
Fast ORAM with Server-Aided
Preprocessing and Pragmatic
Privacy-Efficiency Trade-Off

Vladimir Kolesnikov1, Stanislav Peceny1(B), Ni Trieu2, and Xiao Wang3

1 Georgia Tech, Atlanta, GA, USA
{kolesnikov,stan.peceny}@gatech.edu

2 Arizona State University, Tempe, AZ, USA
3 Northwestern University, Evanston, IL, USA

Abstract. Data-dependent accesses to memory are necessary for many
real-world applications, but their cost remains prohibitive in secure com-
putation. Prior work either focused on minimizing the need for data-
dependent access in these applications, or reduced its cost by improving
oblivious RAM for secure computation (SC-ORAM). Despite extensive
efforts to improve SC-ORAM, the most concretely efficient solutions still
require ≈0.7 s per access to arrays of 230 entries. This plainly precludes
using MPC in a number of settings.

In this work, we take a pragmatic approach, exploring how concretely
cheap MPC RAM access could be made if we are willing to allow one of
the participants to learn the access pattern. We design a highly efficient
Shared-Output Client-Server ORAM (SOCS-ORAM) that has constant
overhead, uses one round-trip of interaction per access, and whose access
cost is independent of array size. SOCS-ORAM is useful in settings with
hard performance constraints, where one party in the computation is
more trust-worthy and is allowed to learn the RAM access pattern. Our
SOCS-ORAM is assisted by a third helper party that helps initialize the
protocol and is designed for the honest-majority semi-honest corruption
model.

We implement our construction in C++ and report its performance.
For an array of length 230 with 4B entries, we communicate 13B per
access and take essentially no overhead beyond network latency.

Keywords: Secure Computation · Oblivious RAM

1 Introduction

Real-world applications rely heavily on data-dependent accesses to memory.
Despite many recent improvements, such accesses remain a bottleneck when
evaluated in secure two-party and multiparty computation (2PC, MPC). While
in plaintext execution such accesses are cheap constant-time operations, they
are expensive in MPC, since access pattern must remain hidden. A naive secure
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev et al. (Eds.): CSCML 2023, LNCS 13914, pp. 439–457, 2023.
https://doi.org/10.1007/978-3-031-34671-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34671-2_31&domain=pdf
https://doi.org/10.1007/978-3-031-34671-2_31

440 V. Kolesnikov et al.

solution to this problem is linear scan, which hides the access pattern by touching
every element in memory and multiplexing out the result. This, of course, incurs
overhead linear in memory size for each access. A much more scalable approach is
to instead use more complex Oblivious RAM (ORAM) protocols [GO96], which
achieve polylog complexity, while still hiding access patterns.

The first ORAM considered the client-server setting [GO96], where a client
wishes to store and access her private array on an untrusted server. Soon after,
initiated by [OS97,GKK+12], ORAM was shown applicable to RAM-based
MPC: Secure RAM access was achieved for MPC simply by having the par-
ties execute ORAM client inside secure computation, while both parties share
the state of the server.

Despite extensive research focused on optimizing ORAM for secure compu-
tation (SC-ORAM) and ORAM in general, the overhead remains prohibitive for
many applications. For example, a recent SC-ORAM Floram [Ds17] takes ≈2
s per access, communicates ≈5 MBs, and requires 3 communication rounds on
arrays of size 230 with 4-byte elements.

Such ORAM performance is unacceptable in settings where many accesses
of large arrays are needed. Examples include network traffic or financial markets
analyses, where data is continuously generated and frequently accessed.

3PC: 2PC with a Helper Server. Fortunately, many real-world applications can
use a third party to help with computation. This third party may already be
a participant of the computation (e.g. provide input and/or receive output) or
can be brought as an (oblivious) helper server. As MPC of many functions is
much faster in a 3-party honest-majority setting than in the two-party setting,
[FJKW15] ask whether SC-ORAM can also be accelerated. [FJKW15] present
a solution and report total wall-clock time of 1.62 s on a 236-element array. The
rest of the measurements focus on the online costs; based on the discussion in
the paper we estimate the total cost for 230-element array is ≈1.25 s. A follow-up
work [JW18] then asymptotically reduced the bandwidth of [FJKW15], but still
reports ≈0.7 s CPU time per access on a 230-element array.

Although 3-party SC-ORAM improves over 2-party SC-ORAMs, a 0.7 s RAM
access time will still be considered prohibitive in many (most?) realistic use
scenarios. Note, accessing smaller-size memories would be, of course, cheaper:
[JW18] reports 0.1 s CPU time per access on a 210-element array. For context,
note that garbled circuit linear scan of 210-element array would require about
215 gates and would take less than 0.1 s on a 1 Gbps LAN.

Our Goals. In this work, we are interested in exploring what secure compu-
tation is possible in settings with hard performance constraints. We thus seek
maximizing performance at the cost of relaxing the security guarantees.

We start in the easier 3-party setting, and ask whether we can get further
significant improvement if one party in the computation is more trust-worthy
and is allowed to learn the access pattern.

Fast ORAM with Server-Aided Preprocessing 441

This trust model may naturally occur in real-world scenarios (see Sect. 1.1)
e.g. if one of the parties is an established entity with trusted oversight, such as
a government or a law enforcement agency.

