
Towards Generic MPC Compilers
via Variable Instruction Set Architectures (VISAs)

Yibin Yang

Georgia Institute of Technology, USA

yyang811@gatech.edu

Stanislav Peceny

Georgia Institute of Technology, USA

stan.peceny@gatech.edu

David Heath

University of Illinois Urbana-Champaign, USA

daheath@illinois.edu

Vladimir Kolesnikov

Georgia Institute of Technology, USA

kolesnikov@gatech.edu

ABSTRACT
In MPC, we usually represent programs as circuits. This is a poor fit

for programs that use complex control flow, as it is costly to compile

control flow to circuits. This motivated prior work to emulate CPUs

inside MPC. Emulated CPUs can run complex programs, but they

introduce high overhead due to the need to evaluate not just the

program, but also the machinery of the CPU, including fetching,

decoding, and executing instructions, accessing RAM, etc.

Thus, both circuits and CPU emulation seem a poor fit for general

MPC. The former cannot scale to arbitrary programs; the latter

incurs high per-operation overhead.

We propose variable instruction set architectures (VISAs), an ap-

proach that inherits the best features of both circuits and CPU

emulation. Unlike a CPU, a VISA machine repeatedly executes en-

tire program fragments, not individual instructions. By considering

larger building blocks, we avoid most of the machinery associated

with CPU emulation: we directly handle each fragment as a circuit.

We instantiated a VISA machine via garbled circuits (GC), yield-

ing constant-round 2PC for arbitrary assembly programs. We use

improved branching (Stacked Garbling, Heath and Kolesnikov,

Crypto 2020) and recent Garbled RAM (GRAM) (Heath et al., Euro-

crypt 2022). Composing these securely and efficiently is intricate,

and is one of our main contributions.

We implemented our approach and ran it on common programs,

including Dijkstra’s and Knuth-Morris-Pratt. Our 2PC VISA ma-

chine executes assembly instructions at 300Hz to 4000Hz, depend-

ing on the target program. We significantly outperform the state-

of-the-art CPU-based approach (Wang et al., ESORICS 2016, whose

tool we re-benchmarked on our setup). We run in constant rounds,

use 6× less bandwidth, and run more than 40× faster on a low-

latency network. With 50ms (resp. 100ms) latency, we are 898×
(resp. 1585×) faster on the same setup.

While our focus is MPC, the VISA model also benefits CPU-

emulation-based Zero-Knowledge proof compilers, such as ZEE

and EZEE (Heath et al., Oakland’21 and Yang et al., EuroS&P’22).
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1 INTRODUCTION
Secure multi-party computation (MPC) allows mutually untrusting

parties to execute programs on their private inputs while reveal-

ing only the output. MPC has become relevant in academia and

industry. It has been commercially deployed in online auctions, elec-

tronic voting, financial technology, and has found many use cases

in medicine, privacy-preserving machine learning, and distributed

databases.

Typically in MPC, we encode programs as circuits. While any

bounded program can be compiled to a circuit, the compiled circuit

is oftenmuch larger than the source program. Real world programs

(1) access large arrays of data and (2) use complex control flow.

Compiling these two program features often results in huge circuits,

and MPC cost scales with the size of the circuit. If we wish to enable

secure computation of real-world programs, we must circumvent

the cost imposed by compiling these features to circuits.

While the issue of array access can be resolved via oblivious

RAM (ORAM) [GO96] or garbled RAM (GRAM) [LO13], complex

control flow has gone largely unaddressed.

Straight-line execution. Indeed, most existing MPC tools “solve”

the control flow problem by disallowing complex control flow.

Most existing MPC toolchains require that the programmer hand-

annotate each loop with a hard-coded upper bound on the number

of loop iterations [HHNZ19]. With these annotations, the program

becomes a simple straight-line program, compatible with the circuit

model. A compiler can now unroll each loop precisely the specified

number of times, then compile each iteration into gates.

This approach is problematic. At best, annotating programs is

an annoyance. At worst, hard-coded loop bounds ruin performance,
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since we must execute each loop iteration, even if the loop should

terminate early. Many programs are awkward to write and will

have wildly wrong asymptotic complexity. In other words, the

programmer is left with an incomplete programming environment

where she cannot write every program she might need.

CPU emulation. There is another approach that addresses the

control flow problem. Instead of evaluating the program directly,

use MPC to emulate a CPU, then run the program on that CPU. To

achieve this, we must fully emulate a CPU, including its program

counter, register file, ALU, and main memory. At each step, the CPU

will look up and decode the next instruction, load/store registers,

run arithmetic operations, and read/write main memory. In this

way, the parties can securely evaluate one instruction at a time.

CPU emulation can securely evaluate arbitrary programs, but at

a cost. When we emulate a CPU, we pay to evaluate not just the

program, but also the machinery inside the CPU. In comparison

to straight-line execution, CPU emulation incurs very high per-

operation cost. In straight-line execution, the arguments to each

program operation are decided statically; in a CPU, the arguments

are dynamic and must be moved into and out of the register file.

Similarly, in straight-line execution, the operation to be performed

at each step is decided statically; in a CPU, we must look up the next

instruction from a large memory, then conditionally dispatch over

each operation in the ISA. In short, while CPU emulation solves

the control flow problem, it introduces high overhead.

Full version. Full version of this paper is available at [YPHK23].

1.1 Case study: Dijkstra’s algorithm
We illustrate the challenge of handling general programs in MPC.

Consider Dijkstra’s algorithm
1
(Figure 1).

Dijkstra’s is a graph algorithm that computes the shortest path

between a source node (b[0]) and a target node (b[1]). Assume

that the graph, the source, and the target are private inputs (e.g.,

secret-shared between the parties). Both straight-line execution

and CPU emulation struggle with this small program.

Straight-line execution. Straight-line execution-based tools will

generally achieve the wrong cost for the algorithm. Consider a

graph (𝑉 , 𝐸). Even if we suppose that |𝑉 | and |𝐸 | are public, this
simple program presents a challenge to straight-line execution. The

problem is that the loop on lines 26–31 dynamically accesses each

edge from a graph node. The number of edges from this node is

private, so the loop must be unrolled |𝐸 | times to accommodate

the maximum possible number of edges. In a cleartext execution of

Dijkstra’s, this inner loop will in total iterate only 𝑂 ( |𝐸 |) times; in

this unrolled version, the inner loop will iterate 𝑂 ( |𝐸 | · |𝑉 |) times.

Even worse, suppose that Dijkstra’s is not the full program, but

rather is a subprocedure of a larger program. Here, |𝑉 | and |𝐸 | are
likely dynamic and should be kept secret. In this case, straight-line

execution-based tools must pessimistically assume that |𝑉 | and |𝐸 |
are maximal, ruining performance.

1
For performance, Dijkstra’s algorithm may be implemented with a priority queue
containing partial solutions sorted by distance from the start node. Standard Dijkstra

is based on a simple array, as is also done in [WGMK16]. We use standard Dijkstra for

illustration and direct performance comparison with [WGMK16].

1 #define MAX 100

2 #define MAX_INT 1000000

3 int dijkstra(int *a, int *b) {

4 int n = a[0];

5 int e = a[1];

6 int * node = a + 2;

7 int * edge = a + 2 + 101;

8 int * weight = a + 2 + 401;

9 int vis[MAX];

10 int dis[MAX];

11 dis[b[0]] = 0;

12 int i = 0;

13 while (i < n) {

14 int bestj = -1, bestdis = MAX_INT;

15 int j = 0;

16 while (j < n) {

17 if( vis[j] == 0 && dis[j] < bestdis ) {

18 bestj = j;

19 bestdis = dis[j];

20 }

21 j++;

22 }

23 vis[bestj] = 1;

24 j = node[bestj];

25 int bound = node[bestj+1];

26 while (j < bound) {

27 int newDis = bestdis + weight[j];

28 if(newDis < dis[edge[j]])

29 dis[edge[j]] = newDis;

30 j++;

31 }

32 i++;

33 }

34 return dis[b[1]];

35 }

Figure 1: Dijkstra’s algorithm written in C. Each vertical line

on the left denotes a contiguous string of instructions that are

grouped into a fragment. I.e., this program has seven fragments.

ObliVM [LWN
+
15] showed that for Dijkstra’s algorithm and if

|𝑉 | and |𝐸 | are public, the straight-line approach can reclaim the

loop asymptotics via loop coalescing. Using loop coalescing, we can

flatten the nested loop on lines 13–33 into a single loop with an

internal conditional. Then, the number of iterations of this top level

loop is a function of |𝑉 | and |𝐸 |, so it is possible to properly bound

the loop. See further discussion in Section 3.

While loop coalescing can solve this particular problem, it places

a significant burden on the programmer: the programmer must now

reason about and properly specify upper bounds on coalesced loops.

This may be expensive if |𝑉 | and |𝐸 | are secret, such as if Dijkstra’s

is nested inside another data-dependent loop, requiring costly fur-

ther coalescing or excessive padding. This syntactic transformation

produces expensive code that is difficult to further optimize.



Towards Generic MPC Compilers
via Variable Instruction Set Architectures (VISAs) CCS ’23, November 26–30, 2023, Copenhagen, Denmark

CPU emulation. CPU emulation correctly implements Dijkstra’s

asymptotics
2
, but incurs significant concrete cost.

The state-of-the-art CPU emulator implements a sufficient subset

of the MIPS instruction set [WGMK16] to handle Dijkstra’s. This

CPU stores the compiled assembly program, the register file, and

the main memory in three separate RAMs. [WGMK16] implements

RAM using either Circuit ORAM [WCS15] or trivial linear scans,

depending on the size of the needed array. Their CPU proceeds by

continually fetching and executing instructions.

Storing the program in RAM and applying the fetch-and-

execute paradigm discards all useful static information, some of

which [WGMK16] manually reclaims by implementing various

heuristics, such as periodic (rather than per-instruction) RAM ac-

cess. Even applying this heuristic, their number of main memory

accesses is suboptimal. Further, they must always access smaller

memories to fetch instructions and to read/write registers. Their

ALU decodes the instruction and conditionally executes the opera-

tion for each instruction type that is statically possible at a given

step. As a result, each CPU step is a large circuit that often improves

on the circuit-based computation only for problem instances where

MPC is impractical.

