Carbon Molecular Sieve-derived POC/Mixed-Matrix Membranes for Gas Separation

Isha kowey, Ali Rownaghi

Abstract:

Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metalorganic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gaspairs. Here we present results of gas selectivity and diffusion of different gases (C₂H₆, C₂H₄, C₃H₈, C₃H₆, H₂, N₂, CO₂, and CH₄) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C₂H₆, C₂H₄, C₃H₈, C₃H₆, H₂, N₂, CO₂, and CH₄) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C₂H₆, C₂H₄, C₃H₈, C₃H₆ adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO₂, CH₄, CO, N₂ and H₂ adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H₂/CO₂, CH₄/CO₂ and C₃H₆/C₃H₈ feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.

This work was supported by the National Science Foundation Grant No. 2316143.