Our Setting. We summarize our considered setting. Our Shared-Output Client-
Server ORAM (SOCS-ORAM) protocol is run by three parties A, B, and C. B
holds an array d of n l-bit entries. A requests up to k read or write accesses to
d. For each access, A inputs index i ∈ [n] and operation op (read or write).
A and B hold a sharing of a value to write �x�. C holds no input and does not
participate in ORAM access; it is used to help initialize SOCS-ORAM.

All parties are semi-honest and do not collude with one another. We allow
A to learn the access pattern – indeed Alice can be viewed as ORAM client; B
and C learn nothing from the computation.

1.1 Motivation

Recall that our work explores a trade-off between maximizing performance at the
cost of relaxing security guarantees. This is a natural and pragmatic research
direction. For example, a similar trade-off was also considered in Blind Seer
[PKV+14], a scalable privacy-preserving database management system that sup-
ports a rich query set for database search and addresses query privacy. [PKV+14]
motivate the trade-off, warn of potential pitfalls, and convincingly argue its ben-
efits. Our work is complementary. SOCS-ORAM can be used as a drop-in no-
cost replacement to improve security of Blind Seer’s unprotected RAM access.
Indeed, Blind Seer similarly uses three parties but allows two parties (i.e. all
parties other than helper server (Server in their notation)) to learn the access
pattern, compared to only one party in our work. We believe this can be a
crucial difference as trust is unbalanced in natural settings (e.g., bank may be
trusted more than clients, wireless service provider – more than each individual
customer, and government agency – more than private businesses).

We now briefly discuss several motivating applications spanning network
security, financial markets, and review Blind Seer’s air carrier’s passenger man-
ifest analysis.

Network Data Analysis. There is a significant benefit in operation of large-scale
analysis centers, such as Symantec’s DeepSight Intelligence Portal. These centers
collect network traffic information from a diverse pool of sources such as intrusion
detection systems, firewalls, honeypots, and network sensors, and can be used
to build analysis functions to detect network threats [PS06].

Network data is highly sensitive; revealing network configuration and other
details may significantly weaken its defences. Using MPC instead to enable
expert network analysis and vulnerability reporting is a (costly) solution. Net-
work analysis works with large volumes of data (e.g. Symantec’s DeepSight has
billions of events) and requires a large number of RAM accesses. Paying ≈1 s
per RAM access is clearly not feasible for even trivial analyses.

442 V. Kolesnikov et al.

Using SOCS-ORAM and placing, arguably, a reasonable trust in the analysis
center (allowing it to learn RAM access pattern), may potentially enable this
application.

Financial Markets Analysis. SOCS-ORAM can be used to identify fraudulent
activity, such as insider trading in financial markets. In this use case, a regula-
tory agency such as SEC or FINRA investigates and analyzes data from broker-
ages. Typically SEC initiates its investigation based on suspicious activity in an
individual security. SEC next makes a regulatory request. So-called blue sheets
data brokerage response contains trading and account holder information. SEC’s
Market Abuse Unit (MAU) then runs complex analyses on the data, which may
contain billions of rows. We note that there are privacy concerns for both parties.
SEC does not want to reveal what they are investigating, while brokerages do
not want to share their clients’ data that is not essential for the investigation.
This scenario is a fit for our SOCS-ORAM: The brokerage learns nothing about
the investigation, while SEC learns only the output of the analysis functions,
alongside the access pattern.

Passenger Manifests Analysis. Passenger manifests search and analysis is one of
the motivating applications of the Blind Seer DBMS [PKV+14]. It considers a
setting where a law enforcement agency wants to analyze or search air carrier’s
manifests for specific patterns or persons. The air carrier would like to protect its
customers’ data, and hence reveal only the data necessary for the investigation.
The law enforcement agency would like to protect its query. Today’s approach
may be to simply provide the manifests to the agency. Using MPC (and keep-
ing the private data private) would help allay the negative popular sentiment
associated with large scale personal data collection by government.

1.2 Contributions

We present a highly efficient shared-output client-server ORAM (SOCS-ORAM)
scheme. Here the client Alice knows the logical indices of the RAM queries, and
the results are additively (XOR) secret-shared between her and the server Bob,
allowing them, unlike the output of classical ORAM, to be directly used in MPC.

This construction is suitable for secure computation applications with hard
performance constraints where one party is more trustworthy. While in MPC
none of the parties learns the set of queried RAM locations, we reveal them
to one of the parties. Further, our SOCS-ORAM uses a semi-honest third party
who helps initialize our construction, but is not active when invoking access.
In exchange, we achieve very high ORAM performance, whose only non-trivial
cost is communication rounds. In particular, we present:

– Efficient SOCS-ORAM Construction. Our construction consists of an effi-
cient third-party aided initialization protocol and an efficient 2-party access
protocol.
Our initialization protocol does not execute MPC; it runs PRG and gener-
ates a random permutation, all evaluated outside MPC. It requires 4 message

Fast ORAM with Server-Aided Preprocessing 443

flows (the first 2 and the last 2 can be parallelized). To set up SOCS-ORAM
for k accesses to an array of size n, we require sending 4n + 6k array entries,
k bits, and a single permutation of size n + k, sent as a table. 2n entries are
sent by B, and the rest by C.
Our access protocol communicates only 2 array entries, a single array index,
and an additional bit, and requires a single round trip of interaction. No cryp-
tography is involved in our access protocol: We only use the XOR operation
and plaintext array access. The cost of our access protocol is independent of
array size (but system level implementation costs manifest for larger array
sizes).