Our approach, discussed next, systematically optimizes away

many of the principal inefficiencies of [WGMK16] and results in

significantly improved performance. For instance, for Dijkstra’s

with 100 nodes and 300 edges and when run on the same setup,
our VISA machine uses 5.8× fewer RAM accesses, consumes 7.3×
less bandwidth, and runs 44.9× faster. We are 1585× faster on a

100ms-latency network.

Our solution: VISA machines. The state of the art presents a di-
chotomy: CPU emulation or straight-line programs.

In this work, we suggest and explore a hybrid approach to han-

dling arbitrary programs inside MPC. Our variable instruction set
architecture machine, or VISA machine, handles programs with ar-

bitrary control flow, but avoids most of the overhead of the CPU

emulation approach. It uses the statically available context to opti-

mize the scope (and hence the cost) of each execution step.

In short, a VISA machine is distinct from a CPU in that it does

not repeatedly execute instructions, but rather repeatedly executes

entire fragments of the source program. Each fragment is an arbi-

trarily long straight-line portion of the source program text. The

basic advantage of this is that we can cheaply handle each fragment

as a circuit. While we still need CPU-like machinery to coordinate

the execution of the fragments and ensure privacy, the amount of

needed machinery is substantially reduced.

1.2 Contribution
We propose variable instruction set architectures, a basic approach to
evaluating arbitrary programs inside MPC. We believe that VISAs

are the sensible approach to executing arbitrary programs in MPC.

VISAs do not limit the programmer to straight-line programs, and

they do not incur the high overhead of a basic CPU. A VISA adapts

2
To be pedantic, the CPU emulation approach achieves the correct asymptotics mod-

ulo polylog factors imposed by ORAM/GRAM. Neither CPU emulation nor straight-

line execution, nor indeed our approach, can avoid polylog overhead from ORAM/-

GRAM [LN18].

to the target program of interest, an appropriate choice for MPC

where we generally assume that the parties agree on a program.

In more detail, we:

• Introduce and motivate the VISA model.

• Construct a complete VISA-based secure two-party compu-

tation (2PC) toolchain for assembly programs. Our toolchain

is implemented via garbled circuits (GC).

• Resolve technical issues needed to combine core compo-

nents of a GC-based VISA machine: GC conditional branch-

ing [HK20, HK21b] and Garbled RAM [HKO21].

• Formalize our instantiation as a garbling scheme [BHR12]

and prove the resulting formalism secure. Our garbling

scheme securely evaluates arbitrary assembly programs writ-

ten in our ISA. Using garbling schemes as the underlying

mechanism has two key benefits.

– First, we dramatically decrease the number of communica-

tion rounds, resulting in orders of magnitude improvement

(see Section 7.4.3). Prior work [WGMK16, Kel17] used tens

of rounds per CPU step, while we require one message plus

an OT for the entire 2PC.

– Second, our technique can be elevated to the covert, PVC,

and malicious models using standard techniques.

• We implemented VISA machine including, significantly, the

first implementation of Garbled RAM [HKO21].

• Experimentally evaluate performance of our toolchain. We

ran our VISA machine on a number of assembly benchmarks,

including Dijkstra’s, Knuth-Morris-Pratt, and a private set in-

tersection benchmark from [WGMK16]. Our results indicate

significant improvement over the prior best approach to ar-

bitrary assembly programs [WGMK16]: we run in constant

rounds, use 4–7× less bandwidth, use 5–10× fewer RAM

accesses, and run 40–70× faster (up to 1585× with 100ms

latency), yielding a machine that executes assembly instruc-

tions at 300–4000Hz. We also experimentally show our work,

as expected, overtakes circuit-based 2PC (EMP [WMK16])

even for small programs with non-trivial control flow.

• We plan to open source and maintain a cleaned version of

our prototype toolchain.

• While our focus is on MPC, the VISA model also directly ap-

plies to CPU-emulation-based Zero-Knowledge Proof (ZKP)

compilers, such as ZEE and EZEE [HYDK21, YHKD22]. In-

deed, they face similar problems of more efficient CPU design

(e.g., fragmentation and stacking), ZK ORAM integration

with branching, etc., and the VISA approach is similarly ben-

eficial to ZKP compiler work.We leave specific instantiations

of ZKP VISA as exciting future work.

Recent breakthrough GC andMPC improvements on free branch-

ing [HK20, HK21b, HKP20, HKP21] and efficient GRAM [HKO21]

removed fundamental technical roadblocks needed to move away

from straight-line circuit execution. We believe that our hybrid

approach – contextual fragment-based execution engines – will

underlie the next generation of 2PC andMPC toolchains. This paper

initiates this direction and sets the stage for future cryptographic

and interdisciplinary work that will likely involve programming

language, static analysis, and compiler techniques, and that will

interface with high-level programming languages.
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2 OVERVIEW
We at a high level introduce our model and explain the fundamental

benefits of our approach. We then introduce lower-level technical

challenges and briefly outline our approach to solving them.

Our basic observation is that CPU emulation is a blunt generic

mechanism: CPUs in cleartext machines are static devices that can

execute each step of any program. But in MPC, the program is

public, and there is no need to use a fixed generic set of instructions.

Instead, we can derive our machine’s ‘instruction types’, which we

call fragments, from the target program itself.

Each fragment can be arbitrarily large and complex, so long as

it does not contain data-dependent loops. We can generate custom

circuitry tailored to each fragment, avoiding the need to mechanis-

tically execute the fragment one instruction at a time. Thus, once

our machine enters a fragment, we pay essentially no overhead

to execute that fragment. In this sense, we obtain the benefit of

straight-line execution.

At the same time, our machine dynamically dispatches over the

fragments, so we can handle all possible execution paths. In this

sense, we obtain the benefit of CPU emulation.

Our execution engine does not necessarily need to dynamically

dispatch over each program fragment at each step. At each step

it is sufficient to only guarantee execution of fragments that may

occur at this step. In many useful programs, this active set is much
smaller and consists of cheaper fragments than the full set.

Program fragments are generated by a compiler. There are many

choices for how to fragment a program, and good fragmentation

is crucial to performance. We discuss related trade-offs (see Sec-

tion 5.4).

2.1 Notation
Our execution engine repeatedly conditionally dispatches over vary-

ing sets of fragments chosen from the target program. We call the

specification of a machine that operates this way a variable instruc-
tion set architecture (VISA). A VISA machine instantiates a VISA

specification. Our VISA machine, which we call GAR, is imple-

mented via GC; of course, one could implement a VISA machine

from different primitives, such as a secret-sharing-based protocol

and off-the-shelf ORAM.

At each step 𝑖 , a VISA machine can execute any fragment in the

active set of step 𝑖 . We compose each fragment from many base
instructions in the program text. Note we thus consider two kinds

of instructions: base instructions are typical low-level assembly

instructions, whereas fragments are the instructions of a VISA and

are composed from multiple base instructions. Fragments are auto-

matically chosen by a type of compiler that we call a fragmentation
strategy; our GAR construction includes a built-in fragmentation

strategy.

In the remainder of this section, we explain and motivate VISA

machines in more detail. We explain our advantages by referring

to Dijkstra’s algorithm (Figure 1).

2.2 VISA Advantages
VISA machines do not repeatedly execute instructions, but rather

repeatedly execute entire fragments of the source program. This

leads to several important advantages:

Free register file. As each fragment is a straight-line piece of

code, we do not need to dynamically store and access local vari-

ables from a register file. Instead, like the straight-line approach, a

VISA machine routes arguments to operations directly and without

cryptographic cost.

We still pay to route the content of the register file between
fragments, but within a single fragment, the register file is free.

Example 2.1. Consider line 18 of Dijkstra’s (Figure 1). Under

CPU emulation, this simple assignment requires reading j from

and writing bestj to the register file. In practice, these would be

implemented by linear scans of a modest array. Linear scans are

expensive. As a reference point, suppose the register file holds 16

32-bit registers. Using state-of-the-art GC, each linear scan of this

register file costs ≈ 16KB of communication. In the CPU emulation

approach, this cost is paid multiple times per CPU cycle. In our

VISA machine, this overhead is erased: to handle line 18 the parties

may simply agree to name certain wires in the fragment circuit

bestj.

No instruction memory. Programs execute fewer fragments than

they do base instructions. Thus, when the VISA machine dynami-

cally decides which fragment to execute next, the space of choices

is smaller. This means that the VISA machine does not need to store

fragments in an instruction memory. Instead, we conditionally dis-

patch over an integer that indicates which of the small number of

statically known fragments should be executed next. This elimi-

nates many usages of ORAM/GRAM.

Example 2.2. In our ISA, Dijkstra’s has 56 instructions
3
but only

7 fragments. (Our actual fragmentation is more nuanced; see Sec-

tion 5.4.) At each step, we conditionally execute only those frag-

ments that are possible. As a simple example, on the first cycle of

Dijkstra’s, our VISA machine unconditionally executes the frag-

ment on lines 4–12, since this is statically the only fragment possible.

We track the fragments that are possible at each step by tracing the

target program’s control flow graph.

Fewer conditional choices. Each fragment implements a larger

portion of the overall execution than does each instruction. This

is significant because there is overhead associated with condition-

ally executing code inside MPC, whether classically or by stack-

ing [HK20]. Since we execute fewer fragments than CPU emula-

tion executes instructions, we make fewer conditional decisions,

and hence pay the overhead of conditional branching fewer times.

With SGC, this advantage manifests in the fact that we need fewer

SGC multiplexer gadgets [HK20, HK21b]. Importantly, for small

branches, these gadgets dominate the cost of SGC.

Example 2.3. Running Dijkstra’s with |𝑉 | = 100 and |𝐸 | = 300

involves executing 198, 814 instructions, and hence making 198, 814

conditional decisions. In contrast, we need only execute 21, 800

fragments, and hence make only 21, 800 conditional decisions.

