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The spin-boson model, describing a two-level system strongly coupled to a bosonic bath, is extensively stud-

ied as a paradigmatic dissipative quantum system, exhibiting rich dynamical behavior and even a localization

transition in the strong coupling regime. Here, we additionally consider dephasing as a source of Markovian dis-

sipation on top of the non-Markovian dynamics due to an Ohmic bath, and investigate the dynamics of the spin.

We show that the characteristic frequency of the spin dynamics, while strongly renormalized by the bosonic

bath, changes in a simple fashion (or doesn’t change at all) with dephasing. To obtain these results, we develop

an exact non-perturbative method known as the stochastic Schrödinger equation, mimicking the Ohmic bath

via a stochastic magnetic field combined with the Lindblad quantum master equation due to dephasing, which

allows us to numerically compute the dynamics. Furthermore, we derive weak-coupling analytic results utiliz-

ing the well-known non-interacting blip approximation. Our findings are relevant to quantum simulation of the

spin-boson model in the regime of strong coupling in trapped ions and circuit QED architectures among others.

I. INTRODUCTION

A quantum impurity coupled to a bath defines a paradig-

matic problem in quantum many-body physics. It leads to

emergent phenomena ranging from the Anderson orthogonal-

ity catastrophe [1], and the X-ray edge problem [2], to the

resistivity upturn in the Kondo problem [3]. Furthermore, the

paradigm of the spin-boson model provides a powerful com-

putational approach to strongly correlated many-body systems

via dynamical mean field theory [4]. In general, coupling to

the surrounding environment entangles the impurity with the

degrees of freedom in the environment, and leads to dissipa-

tive dynamics. Maintaining the coherence in qubits in spite

of the coupling to environment is a fundamental challenge in

quantum computation and simulation.

A widely studied quantum impurity problem is the so-

called spin-boson model (also intimately related to the Kondo

physics) where a two-level spin is coupled to a bath consist-

ing of many bosonic degrees of freedom usually considered

as an infinite collection of harmonic oscillators [5]. The cou-

pling between the spin and the bath can be fully character-

ized by the bath spectral function J(ω). For an Ohmic bath

characterized by J(ω) ∼ αω , the spin-boson model exhibits

distinct phenomena depending on the coupling α between the

spin and the bath such as (underdamped) coherent oscillations

(0 < α < 1/2), incoherent damping (1/2 < α < 1), and a

delocalized-to-localized quantum phase transition (α > 1) [5].

A characteristic feature of the spin-boson model is the strong

renormalization of the underdamped oscillations due to the

coupling to the Ohmic bath when 0 < α < 1/2. The strong

coupling regime in the spin-boson model has been recently

realized in superconducting quantum circuits [6, 7].

While the spin-boson model was originally introduced in

the domain of condensed matter physics, there are various

proposals realizing this model in quantum simulation plat-

forms. In particular, ultrastrong coupling of an artificial atom

to an electromagnetic continuum—mimicking the bath—has

been recently observed in superconducting circuits [6, 8, 9].

Beside superconducting qubits [6, 10], trapped ions [11, 12]

and cold atoms [13] have also emerged as versatile platforms

for realizing the spin-boson model; more generally, models

where one or many spins are coupled to a single or several

bosonic modes have been realized or proposed in a wide range

of platforms [14–20]. Quantum simulation in many such plat-

forms rely on driving the system in order to engineer an effec-

tive Hamiltonian in the rotating frame. A regime of immense

interest is where an (ultra)strong coupling between a two-level

system and the bosonic environment is achieved.

Quantum simulation thus provides an attractive alternative

for exploring quantum impurity problems [21]. However, un-

wanted dissipation, for example the noise in lasers, cannot

be avoided in these platforms [22]. This unwanted feature

should be contrasted with the desired dissipation due to the

coupling to the bosonic bath: the former may be approxi-

mated as Markovian and typically results from weak coupling

to an environment, while the latter is desired in the regime

of strong coupling, and is therefore non-Markovian by nature.

A timely question is then how the quantum characteristics—

from coherent oscillations to a localization transition—of the

spin-boson model are affected in the presence of the unavoid-

able Markovian dissipation. And, how should one describe

the competition between Markovian and non-Markovian dy-

namics? A challenge presents itself immediately: in the pres-

ence of the drive and Markovian dissipation in quantum sim-

ulation platforms, the resulting spin-boson model is inher-

ently driven-dissipative. That is, the system will not be in its

ground state even if the bosonic modes are at zero tempera-

ture, but will instead approach a non-equilibrium steady state

as the result of the competition between drive, dissipation,

and the coupling to the bosonic bath. These questions have

been investigated recently in mean-field Dicke-type models

[23–25]; however, a strongly interacting spin-boson model

poses a formidable challenge. To this end, a relatively large

toolbox has been developed to tackle this problem including

Bethe ansatz [26], functional-integral approaches [5], renor-

malization group [27], a stochastic Schrödinger-like equation

(SSE) [28], the widely used non-interacting blip approxima-

tion (NIBA) [5, 29], and more recently tensor-network meth-

ods [30–33] among other things.

In this paper, we investigate the dynamics of the spin-boson
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model coupled to an Ohmic bath with 0 < α < 1/2 while

subject to Markovian dissipation. Specifically, we investi-

gate how the underdamped oscillations and their character-

istic renormalized frequency are affected in the presence of

the Markovian bath. We consider dephasing along different

axes as the primary source of Markovian loss. For dephasing

along the axis of the spin-only Hamiltonian (decoupled from

bosonic modes), we find that the characteristic frequency is

barely dependent on Markovian dissipation, underscoring its

robustness against dissipation. For dephasing along the axis

set by coupling to the bosonic bath, we find that the frequency

decreases with dissipation in a simple fashion, and that the

dynamics becomes overdamped at large values of dephasing.

We obtain the above results by a combination of a numeri-

cally exact method based on a nonperturbative SSE as well as

the widely-used NIBA [5, 29]. The former method is based

on a reparametrization of the spin configuration in the path

integral combined with the influence functional of the spin-

bath coupled system [28]. We simplify, adapt and extend

the method pioneered in Ref. [28] to the case of Markovian

(on top of non-Markovian) dissipation. As a complementary

approach, we derive analytic results based on NIBA which

provides a weak-coupling approximation in the context of the

spin-boson model.

The structure of this paper is as follows. In Section II,

we introduce the spin-boson model in the presence of the

Markovian dissipation. We derive the SSE for the dynamics in

Section III, and provide the numerically exact results in Sec-

tion IV. In Section V, we provide the analytical results from

the NIBA in the presence of Markovian dissipation, and show

excellent agreement with the numerically exact results. We

also discuss and interpret our results in this section. Finally in

Section VI, we summarize our findings and remark on inter-

esting future directions. We present our simplified derivation

of the SSE in Appendix A, and a detailed derivation of the

NIBA in Appendix B.