– Resulting efficient implementation. We implement and experimentally
evaluate our approach. Our experimental results indicate that on an array
with 230 entries each of 4B, we communicate 13B per access and run in 2.13
ms on a 2 ms latency network (as set by the Linux tc command; the actual
latency, due to system calls overhead is closer to 2.13 ms).
Thus, our wall-clock time is extremely close to latency cost. While our set-
ting is much simpler than that of SC-ORAM, state-of-the-art 3-party SC-
ORAM [JW18] reports ≈0.7 s CPU time for arrays of the same size, while
all our runs ran in less than 0.019 ms of computation. Similarly, our access
communication is on the order of bytes instead of MBytes, and we use 1
round trip of interaction instead of O(log n). For a 230 array of 4B entries
(i.e. 4 GB size array) and 220 accesses, the cost to initialize our SOCS-ORAM
(preprocessing) is 4.8 min and 20 GB communication. In Sect. 6.2, we discuss
a natural optimization that would reduce communication to 8 GB.

2 Notation

– Party A (Alice) inputs access indices i (i.e. client).
– Party B (Bob) inputs array d (i.e. server).
– Party C (Charlie) is a third party helper.
– κ denotes the computational security parameter (e.g. 128).
– [n] denotes the sequence of natural numbers 0, . . . , n − 1. [n, n + k] denotes

the sequence n, . . . , n + k − 1.
– We denote arrays in bold, index them with subscripts, and use 0-based index-

ing. E.g., d0 is the first element of array d.
– We sometimes add subscript notation to arrays to indicate that for a bit array

f and two arrays s0, s1, the array sf holds entries from sfi at index i. We index
these arrays with a ’,’ (e.g. s0,i).

– We denote negation of a bit b as b̄.
– We manipulate XOR secret shares.

• We use the shorthand �d� to denote a sharing of array d.
• Subscript notation associates shares with parties. E.g., �d�A is a share of

d held by party A.

444 V. Kolesnikov et al.

3 Oblivious RAM (ORAM) Review

Our notions of client-server oblivious RAM (ORAM) and secure-computation
oblivious RAM (SC-ORAM) are standard.

Client-Server ORAM. A client-server ORAM [GO96] is a protocol that enables
a client to outsource data to an untrusted server and perform arbitrary read
and write operations on that outsourced data without leaking the data or access
patterns to the server.

An ORAM specifies an initialization protocol that takes as input an array
of entries and initializes an oblivious structure with those entries, as well as an
access protocol that implements each logical (read and write) access on the
oblivious structure with a sequence of polylog physical accesses.

We now present the ORAM functionality. Client inputs an array d of length
n. For each access, client inputs operation op (read or write), index i ∈ [n], and,
if writing, the value x to write. Server inputs ⊥. If op = read, client outputs di

and server outputs ⊥; if op = write, client and server set di = x and output ⊥.
The ORAM’s security guarantee is that the physical access patterns pro-

duced by the access protocol for any two sequences of logical accesses of the
same length must be computationally indistinguishable. We take the security
definition almost verbatim from [SSS12].

Definition 1. Let y := ((op0, i0, x0), (op1, i1, x1), . . . , (opm−1, im−1, xm−1))
denote a sequence of logical accesses of length m, where each op denotes read(i)
or write(i, x). Specifically, i denotes the array index being read or written, and
x denotes the data being written. Let A(�y) denote the (possibly randomized)
sequence of physical accesses to the remote storage given the sequence of logi-
cal accesses �y. ORAM is said to be secure if for any two sequences of logical
accesses �y and �z of the same length, their access patterns A(�y) and A(�z) are
computationally indistinguishable by anyone but the client.

RAM-Based Secure Computation. [OS97] noted the idea of using ORAM for
secure multi-party computation (SC-ORAM). [GKK+12] proposed the first com-
plete SC-ORAM construction. In SC-ORAM, the key idea is to have each party
store a share of the server’s ORAM state, and then execute the ORAM client
access algorithms via a general-purpose secure computation protocol.

As the server’s state is now secret-shared between both parties and the client
is executed inside secure computation, we no longer refer to the physical parties
as client and server but A and B. In SC-ORAM, A and B input a sharing of an
array �d� of length n. For each access, they input a sharing of operation �op�
(read or write), a sharing of index �i� ∈ [n], and a sharing of a value to write
�x�. If op = read, A and B output �di�; if op = write, set �di� = x and output
⊥.

There are a few key differences between client-server ORAM and SC-ORAM
that [ZWR+16] explicates:

Fast ORAM with Server-Aided Preprocessing 445

– In the client-server ORAM, the client owns the array and also accesses it.
Hence, the privacy requirement is unilateral. In SC-ORAM, both the array
and the access are distributed and neither party should learn anything about
the array or the access pattern.

– In the client-server ORAM, the client’s storage should be sublinear, whereas
in SC-ORAM, linear storage is distributed across both parties.