Fewer data RAM accesses. Since each fragment is static, we know

precisely how many times each fragment must move data to/from

main memory. This allows a VISA machine to access memory less

3
For readability, Figure 1 is written in C; our machine manipulates low level assembly,

and each line of C code can correspond to multiple assembly instructions. We include

assembly code for Dijkstra’s and for our benchmark programs in the full version.
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often than a CPU, since in a CPU it is possible that each instruction

is a memory access.

Example 2.4. Consider again line 18 of Dijkstra’s. Under CPU

emulation, the CPU cannot statically deduce that the current in-

struction is not a RAM access, so when emulating line 18, it must

perform a RAM access. Our VISA machine eliminates this access.

The sum advantage of our approach as compared to CPU em-

ulation is well illustrated by again considering line 18 of Dijkstra’s.

Under CPU emulation, this instruction will involve fetching and

decoding the instruction, linearly scanning the register file multiple

times, conditionally executing the various instruction types, and

accessing main memory. Each of these actions are expensive. In

our VISA-based approach, line 18 is free of cryptographic cost.

2.3 VISA Technical Challenges and Solutions
Our core contribution is the introduction of VISA-based MPC. Effi-

ciently implementing an MPC VISA machine presents crypto- and

system-technical challenges; we discuss the main challenges here.

Managing the active set. Inside a fragment, we have full static

knowledge of the straight-line code, so we can directly and effi-

ciently compile the code to a circuit. However, a VISA machine

must conditionally execute fragments in the active set at each step.

The cost of this conditional dispatch is greatly improved thanks

to the recent line of work on MPC conditional branching, in partic-

ular Stacked Garbling (SGC) [HK20, HK21b]. By integrating SGC,

we can conditionally dispatch over active set fragments with com-

munication proportional to a single (largest) fragment. Although

SGC improves communication, it still requires computation: for 𝑏

fragments, the computational cost scales with 𝑂 (𝑏 log𝑏) [HK21b].
Thus, we must not allow the active set to grow too large.

Further, SGC-based conditional branching incurs communication

cost that scales with the size of the conditional’s interface, i.e., the
number of input/output wires, with additional factor dependent

on the number of branches 𝑏. This cost imposes constraints on

the efficiency of using small fragments, and impacts the utility of

breaking down fragments, e.g., in alignment with RAM accesses.

In this work, we do not significantly optimize fragments, leaving

it as crucial and significant future work. Our fragments are syn-

tactically derived from the control flow structure of the assembly

program. This choice is sufficient for modest programs.We envision

that future work can use compiler techniques and static analysis to

more intelligently select fragments. For example, a fragment can be

split into pieces, or multiple fragments can be combined into one.

We emphasize the complexity of this problem space: a good solu-

tion should simultaneously consider the size of each active set, the

size of fragments, the number of RAM accesses, the per-fragment

overhead, such as the size of the interface to SGC, etc.

Stacked Garbling with RAM access. Using SGC to conditionally

evaluate fragments introduces a subtle technical challenge in han-

dling RAM accesses within fragments. For multiple technical rea-

sons, it is not possible or desired to access RAM directly from inside

an SGC conditional branch. This is primarily because GRAM and

ORAM reveal random-looking access patterns to the parties. If an

access comes from an inactive conditional SGC branch, then SGC’s

optimization will reveal information incompatible with the normal

access pattern of the GRAM/ORAM. Thus, this use is insecure, as

it allows the GC evaluator to identify the active branch in a condi-

tional. See detailed discussion in Section 6. Other issues include

the increased computational cost of processing GRAM’s expensive

access procedure in each branch. Similar concerns may apply to ac-

cessing other types of resources, such as stacks, queues, expensive

procedure calls (e.g. non-black-box crypto primitives), or recent

improved and unstackable GC techniques [HK21a].

In Section 6, we design a novel mechanism for efficiently and

securely handling RAM accesses from within SGC branches. In

short, our mechanism allows us to cheaply escape the conditional

branch, access the resource, and then re-enter that same branch.
Each branch can access a resource multiple times. Our mechanism

allows fragments to access RAM without paying high cost for SGC

gadgets.

We also note the following lower-level contributions:

Entire system and security proof. We package our approach as a

garbling scheme and prove it secure.

Implementation. Our system is a non-trivial systems-technical

undertaking.

3 RELATEDWORK
In our review of related work, we focus on prior general purpose

MPC tools.

Straight-line execution tools. The vast majority of MPC tools

use straight-line execution, e.g. [RHH14, ZE15, DSZ15, WMK16,

ACC
+
22, LHS

+
14]. These tools require that each program loop has

a hard-coded upper bound. CBMC-GC goes one step further by

trying to infer loop bounds automatically, but still ultimatelymodels

the program as a straight-line circuit [FHK
+
14].

Straight-line execution cannot suitably support arbitrary pro-

grams where the number of loop iterations depends on the data. We

note that [HHNZ19] is an excellent systematization of knowledge

that explores the pros and cons of such tools.

CPU emulation tools. We consider two works that operated in the

CPU emulation paradigm [Kel17, WGMK16]. [Kel17] used SPDZ to

implement a CPU-emulation-based protocol for malicious adver-

saries. While their online efficiency is competitive with the total

cost of [WGMK16], their offline efficiency is ≈ 100× slower. In our

evaluation (Section 7), we accordingly focus our comparison on

[WGMK16]. We described [WGMK16]’s approach in Section 1, and

we compare to their performance in Section 7.

[WGMK16]’s uses Circuit ORAM [WCS15], which could be mod-

ularly swapped for a different ORAM, such as [Ds17], correspond-

ingly affecting (improving) performance. We only compare to the

existing system [WGMK16]. Constant-round complexity (and hence

using EpiGRAM) is essential for CPU-emulation and VISA MPC

due to the sequential nature of RAM accesses in these models. Inter-

active ORAMs incur latency cost proportional to the (large) number

of steps of a typical program (cf. discussion in Section 7.4.3). Further,

GRAM can be easily and cheaply upgraded to stronger security

models, e.g. covert or malicious, using existing techniques. Such an

upgrade for ORAM constructions, including [Ds17], is a challenge.
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We note that TinyGarble implemented a MIPS ALU, but did not

build on this to implement a working CPU emulation tool [SHS
+
15].

For example, they do not integrate RAM support to their prototype.

Their main contributions are (1) better management of plaintext

function by avoiding unrolling it into a plaintext circuit, and (2)

applying hardware synthesis tools to reduce the size of the MIPS

CPU, improving over naïve by up to 14.95%.

Loop coalescing. Loop coalescing is a compiler technique ex-

plored in the MPC context by [LWN
+
15] (and in the proof sys-

tem context by [WSR
+
15]). The basic idea is to combine the

bodies of loops into a single loop with an internal conditional.

[LWN
+
15, WSR

+
15] show that this can improve MPC (resp. proof

system) performance by reducing the number of hard-coded loop

bounds in the program (cf. Section 1.1). The technique does not

suggest (nor do [LWN
+
15, WSR

+
15] explore) further optimization,

such as fragment design.

There are common characteristics of loop coalescing and VISA.

Both techniques conditionally dispatch over program fragments.

Crucially, VISA approaches MPC optimization holistically, pro-

viding a clean abstraction and vocabulary for general optimization

of oblivious programs (e.g. include stacking, GRAM, our new gad-

gets, etc.) and for expressing optimization constraints. Indeed, VISA

emphasizes fragment design as a crucial optimization problem.

VISA also provides a convenient vocabulary for discussing low

level details, such as the size of a register file and managing the

active set. See further discussion in Sections 5.3 and 5.4. In contrast,

coalescing is a source code transformation, and is at the wrong

level of abstraction for fragmentation and low-level optimization.

4 PRELIMINARIES
We implement our VISA machine using garbled circuits (GC). GC

allows for powerful protocols that achieve secure computation

in only a constant number of protocol rounds. We build on the

half-gates GC technique [ZRE15], which requires that the parties

communicate two ciphertexts per AND gate and zero ciphertexts

per XOR gate [KS08].

We combine the basic [ZRE15] scheme with recent improve-

ments in Garbled RAM [HKO21] and with Stacked Garbling [HK20,

HK21b]. Garbled RAM is needed when accessing data from the

VISA machine’s main memory, and Stacked Garbling improves the

communication consumption incurredwhen conditionally handling

fragments.

We use these GC improvements heavily, and we overcome tech-

nical problems needed to compose them.

4.1 Garbled RAM
Compiling large arrays to Boolean circuits is infeasible. The problem

is that on each array access, the circuit must touch each element

of the array. Hence, on each access we pay cost proportional to

the size of the array. Garbled RAM (GRAM) [LO13] equips GC

with random-access arrays that incur only sublinear cost. GRAM
preserves GC’s important constant-round property.

A recent GRAM, called EpiGRAM, dramatically improved the

concrete cost of the technique [HKO21]. We implemented Epi-

GRAM, and we use it to instantiate our VISA machine’s main

memory.

Our formalism manipulates GRAM directly by using two gates

provided by EpiGRAM:

• An ARRAY gate takes as input public natural numbers 𝑛

and𝑤 . It outputs a zero-initialized size-𝑛 array of width-𝑤

elements. We initialize all of our arrays width𝑤 = 32.

• An ACCESS gate performs an array access. The gate accepts

as input (1) an array 𝐴, (2) log
2
𝑛 bits that together encode

an array index 𝛼 , (3) a bit rw that indicates if this is a read or

a write, and (4) a𝑤-bit value 𝑦 that indicates what to store

in the array if this is a write. As output, the gate yields (1)

𝐴[𝛼] and (2) the updated array where the content of index

𝛼 has been replaced by 𝑦 iff rw = 1.

4.2 Stacked Garbling (SGC)
Until recent breakthrough work [HK20, HK21b], GC techniques

required communication proportional to the computed program,

including inactive branches. SGC [HK20, HK21b] achieves commu-

nication proportional to only the single longest execution path of

the program.

This improvement is a boon to our approach, because we re-

peatedly conditionally evaluate the target program’s fragments.

SGC greatly improves the communication cost of fragments (see

Section 7).

4.3 Cryptographic Assumptions
Our garbling scheme (Section 6.2) is secure under a typical GC

assumption: We assume that the function𝐻 is a circular correlation

robust hash function [CKKZ12, ZRE15].