II. SPIN-BOSON MODEL UNDER MARKOVIAN LOSS

In this section, we introduce the main model. Let us

first consider the paradigmatic spin-boson model describing

a two-level system S coupled to an infinite number of non-

interacting bosons denoted by B. The system-bath model is

described by the Hamiltonian H:

H =
∆

2
σx +∑

k

ωkb
†
kbk +

σz

2
∑
k

λk(b
†
k +bk) . (1)

We denote the three terms on the rhs by HS, HB, and HSB rep-

resenting the system, the bath and the linear coupling between

the two, respectively. The effective coupling between the spin

and the bath depends on ωk and λk, and is fully characterized

by the spectral function defined as J(ω) = π ∑k λ 2
k δ (ω −ωk).

Specifically, for an Ohmic bath, the spectral function is given

by

J(ω) = 2παωe−ω/ωc , (2)

where the interaction parameter α controls the properties of

the spin and ωc is the frequency cutoff of the bath. In this

work, we consider an Ohmic bath with 0 < α < 1/2. It is well

known that, in this regime, the spin exhibits damped oscilla-

tions at a frequency

∆r = ∆(∆/ωc)
α

1−α , (3)

which is strongly renormalized by the coupling to the Ohmic

bath, and exhibits a universal dependence on α , a feature that

is intimately related to the Kondo physics [5]. Notice that

∆r is smaller than the bare value ∆ because spin transitions

are suppressed in the presence of a cloud of bath modes [28].

We emphasize that the bosonic bath considered above consti-

tutes a non-Markovian bath in general since the coupling is

generally of the same order as the energy scales of the system.

Moreover, the spectral function changes significantly with fre-

quency, which should be contrasted with that in a Markovian

environment which is frequency independent at the relevant

(optical) frequencies.

Now motivated by the quantum simulation proposals for

the spin-boson model, we also consider Markovian dissipation

due to environmental sources of noise. The resulting dynam-

ics is more generally governed by a quantum master equation

as

dρ(t)

dt
=−i[H,ρ]+∑

µ

[
Lµ ρL†

µ −
1

2
(L†

µ Lµ ρ+ρL†
µ Lµ)

]
, (4)

where H is the Hamiltonian defined in Eq. (1), and Lµ s de-

scribe different types of Lindblad operators characterizing

Markovian dissipation. In this work, we consider two ex-

amples of Markovian dissipation: dephasing Ld ph =
√

Γφ σz;

and, “depolarization” Lx =
√

Γxσx. While depolarization is

commonly referred to as a quantum channel where the Block

sphere contracts uniformly, here we have used it to refer to

dephasing along the x direction. We also emphasize that H

should be interpreted as the Hamiltonian in the rotating frame;

for example, see [11, 12] for drive schemes where the above

dynamics is realized in trapped ions. The driven nature of

the model is thus disguised in the rotating frame. Put differ-

ently, Eq. (4) describes an inherently driven-dissipative sys-

tem which approaches a non-equilibrium steady state [34, 35]

even if the bosonic modes in B are at zero temperature. An

alternative perspective is to consider the Hamiltonian H as

the native Hamiltonian, while the two (Markovian and non-

Markovian) baths are mutually out of equilibrium. This is

conceptually similar to a system coupled to two baths at differ-

ent chemical potentials, resulting in a non-equilibrium steady

state [36].

In this work, we like to investigate the interplay of coherent

dynamics, coupling to the bosonic modes, and Markovian dis-

sipation. In particular, we investigate if and how the renormal-

ized frequency in Eq. (3) changes in the presence of Marko-

vian dissipation. We show that, rather surprisingly, that the

frequency is unaffected by depolarization even at moderate

values of Γx; in contrast, the frequency decreases in the pres-

ence of dephasing, and the dynamics becomes overdamped at

sufficiently large values of Γφ . To this end, we first develop a

nonperturbative method to exactly simulate the dynamics.
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III. STOCHASTIC SCHRÖDINGER EQUATION

In this section, we introduce a non-perturbative technique

for an exact numerical solution of the dynamics via the SSE

method. A similar approach has been developed for the spin-

boson model in the absence of Markovian bath [28]; see also

[37]. We first provide a brief introduction of this method for

the standard spin-boson model before considering Markovian

loss.

A first step is to vectorize the density matrix via |i〉〈 j| →
|i j〉〉 ≡ |i〉⊗ | j〉. The Hamiltonian dynamics can be then ex-

pressed as

|ρ(t)〉〉= e−i(Hu−H l)t |ρ(0)〉〉, (5)

where we have defined Hu = H ⊗ I and H l = I ⊗HT .

In a convenient basis where σx,z as well as bk and b
†
k (in the

number basis) are real, we have HT = H∗ = H. We further

assume that at time t = 0 the bath is at the inverse temperature

β , and is decoupled from the spin which is initially in a state

given by the density matrix ρS(0). Hence, the initial density

matrix of the system plus bath is ρ(0) = ρS(0)⊗ e−βHB . In

the vectorized form, the initial density matrix is then given by

|ρ(0)〉〉= |ρS(0)〉〉⊗ |e−βHB〉〉 . (6)

We then trace out the bath degrees of freedom to find the

reduced density matrix of the spin, ρS(t) = TrB(ρ(t)). In

our vectorized notation, the latter density matrix is given by

|ρS〉〉 = 〈〈IB|ρ(t)〉〉 where 〈〈IB| is the vectorized form of the

identity matrix corresponding to the bath. We can thus write

|ρS(t)〉〉= 〈〈IB|e−i(Hu−H l)t |ρ(0)〉〉 . (7)

The bath degrees of freedom can be traced out exactly in an el-

egant fashion using the Feynman-Vernon formalism [38, 39].

The resulting influence functional comes with nontrivial ker-

nels that involve a long-range coupling between the spin vari-

ables at different times. Assuming an Ohmic bath and ωc �∆,

the kernel corresponding to the retarded (causal) component

becomes local in time, while the kernel corresponding to the

quantum fluctuations of the bosonic bath can be dealt with us-

ing a Hubbard-Stratonovich transformation. The result is the

SSE that can be efficiently simulated in the limit 0 < α < 1/2

and large ωc. We refer the interested reader to Appendix A for

the details, and just quote the expression for the state at time

t:

|ρS(t)〉〉=
∞

∏
m=0

∫
dxm√

2π
e−x2

m/2Tte
−i

∫ t
0 dsA (s)|ρS(0)〉〉. (8)

Here, Tt denotes time ordering, and the matrix A (t) is given

by (in the σz basis)

A (t) =




0 −∆
2

∆
2

0

−∆
2

eiπα h(t) 0 ∆
2

e−iπα

∆
2

e−iπα 0 −h(t) −∆
2

eiπα

0 ∆
2

−∆
2

0


 , (9)

with the function h(t) defined as

h(t) =
∞

∑
m=0

xm

√
Gm

π
ψm(t) . (10)

Here, Gm and ψm(t) are known variables and functions de-

fined in Appendix A. Notice that h(t) mimics a stochastic lon-

gitudinal field as the coefficients xm are drawn from a normal

distribution. The expression in Eq. (8) can be computed by

solving a time-dependent Schrödinger equation as

d

dt
|ψ(t)〉=−iA (t)|ψ(t)〉, (11)

where |ψ〉 represents the state of a four-level system.