– Client-server ORAMs have traditionally been measured by their bandwidth
overhead and client storage. [WHC+14] observed that for SC-ORAMs the
size of the client circuits is more relevant to performance.

– In SC-ORAM, the initialization protocol must be executed securely; in 2PC
this cost is often prohibitive.

4 Related Work

We present a highly efficient 3-party SOCS-ORAM with applications in secure
computation. We therefore review related work that improves (1) SC-ORAMs
in the standard 2-party setting, (2) SC-ORAMs in the 3-party setting, and (3)
Garbled RAM schemes that equip Garbled Circuit with a sublinear cost RAM
without adding rounds of interaction. We also briefly discuss (4) differential
obliviousness (DO) and (5) private information retrieval (PIR).

2-Party SC-ORAM. [OS97] proposed the basic idea of SC-ORAM, where the
parties share the ORAM server role, while having the ORAM client algo-
rithm executed via secure computation. [GKK+12] presented a specific SC-
ORAM construction that started a long line of research to improve SC-ORAM.
[WHC+14] observed that when using ORAMs for secure computation, the
size of the circuits is more relevant to performance than the traditional met-
rics such as bandwidth overhead and client storage. Then they presented a
heuristic SC-ORAM optimized for circuit complexity. [WCS15] followed up
with Circuit ORAM, which further reduced circuit complexity. [ZWR+16]
showed that by relaxing asymptotics, one can produce a scheme that out-
performs Circuit ORAM for arrays of small to moderate sizes. We note that
all [GKK+12,WHC+14,WCS15,ZWR+16] are recursively structured and as a
result require O(log n) rounds of communication per access; they have expen-
sive initialization algorithms, high memory overhead. E.g., [Ds17] observed they
could not handle arrays of sizes larger than ≈220 on standard hardware. With
this in mind, [Ds17] introduced Floram that requires 3 rounds per access and
significantly decreases memory overhead and initialization cost. Floram requires
linear work per access. Crucially, this work is inexpensive since it is local and
executed outside secure computation, unlike in the MPC-run linear scan. Still,
despite a large concrete improvement, [Ds17] takes ≈2 s per access and commu-
nicates ≈5 MBs in communication on arrays of size 230 with 4-byte elements.

3-Party SC-ORAM. [FJKW15] explore whether adding a third party to SC-
ORAM can improve performance. They present a construction secure against

446 V. Kolesnikov et al.

semi-honest corruption of one party, which uses custom-made protocols to emu-
late the client algorithm of the binary tree client-server ORAM [SCSL11] in
secure computation. For a 236-element array of 4-byte entries, their access runs in
1.62 s wall-clock time when executed on two co-located EC2 t2.micro machines.
Their solution further requires O(log n) communication rounds for an array of
size n. [JW18] followed up on their work and designed custom-made protocols
to instead emulate the Circuit ORAM [WCS15] client. While their technique
still requires O(log n) communication rounds per access, they asymptotically
decrease the bandwidth of [FJKW15] by the statistical security parameter. Con-
cretely, they report ≈0.7 s CPU time per access on a 230-element array of 4-byte
entries, when run on co-located AWS EC2 c4.2xlarge instances. While we are
not directly comparable, we execute one access in one communication round and
all our runs took less than 0.019 ms on localhost on a same-size array.

[BKKO20] showed how to combine their 3-server distributed point func-
tion (DPF) with any 2-server PIR scheme to obtain a 3-server ORAM and
then extended it to SC-ORAM. Their access protocol runs in constant rounds,
requires sublinear communication and linear work, and makes only black-box use
of cryptographic primitives. [FNO22] present 3-party SC-ORAM from oblivious
set membership that aims to minimize communication complexity. These works
do not offer implementation and evaluation, and we do not directly compare
with their performance.

Garbled RAM (GRAM). GRAM is a powerful technique that adds RAM to
GC while preserving GC’s constant rounds of interaction. This technique orig-
inated in [LO13] but was not suitable for practice until [HKO22] introduced
EpiGRAM. While EpiGRAM was not implemented, [HKO22] estimate that for
an array of 220 entries of 16B, the per-access communication amortized over 220

accesses is ≈16 MB. In comparison, our work communicates ≈0.2 KB (initial-
ization included) amortized over the same number of accesses.

Differential Obliviousness (DO). DO [CCMS19] is a relaxation of access pattern
privacy. As opposed to simulation-based ORAM privacy guarantees, DO requires
the program’s access pattern to be differentially private. [CCMS19] showed that
for some programs DO incurs only O(log log n) overhead in contrast to ORAM’s
polylog complexity. We forfeit access pattern privacy against Alice.

Private Information Retrieval (PIR). PIR [CKGS95] enables a client to retrieve
a selected entry from an array such that no information about the queried entry is
revealed to the one (or multiple) server holding the array. Thus, PIR is concerned
with the privacy of the client. There are many flavors of PIR, one of which is
Symmetric PIR (SPIR) [GIKM98]. SPIR has an additional requirement that the
client learns only about the elements she is querying, and nothing else. For our
purposes, the main difference between PIR and ORAM is that PIR supports
only read operations. While we do not further discuss PIR, we emphasize that
PIR is sometimes used as a building block of ORAM constructions (e.g. in [Ds17,
GKW18,JW18,KM19,BKKO20] discussed above).