As is standard in MPC (e.g., [GKK
+
12, WGMK16]), total runtime,

i.e., the number of CPU emulation steps, is public. If desired, the

steps can be padded.

We consider security in the presence of a semi-honest adversary.

Since our construction is a garbling scheme, its security can be ex-

tended into covert, public verifiable covert (PVC), malicious models

using standard techniques.

5 OUR VISA
The general idea of a VISA is agnostic of low-level details. Of course,

it is interesting to instantiate and experiment with a specific archi-

tecture. We formalize our specific VISA here.

Our VISA is built on top of a base ISA. Our base ISA is indeed

basic, providing primitive instructions that (1) perform algebraic

operations, (2) achieve dynamic control flow, and (3) read/write

main memory. We first formalize this base ISA. We choose a custom

base ISA for simplicity of presentation and implementation; it may

be desirable in future work to replace the base ISA with an off-the-

shelf ISA, such as MIPS.

Once we establish the base ISA, we formalize our VISA, which

essentially aggregates base instructions into fragments.

5.1 Base ISA
The base ISA specifies the instructions that can appear in our sup-

ported assembly programs. We emphasize that we do not execute

these instructions one by one; rather, our VISA groups base instruc-

tions into fragments, and our VISA machine treats fragments as its

atomic units of computation.
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Syntax Semantics

Algebra

COPY tar src R[tar] ← R[src]

CCOPY tar src0 src1 R[tar] ←
{
R[src1], if R[src0] = 1

R[tar], otherwise

ADD tar src0 {src1} R[tar] ← R[src0] + val(src1)
SUB tar src0 {src1} R[tar] ← R[src0] − val(src1)
MUL tar src0 {src1} R[tar] ← R[src0] · val(src1)
XOR tar src0 {src1} R[tar] ← R[src0] ⊕ val(src1)
AND tar src0 {src1} R[tar] ← R[src0] ∧ val(src1)

EQ tar src0 {src1} R[tar] ←
{
1, if R[src0] = val(src1)
0, otherwise

CMP tar src0 src1 R[tar] ← 2 · (R[src0]
𝑢
< R[src1]) + (R[src0]

𝑠
< R[src1])

SWAP src0 src1 R[src0],R[src1] ← R[src1],R[src0]
RS1 dst R[dst] ← ⌊R[dst]/2⌋
IMM dst imm R[dst] ← imm

Control Flow

J imm pc← imm

JE src imm pc←
{
imm, if R[src] ≠ 0

pc + 1, otherwise

JNE src imm pc←
{
imm, if R[src] = 0

pc + 1, otherwise

JL 𝑠𝑟𝑐 imm pc←
{
imm, if R[src]&1 ≠ 0

pc + 1, otherwise

JB src imm pc←
{
imm, if R[src]&2 ≠ 0

pc + 1, otherwise

HALT – no effect, pc unchanged –

Memory

LOAD tar src R[tar] ← M[R[src]]
STORE tar src M[R[tar]] ← R[src]

val(𝑥) ≜
{
𝑥, if 𝑥 is an immediate

R[𝑥], if 𝑥 is a register id

Figure 2: Our base ISA. Each instruction type handles between zero and three arguments. In general, arguments refer to registers, but
some arguments, denoted {·}, can also optionally be immediates (i.e., compile-time constants). val is a helper function that resolves an

argument that can be either a register or an immediate. Unless the semantics otherwise mention an effect on the pc, each instruction also

increments the pc. The symbol < with an overset 𝑢 (resp. 𝑠) denotes a comparison where the arguments are treated as an unsigned (resp.

signed) integers.

The base ISA formalizes both the syntax and the semantics of

instructions. Our instructions each provide a simple mechanism for

performing algebra, achieving control flow, or accessing memory.

To define instruction semantics, we define an abstract machine

that executes instructions. Our ISA simultaneously defines our

instruction set and the abstract machine that runs them.

Definition 5.1 (Base ISA). Our instruction set is formally defined

in Figure 2. The semantics of instructions are defined by reference

to an abstract machine with a program counter pc, a register file
R, a main memoryM, and a program P. pc is a 32-bit index that
indicates which base instruction to execute next. R is a length-𝑚

array of 32-bit integers.M is a length-𝑛 array of 32-bit integers.P is

an array of instructions. Both 𝑛 and𝑚 are configurable parameters

of the abstract machine. A machine is initialized with an arbitrary

program. At initialization, pc, R, andM are zero initialized. At

each step, the machine updates itself based on the semantics of

instruction P[pc].

In our implementation, we instantiate a machine with a size-13

register file; we vary the size of RAM depending on the require-

ments of the executed program.

We emphasize that while both the register file and the memory

are key-value data structures, our VISA machine handles them very

differently. Our memory supports dynamic access and is imple-

mented using Garbled RAM. On the other hand, our register file

does not need to implement dynamic access: each usage of the

register file is statically specified by an instruction, so each register

is essentially just a named collection of 32 circuit wires. Inside a

fragment, accessing the register file is free.
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5.2 Fragments
As discussed and motivated in Section 2, batching multiple instruc-

tions by creating fragments resolves the bulk of the cost of the CPU

emulation approach.

Definition 5.2 (Fragment). A fragment is a straight-line sequence
of base ISA instructions where only the final instruction may be a

Control Flow instruction (c.f. Figure 2).

Definition 5.2 coincides with the notion of a program basic block.

We still elect to use new terminology because the notion of a frag-

ment can be (and, we expect, will be) generalized, for example by

allowing intra-fragment control flow. The only limitation in extend-

ing the above definition is that a fragment should never contain a

data-dependent loop, since this would break the straight-line nature

of the fragment. For simplicity, we do not explore this direction

here, but we believe that this can be exploited heavily in future

work.

We now define the syntax/semantics of our VISA.

Definition 5.3 (Our VISA). Like our base ISA, a VISA is a set

of instructions together with the abstract machine that executes

them. A VISA instruction is a fragment (Definition 5.2). The VISA

abstract machine is identical to the base ISA machine, except that

the program P consists of fragments, and at each step the machine

executes the semantics of the current fragment P[pc].

Remark 1. Note, a VISA program is thus viewed as including the
corresponding variable instruction set. A VISA then specifies the in-
terpretation of the program. A VISA machine instantiates the (secure)
execution of the program. While a full toolchain starts from programs
written in a base ISA, the VISA definition is about programs that
have been fragmented. In practice, the VISA machine toolchain will
generate the fragmentation and hence the program’s instruction set.

While the above specification indicates an array lookup P[pc],
our instantiation dispatches fragments via conditional branching.

Note that to achieve the prescribed semantics, we do not need to

conditionally dispatch over each fragment at each step. In general,

not all fragments will be possible at a given step. We reduce the

number of conditionally dispatched fragments by considering a

control flow graph (CFG) representation of the target program. We

maintain a set of pointers into the CFG that indicates the set of

possible pc values. At each step, our VISA machine only dispatches

over those fragments that are currently pointed to.

5.3 Memory Hierarchy
A VISA introduces the opportunity to distinguish three types of

memory:

• Mainmemory.Most program state is stored in a large main

memory that is accessed dynamically at high cost.

• Persistent registers. The local state of a VISA machine is

held in persistent registers. Inside the fragment, these registers

are free. However, to conditionally dispatch over fragments,

this local state must be passed to each branch. SGC imposes

cost for each bit that crosses the interface to/from the condi-

tional. It is sensible to store frequently used data in persistent

registers, but the number of these registers should be kept

in check.

• Local registers. Since register access is free inside a frag-
ment, a VISA program can introduce arbitrary numbers of

local registers, allowing the fragment to store a large state

without paying for it. At the exit of the fragment, the content

of local registers is lost.

Allocating data to these levels of memory is a large and interesting

optimization space. We use 13 persistent registers and a RAM of

size up to 2
13

32-bit words in our experiments.

5.4 Fragment Generation
As discussed in Section 2, the choice of strategy for breaking a

program into fragments can dramatically affect performance. In

this work, we align fragments with program basic blocks (i.e., each

control flow instruction maps to a fragment), with one exception:

we introduce extra fragments for RAM accesses such that each

fragment has at most one RAM access. We found that this simple

strategy reduces the overall number of RAM accesses
4
, which we

found is the performance bottleneck.

Note that for simplicity of presentation, Figure 1 does not show

the extra fragments resulting from RAM accesses. Our actual frag-

mentation has 14 fragments.

While we leave further in-depth exploration of intelligently se-

lecting fragments as significant future work, we outline several

guidelines for such strategies. We note that these guidelines some-

times contradict one another, as fragment optimization is a chal-

lenging problem.

Generate fragments such that each conditional dispatch is over
fragments of similar size and with a similar number of RAM accesses.
SGC, and other approaches toMPC free branching [HKP20, HKP21],

achieves communication cost proportional to the single most expen-

sive branch. To best take advantage of free branching, ensure that

branches have similar cost. This can be achieved, e.g., by splitting

large program basic blocks into more than one fragment and/or by

merging multiple basic blocks into a single fragment.

RAM access is an expensive resource; an unbalanced allocation

across dispatched fragments misses an opportunity to amortize

accesses.

Prefer larger fragments. This reduces the number of VISA ma-

chine steps. Hence, larger fragments further reduce the amount of

CPU-emulation-style machinery.

Compress the interface to each fragment. As explained in Sec-

tion 5.3, we pay to transport the content of persistent registers

into and out of branches. Using compiler techniques to reduce the

number of needed persistent registers will reduce cost.

Prefer fragmentation that leads to smaller active sets. SGC compu-

tational and interface costs scale with the number of branches, so

we should seek to reduce the number of branches per step (i.e., to

shrink each active set). One way this guideline might be achieved

is by artificially introducing periodicity into a program’s execution.

For instance, we can split each loop into a number of fragments

that is a power of two. Without periodicity in consecutive loops

the active set will tend to grow with each step until it includes

each program fragment. Artificially introducing periodicity groups

4
I.e., all active set fragments will have a same number of accesses.
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fragments into “congruence classes” and ensures that most frag-

ments never coincide in the same active set. [WGMK16] considered

a similar technique in their MIPS processor. Introducing periodicity

for fragments introduces further opportunities to align code and

amortize cost.