In practice, the integral over xm is performed by sampling

from a normal distribution [28]. For each realization, we

generate x0,x1, ...,xmmax , which we may truncate at the order

mmax, compute h(t) defined in Eq. (10), which is then substi-

tuted in Eq. (11) to solve for |ψ(t)〉 as a function of time.

Finally, we take the arithmetic average of |ψ(t)〉 over dif-

ferent realizations which yields the vectorized density matrix

|ρS(t)〉〉= |ψ(t)〉 with the bar indicating the average over dif-

ferent realizations.

Solving the SSE allows us to compute quantities of interest;

for example, 〈↑ |ρS(t)| ↑〉 = 〈〈 ↑↑ |ρS〉〉 = ψ1(t), is given by

the first component of the vector |ψ(t)〉 upon averaging over

different realizations. We will be particularly interested in the

expectation value of σz which is given by

〈σz(t)〉= 2ψ1(t)−1. (12)

Finally, we remark that our derivation of the SSE (see Ap-

pendix A) is rather simple compared to the more involved ap-

proach in the literature [28]. Next, we consider Markovian

dissipation which can be naturally and simply incorporated

into the SSE. Let us first recall that the evolution of the den-

sity matrix of the systems plus bath in the presence of Marko-

vian dissipation is governed by the Lindblad master equation

in Eq. (4). A first step then is to vectorize this equation as

d

dt
|ρ(t)〉〉= L |ρ(t)〉〉,

where L =−i(H ⊗ I − I ⊗HT )

+∑
µ

[Lµ ⊗L∗
µ − 1

2
(L†

µ Lµ ⊗ I + I ⊗LT
µ L∗

µ)],

(13)

where we consider dephasing Ld ph =
√

Γφ σz as well as depo-

larization Lx =
√

Γxσx. The Hamiltonian involves the bosonic

bath which should be traced out systematically. On the other

hand, the Markovian dissipation in the last line of the above

equation is simply a superoperator that acts only on the spin.

Therefore, the same steps leading to the SSE in Eq. (11) can

be adapted to the full dynamics simply by adding the dissipa-

tive superoperator to the matrix A . The result is a stochastic
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FIG. 1. (color online) Top panel: Magnetization 〈σz(t)〉 as a func-

tion of time in units of ∆−1
r without Markovian dissipation at differ-

ent α using SSE method. Bottom panel: Quality factor as a function

of α using the SSE. We compare the SSE results against the exact

relation (dashed line). Parameters are mmax = 50000, ωc = 100, and

∆ = 2.0.

Schrödinger equation governed by the evolution operator

B(t) = A (t)+ (14)


−iΓx 0 0 iΓx

0 −i(Γx +2Γφ ) iΓx 0

0 iΓx −i(Γx +2Γφ ) 0

iΓx 0 0 −iΓx


 .

A sum over different realizations of the stochastic field is con-

ducted to compute expectations values of observables of inter-

est. With the Ising symmetry, both the model and the formal-

ism bear resemblance to a driven-dissipative quantum Ising

model that have been studied recently using a quantum-to-

classical mapping [40].

IV. NUMERICAL RESULTS

In this section, we use the SSE to numerically simulate the

dynamics of a spin coupled to an Ohmic bath as well as a

Markovian bath. To benchmark our method, we first consider

0 2 4 6 8 10
t
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1.0

〈σ
z
(t
)〉

Γx =0.1
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1.0

1.3

1.5
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t
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0.0
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1.0

〈σ
z
(t
)〉

Γφ =0.1

0.2

0.3

0.4

0.5

1.0

1.3

1.5

FIG. 2. (color online). Magnetization 〈σz(t)〉 as function of time

in the presence of Markovian dissipation using the SSE method; we

have set α = 0.1. Top and bottom panels represent 〈σz(t)〉 in the

presence of depolarization and dephasing, respectively. Markovian

dissipation leads to a faster decay in both cases, although the fre-

quency remains unchanged under depolarization only.

the spin dynamics in the absence of Markovian dissipation. In

particular, we verify that the spin exhibits underdamped os-

cillations at the renormalized frequency given by Eq. (3). In

order to compute the dynamics using the SSE approach, we

take mmax = 10000,50000 realizations of the stochastic field

for dephasing and depolarization, respectively. We start from

the initial state | ↑〉 (in the σz basis), take the tunneling rate

∆= 2 and a large cutoff ωc = 100 where the SSE is applicable.

The expectation value 〈σz(t)〉 is then computed from Eqs. (9),

(11) and (12); we use the fourth-order Runge-Kutta method to

solve the time-dependent Schrödinger equation. In Fig. 1, we

show 〈σz(t)〉 in the absence of Markovian dissipation. In the

top panel of Fig. 1, we find underdamped oscillations for dif-

ferent values of α = 0.05−0.35 and show that the frequency

of oscillations is the same in units of ∆r. We also consider the

quality factor Ω/γ where Ω (γ) is the frequency (decay rate)

of the spin. In the lower panel of Fig. 1, we contrast this fac-

tor computed from the SSE against the exact result (obtained

from conformal field theory [41]), and find an excellent agree-

ment.

We now switch on the Markovian dissipation. In Fig. 2, we

show 〈σz(t)〉 as a function of time for both depolarization (up-

per panel) and dephasing (lower panel). We make the follow-

ing observations. For depolarization (i.e., dephasing along the

x direction), the dynamics decays faster, but interestingly the
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t
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Γφ = 1.5
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FIG. 3. (color online) Magnetization 〈σz(t)〉 as a function of time

in the presence of dephasing. The left and right panels represent

α = 0.1 and α = 0.2, respectively. Solid (blue), dotted (green), and

dashed (red) lines are computed using SSE, NIBA and a fit of the SSE

results to 〈σz(t)〉 = A0 cos(Ωt + φ0)e
−γt . We find SSE in excellent

agreement with the NIBA and the fit to underdamped dynamics.

frequency is barely dependent on the dissipation strength and

is just set by the (non-Markovian) Ohmic bath. This can also

be viewed as a kind of robustness against depolarization. This

behavior suggests a non-renormalization of the frequency by

the Markovian dissipation. On the other hand, the dephasing

channel not only changes the decay rate, but clearly changes

the frequency of oscillations as well. In fact, for sufficiently

large Γφ , we find a transition into overdamped dynamics.