Fast ORAM with Server-Aided Preprocessing 447

5 Technical Overview

We introduce and construct, at the high-level, shared-output client-server obliv-
ious RAM (SOCS-ORAM), a useful building block for efficient MPC. We present
our construction by first simply achieving a basic limited functionality, and then
securely building on that to achieve the goal. Full formal algorithms are in Sect. 6.
For accompanying proofs of correctness and security see the full version.

Recall from Sect. 1, SOCS-ORAM is run by parties A, B, and C, where B
holds an array d of length n. On access, A inputs operation op (read or write)
and an index i ∈ [n]. A and B also input a sharing of value �x� to write. C is a
helper party that aids with SOCS-ORAM initialization and is not active during
array access. Initialization provisions for k dynamic accesses. We consider honest
majority with security against semi-honest corruption and allow A to learn (or
know) the access pattern.

Goal. We aim to build a concretely efficient SOCS-ORAM using plaintext array
lookup, masking, and PRGs, with constant access overhead and a single round
trip of interaction, whose computational cost is close to plaintext array access.
We design such SOCS-ORAM at the concession of allowing one party to learn
the access pattern. We describe our construction next.

Basic Initialization for Our SOCS-ORAM. A and B, with the help of C, initialize
D with d (cf Fig. 1; d is B’s input array used to initialize the working array D).
A and B receive �D�, which is permuted according to a random permutation π
unknown to B and secret-shared using randomness neither party knows. Uniform
secret sharing ensures that upon access neither party learns anything about the
value of the array entry they are retrieving; permuting ensures logical index is
hidden from B. Clearly, this initially (i.e. before any accesses) hides array entries
and their positions. With C’s help, this structure can be set up cheaply.

Handling Repeated Accesses. Following the above initialization, A will access
�D�, possibly accessing the same logical index multiple times. Recall, only A is
allowed to learn the access pattern. C is oblivious by not participating in the
access protocol. The challenge is to preclude B from learning the access pattern.

As hinted above, if no logical index is accessed twice, B learns nothing, since
each entry �Di� is placed in a random physical position π(i). To access a logical
index more than once, each time the physical location must be different: the
value must be copied to a new random location.

We modify initialization to create the space for copied values. We extend the
working array D with space for k entries (shelter), and secret-share and permute
the extended D according to π : [n + k] �→ [n + k]. This is cheap with C’s help.

We next show how to copy the read entry to a new index (corresponding
to the next available shelter entry) in �D�, obliviously to B. Then, at the next
access to this element, B is accessing a random share at a random-looking index.

read Access. To clarify and extend the previous discussion, we allow for read
in SOCS-ORAM as follows. Recall that A is allowed to learn the access pattern,

448 V. Kolesnikov et al.

and hence she can be given π. A can then track the position of each element
in (extended) �D� in a position map pos, mapping logical indices i ∈ [n] to
physical indices j ∈ [n+k]. Initially posi := πi

Δ= π(i) for all i ∈ [n]. A uses pos
at each access to find her share of the sought entry i at position posi in �D�A
(i.e. �Dposi�A). Since π is a random permutation, A simply gives B posi, and
B retrieves his share �Dposi�B. A and B can now use Dposi inside MPC.

We now explain how to arrange that the read entry at logical index i, stored
at physical index Dposi , is prepared for a subsequent access. Intuitively, after the
qth access (out of total k provisioned), entry’s value is copied to position πn+q.
This is done as follows. A arranges that Dposn+q

= Dposi solely by updating
her share �Dposn+q

�A. A can do this because at initialization C will perform an
additional step: He generates a k-element random mask vector m and XORs it
into the shelter positions of �Dposi�A (i.e. for i ∈ [n, n + k]). C sends m to B.
During the q-th access, where logical index i is read, B sends �Dposi�B ⊕ mq to
A, who then XORs it with her share �Dposi�A to obtain �Dposn+q

�A. It is easy
to see that this arranges for a correct sharing of Dposi in physical position n+q.

Finally, A updates her map posi := πn+q. Next access to logical index i is
set up to be read from Dposi , a new and random-looking location for B.

General. read/write access is an easy extension of read. For access, in addition
to opcode op = (read, write) known to A, both parties also input �x�, a sharing
of the element to be written. write differs from read only in that �x�, and not
�Dposi�, is used to arrange �Dposn+q

�. This extension is simple to achieve with
an OT, which we implement efficiently with correlated randomness provided by
C during initialization. One pedantic nuance we must address is that write must
return a value. We set it to be the value previously stored in that location.

6 Our SOCS-ORAM

We now formally present our scheme. In Sect. 6.1, we define SOCS-ORAM’s clear-
text semantics. In Sect. 6.2, we specify Π - SOCS-ORAM, our protocol implement-
ing SOCS-ORAM. We defer proofs of correctness and security to the full version
of our paper.