6 GAR: OUR VISA MACHINE
This section introduces GAR (Garbled Assembly with RAM) our

implementation of the VISA machine. GAR is formalized as a gar-

bling scheme [BHR12]. As already mentioned, GAR conditionally

dispatches fragments using SGC and implements main memory via

GRAM.

We first discuss technical issues and our solution in combining

our two main building blocks, SGC and GRAM. Then, in Section 6.2

we present the GAR scheme and state the main security theorem

(proofs are presented in the Appendix).

6.1 SGC with GRAM
The incompatibility of SGC and GRAM. SGC is compatible with

many, but not all GC techniques. SGC requires that the string of

material encoding each branch be indistinguishable from a uniform

string. This restriction is needed to mask from the GC evaluator the

identity of the conditional’s active branch: if a branch is inactive,

SGC arranges that the evaluator obtains uniform garbage material.
Unfortunately, GRAM’s material is distinguishable from a uni-

form string. In short, GRAM will one-by-one reveal to the eval-

uator RAM indices that are randomly generated without replace-
ment [HKO21]. These revealed indices are indistinguishable from

a uniform permutation, but not from a uniform string. Thus it is

not secure to use GRAM’s ACCESS gate inside an SGC conditional.

SGC’s uniform string requirement and GRAM’s revealed uniform

permutations seem somewhat inherent to the techniques, and it

is not clear that we can revise these techniques to make them

compatible with one another. Even if it were possible to make the

two techniques compatible, it would not be desirable. SGC requires

that each party garble each branch multiple times, introducing

added computational cost. Since the GRAM access procedure is

large, we would like to avoid repeatedly garbling it. It is more

pragmatic to simply garble each access once, as we end up doing.

Our approach. One way we could handle RAM access in a VISA

machine would be to place each RAM access instruction in its own

single-instruction fragment. While correct and secure, the approach

violates several of our guidelines for program fragmentation (Sec-

tion 5.4), and is undesirable for a number of performance reasons.

In particular, the resulting fragments are smaller, more numerous,

and each RAM access will service a smaller fragment. Ultimately,

this discards many of the VISA’s benefits.

A much better way would be to temporarily escape a fragment

just to perform the RAM access, then re-enter that fragment. This

is the approach we take. We design a new scheme that allows us

to temporarily escape an SGC conditional branch (i.e., a fragment),

perform the access, then re-enter that same branch. Because we

escape the SGC branch before accessing RAM, we avoid SGC’s

uniform string requirement. Thus, RAM access is simulatable. Cru-

cially for performance, our gadgets escape, and not fully exit SGC,

and transfer across the SGC interface only those specific bits that

are directly related to the RAM access. Thus, we do not, for example,

pay to transfer the full register file on each RAM access.

Instrumenting GRAM access in SGC. SGC uses two garbled gad-

gets, the demux and the mux, to enter and exit a conditional, re-

spectively. Each of these gadgets handles branch input/output wire-

by-wire, where each wire is (indirectly) connected from the outside

of the conditional to the internal circuit of each branch. We refer to

each of these wire connections as a port of the demux/mux. There

is one port per external wire.

Our observation is that, in contrast with standard SGC, the de-

mux/mux need not be evaluated in one shot at the very begin-

ning/end of the conditional. Instead, the GC evaluator can process

ports of the gadgets in an arbitrary order, so long as data depen-

dencies in the circuit are satisfied.

This in particular means that the evaluator can (1) process input

to a branch by handling only some ports of the demux, (2) evaluate

some gates in that branch, generating input to a RAM query, (3)

feed the RAM query through ports in the mux to temporarily escape

the branch, (4) execute the RAM access outside of SGC, in plain GC,

(5) feed the RAM result through ports of the demux back into the

branch, and (6) continue evaluation of the branch.

Interestingly, the GC generator’s order of building the corre-

sponding GC material is different. Because each branch must be

generated from a seed (this is a key trick behind SGC’s improve-

ment), the generator garbles each branch all at once, before any

RAM accesses are handled. As part of doing so, he assigns uni-

formly random GC labels to the branch side of each demux port.

Only once each branch is fully generated, does he generate GC for

RAM access(es). Labels of these GCs match the labels of the ports

of the SGC conditional. Finally, he generates the GC material for

the demux and mux.

Our modification to SGC still uses the main ideas of Stacked Gar-

bling [HK20]: our GC generator garbles each branch starting from a

distinct PRG seed and then stacks the material together using XOR.

Our GC evaluator can decrypt the seed for each inactive branch and

hence can reconstruct their garblings, unstack the material for the

active branch, and evaluate. I.e., our scheme retains the important

communication advantage of SGC.

Next, we formalize our full garbling scheme GAR, which includes

the above trick.

6.2 Our Scheme: Formalization and Theorems
We formalize our VISA machine as a garbling scheme [BHR12].

SGC [HK21b] and GRAM [HKO21] are also formalized as garbling

schemes; our scheme reorganizes and adjusts their procedures, mak-

ing them compatible with each other and with our VISA (Section 5).

At a high level, our scheme should be understood as a new SGC

scheme equippedwith black-box GRAM. As an aside, it is possible to

replace black-box GRAM with other garbled resources, for example

a stack or queue [ZE13].

Program description. A garbling scheme securely handles any

program from some specified language. Our goal is to support

programs expressed in our base ISA (Figure 2). At the lowest

level, we have primitive support for AND gates [ZRE15], XOR
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gates [KS08], SWITCH statements [HK21b], and ARRAY and AC-

CESS gates [HKO21]. The semantics of XOR and AND gates are

natural; ARRAY and ACCESS gate semantics are specified in Sec-

tion 4.1. A SWITCH executes only the indicated branch and outputs

the result. We group instructions from our base ISA, then compile

these to our low level primitives. Thus, our formal garbling scheme

consists of three major steps:

• Compile base ISA program to VISA program. Our
scheme first groups base ISA instructions into fragments

using the strategy described in Section 5.4.

• Compile VISA program to primitives. We compile each

fragment primitive operation using standard techniques.

Each basic instruction has a corresponding straight-line cir-

cuit, and our scheme stitches together each of the circuits in

the fragment. To conditionally dispatch, the scheme wraps

the fragment circuits in a SWITCH.

• Evaluate primitives via GC. The most interesting step is

the evaluation of primitives, which is explained below.

Note that the first two steps of our handling are quite modular. It is

easy to replace the ISA to VISA compiler with one that, for example,

more intelligently selects fragments. Similarly, we could replace

the compiler from fragments to circuits with more sophisticated

techniques. From here, our scheme focuses on the handling of

primitives, which is its crypto-technical component.

Definition 6.1 (Primitive Circuit Program). A primitive circuit pro-
gram is a circuit consisting of AND gates, XOR gates, ARRAY gates,

ACCESS gates, and SWITCH statements. ARRAY and ACCESS gates

are defined in Section 4.1. A SWITCH statement is recursively pa-

rameterized over 𝑏 primitive circuit programs and ⌈log
2
𝑏⌉ wires

that indicate which branch to execute. Note that an ACCESS gate

is allowed inside a SWITCH statement.

Our GAR scheme handles arbitrary assembly programs by appro-

priately implementing the above circuit primitives.We note that our

assembly compiler generates restricted classes of circuit programs,

and we need not handle them in full generality of Definition 6.1. For

example, the resulting primitive program will not feature nested

conditionals, and the ARRAY gate will be used exactly once to ini-

tialize main memoryMEM at the start of the program. Furthermore,

each ACCESS gate will be parameterized by the specific arrayMEM .

Looking ahead, our formalism will handle only the relevant special

forms of primitive circuit programs.

We are now ready to present our main construction, the GAR
5

(Garbled Assembly with RAM) garbling scheme [BHR12].

Construction 1 (GAR). GAR consists of three components:
• A fragmentation strategy that specifies how to convert a base
ISA program into a VISA program. GAR uses the strategy
discussed in Section 5.4; we do not formally specify further.
• A compiler that transforms a VISA program (Definition 5.3)
into a primitive circuit program (Definition 6.1); because each
fragment has no data-dependent control flow, compiling each
fragment to a primitive circuit program is straight-forward,
and we do not specify further.
• A garbling scheme that securely executes primitive circuit
programs (Definition 6.1).

5
A gar is a predatory and particularly menacingly looking fish.

The GAR garbling scheme is the tuple of procedures:

(GAR.ev,GAR.Ev,GAR.Gb,GAR.En,GAR.De)

Note, GAR’s functionality goes beyond simply instantiating a

VISA machine; in particular GAR fragments programs written in

base ISA and generates VISA programs. We could have treated this

functionality separately as part of our toolchain.

We formally present procedures of the GAR garbling scheme in

Appendix A, see Figures 10 to 13. Here, we review them at a high

level.

GAR.ev. This procedure defines the semantics of primitives (Def-

inition 6.1). The semantics of AND gates and XOR gates are natural.

ARRAY and ACCESS gate semantics are specified in Section 4.1. A

SWITCH executes only the indicated branch and outputs the result.

GAR.Ev. This procedure specifies the GC evaluator’s han-

dling. In short, the handling of primitives is inherited from prior

work [ZRE15, HKO21]. The exception is our new SWITCH primi-

tive, which supports RAM ACCESS inside its branches. We dis-

cussed our method for handling ACCESS gates from within a

SWITCH in Section 6.1.

GAR.Gb. This procedure specifies the GC generator’s han-

dling. Again, the handling of primitives is inherited from prior

work [ZRE15, HKO21]. See Section 6.1 for the handling of our

SWITCH primitive.

GAR.En. This procedure specifies how cleartext GC inputs are

mapped to GC labels. The procedure is standard: on each input

wire, a zero maps to one label and a one maps to a different label.

GAR.De. This procedure specifies how output GC labels are

mapped to cleartext outputs. The procedure is standard.