To gain a better analytical understanding of the dynamics

in the presence of Markovian dissipation, we perform a weak-

coupling perturbative approach, widely known as the NIBA in

the next section.

V. NON-INTERACTING BLIP APPROXIMATION

In this section, we compute 〈σz(t)〉 for different types

of Markovian dissipation using NIBA, which is effectively

a weak-coupling approximation that correctly produces the

renormalized frequency and quality factor of the spin-boson

model for an Ohmic bath [29]. In this section, we employ

and extend the methodology of NIBA to the spin-boson model

0 2 4 6 8 10
−0.5

0.0

0.5

1.0

〈σ
z
(t
)〉

α = 0.1

Γx = 0.1 SSE
NIBA

Fit
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0 2 4 6 8 10
−0.5

0.0

0.5

1.0 Γx = 0.2

0 2 4 6 8 10
−0.5

0.0

0.5

1.0
Γx = 0.3

0 2 4 6 8 10
−0.5

0.0

0.5

1.0
Γx = 0.3

0 2 4 6 8 10

t

−0.3

0.0

0.5

1.0

Γx = 2.0

0 2 4 6 8 10
−0.3
0.0

0.5

1.0
Γx = 2.0

FIG. 4. (color online) Magnetization 〈σz(t)〉 as function of time in

the presence of depolarization. The left and right panels represent

α = 0.1 and α = 0.2, respectively. Solid (blue), dotted (green), and

dashed (red) lines are computed using SSE, NIBA and a fit of the SSE

results to 〈σz(t)〉 = A0 cos(Ωt + φ0)e
−γt . We find SSE in excellent

agreement with the NIBA and the fit to underdamped dynamics.

in the presence of Markovian dissipation. To illustrate this

method, we first consider the spin-boson model with the spin

subject to dephasing. The dynamics in our vectorized notation

is given by

d

dt
|ρ(t)〉〉= L |ρ(t)〉〉, (15)

where the Liouvillian superoperator is given by (using H =
HT )

L =−i[H ⊗ I − I ⊗H]+Γφ (σz ⊗σz − I). (16)

We then apply a “polaron” transformation [42] via the uni-

tary operator U = exp(−iσzB) ⊗ exp(−iσzB) with B =

i∑k(λk/ωk)(b
†
k −bk) to obtain1

L̃ =−i[H̃ ⊗ I − I ⊗ H̃]+Γφ (σz ⊗σz − I), (17)

1 Upon vectorization, the unitary transformation becomes U •U† →U ⊗U∗.

Since U ≡ exp(−iσzB) is purely real, we have U =U ⊗U .
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where H̃ = ∆(σx cosB−σy sinB)/2+∑k ωkb
†
kbk. Notice that

the coupling term is now removed but at the expense of the

modified form of the first term. We can then write the follow-

ing equations of motion for σx, σy, and σz (in the transformed

basis) as

d

dt
σx =−∆σz sinB−2Γφ σx,

d

dt
σy =−∆σz cosB−2Γφ σy,

d

dt
σz = ∆(σy cosB+σx sinB).

(18)

Next, we solve for σz(t) exactly and then take the average

over the Ohmic bath assuming that the spin and the bath are

uncoupled. We find

d

dt
〈σz〉=−

∫ t

0
dse−2Γφ (t−s) f (t − s)〈σz(s)〉 , (19)

where f (t − s) = ∆2/2〈eiB(t)e−iB(s)+h.c.〉. It is convenient to

solve this equation using the Laplace transform f (t)→ f (λ )
where, in a slight abuse of notation, we use the same sym-

bol for the Laplace-transformed functions. Upon this trans-

formation, we have f (λ ) = ∆eff(∆eff/λ )1−2α where we have

defined ∆eff = [Γ(1 − 2α)cos(πα)]1/2(1−α))∆(∆/ωc)
α/(1−α)

with Γ(x) the Gamma function. The solution for the above

equation together with the initial condition 〈σz(t = 0)〉 = 1

becomes

〈σz(λ )〉=
(λ +2Γφ )

1−2α

λ (λ +2Γφ )1−2α +∆2−2α
eff

. (20)

Taking the inverse Laplace transform of 〈σz(t)〉, we then find

the dynamics of the spin in real time as

〈σz(t)〉=
eλ1t(λ1 +2Γφ )

2λ1(1−α)+2Γφ
+

eλ2t(λ2 +2Γφ )

2λ2(1−α)+2Γφ
+Pinc,

(21)

where λ1,2 are the two solutions of

λ (λ +2Γφ )
1−2α +∆2−2α

eff = 0 . (22)

The last term in Eq. (21) is a contribution from the branch cut

in Eq. (20). In the absence of Markovian dissipation, Pinc de-

cays as a power law in time, and becomes dominant at long

times, therefore NIBA does not give the correct result in this

limit. However, Pinc ∼ exp(−2Γφ t) decays exponentially un-

der dephasing (see Appendix B), and NIBA correctly cap-

tures the qualitative behavior of 〈σz(t)〉 at all times. There-

fore, the first two terms in Eq. (21) determine the nature of

the dynamics depending on the eigenvalues λ1,2. Let us first

consider the spin-boson model without Markovian dissipation

by setting Γφ = 0. In this case, the two eigenvalues become

λ1,2 = −γ0 ± iΩ0, resulting in underdamped dynamics with

the decay rate γ0 and frequency Ω0; the subscript 0 denotes the

absence of Markovian dissipation. With Γφ = 0, we recover

Ω0 = ∆eff sin[π/(2−2α)] consistent with Eq. (3) for small α

[28]. Turning on the Markovian dissipation, these eigenvalues

and the nature of the dynamics could change. In Fig. 3, we

plot the numerically exact dynamics governed by the SSE for

different values of dephasing rate Γφ as well as α and contrast

the results against the NIBA prediction. We find an excellent

agreement between the two. We also observe that the dynam-

ics becomes overdamped at sufficiently large Γφ . This feature

too can be reproduced from the NIBA.

To make even a more quantitative comparison between the

SSE and NIBA, we also extract the frequency and the decay

rate directly from the SSE by fitting the dynamics to the func-

tion 〈σz(t)〉 = A0 cos(Ωt + φ0)exp(−γt). Indeed, we find an

excellent agreement between the exact SSE, the above fit and

the NIBA in all cases involving dephasing. Extracting the de-

cay rate γ and frequency Ω from this fit, we show these param-

eters in Fig. 5, and contrast them with the prediction of the

NIBA. Most notably, we observe a clear transition from un-

derdamped to overdamped dynamics at sufficiently large Γφ .

