structure. There could be a number
of reasons for this, including too many between-community edges
for a graph of its density, or all vertices in the graph being sampled
from the same structural community.
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MCMC Phase Speedup Analysis on Real-World Graphs
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Figure 6: MCMC phase speedup results with SBP and H-SBP on the real-world graphs. H-SBP provides a speedup over SBP on
all but one of the graphs tested, with the highest speedup being 5.6 X on the web-BerkStan graph.

Strong Scaling Analysis of MCMC Runtime on soc-Slashdot0902
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Figure 7: Strong scaling results of the MCMC phase runtime using H-SBP on the soc-Slashdot0902 graph. H-SBP benefits from
more threads in all cases, although the benefits begin to taper off around the 16 thread mark.

5.4 Speedup results on real-world graphs

H-SBP provides a speedup over SBP on all but one of the real-world
graphs tested, with the highest speedup being 5.6 X on the web-
BerkStan graph. However, H-SBP leads to an increase in runtime on
barth5. On this graph, the number of iterations needed by H-SBP to
converge is much higher than in the other real-world graphs (see
Fig. 8b in Appendix A), although in general, the difference between
the number of MCMC iterations between H-SBP and SBP in real-
world graphs appears to be much smaller than in the synthetic
graphs. Hence, the generally higher speedup numbers in the real-
world graphs when compared to the synthetic graphs. The speedup
results are summarized in Fig. 6. The overall speedup over SBP,
including the block merge phase, ranges from 0.5 X on barth5 to
4.2 X on higgs-twitter. The overall speedup on soc-Slashdot0902
was higher than on web-BerkStan because the MCMC phase took
up more of the algorithm runtime on soc-Slashdot0902 than on
web-BerkStan.

5.5 Strong Scaling Results

Our strong scaling experiment shows that, at least until 128 threads,
the runtime of H-SBP improves with additional threads, showing

that the algorithm is highly parallelizable. The benefit does taper
off between the 8 and 16 thread mark. This can be improved with
better load balancing, which is a non-trivial endeavor and out of
the scope of this paper.

5.6 Discussion

Our results show that in the real-world scenario, H-SBP is a very
viable approach to parallelizing a single MCMC chain, and con-
sequently, parallelizing blockmodel inference for community de-
tection. H-SBP matches the result quality of SBP, in terms of NMI,
MDL™7"™ and Modularity on all graphs tested, even when includ-
ing real-world graphs from a number of different domains, includ-
ing a co-purchasing and a book similarity graph, and a number of
graphs from the social and web domains. H-SBP also speeds up
the MCMC phase by up to 5.6 X on a majority of the real-world
graphs, with the only real-world graph on which it does not provide
a speedup being very sparse and having an exceptional increase
in the number of MCMC iterations resulting from asynchronous
processing.

These speedups occur despite an increase in the number of
MCMC iterations resulting from asynchronous processing. Fur-
ther optimizations, which are out of the scope of this paper, could
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improve A-SBP and H-SBP speedup by decreasing the number of
MCMC iterations (with a relaxed threshold) or casting the graph to
be undirected, enabling data access and storage optimizations for
the blockmodel.

6 CONCLUSION

In this work, we parallelize MCMC within the chain in the context
of community detection without sacrificing accuracy. We imple-
ment and study two variants of stochastic block partitioning (SBP),
an agglomerative community detection algorithm based on sto-
chastic blockmodel inference, which uses MCMC techniques to
move vertices between communities. The first of these variants is
asynchronous SBP (A-SBP), a variant of SBP based on the parallel
asynchronous Gibbs algorithm. To the best of our knowledge, this
is the first work that studies asynchronous Gibbs in the context of
community detection. We show that A-SBP can match the result
quality of SBP on many synthetic graphs, with the added benefit of
significant MCMC phase speedups of up to 7.6 X due to its ability
to be parallelized. However, identifying when A-SBP will fail to
converge is challenging due to the computational complexity of
computing influence « on large graphs.