GAR meets the standard garbling scheme definitions of correct-
ness, authenticity, obliviousness and privacy [BHR12]. Meeting these

is sufficient to instantiate 2PC/MPC protocols. We state the defi-

nitions and prove that GAR meets them in the full version of this

paper. Theorems in the full version imply the following:

Theorem 6.2 (Main). Assuming a circular correlation robust hash
function, GAR’s garbling scheme is correct, authentic, oblivious, and
private.

7 EVALUATION
7.1 Implementation and Testing Environment
We implemented GAR and used it to instantiate a semi-honest

2PC protocol in ≈ 5200 lines of C/C++. We instantiated Oblivious

Transfer and Network I/O using the EMP Toolkit [WMK16]. We

ran our experiments on two m6i.16xlarge6 machines in the same

region of an Amazon EC2 cluster. One machine ran the GC genera-

tor and the other ran the GC evaluator. We also ran [WGMK16]’s

implementation on the exact same setup to establish our baseline.

We configured both systems with the same inputs and with RAM

of the same size. GAR handles the program written in our assembly

language. [WGMK16] takes a MIPS binary compiled by an off-the

shelf compiler, thus placing them somewhat at a disadvantage.

6
Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz, 256GiB Memory, 25Gbps Network
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Program # Mem Ent Time (s) Comm. (GB) # RAM Accesses
[WGMK16] Ours Impr. [WGMK16] Ours Impr. [WGMK16] Ours Impr.

PSI

64 128 29.4 0.6 49.0× 0.7 0.1 6.0× 2455 256 9.6×
256 512 311.7 7.1 43.9× 7.1 1.8 3.9× 9755 1024 9.5×
1024 2048 4378.6 61.9 70.7× 102.0 17.1 6.0× 38855 4096 9.5×

Dijkstra’s

40

1024

2601.3 62.6 41.6× 58.5 9.5 6.2× 21579 3902 5.5×
60 5462.7 127.3 42.9× 127.0 18.5 6.9× 46679 8302 5.6×
80 9723.0 216.5 44.9× 221.0 30.5 7.2× 81379 14202 5.7×
100 14910.0 332.2 44.9× 341.0 47.0 7.3× 125779 21802 5.8×

Figure 3: Comparison of our GAR system with [WGMK16]. We run PSI and Dijkstra’s for a range of input sizes. We ran both GAR and

[WGMK16] on the same hardware setup. Our approach substantially improves wall-clock time, communication consumption, and RAM

usage. Our count of [WGMK16]’s RAM accesses does not include instruction fetching; We list them separately in Figure 5.

𝐺 ’s Pattern 𝐸’s String GRAM Size # Executed Gb. Trans. Ev. Total #Inst. Speed #Mem Comm.
Length Length (32-bits) Fragments Time(s) Time(s) Time(s) Time(s) #Inst/s Access (GB)
50 400 512 1400 9.7 5.3 4.4 19.4 12535 646Hz 1401 2.53

150 700 1024 2700 21.2 15.4 9.8 46.4 23635 509Hz 2701 7.44

250 1500 2048 5500 49.6 47.1 23.1 119.8 48735 407Hz 5501 22.70

500 7000 8192 23000 275.3 358.7 131.3 765.3 209485 274Hz 23001 173.00

Figure 4: GAR’s evaluation on KMP with different inputs and GRAM sizes.

7.2 Benchmarks and Metrics
As explained in Section 1 and further demonstrated in Section 7.4.5,

straight-line execution is not feasible for programs with complex

control flow. Accordingly, we focus comparison on [WGMK16]’s

CPU emulation approach.We demonstrate significant improvement

on three programs.

• Private Set Intersection (PSI): Two parties each hold a

sorted integer array and wish to compute the number of

common elements. While fast tailored PSI protocols exist,

we use this benchmark for direct comparison with prior

work [WGMK16].

• Dijkstra’s shortest path (Dijkstra): One party holds a

directed graph while the other holds a pair of source and des-

tination nodes (This is the setting of [WGMK16]; other input

configurations, e.g., all inputs secret-shared, incur no extra

cost). Parties wish to compute the shortest path between

the two nodes. This benchmark was used by [WGMK16]

and [LWN
+
15].

• Knuth–Morris–Pratt string search (KMP): One party

inputs a pattern string and the other inputs a search string.

They wish to compute the number of occurrences of the

pattern in the search string. This benchmark was suggested

by [LHS
+
14].

We note that our reported runtimes for [WGMK16] are in some

cases slower than what was reported in [WGMK16] itself. We be-

lieve this is due to the fact that program runtime is variable and

depends on the program input. Crucially, we ran our GAR system

on the same input as [WGMK16], and thus our reported numbers

are directly comparable.

Assembly code for each benchmark is included in the full version.

We report the following metrics:

• Wall-clock time:Wall-clock time includes the time needed

for the GC generator to garble, for network transmission,

and for the GC evaluator to evaluate. Figure 6 provides a

breakdown of these three metrics.

• Communication: Both [WGMK16] and GAR communicate

through one TCP/IP connection. We directly measure com-

munication from the TCP port and report the amount of

transmitted data.

• # RAM accesses: RAM accesses are the most expensive op-

eration in our approach. Recall that [WGMK16] uses ORAM

while GAR uses GRAM. We report the number of times we

and [WGMK16] access RAM. Recall that [WGMK16] uses

RAM to fetch instructions; we do not. Figure 3 does not in-
clude [WGMK16]’s RAM accesses to fetch instructions. We

list them separately in Figure 5.

7.3 Overall Improvement
Figure 3 tabulates GAR’s improvement over [WGMK16] for PSI and

Dijkstra’s.

PSI. We ran the PSI benchmark on three different pairs of in-

put arrays: two 64-element arrays, two 256-element arrays, and

two 1024-element arrays. The PSI program primarily consists of

a loop that compares a single element from each array. Our VISA

approach captures PSI’s loop in a single fragment. This results in
simple control flow and high performance. In total, we use only

three fragments: one that initializes state before the loop, one that

implements the body of the loop, and one that handles the end

of the program. Because the loop is captured by one fragment,

our approach uses precisely the number of RAM accesses that are

prescribed by the program’s execution path.

GAR is 44–70× faster than [WGMK16] on each input, uses 4–6×
less bandwidth, and uses ≈ 10× fewer RAM accesses.

Dijkstra’s. We ran Dijkstra’s (Figure 1) on a graph with 40, 60,

80, and 100 nodes. For a graph with 𝑛 nodes, we set the number of
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PSI Dijkstra
Input Size 64 256 1024 40 60 80 100

Thousands of Fetches 2.5 9.8 38.9 21.6 46.7 81.4 125.8

Figure 5: [WGMK16]’s number of instruction fetch.

Bench. Gb. Trans. Ev. Total
Time(s) Time(s) Time(s) Time(s)

PSI

64 0.2 0.3 0.1 0.6

256 2.3 3.7 1.1 7.1

1024 18.3 35.9 7.7 61.9

Dijkstra

40 29.4 19.5 13.7 62.6

60 61.0 38.3 28.0 127.3

80 103.6 62.9 50.0 216.5

100 159.1 97.0 76.1 332.2

Figure 6: Breakdown of our total wall-clock time into the
time needed to (1) garble the circuit, (2) transmit the GC
across the network, and (3) evaluate the GC.

Program #Inst. #Fragments Impr. Speed
#Inst/s

PSI

64 2419 129 18.8× 4032Hz

256 9715 513 18.9× 1368Hz

1024 38899 2049 19.0× 628Hz

Dijkstra’s

40 33914 3900 8.7× 542Hz

60 73714 8300 8.9× 579Hz

80 128614 14200 9.1× 594Hz

100 198814 21800 9.1× 598Hz

Figure 7: Comparison of the number of fragments with the
number of base ISA instructions for PSI and Dijkstra’s with
different input sizes. The improvement (

#instructions

#fragments
) illustrates

that we reduce the number of execution steps by an order of mag-

nitude. Our Hz rate is base instructions per second.

edges |𝐸 | = 3𝑛. The sparse graph is stored in the adjacency list. Our

program is split into 14 fragments.

For each input, GAR is 42–45× faster than the baseline

[WGMK16], uses 6–7× less bandwidth, and uses 5–6× fewer RAM

accesses.

7.4 Performance Breakdown and Discussion
7.4.1 Breakdown of Wall-Clock Time. Figure 6 breaks down the

wall-clock-time for each of our runs of PSI and Dijkstra. No one cost

clearly stands out as the bottleneck. We note that we did not stream

the GC from the generator to the evaluator; we expect that proper

streaming would allow to overlap garbling and evaluation with

transmission, essentially eliminating the separate cost of garbling

and evaluation. We also include detailed GAR costs in Figure 4.

7.4.2 SGC Savings. Recall that we use SGC to stack GC material

from fragments in the active set. In our Dijkstra experiments, we

observed that SGC improved communication by roughly 3×, ex-
cluding the cost of GRAM access. We expect that this improvement

will becomemore significant for larger and more complex programs

Round-trip Delay

0ms 50ms 100ms

[WGMK16] (s) 314.5 11495.4 (+11180.9) 22984.8 (+22670.3)

GAR (s) 11.5 12.8 (+1.3) 14.5 (+3.0)

Improvement 27.3× 898.1× 1585.2×

Figure 8: Runtime comparison of GAR and [WGMK16] when
solving PSI-256 for different latency settings. To tightly con-

trol latency, we ran these experiments on a single machine with a

simulated (via the Linux tc command) 2Gbps network. For clarity,

we note the added cost of latency in parentheses. Note, the sliding

window in TCP implicitly forces latency-like delays on GAR.

𝐺 ’s 𝐸’s EMP EMP GAR Impr.
Pattern String #AND Total Total
Length Length Gates (×109) Time(s) Time(s)
50 400 0.142 7.4 19.4 0.4×
150 700 2.264 120.0 46.4 2.6×
250 1500 13.11 732.7 119.8 6.1×
500 7000 233.0 12843.3 765.3 16.8×

Figure 9: Comparison of GARwith EMP’s straight-line execu-
tion on KMP. Our improvement over EMP increases with larger

inputs. Note, EMP implements array lookup with linear scans, not

GRAM. For very small arrays, linear scans outperform EpiGRAM,

which explains EMP’s performance in the smallest instance.

where the total number of fragments and likely the size of the active

set will be larger.