In fact, we find that the dependence of the frequency Ω on Γφ

is quantitatively consistent with the function

Ω ≈
√

Ω2
0 −Γ2

φ . (23)

We recall that Ω0 is the oscillation frequency in the absence

of Markovian dissipation (although it depends on α). We can

also fit the dissipation approximately to

γ ≈ γ0 +Γφ , (24)

where γ0 is again the effective decay rate in the absence of

Markovian dissipation.

Next we consider the depolarization channel. We refer the

reader to Appendix B for details and just quote the final result

from the NIBA:

〈σz(t)〉=
eλ1t(λ1 +Γx)

(λ1 +Γx)+(1−2α)(λ1 +2Γx)

+
eλ2t(λ2 +Γx)

(λ2 +Γx)+(1−2α)(λ2 +2Γx)
+Pinc,

(25)

where λ1,2 are the two solutions of

(λ +2Γx)(λ +Γx)
1−2α +∆

2(1−α)
eff = 0 . (26)

In Fig. 4, we show NIBA vs SSE in the presence of depo-

larization, and again find an excellent agreement. It can be

shown that the last term in Eq. (25) decays exponentially

Pinc ∼ exp(−Γxt). This term must be included to ensure

〈σz〉 = 1 at t = 0, but it can be ignored at intermediate or

long times as it is suppressed exponentially. We remark that

Eq. (25) is derived in a perturbative fashion in Γx. In this case

too, the dynamics is generally characterized by a frequency

Ω and an effective decay rate γ . Unlike the dephasing how-

ever, we find that the frequency changes only slightly with the

rate of depolarization. Indeed, the dynamics appears to be un-

derdamped regardless of the depolarization rate, although it

will decay more quickly for large dissipation (cf. Fig. 2). For
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a quantitative comparison, we also plot the frequency Ω ex-

tracted from the SSE, and contrast that against the NIBA pre-

diction in Fig. 5. We find good agreement for Ω at small dissi-

pation rate Γx and an overall good agreement for γ in the entire

range considered. We however observe that the NIBA predic-

tion deviates from the exact SSE at larger values of Γx, which

might be expected given the perturbative nature of Eq. (25).

We can approximately fit the frequency and the decay rate as

a function of Γx as

Ω ≈ Ω0, γ ≈ γ0 +3Γx/2 . (27)

Before ending this section, an interpretation of its main re-

sults is in order. We recall that, in the absence of any Marko-

vian dissipation, the spin 〈σz(t)〉 exhibits underdamped dy-

namics at the frequency Ω0 and with the decay rate γ0, both

depending nontrivially on the coupling to the Ohmic bath α .

As we turn on the Markovian dissipation, these character-

istic frequency and time scales change in a simple fashion;

cf. Eqs. (23), (24) and (27). The behavior for dephasing, for

example, is reminiscent of an effective single-spin dynamics

characterized by a Rabi frequency Ω0 and the dephasing rate

Γφ . This would reproduce the frequency and the decay rate

in Eqs. (23) and (24) assuming that γ0 � Γφ ; however, this

interpretation is not entirely correct since it doesn’t capture

the full aspects of the dynamics [43]. Similarly, the behav-

ior in Eq. (27) might suggest an effective dynamics charac-

terized by depolarization and the Rabi frequency Ω0. This

would be consistent with the fact that the frequency is almost

independent of the depolarization rate. However, the effective

depolarization rate would be Γeff = 3Γx/4 which is smaller

than the intrinsic dissipation rate Γx. Interestingly, this sug-

gests that the depolarization rate is effectively reduced due to

the coupling to the bosonic bath. We emphasize again that

this picture is incomplete since it would not correctly describe

the dynamics more generally. In general, the coupling to the

bosonic bath generates non-Markovian dynamics which can-

not be mimicked by an effective Markovian master equation.

VI. SUMMARY AND OUTLOOK

In this work, we have considered the dynamics of a single

spin coupled to an Ohmic bath at zero temperature with the

coupling strength 0 < α < 1/2 and a large cutoff ωc as well as

a Markovian bath inducing depolarization or dephasing. We

have studied the dynamics using a nonperturbative approach

known as the SSE valid in the regime of interest. Further-

more, we have derived analytic results based on the NIBA to

gain insight into our exact numerical results. We have shown

that NIBA is in excellent agreement with the SSE. Our re-

sults indicate that, under depolarization, the characteristic fre-

quency of the spin oscillations is approximately unchanged

from its renormalized value for a given α , showing a kind of

robustness against dissipation. On the other hand, dephasing

changes the frequency, albeit in a simple fashion, and even-

tually renders the dynamics overdamped at large dissipation

rates.

0.0 0.5 1.0 1.4

Γφ

0.0

0.5

1.0

1.5

Ω

α = 0.2

α = 0.1

NIBA SSE FitFit

0.0 0.5 1.0

Γφ

0.0

0.5

1.0

1.6

γ
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α = 0.2 NIBA

SSESSE
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0.0
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NIBA SSESSE

0.0 0.5 1.0 1.5 2.0
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0
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γ

α = 0.1 NIBA

SSE

α = 0.2 NIBA
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FIG. 5. (color online) Frequency Ω and decay rate γ obtained from

the SSE and NIBA as a function of the dissipation strength. The

top panels depict Ω and γ in the presence of dephasing. SSE and

NIBA results are in excellent agreement. The frequency is very well

described by the fit Ω =
√

∆2
eff −Γ2

φ ; see the dashed-dotted line. The

bottom panels depict Ω and γ in the presence of depolarization. The

frequency Ω obtained from the SSE barely depends on Γx.

The results obtained in this work hint at a simple picture

where the renormalized spin interacts with the Markovian dis-

sipation in a simple way. While an effective single-spin dy-

namics cannot describe the full dynamics, it is worthwhile

finding an effective picture that consistently explains the main

features. An interesting future direction is to identify to what

extent the conclusions of this work extend to more general set-

tings where α > 1/2 and the cutoff frequency is not restricted

to large values. It is particularly interesting to determine the

existence or destruction of the localization transition in the

presence of Markovian dissipation [44, 45]. These questions

will have practical consequences for the emergent quantum

simulation platforms that aim to simulate spin-boson models

and yet unavoidably come with intrinsic dissipation due to the

unwanted coupling to the environment.
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Appendix A: Stochastic Schrödinger Equation