Based on assumptions on the link between vertex degree and
a we develop hybrid SBP (H-SBP), the second SBP variant. H-SBP
processes the majority of the graph vertices using parallel asynchro-
nous Gibbs, but reserves a user-defined percentage of influential,
high degree vertices to be processed first, and in a synchronous
fashion. We then show that H-SBP is a more generally applicable
algorithm, in that it is able to match the accuracy of SBP on all
tested graphs, even when A-SBP fails to converge, at the expense
of some speedup.

Put together, these findings provide a novel direction for scaling
accurate community detection. The asynchronous Gibbs algorithm
is embarrassingly parallel, needing no locks and virtually no com-
munication between threads. Therefore, a more optimized A-SBP
implementation is likely possible, with better load balancing and
utilizing data structures that are more suited to repeated reconstruc-
tion, as well as possibly a more robust early stopping mechanism to
reduce the impact of additional MCMC iterations incurred with A-
SBP. Speeding up the graph reconstruction phase would also make
batched A-SBP possible, which could potentially provide similar
benefits to H-SBP without the need for synchronous processing.

In future work, we plan to study alternative, easy-to-compute
heuristic metrics for predicting whether or not A-SBP will converge
on large graphs. We also intend to test our approach on larger
real-world graphs, as well as on weighted and undirected graphs.
Additionally, we plan to study optimizations specific to the A-SBP
and H-SBP algorithms, and we plan to study how best to distribute
A-SBP and H-SBP in order to further speed up the algorithms and
enable processing of graphs that are too large to fit in memory on
a single computational node.
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A NUMBER OF MCMC ITERATIONS

PERFORMED BY EACH ALGORITHM

In this section, we present evidence on the impact of

execution on the number of MCMC iterations needed for conver-
gence. On the synthetic graphs (see Fig. 8a), A-SBP and H-SBP

Wanye, Gleyzer, Kao and Feng.

require a significantly higher number of MCMC iterations to con-

asynchronous

verge to a final answer. This occurs regardless of whether or not the
A-SBP algorithm ends up matching the accuracy of SBP. Surpris-
ingly, on real-world graphs (see Fig. 8b), the difference in MCMC
iterations between H-SBP and SBP is less pronounced, except in
the barth5 graph.

MCMC Iteration Analysis on Synthetic Graphs
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Figure 8: The number of MCMC iterations required by SBP, H-SBP, and A-SBP to converge to a final answer on the synthetic
(top) and real-world (bottom) graphs. H-SBP and A-SBP require significantly more MCMC iterations to converge than SBP does
on synthetic graphs. In real-world graphs, the number of MCMC iterations is relatively equal, except in the barth5 graph.
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B PAPER ARTIFACT DESCRIPTION
APPENDIX

Computational Artifacts: Yes

B.1 Artifact Description Details

The manuscript involves 2 sets of experiments; one where A-SBP,
H-SBP and SBP were run on a set of synthetic graphs, and one
where SBP and H-SBP were run on a set of real-world graphs. Each
run is performed 5 times, and the best result is taken. Artifact 1
contains the code for the 3 SBP variants, as well as the code for
generating the synthetic graphs. It also contains sample scripts for
generating the graphs and running the experiments.

B.2 Software Artifact Availability

The code for running SBP, A-SBP and H-SBP is available via a public
GitHub repository.

B.3 Data Artifact Availability

The exact synthetic datasets that we used in this work are not
currently available for download; however the parameters used to
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generate the datasets as well as the generation script is available
via a public GitHub repository. The real-world datasets used are
available for download via the SuiteSparse Matrix Collection.

B.4 Artifact1

GitHub URL:
https://github.com/vtsynergy/Hybrid-Stochastic-Block-Partitioning
Artifact Name: SBP, A-SBP, and H-SBP algorithm code repository.
Relevant hardware details: Experiments were run on the Virginia
Tech TinkerCliffs cluster. Sample scripts are included in the reposi-
tory under the ‘scripts‘ directory. Each experiment run was done
on 1 node running 128 threads, each on 1 CPU core.

Operating systems and versions: Red Hat Enterprise Linux Server
release 7.9.

Compilers and versions: GCC v8.2.0.

Applications and versions: CMake v3.18.4, OpenMPI v4.1.1.
Libraries and versions: graph-tool v2.29.

Dataset URL: The datasets are available through the SuiteSparse
Matrix Collection, at https://sparse.tamu.edu/.
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