7.4.3 Communication Rounds and Latency Impact. GAR is imple-

mented via a garbling scheme, and our instantiation in the semi-

honest model only requires performing (parallel) OTs and sending

a single message from the generator to the evaluator. In contrast,

[WGMK16]’s ORAM-based CPU uses multiple rounds of communi-

cation per RAM access.
This distinction is not significant in the ultra-low latency setup

we have explored so far, but even modest latency harshly penal-

izes multi-round approaches. We evaluate the impact by executing

one program (PSI-256) with various latencies. We used the Linux

traffic control tool tc to configure a network with 2Gbps band-

width and 0/50/100ms latencies. Figure 8 tabulates wall-clock time

performance. (In this experiment we run both parties on a single

machine, so measurements in Figure 8 are not identical to our other

experiments.) With higher latency, GAR’s execution speed is almost

unchanged, but [WGMK16] becomes significantly slower; GAR’s

advantage grows from 27× on a 0ms latency network to 898× (resp.

1585×) with 50ms (resp. 100ms) latency.

7.4.4 Active Set Sizes. GAR (and VISA) performance declines with

the increase of sizes of active sets (i.e., sets of fragments that can

be possibly executed in the corresponding step). Let𝑀 be the total

number of fragments. In our experiments we observe that the active

set size starts with 1 and quickly grows to 𝑀 − 1 as execution

proceeds:𝑀 = 4 (resp. 15 and 11) for PSI (resp. Dijkstra and KMP).

We view active set optimization as crucial future work.
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7.4.5 Comparison with Straight-Line Circuit Evaluation. Finally,
we illustrate the advantage of the VISA approach over straight-

line circuit evaluation by comparing with the semi-honest 2PC of

the widely adopted EMP Toolkit [WMK16]. We implemented the

Knuth-Morris-Pratt (KMP) string-searching algorithm in both GAR

and EMP. (We do not include [WGMK16]’s performance, because

their repository did not include this benchmark.) Figure 9 tabulates

the results, and Figure 4 presents a fine-grained analysis of GAR’s

performance results.

KMP searches for occurrences of a length-𝑘 pattern held by𝐺 in

a length-𝑚 string held by 𝐸 and outputs the number of occurrences.

An important feature of KMP is its𝑂 (𝑚+𝑘) time complexity, rather

than the naive𝑂 (𝑚 ·𝑘). Circuits are not a suitable representation as

KMP contains an inner loop that must be pessimistically unrolled a

total of 𝑂 (𝑚 · 𝑘) times when in fact only 𝑂 (𝑚 + 𝑘) total iterations
are needed.
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A FULL GARBLING SCHEME
We provide the formal procedures for GAR. Figure 12 lists the

scheme procedures (i.e., Construction 1) of GAR. Figure 13 explains

how we handle ACCESS gates internal to SGC branches. Figure 10

and Figure 11 are unrolled modifications of the COND gate proce-

dures from LogStack.

In Definition 6.1, we define primitive programs as having explicit

AND gates, XOR gates, etc. For brevity and to closely match the

procedures of [HK21b], which are conceptually quite similar, we

use slightly different syntax our figures. I.e., a netlist is a sequence of
AND and XOR gates. Netlists are handled via the [ZRE15] garbling

scheme. ‘Cond’ statements correspond to the SWITCH keyword.

‘Seq’ statements denote two circuit components that are run in

sequence. We emphasize that this language-level difference does

not change the meaning of primitive circuit programs.

GbCond( ®C, 𝑆) :

𝑏 ← | ®C|
⊲ Find maximum RAM access count among all branches from the circuits.

𝑐 ← ComputeMaxAcc( ®C)
⊲ Recursively derive all ‘good’ seeds for the entire tree.

𝑠 ← DeriveSeedTree(𝑆, 𝑏)
⊲ Sample input/output encodings for the conditional.

𝑒 ← GenProjection(𝑆, inpSize(Cond( ®C)))

𝑑 ← GenProjection(𝑆, outSize(Cond( ®C)) + 𝑐 ∗ (𝑛 + 33))
⊲ Parse encoding into encoding of 𝛼 and encoding of rest of input.

𝑒𝛼 | 𝑒′ ← 𝑒

⊲ Parse encoding into encoding of 𝑐 access arguments and encoding of rest of outputs.

𝑑0 | ... | 𝑑𝑐−1 | 𝑑′ ← 𝑑

⊲ Garble SortingHat based on the encoding of 𝛼 .

⊲ This outputs material as well as the tree of all ‘bad’ seeds 𝑠′.

𝑀SortingHat, 𝑠
′ ← SortingHat.Gb(𝑒𝛼 , 𝑠)

⊲ Construct the stacked material and input encodings for each branch.

𝑀𝑐𝑜𝑛𝑑 , 𝑒𝑐𝑜𝑛𝑑 , 𝑑𝑐𝑜𝑛𝑑 ← GbSubtreeFromSeed∗ ( ®C, 0, 𝑏 − 1, 𝑠
0,𝑏−1)

⊲ Parse encodings for each branch into encodings on 𝑐 access results and rest of inputs.

𝑒𝑐𝑜𝑛𝑑,0 | ... | 𝑒𝑐𝑜𝑛𝑑,𝑐−1 | 𝑒′𝑐𝑜𝑛𝑑 ← 𝑒𝑐𝑜𝑛𝑑

⊲ Parse encodings for each branch into encodings on 𝑐 access arguments and rest of outputs.

𝑑𝑐𝑜𝑛𝑑,0 | ... | 𝑑𝑐𝑜𝑛𝑑,𝑐−1 | 𝑑′𝑐𝑜𝑛𝑑 ← 𝑑𝑐𝑜𝑛𝑑

⊲ The demux conditionally translates the input encoding 𝑒′

⊲ to one of the branch encodings in 𝑒′
𝑐𝑜𝑛𝑑

based on 𝑒𝛼 .

𝑀𝑑𝑒𝑚,Λ𝑖𝑛 ← 𝑑𝑒𝑚𝑢𝑥.Gb(𝑒𝛼 , 𝑒′, 𝑒′𝑐𝑜𝑛𝑑 )
for 𝑖 ∈ 0..𝑐 − 1 :

Λ𝑜𝑢𝑡 ← ComputeGarbage∗ ( ®C, 𝑀𝑐𝑜𝑛𝑑 ,Λ𝑖𝑛, 𝑠, 𝑠
′)

⊲ Extract garbage on 𝑖 access argument wires.

Λ𝑎𝑟𝑔 ← ExtractArg( ®C, 𝑖,Λ𝑜𝑢𝑡 )
𝑀𝑎𝑐𝑐𝑚𝑢𝑥,𝑖 ←𝑚𝑢𝑥.Gb(𝑒𝛼 , 𝑑𝑖 , 𝑑𝑐𝑜𝑛𝑑,𝑖 ,Λ𝑎𝑟𝑔)
⊲ Get encoding of access outputs from GRAM procedure.

𝑒𝑖 , 𝑀𝐸𝑀,𝑀𝑎𝑐𝑐,𝑖 ← EpiGRAM.access(𝑀𝐸𝑀,𝑑𝑖 )
𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,𝑖 ,Λ

′
𝑖𝑛 ← 𝑑𝑒𝑚𝑢𝑥.Gb(𝑒𝛼 , 𝑒𝑖 , 𝑒𝑐𝑜𝑛𝑑,𝑖 )

⊲ Merge existing garbage with new garbage encodings.

Λ𝑖𝑛 ← Λ𝑖𝑛 ∪ Λ′𝑖𝑛
⊲ Compute all possible garbage outputs.

Λ𝑜𝑢𝑡 ← ComputeGarbage∗ ( ®C, 𝑀𝑐𝑜𝑛𝑑 ,Λ𝑖𝑛, 𝑠, 𝑠
′)

⊲ The demultiplexer collects garbage outputs.

𝑀𝑚𝑢𝑥 ←𝑚𝑢𝑥.Gb(𝑒𝛼 , 𝑑′, 𝑑′𝑐𝑜𝑛𝑑 ,Λ𝑜𝑢𝑡 )
𝑀𝑟𝑎𝑚 ← 𝑀𝑎𝑐𝑐𝑚𝑢𝑥,0 | 𝑀𝑎𝑐𝑐,0 | 𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,0 | ... | 𝑀𝑎𝑐𝑐𝑚𝑢𝑥,𝑐−1 | 𝑀𝑎𝑐𝑐,𝑐−1 | 𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,𝑐−1
return (𝑀SortingHat | 𝑀𝑑𝑒𝑚 | 𝑀𝑐𝑜𝑛𝑑 | 𝑀𝑚𝑢𝑥 | 𝑀𝑟𝑎𝑚, 𝑒, 𝑑′)

Figure 10: The algorithm for garbling a conditional with 𝑏

branches where each branch has at most 𝑐 RAM accesses.
Main memory is a length-2

𝑛
GRAM with 32-bit entries. GbCond

follows the structure of LogStack’s procedure of the same name.

Our colored boxes highlight diffences as compared to LogStack,

and the green box highlights the most important modification.

EvCond( ®C, 𝑀,𝑋 ) :

𝑏 ← | ®C|
⊲ Find maximum RAM access count among all branches from the circuits.

𝑐 ← ComputeMaxAcc( ®C)
⊲ Parse the active branch index from the rest of the input.

𝛼 | 𝑋 ′ ← 𝑋

⊲ Parse material for gadgets and body of conditional.

𝑀SortingHat | 𝑀𝑑𝑒𝑚 | 𝑀𝑐𝑜𝑛𝑑 | 𝑀𝑚𝑢𝑥 | 𝑀𝑟𝑎𝑚 ← 𝑀

𝑀𝑎𝑐𝑐𝑚𝑢𝑥,0 | 𝑀𝑎𝑐𝑐,0 | 𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,0 | ... | 𝑀𝑎𝑐𝑐𝑚𝑢𝑥,𝑐−1 | 𝑀𝑎𝑐𝑐,𝑐−1 | 𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,𝑐−1 ← 𝑀𝑟𝑎𝑚

⊲ Run SortingHat to compute all of 𝐸’s seeds.

es← SortingHat.Ev(𝛼,𝑀SortingHat)
⊲ Run the demultiplexer to compute input (except access results) for each branch C𝑖 .
®𝑋𝑐𝑜𝑛𝑑 ← 𝑑𝑒𝑚𝑢𝑥.Ev(𝛼,𝑋,𝑀𝑑𝑒𝑚)

⊲ We define a recursive subprocedure that evaluates C𝑖 − C𝑗 using material𝑀 .