We express the density matrix of the system plus bath in a

Trotterized form as

|ρ(t)〉〉= e−i[Hu−H l ]δ t ...e−i[Hu−H l ]δ t

︸ ︷︷ ︸
n times

|ρ(0)〉〉, (A1)

where n = t/δ t and |ρ(0)〉〉 is initial density matrix of the sys-

tem plus bath. We also assume that at time t = 0 the system

and the bath are decoupled, and take

|ρ(0)〉〉= |ρS(0)〉〉⊗ |e−βHB〉〉, (A2)

where β is the inverse temperature. At zero temperature, the

density matrix of the bath is simply the vacuum. We then

insert at the time slice k in Eq. (A1) the identity superoperator

ISB which acts on the system plus bath as

ISB = ∑
σu

k
,σ l

k
,Nu

k
,Nl

k

|σu
k ,σ

l
k,N

u
k ,N

l
k〉〈σu

k ,σ
l
k,N

u
k ,N

l
k|, (A3)

where |Nu/l

k 〉 and |σu/l

k 〉 are the many-body complete basis of

the bath and the system at time kδ t on the upper/lower branch

of the Keldysh contour, respectively. The indices |σu/l

k 〉 rep-

resent eigenstates of σ
u/l
z while |Nu/l

k 〉 could denote coherent

states, the occupation number basis, or eigenstates of the bath

Hamiltonian; the specific choice is unimportant. The system

density matrix |ρS(t)〉〉 is expressed by tracing out the bath

degrees of freedom as

|ρS(t)〉〉= 〈〈IB|ρ(t)〉〉, (A4)

where the identity superket |IB〉〉 can be expressed as

|IB〉〉= ∑
N

|NN〉〉. (A5)

By using Eqs. (A1), (A3) and (A4), the density matrix of the

system in Trotterized form can be expressed as

|ρS(t)〉〉= ∑
σ̄ ,N̄

〈〈IB|e−i[Hu−H l ]δ t |σu
n−1σ l

n−1Nu
n−1Nl

n−1〉

×〈σu
n−1σ l

n−1Nu
n−1Nl

n−1| · · · |σu
2 σ l

2Nu
2 Nl

2〉
×〈σu

2 σ l
2Nu

2 Nl
2|e−i[Hu−H l ]δ t |σu

1 σ l
1Nu

1 Nl
1〉

×〈σu
1 σ l

1Nu
1 Nl

1|e−i[Hu−H l ]δ t |ρ(0)〉〉, (A6)

where σ̄ (similarly N̄) indicates the collections of all {σ
u/l

k }.

For δ t → 0, we can use the Trotter-Suzuki decomposition as

e−i[Hu−H l ]δ t = e−i[Hu
S−H l

S]δ te−i[Hu
B+Hu

SB−H l
B−H l

SB]δ teO(δ t2).
(A7)

With this identity, the density matrix of the system can be ex-

pressed as

|ρS(t)〉〉= ∑
σ̄ ,N̄

(A8)

〈〈IB|e−i[Hu
S−H l

S]δ te−i[H
′u(σu

n−1)−H
′l(σ l

n−1)]δ t |σu
n−1σ l

n−1Nu
n−1Nl

n−1〉
×〈σu

n−1σ l
n−1Nu

n−1Nl
n−1| · · · |σu

2 σ l
2Nu

2 Nl
2〉

×〈σu
2 σ l

2Nu
2 Nl

2|e−i[Hu
S−H l

S]δ txe−i[H
′u(σu

1 )−H
′l(σ l

1)]δ t |σu
1 σ l

1Nu
1 Nl

1〉

×〈σu
1 σ l

1Nu
1 Nl

1|e−i[Hu
S−H l

S]δ te−i[H
′u(σu

0 )−H
′l(σ l

0)]δ t |ρ(0)〉〉,

where H
′u/l [σu/l(t)] are expressed as

H
′u/l [σu/l(t)] = H

u/l

B +
1

2
σu/l(t)∑

k

λk[b
u/l

k +b
†
k

u/l
]. (A9)

Finally, Eq. (A4) can be expressed as

|ρS(t)〉〉= lim
δ t→0

∑
σ̄

e−i[Hu
S−H l

S]δ t |σu
n−1σ l

n−1〉〈σu
n−1σ l

n−1|...

|σu
2 σ l

2〉〈σu
2 σ l

2|e−i[Hu
S−H l

S]δ t |σu
1 σ l

1〉〈σu
1 σ l

1|e−i[Hu
S−H l

S]δ t |ρS(0)〉〉

×〈〈IB|Tte
−i

∫ t
0 ds(H

′u[σu(s)]−H
′l [σ l(s)])|e−βHB〉〉. (A10)

The last term of Eq. (A10) defines the influence of the

bath on the system and is known as the influence functional

φ [σu/l(t)]:

φ [σu/l(t)] = 〈〈IB|Tte
−i

∫ t
0 ds(H

′u[σu(s)]−H
′l [σ l(s)])|e−βHB〉〉.

(A11)

To simplify Eq. (A11), we express

e−i
∫ t

0 ds(H
′u[σu(s)]−H

′l [σ l(s)])|e−βHB〉〉 in the operator form

as

|ρ ′
B(t)〉〉= e−i

∫ t
0 ds(H

′u[σu(s)]−H
′l [σ l(s)])|e−βHB〉〉,

d|ρ ′
B(t)〉〉
dt

=−i(H
′u[σu(t)]−H

′l [σ l(t)])|e−βHB〉〉.
(A12)

We can again write the equation for vectorized |ρ ′
B(t)〉〉 in the

operator matrix form as

dρ ′
B(t)

dt
=−i[H ′[σu(t)]e−βHB − e−βHBH ′[σ l(t)]],

ρ ′
B(t) = e−iH ′[σu(t)]e−βHBeiH ′[σ l(t)].

(A13)

Finally by using Eqs. (A11) and (A13), the influence func-

tional can be expressed as

φ [σu/l(t)] = TrB(e
−iH ′[σu(t)]e−βHBeiH ′[σ l(t)])

= TrB(e
−βHBeiH ′[σ l(t)]e−iH ′[σu(t)]).

(A14)

This equation defines the general expression for the influence

functional. Since H ′ is quadratic in terms of bosonic opera-

tors, it can be computed exactly to find

φ [ξ (t),η(t)] = exp
[
− 1

π

∫ t

0
ds

∫ s

0
ds′[−iL1(s− s′)

×ξ (s)η(s′)+L2(s− s′)ξ (s)ξ (s′)]
]
,

(A15)



9

where we have defined η and ξ as

η(s) =
σu(s)+σ l(s)

2
,

ξ (s) =
σu(s)−σ l(s)

2
.

(A16)

The functions L2(s− s′) and L1(s− s′) are defined as the real

and imaginary part of 〈(∑k λk(bk(s)+ b
†
k(s)))(∑k λk(bk(s

′)+

b
†
k(s

′)))〉, respectively, can be described in terms of the spec-

tral function as

L1(t) =
∫ ∞

0
dωJ(ω)sin(ωt),

L2(t) =
∫ ∞

0
dωJ(ω)cos(ωt)coth(βω/2).