6.1 Cleartext Semantics: SOCS-ORAM

Definition 2 (Cleartext Semantics SOCS-ORAM). SOCS-ORAM(d)n,k,l is a 3-
party stateful functionality executed between parties A, B, and C that receives a
sequence of up to k + 1 instructions. The first instruction is init(d), where d
is an array of n l-bit values and is input by B. init associates the values in d
with their corresponding indices in [n] and sets D := d. The remaining up to k
instructions are accessD(op, i, �x�) instructions. access is executed between A
and B only; A inputs op, i and both input �x�. Depending on op, they read the
value at index i or write �x� to the value at index i in D. See Fig. 1 for the init
and access functionalities.

Fast ORAM with Server-Aided Preprocessing 449

Fig. 1. The init and access functionalities for our SOCS-ORAM.

6.2 Protocol: Π - SOCS-ORAM

In this section, we formalize our protocol Π - SOCS-ORAM, which securely imple-
ments the semantics of SOCS-ORAM (Definition 2):

Construction 1 (Protocol Π - SOCS-ORAM). Π - SOCS-ORAM(d)n,k,l is defined
by first invoking Π - init in Fig. 2 and then up to k invocations to Π - access in
Fig. 3.

We include the proof of the following theorem in the full version of this paper:

Theorem 1. Construction 1 implements the functionality SOCS-ORAM (Defi-
nition 2) and is secure in the honest-majority semi-honest setting.

As Π - SOCS-ORAM consists of separate invocations to Π - init and Π - access
(see Construction 1), we separate Π - SOCS-ORAM’s description into Π - init
(Fig. 2) and Π - access(Fig. 3), respectively.

450 V. Kolesnikov et al.

Π - init. Π - init sets up data structures necessary to access d (see init in
Fig. 1). It is a 3-party protocol, where A and B are aided by helper C.

B inputs array d of n l-bit entries, sets D := d, and secret shares D between
A and C: A receives �D�A; C receives �D�B. C then helps to construct the data
structures used in Π - access for A and B.

C first generates the data structures for B. He uniformly samples array r of
same size as D. C masks his share of D with r, i.e. computes �D�B := �D�B ⊕ r.
Simultaneously, C uniformly samples array m, which will hold shelter values,
where array entries will be written once they are accessed. m has k l-bit entries,
where k determines the maximum number of array accesses. C secret-shares
m, and appends �D�B := �D�B||�m�B. Now C draws a random permutation
π : [n + k] → [n + k] and permutes �D�B according to π. C also uniformly
samples two arrays s0, s1 of k l-bit entries, which will help A obliviously retrieve
the message corresponding to either read or write operation during access. C
then sends the masked and permuted �D�B along with the masks m, s0, and s1
to B. B stores them for Π - access and additionally sets a counter q := 0 that
counts the number of accesses.

C next generates and sends randomness to A that will enable it to construct
its data structures. C already generated �r�A, �m�A, and π. He also uniformly
samples k-bit f and constructs sf such that for all i ∈ [k] it contains s0,i or s1,i

depending on fi. C then sends �r�A, �m�A, π, f, sf to A.
A now constructs its data structures. First, she masks her share of D with r,

i.e. computes �D�A := �D�A ⊕ r, appends �D�A := �D�A||�m�A, and permutes
�D�A according to π. Then she computes a position map pos that tracks the
position of the original n entries across accesses by setting posi := πi for all
i ∈ [n]. A stores �D�A, �m�A, π,pos, f, sf along with a counter q := 0. As for B,
q tracks the number of accesses.

Optimizing Π - init by Sending Randomness via Seeds. For array d of n l-bit
entries and k accesses, Π - init communicates 4n + 6k l-bit array entries, k bits,
and a permutation (transferred as an array of length n+k). Communication can
be reduced to 2n + 2k l-bit array entries and 7κ bits by sending randomness via
short κ-bit pseudo-random seeds rather than large arrays, and locally expanding
them with a pseudo-random generator1. In Π - init, this technique can be used
when sending secret-shared arrays (i.e. send one of the secret shares as a seed),
random arrays, and a permutation.

One must take care when using this optimization that the resulting protocol
remains simulatable. A subtle technical issue here is that for modularity, we
present and prove secure standalone Π - SOCS-ORAM, whose output is shares of
the returned values. Because shares are explicit output of the parties, simulating
above optimized protocol would require that the PRG output matches the fixed
shares of the output. The solution is either to use programmable primitives (such
as programmable random oracle), or to consider the complete MPC problem,
where the wire shares are not part of the output.

1 We did not implement this optimization as our focus was on efficient Π - access.

Fast ORAM with Server-Aided Preprocessing 451

Fig. 2. Π - init is a subroutine of Π -SOCS-ORAM.

Π - access. Π - access accesses D (see access in Fig. 1). It is a 2-party protocol,
run between A and B, where A requests read or write to Di.

Recall that A inputs index i and operation op (read or write). Both input
a sharing �x�. �x� is input even if op = read because B does not know op.

452 V. Kolesnikov et al.

A retrieves posi, which represents the physical location of i in the shuffled D,
and computes bit b := fq⊕op, which will help A select B’s message corresponding
to op. She sends posi, b to B.

B now constructs two messages: the first is for op = read and the second
for op = write. B retrieves �Dposi�B for his read share and �x�B for his write
share. He cannot send his shares to A for security, and thus masks each with
mq. A is only supposed to learn (i.e. unmask) one of these messages and so B
adds another mask. I.e., he adds sb,q to the read message and sb,q to the write
message. Then he sends both to A.