EvCond′ (𝑖, 𝑗, 𝑀𝑖, 𝑗 ) :
if 𝑖 = 𝑗 :

⊲ Base case: compute output by evaluating the branch normally.

⊲ This base case corresponds to guess = 𝑖 .

⊲ Accumulate output labels into the vector ®𝑌𝑐𝑜𝑛𝑑 (for later garbage collection).

®𝑌𝑐𝑜𝑛𝑑 [𝑖] ← Ev∗ (C𝑖 , 𝑀, ®𝑋𝑐𝑜𝑛𝑑 [𝑖])
else :

𝑘 ← halfway(𝑖, 𝑗)
⊲ Garble the right subtree using the available seed,

⊲ unstack, and recursively evaluate the left subtree.

𝑀𝑘+1, 𝑗 , ·, · ← GbSubtreeFromSeed∗ ( ®C, 𝑘 + 1, 𝑗, es𝑘+1, 𝑗 )
EvCond′ (𝑖, 𝑘, 𝑀𝑖, 𝑗 ⊕ 𝑀𝑘+1, 𝑗 )
⊲ Symmetrically evaluate the right subtree.

𝑀𝑖,𝑘 , ·, · ← GbSubtreeFromSeed∗ ( ®C, 𝑖, 𝑘, es𝑖,𝑘 )
EvCond′ (𝑘 + 1, 𝑗, 𝑀𝑖, 𝑗 ⊕ 𝑀𝑖,𝑘 )

for 𝑖 ∈ 0..𝑐 − 1 :
⊲ Start recursive process from the top of the tree.

EvCond′ (0, 𝑏 − 1, 𝑀𝑐𝑜𝑛𝑑 )
⊲ Extract garbage on 𝑖 access argument wires.

®𝐴𝑐𝑜𝑛𝑑 ← ExtractArg( ®C, 𝑖, ®𝑌𝑐𝑜𝑛𝑑 )
⊲ Mux to get encodings of the access arguments.

𝐴←𝑚𝑢𝑥.Ev(𝛼, ®𝐴𝑐𝑜𝑛𝑑 , 𝑀𝑎𝑐𝑐𝑚𝑢𝑥,𝑖 )
⊲ Get encodings of the access results.

𝑀𝐸𝑀, 𝑅 ← EpiGRAM.access(𝑀𝐸𝑀,𝐴,𝑀𝑎𝑐𝑐,𝑖 )
⊲ Demux to get encodings of the access arguments for each branch.

®𝑋 ′
𝑐𝑜𝑛𝑑

← 𝑑𝑒𝑚𝑢𝑥.Ev(𝛼, 𝑅,𝑀𝑎𝑐𝑐𝑑𝑒𝑚𝑢𝑥,𝑖 )
⊲ Merge to get updated encodings of inputs.

®𝑋𝑐𝑜𝑛𝑑 ← ®𝑋𝑐𝑜𝑛𝑑 ∪ ®𝑋 ′𝑐𝑜𝑛𝑑
⊲ Start recursive process from the top of the tree.

EvCond′ (0, 𝑏 − 1, 𝑀𝑐𝑜𝑛𝑑 )

⊲ Eliminate garbage and propagate ®𝑌𝛼 via the multiplexer.

return𝑚𝑢𝑥.Ev(𝛼, ®𝑌𝑐𝑜𝑛𝑑 , 𝑀𝑚𝑢𝑥 )

Figure 11: 𝐸’s procedure, EvCond, evaluates a conditional with
𝑏 branches and at most 𝑐 RAM accesses. Our procedure follows
the structure of LogStack’s procedure of the same name. Colored

boxes highlight the major differences as compared to LogStack,

and the green box highlights the most important modification.
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𝐺𝐴𝑅.ev(C, ®𝑥) :
⊲ ®𝑚 is a global array initialized to all 0.

⊲ What are the circuit semantics?

Switch C :

case Netlist(·) : return HalfGates.ev(C, ®𝑥)
case Seq(C0, C1) : return 𝐺𝐴𝑅.ev(C1,𝐺𝐴𝑅.ev(C0, ®𝑥))

case Cond( ®C) :
⊲ split branch index from input

𝛼 | ®𝑥 ′ ← ®𝑥
⊲ Run the active branch.

return 𝐺𝐴𝑅.ev( ®C[𝛼], ®𝑥 ′)

case Access( ®𝑖𝑑𝑥, ®𝑣𝑎𝑙, 𝑟𝑤, ®𝑑𝑠𝑡) :
if ®𝑥 [𝑟𝑤] == 0 :

⊲ Load

®𝑥 [ ®𝑑𝑠𝑡] ← ®𝑚[®𝑥 [ ®𝑖𝑑𝑥]]
else :

⊲ Store

®𝑚[®𝑥 [ ®𝑖𝑑𝑥]] ← ®𝑥 [ ®𝑣𝑎𝑙]
return ®𝑥

𝐺𝐴𝑅.Ev(C, 𝑀, ®𝑋 ) :
⊲ MEM is a unique global Array object by EpiGRAM.init(·)
⊲ How does 𝐸 evaluate the GC?

Switch(C) :

case Netlist(·) : return HalfGates.Ev(C, 𝑀, ®𝑋 )
case Seq(C0, C1) :
𝑀0 | 𝑀𝑡𝑟 | 𝑀1 ← 𝑀

return 𝐺𝐴𝑅.Ev(C1, 𝑀1, 𝑡𝑟𝑎𝑛𝑠.Ev(𝐺𝐴𝑅.Ev(C0, 𝑀0, ®𝑋 ), 𝑀𝑡𝑟 )

case Cond( ®C) : return EvCond( ®C, 𝑀, ®𝑋 )

case Access( ®idx, ®val, rw, ®dst) :
⊲ Call GRAM access procedure

MEM, ®𝑌 ← EpiGRAM.access(MEM, ®𝑋 [ ®idx], ®𝑋 [ ®val], ®𝑋 [rw], 𝑀)
®𝑋 [ ®dst] ← ®𝑌

return ®𝑋

𝐺𝐴𝑅.Gb(1𝜅 , C, 𝑆)
⊲ MEM is a unique global Array object by EpiGRAM.init(·)
⊲ How does 𝐺 garble the GC?

⊲ 𝑆 is an explicit seed.

Switch C :

case Netlist(·) :
return HalfGates.Gb(1𝜅 , C, 𝑆)

case Seq(C0, C1) :
⊲ Derive seeds for two circuits.

𝑆0 ← 𝐹𝑆 (0)
𝑆1 ← 𝐹𝑆 (1)
(𝑀0, 𝑒0, 𝑑0) ← 𝐺𝐴𝑅.Gb(1𝜅 , C0, 𝑆0)
(𝑀1, 𝑒1, 𝑑1) ← 𝐺𝐴𝑅.Gb(1𝜅 , C1, 𝑆1)
⊲ Labels out of C0 must be translated

⊲ to labels into C1.
𝑀𝑡𝑟 ← 𝑡𝑟𝑎𝑛𝑠.Gb(𝑑0, 𝑒1)
𝑀 ← 𝑀0 | 𝑀𝑡𝑟 | 𝑀1

return (𝑀, 𝑒0, 𝑑1)

case Cond( ®C) : return GbCond( ®C, 𝑆)

case Access( ®𝑖𝑑𝑥, ®𝑣𝑎𝑙, 𝑟𝑤, ®𝑑𝑠𝑡) :
⊲ Generate encodings for access arguments

𝑒 ®idx ← repeatedly-sample 𝐹𝑆 (·)
𝑒 ®val ← repeatedly-sample 𝐹𝑆 (·)
𝑒rw ← repeatedly-sample 𝐹𝑆 (·)
⊲ Call GRAM access procedure

𝑑,MEM, 𝑀𝑎𝑐𝑐 ← EpiGRAM.access(𝑀𝐸𝑀, 𝑒 ®idx , 𝑒 ®val, 𝑒rw)
return (𝑀𝑎𝑐𝑐 , 𝑒 ®idx | 𝑒 ®val | 𝑒rw, 𝑑)

Figure 12: GAR’s garbling scheme. The included algorithms are typical except for the handling of conditionals. Ev and Gb delegate the
core of our approach: EvCond (Figure 11) and GbCond (Figure 10). En and De are not listed as they are standard.

𝐺𝐴𝑅.Ev∗ (C, 𝑀, ®𝑋 ) :
⊲ Similar as Ev until access case

case Access( ®𝑖𝑑𝑥, ®𝑣𝑎𝑙, 𝑟𝑤, ®𝑑𝑠𝑡) :
𝑀𝑎𝑐𝑐 | 𝑀𝑡𝑟 ← 𝑀

⊲ The access happened outside conditional

⊲ 𝑀 should be ⊥

if ®𝑋 ℎ𝑎𝑠 ®𝑑𝑠𝑡 𝑟𝑒𝑎𝑑𝑦 : return ®𝑋

else : ⊲ HALT and return ®𝑋 to top layer

𝐺𝐴𝑅.Gb∗ (1𝜅 , C, 𝑆)
⊲ Similar as Gb until access case

case Access( ®𝑖𝑑𝑥, ®𝑣𝑎𝑙, 𝑟𝑤, ®𝑑𝑠𝑡) :
⊲ Generate encodings

𝑒, 𝑑 ← repeatedly-sample 𝐹𝑆 (·)
⊲ Treat it as inputs and outputs

return (⊥, 𝑒, 𝑑)

Figure 13: Variants for Gb and Ev. These variants are called inside GbCond and EvCond. We implicitly use function∗ to denote function
from where the underlying calling to Gb (resp. Ev) is replace by Gb∗ (resp. Ev∗).
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