(A17)

Next, we consider that at time t = 0, the system is in the | ↑〉
state in the σz basis. Let us say that we are interested in the

density matrix of the system at time t, and more specifically

〈↑ |ρ(t)| ↑〉, which in the vectorized form can be expressed as

〈↑ |ρs(t)| ↑〉= 〈〈 ↑↑ |ρs(t)〉〉. (A18)

By using Eqs. (A10) and (A18) together with the definition of

the influence functional can be written as

〈↑ |ρS(t)| ↑〉= ∑
σu,σ l

〈〈 ↑↑ | · · ·e−iδ t∆[σu
z −σ l

z ]|σu
2 σ l

2〉

×〈σu
2 σ l

2|e−iδ t∆[σu
z −σ l

z ]|σu
1 σ l

1〉〈σu
1 σ l

1|e−iδ t∆[σu
z −σ l

z ]| ↑↑ 〉〉

× exp
[
− 1

π

∫ t

0
ds

∫ s

0
ds′(−iL1(s− s′)ξ (s)η(s′)+

+L2(s− s′)ξ (s)ξ (s′))
]
. (A19)

For an Ohmic bath with the spectral function given by Eq. (2),

we have L1(s) = π2αδ ′
ε(s) where we have defined δε(x) =

1
π

ε
x+ε2 , used the notation δ ′

ε(s) = dδε(s)/ds, and identified

ε = 1/ωc. We then compute the kernel corresponding to L1 as

A1(t) =
i

π

∫ t

0
ds

∫ s

0
ds′L1(s− s′)ξ (s)η(s′)

= iπα

∫ t

0
dsξ (s)

[
η(s′)δε(s− s′)|s0 −

∫ s

0
ds′

∂η(s′)
∂ s′

δ (s− s′)
]

=−iπα

∫ t

0
dsξ (s)

∂η(s)

∂ s

−−→
ε→0

−iπα ∑
k

ξ (k)[η(k)−η(k−1)] = iπα ∑
k

ξ (k)η(k−1),

(A20)

where in the last line, we have taken the limit of ε → 0,

which is justified for large ωc. We have also used the fact

that ξ (k)η(k) = 0. For the same Ohmic bath, we also find the

kernel L2(s) = 2πα(1−ω2
c s2)/(1+ω2

c s2)2 which decays as

a power law at long times. We can express L2(s) in a time

window [−tmax, tmax], where tmax is the total simulation time

beyond which L2(s) can be approximately taken to be zero.

We now cast L2(s− s′) in terms of a Fourier series so that L2

becomes separable in time:

L2(s− s′) = g0 +
m=mmax/2

∑
m=1

gm cos
(mπ(s− s′)

tmax

)
. (A21)

We then expand the cosine function as

L2(s− s′) =g0 +
m=mmax/2

∑
m=1

gm

(
cos

(mπs

tmax

)
cos

(mπs′

tmax

)

+ sin
(mπs

tmax

)
sin

(mπs′

tmax

))
, (A22)

where g0 and gm are the Fourier series components given by

g0 =
1

2tmax

∫ tmax

−tmax

dsL2(s),

gm =
1

tmax

∫ tmax

−tmax

dsL2(s)cos(mπs/tmax).

(A23)

We can recast Eq. (A22) as

L2(s− s′) =
m=mmax

∑
m=0

Gmψm(s)ψm(s
′). (A24)

By comparing Eqs. (A22) and (A24), we obtain

G0 = g0, G2m−1 = G2m = gm, (A25)

ψ0(s) = 1, ψ2m−1(s) = cos
(mπs

tmax

)
,ψ2m(s) = sin

(mπs

tmax

)
.

Now the integral involving L2 in Eq. (A19) can be written as

A2(t) =− 1

π

∫ t

0
ds

∫ s

0
ds′L2(s− s′)ξ (s)ξ (s′),

A2(t) =−
m=mmax

∑
m=0

Gm

π

∫ t

0
ds

∫ s

0
ds′ξ (s)ξ (s′)ψm(s)ψm(s

′),

=−1

2

m=mmax

∑
m=0

Gm

π

[∫ t

0
dsξ (s)ψm(s)

]2

. (A26)

Next, we introduce the auxiliary fields xm corresponding to

each frequency component (ωm) and employ the Hubbard-

Stratonovich transformation as

e
− 1

2 ∑
m=mmax
m=0

Gm
π

[
∫ t

0 dsξ (s)ψm(s)

]2

=
m=mmax

∏
m=0

∫
dxm√

2π
e−x2

m/2e−i
∫ t

0 dsξ (s)h(s),

(A27)

where we have defined h(s) = ∑
m=mmax
m=0 xm

√
Gm
π ψm(s). In a

discretized time with the time step δ t, we can now express

Eq. (A27) as

e−i
∫ t

0 dsξ (s)h(s) = e−iδ t ∑k ξ (k)h(k). (A28)

By substituting Eqs. (A20) and (A28) into Eq. (A19), density

matrix of the system is described as a sum over different spin

configurations.
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Now we can see from Eqs. (A20) and (A28) that the action

of both L1 as well as L2 after the Hubbard-Stratonovich trans-

formation becomes local in time involving only adjacent time

steps. We can then express the matrix elements of the time-

evolution generator ˜A between two immediate time steps as

〈σu
k σ l

k| ˜A |σu
k−1σ l

k−1〉
= e−iδ tξ (k)h(k)eiπαη(k−1)ξ (k)〈σu

k σ l
k|e−iδ t ∆

2 [σ
u
z −σ l

z ]|σu
k−1σ l

k−1〉

We can then write the matrix ˜A as

˜A =




1 iδ t ∆
2

−iδ t ∆
2

0

iδ t ∆
2

eiπα 1− iδ th(k) 0 −iδ t ∆
2

e−iπα

−iδ t ∆
2

e−iπα 0 1+ iδ th(k) iδ t ∆
2

eiπα

0 −iδ t ∆
2

iδ t ∆
2

1


 .

(A29)

Finally defining ˜A = I − iδ tA (k)≈ e−iδ tA (k), we find

A (k) =




0 ∆
2

−∆
2

0
∆
2

eiπα −h(k) 0 −∆
2

e−iπα

−∆
2

e−iπα 0 h(k) ∆
2

eiπα

0 −∆
2

∆
2

0


 (A30)

and using Eqs. (A19), (A20), (A27) and (A29), the density

matrix ρS(t) can be written as

〈↑ |ρS(t)| ↑〉=
m=mmax

∏
m=0

∫
dxm√

2π
e−x2

m/2〈〈 ↑↑ |Tte
−i

∫ t
0 dsA (s)| ↑↑ 〉〉

with A (t) =




0 −∆
2

∆
2

0

−∆
2

eiπα h(t) 0 ∆
2

e−iπα

∆
2

e−iπα 0 −h(t) −∆
2

eiπα

0 ∆
2

−∆
2

0


 . (A31)

In order to solve Eq. (A31), we express Tte
−i

∫ t
0 dsA (s)| ↑↑ 〉〉 as

d|ψ(t)〉
dt

=−iA (t)|ψ(t)〉, (A32)

and, we recover Eq. (11) in the main text.