A now selects the message corresponding to op and adds sf,q to unmask it.
She then adds its read or write share along with the unmasked message to the
next free shelter position �Dπn+q

�A.
A and B now set their output share �out� := �Dposi�. A updates the position

map such that i points to the assigned shelter entry posi := πn+q. Then both
increment access counter q += 1 and output �out�.

7 Experimental Evaluation

We now experimentally evaluate our construction.

Implementation. We implemented our approach (i.e. Π - init and Π - access)
in 437 lines of C++ and compiled our code with the CMake build tool. Our
implementation is natural, but we note some of its interesting aspects. For ran-
domness, we use the PRG implementation of EMP [WMK16]. We parameterize
our construction over array entry types via function templates and test our con-
struction with native C++ types (e.g. uint32 t). We implemented a batched
version of Π - access, and thus can execute multiple accesses in a single round
of communication. Our implementation runs on a single thread.

Experimental Setup. All experiments were run on a machine running Ubuntu
22.04.1 LTS with Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz and 64 GB
RAM. All parties were run on the same laptop, and network settings were con-
figured with the tc command (bandwidth was verified with the iperf network
performance tool and round-trip latency with the ping command). Communi-
cation measurements represent the sum across all three parties; wall-clock time
represents the maximum among the three parties. We sampled each data point
over 10 runs and present their arithmetic mean.

Experiments. We performed and report on two experiments. The first evaluates
our initialization protocol Π - init (see Sect. 7.1) while the second evaluates our
access protocol Π - access(see Sect. 7.2). In both experiments, we measure com-
munication and wall-clock time as a function of array size, which ranges from
220 to 230 with fixed 4B array entry size (i.e. uint32 t) and 4B position map
entry size. We measure wall-clock time on 2 different simulated network settings:

Fast ORAM with Server-Aided Preprocessing 453

Fig. 3. Π - access is a subroutine of Π -SOCS-ORAM.

1. LAN 1: A low latency 1 Gbps network with 2 ms round-trip latency.
2. LAN 2: An ultra low latency network also with 1 Gbps bandwidth but with

0.25 ms round-trip latency.

454 V. Kolesnikov et al.

Fig. 4. Π - init performance. We fix the number of accesses to 220 and plot the following
metrics as functions of the binary logarithm of the array size: the overall communication
(left) and the wall-clock time to complete the protocol on LAN 1 and LAN 2 (right).
Note that the plots for LAN 1 and LAN 2 overlap.

7.1 Initialization Protocol

We first demonstrate that our Π - init is efficient for both small and large array
sizes. In this experiment, we fix the number of array accesses to 220. Figure 4
plots the total communication and the wall-clock time in each network setting.

Discussion

– Communication. For an array of 230 entries and for 220 accesses, our imple-
mentation of Π - init communicates 20 GB (our plaintext array is 4 GB). For
all runs of the initialization algorithm, our implementation matches exactly
the number of bits incurred by our algorithm.

– Wall-clock time. For a large 230-entry array and for 220 accesses, initializa-
tion runs for ≈4.8 min2. For a small 220-entry array with the same number
of accesses, initialization takes ≈0.5 s. The wall-clock time is almost identical
for both network settings as initialization consists of only 4 flows of communi-
cation (the first 2 and last 2 can be executed in parallel). Hence, initialization
is not sensitive to latency.

7.2 Access Protocol

For our second experiment, we show that Π - access is fast and its performance
is (almost) independent of array size. We show that wall-clock time is less than
0.019 ms per access on localhost for all runs and for all tested array sizes. Com-
munication is 13B3 per access.

2 Sending 20 GB on 1 Gbps network takes ≈2.7 min. Remaining bottlenecks are gen-
erating permutation ≈71 s and permuting array according to a permutation ≈24 s.

3 Note that this applies only to 4B array entries and 4B position map entries. The
communication consists of sending two array entries (8B), a single entry in a position
map (4B), and a single Boolean (1B).

Fast ORAM with Server-Aided Preprocessing 455

Fig. 5. Π - access performance. We consider two parameter regimes for the number of
accesses: (1024×1024) and 1024×1. Then we plot the following metrics as functions of
the binary logarithm of the array size: the overall communication (left) and the wall-
clock time to complete the protocol on LAN 1 and LAN 2 (right). For the wall-clock
time, we also plot cost because of latency on LAN 1 and LAN 2 to demonstrate our
technique incurs almost no overhead over latency. Note that LAN 2 latency almost
exactly overlaps with LAN 2 access (1024 × 1).

In this experiment, we consider 2 different parameter regimes for the num-
ber of accesses. The first (1024 × 1024) considers 1024 sequential accesses with
each sequential access containing 1024 batched accesses. The second (1024 × 1)
considers 1024 sequential accesses executed in batches of only 1 access. Figure 5
plots the total communication and the wall-clock time in each network setting.

Discussion.

– Communication. In Π - access communication is independent of array size4.
In the (1024 × 1024) access number configuration, we use 12.125MB of com-
munication. This matches exactly the theoretical communication in Fig. 3.
In the (1024 × 1) setting, we communicate 13KB (i.e. 13B per access). Note
that in this configuration we are losing 7 bits per access on the theoretical
communication. This is because we send a single bit as one byte, which can
be packaged with other bits in the batched setting.

– Wall-clock time. First note that in the (1024 × 1024) configuration and on
a 2 ms round-trip latency network, Π - access takes ≈2.24 s on a 220-entry
array (2.19 ms per 1024 parallel accesses) and ≈2.39 s on a 230-entry array
(2.33 ms per 1024 parallel accesses). We believe the difference between the two
experiments (and over the 2 ms latency baseline) is due to low-level costs such
as effects of caching, system calls, interprocess communication, precision of tc
timing, etc. From algorithmic perspective, the performed work is independent
of array size.

4 This is true as long as the array size stays small enough so that the entries in the
position map need not increase (e.g. to 8B i.e. uint64 t).

456 V. Kolesnikov et al.

Acknowledgments. Work of Vlad Kolesnikov is supported in part by Cisco research
award and NSF awards CNS-2246354 and CCF-2217070. Work of Ni Trieu is supported
in part by NSF #2101052, #2200161, and #2115075. Work of Xiao Wang is supported
in part by NSF #2016240 and #2236819.

References

[BKKO20] Bunn, P., Katz, J., Kushilevitz, E., Ostrovsky, R.: Efficient 3-party dis-
tributed ORAM. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS,
vol. 12238, pp. 215–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57990-6 11

[CCMS19] Chan, T.-H.H., Chung, K.-M., Maggs, B.M., Shi, E.: Foundations of differ-
entially oblivious algorithms. In: Chan, T.M. (ed.) 30th SODA, pp. 2448–
2467. ACM-SIAM (2019)

[CKGS95] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. In: FOCS (1995)

[Ds17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017,
pp. 523–535. ACM Press (2017)

[FJKW15] Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure
computation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 360–385. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 16

[FNO22] Falk, B.H., Noble, D., Ostrovsky, R.: 3-party distributed ORAM from
oblivious set membership. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS,
vol. 13409, pp. 437–461. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-14791-3 19

[GIKM98] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy
in private information retrieval schemes. In: 30th ACM STOC, pp. 151–
160. ACM Press (1998)

[GKK+12] Gordon, S.D., et al.: Secure two-party computation in sublinear (amor-
tized) time. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012,
pp. 513–524. ACM Press (2012)

[GKW18] Gordon, S.D., Katz, J., Wang, X.: Simple and efficient two-server ORAM.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS,
vol. 11274, pp. 141–157. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03332-3 6

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431–473 (1996)

[HKO22] Heath, D., Kolesnikov, V., Ostrovsky, R.: EpiGRAM: practical garbled
RAM. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022,
Part I. LNCS, vol. 13275, pp. 3–33. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-06944-4 1

[JW18] Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and
fast batch retrieval. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 360–378. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93387-0 19

https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-031-14791-3_19
https://doi.org/10.1007/978-3-031-14791-3_19
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-030-03332-3_6
https://doi.org/10.1007/978-3-031-06944-4_1
https://doi.org/10.1007/978-3-031-06944-4_1
https://doi.org/10.1007/978-3-319-93387-0_19
https://doi.org/10.1007/978-3-319-93387-0_19

Fast ORAM with Server-Aided Preprocessing 457

[KM19] Kushilevitz, E., Mour, T.: Sub-logarithmic distributed oblivious RAM with
small block size. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol.
11442, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17253-4 1

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[OS97] Ostrovsky, R., Shoup, V.: Private information storage (extended abstract).
In: 29th ACM STOC, pp. 294–303. ACM Press (1997)

[PKV+14] Pappas, V., et al.: Blind seer: a scalable private DBMS. In: 2014 IEEE
Symposium on Security and Privacy, pp. 359–374. IEEE Computer Society
Press (2014)

[PS06] Porras, P., Shmatikov, V.: Large-scale collection and sanitization of net-
work security data: risks and challenges. NSPW (2006)

[SCSL11] Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with
O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25385-0 11

[SSS12] Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious RAM. In:
NDSS 2012. The Internet Society (2012)

[WCS15] Wang, X., Chan, T.-H.H., Shi, E.: Circuit ORAM: on tightness of the
Goldreich-Ostrovsky lower bound. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 850–861. ACM Press (2015)

[WHC+14] Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM:
oblivious RAM for secure computation. In: Ahn, G.J., Yung, M., Li, N.
(eds.) ACM CCS 2014, pp. 191–202. ACM Press (2014)

[WMK16] Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty
computation toolkit (2016). https://github.com/emp-toolkit

[ZWR+16] Zahur, S., et al.: Revisiting square-root ORAM: efficient random access
in multi-party computation. In: 2016 IEEE Symposium on Security and
Privacy, pp. 218–234. IEEE Computer Society Press (2016)

https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-030-17253-4_1
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://github.com/emp-toolkit

	Fast ORAM with Server-Aided Preprocessing and Pragmatic Privacy-Efficiency Trade-Off
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Notation
	3 Oblivious RAM (ORAM) Review
	4 Related Work
	5 Technical Overview
	6 Our SOCS-ORAM
	6.1 Cleartext Semantics: SOCS-ORAM
	6.2 Protocol: -SOCS-ORAM

	7 Experimental Evaluation
	7.1 Initialization Protocol
	7.2 Access Protocol

	References