Appendix B: NIBA

In this section, we extend the NIBA used in the spin-boson

model [29] to the case of Markovian dissipation, specifically

dephasing along both z and x directions.

1. NIBA for depolarization

We start with the time evolution of vectorized density ma-

trix in the presence of depolarization (i.e., dephasing along the

x direction):

d|ρ(t)〉〉
dt

= L |ρ(t)〉〉, (B1)

L =−i[H ⊗ I − I ⊗H]+Γx(σx ⊗σx − I). (B2)

We then follow the steps outlined in Ref. [29]. We first apply

a polaron transformation U = exp(−iσzB)⊗exp(−iσzB) with

B = i∑k(λk/ωk)(b
†
k −bk) on the Liouvillian L :

L̃ =−i[H̃ ⊗ I − I ⊗ H̃]+Γx(σ̃x ⊗ σ̃x − I), (B3)

where H̃ = ∆/2(σx cos(B)−σy sin(B))+∑k ωkb
†
kbk and σ̃x =

σx cos(B)−σy sin(B). We can write the equations of motion

for σx, σy, and σz as

d

dt
σx =−∆σz sinB+Γx[σx cos2B−σy sin2B−σx],

d

dt
σy =−∆σz cosB+Γx[−σy cos2B−σx sin2B−σy],

d

dt
σz = ∆[σy cosB+σx sinB]−2Γxσz.

(B4)

From this equation, σx and σy can be expressed as

σx(t) =
∫ t

0
dse−Γx(t−s){−∆σz(s)sin(B(s))

+Γx[cos(2B(s))σx(s)− cos(2B(s))σy(s)]},

σy(t) =
∫ t

0
dse−Γx(t−s){−∆σz(s)cos(B(s))

−Γx[cos(2B(s))σy(s)− sin(2B(s))σx(s)]}.

(B5)

We can now write the equation for σz in Eq. (B4) as

d

dt
σz(t)+2Γxσz(t)

= ∆cos(B(t))
∫ t

0
dseΓx(s−t){−∆σz(s)cos(B(s))

−Γx[cos(2B(s))σy(s)− sin(2B(s))σx(s)]}

+∆sin(B(t))
∫ t

0
dseΓx(s−t){−∆σz(s)sin(B(s))

+Γx[cos(2B(s))σx(s)− cos(2B(s))σy(s)]} (B6)

Finally, we take thermal average over both sides of Eq. (B6)

and now assume that the spin and the bath are decoupled from

each other. We then obtain
〈

d

dt
σz(t)+2Γxσz(t)

〉
=−∆2

2

[∫ t

0
dseΓx(s−t)〈σz(s)〉

〈eiB(t)e−iB(s)〉+h.c
]
,

〈
d

dt
σz(t)+2Γxσz(t)

〉
=−

∫ t

0
dseΓx(s−t)〈σz(s) f (t − s)〉.

(B7)

Notice that the terms involving σx and σy have disappeared

because of the neutrality condition 〈exp(i(nB(t)−mB(s)))〉=
0 if n 6= m. In deriving the above equation, we have implicitly

kept the terms to the first order in Γx (assuming that the spin

and the bath are decoupled to the first order in Γx). Now, we

take the Laplace transform of the above equation to find

〈σz(λ )〉=
1

λ +2Γx + f (λ +Γx)
. (B8)
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where the Laplace transformed function f (λ ) is given by

f (λ ) = ∆eff

(∆eff

λ

)1−2α
, (B9)

and, for completeness, we recall the expression for ∆eff:

∆eff = [Γ(1−2α)cos(πα)]1/2(1−α))∆(∆/ωc)
α/(1−α).

(B10)

Finally, by taking inverse Laplace transform of Eq. (B8),

we find

〈σz(t)〉=
eλ1t(λ1 +Γx)

(λ1 +Γx)+(1−2α)(λ1 +2Γx)

+
eλ2t(λ2 +Γx)

(λ2 +Γx)+(1−2α)(λ2 +2Γx)
+Pinc,

(B11)

where Pinc can be expressed as

Pinc =− 1

π

∫ ∞

0
dz

z1−2α e−(zt+Γxt) sin(π(1−2α))∆2−2α
eff

D
,

D = (−z+Γx)
2z2(2−2α)+∆4−4α

eff + (B12)

2∆2−2α
eff (−z+Γx)z

1−2α cos(π(1−2α)))

where λ1,2 are the solutions to the equation (λ + 2Γx)(λ +

Γx)
1−2α +∆

2(1−α)
eff = 0.

2. NIBA for dephasing

In this section, we consider dephasing Γφ along z direction.

By following similar steps to Appendix B 1, we find

d

dt
σx =−∆σz sinB−2Γφ σx,

d

dt
σy =−∆σz cosB−2Γφ σy,

d

dt
σz = ∆(σy cosB+σx sinB).

(B13)

A similar procedure to Appendix B 1 yields the equation of

motion for 〈σz〉 as

d

dt
〈σz〉=−

∫ t

0
ds f (t − s)〈σz(s)〉e2Γφ (s−t),

〈σz(λ )〉=
1

λ + f (λ +2Γφ )
.

(B14)

We point out that Eq. (B14) is non-perturbative in Γφ unlike

the case of depolarization. The above equation can be now

written as

〈σz(λ )〉=
(λ +2Γφ )

1−2α

λ (λ +2Γφ )1−2α +∆2−2α
eff

. (B15)

Taking the inverse Laplace transform, we obtain

〈σz(t)〉=
eλ1t(λ1 +2Γφ )

2λ1(1−α)+2Γφ
+

eλ2t(λ2 +2Γφ )

2λ2(1−α)+2Γφ
+Pinc,

(B16)
Pinc is expressed as

Pinc =−
∫ ∞

0
dysin(π−2πα)/πe−yte−2Γφ ty(1−2α)∆

(2−2α)
eff /D1,

(B17)

where D1 is expressed as

D1 = ((y+2Γφ )(y+2Γφ )y
2−4α −2cos(π −2πα) (B18)

∆
(2−2α)
eff (y+2Γφ )y

(1−2.0α)+∆4−4α
eff ), (B19)

and λ1,2 are given by the solutions to the equation λ (λ +

2Γφ )
1−2α +∆2−2α

eff = 0.
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