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ABSTRACT

In MPC, we usually represent programs as circuits. This is a poor fit
for programs that use complex control flow, as it is costly to compile
control flow to circuits. This motivated prior work to emulate CPUs
inside MPC. Emulated CPUs can run complex programs, but they
introduce high overhead due to the need to evaluate not just the
program, but also the machinery of the CPU, including fetching,
decoding, and executing instructions, accessing RAM, etc.

Thus, both circuits and CPU emulation seem a poor fit for general
MPC. The former cannot scale to arbitrary programs; the latter
incurs high per-operation overhead.

We propose variable instruction set architectures (VISAs), an ap-
proach that inherits the best features of both circuits and CPU
emulation. Unlike a CPU, a VISA machine repeatedly executes en-
tire program fragments, not individual instructions. By considering
larger building blocks, we avoid most of the machinery associated
with CPU emulation: we directly handle each fragment as a circuit.

We instantiated a VISA machine via garbled circuits (GC), yield-
ing constant-round 2PC for arbitrary assembly programs. We use
improved branching (Stacked Garbling, Heath and Kolesnikov,
Crypto 2020) and recent Garbled RAM (GRAM) (Heath et al., Euro-
crypt 2022). Composing these securely and efficiently is intricate,
and is one of our main contributions.

We implemented our approach and ran it on common programs,
including Dijkstra’s and Knuth-Morris-Pratt. Our 2PC VISA ma-
chine executes assembly instructions at 300Hz to 4000Hz, depend-
ing on the target program. We significantly outperform the state-
of-the-art CPU-based approach (Wang et al., ESORICS 2016, whose
tool we re-benchmarked on our setup). We run in constant rounds,
use 6X less bandwidth, and run more than 40X faster on a low-
latency network. With 50ms (resp. 100ms) latency, we are 898x
(resp. 1585X) faster on the same setup.

While our focus is MPC, the VISA model also benefits CPU-
emulation-based Zero-Knowledge proof compilers, such as ZEE
and EZEE (Heath et al., Oakland’21 and Yang et al., EuroS&P’22).
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1 INTRODUCTION

Secure multi-party computation (MPC) allows mutually untrusting
parties to execute programs on their private inputs while reveal-
ing only the output. MPC has become relevant in academia and
industry. It has been commercially deployed in online auctions, elec-
tronic voting, financial technology, and has found many use cases
in medicine, privacy-preserving machine learning, and distributed
databases.

Typically in MPC, we encode programs as circuits. While any
bounded program can be compiled to a circuit, the compiled circuit
is often much larger than the source program. Real world programs
(1) access large arrays of data and (2) use complex control flow.
Compiling these two program features often results in huge circuits,
and MPC cost scales with the size of the circuit. If we wish to enable
secure computation of real-world programs, we must circumvent
the cost imposed by compiling these features to circuits.

While the issue of array access can be resolved via oblivious
RAM (ORAM) [GOY6] or garbled RAM (GRAM) [LO13], complex
control flow has gone largely unaddressed.

Straight-line execution. Indeed, most existing MPC tools “solve”
the control flow problem by disallowing complex control flow.
Most existing MPC toolchains require that the programmer hand-
annotate each loop with a hard-coded upper bound on the number
of loop iterations [HHNZ19]. With these annotations, the program
becomes a simple straight-line program, compatible with the circuit
model. A compiler can now unroll each loop precisely the specified
number of times, then compile each iteration into gates.

This approach is problematic. At best, annotating programs is
an annoyance. At worst, hard-coded loop bounds ruin performance,


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1145/3576915.3616664

CCS *23, November 26-30, 2023, Copenhagen, Denmark

since we must execute each loop iteration, even if the loop should
terminate early. Many programs are awkward to write and will
have wildly wrong asymptotic complexity. In other words, the
programmer is left with an incomplete programming environment
where she cannot write every program she might need.

CPU emulation. There is another approach that addresses the
control flow problem. Instead of evaluating the program directly,
use MPC to emulate a CPU, then run the program on that CPU. To
achieve this, we must fully emulate a CPU, including its program
counter, register file, ALU, and main memory. At each step, the CPU
will look up and decode the next instruction, load/store registers,
run arithmetic operations, and read/write main memory. In this
way, the parties can securely evaluate one instruction at a time.

CPU emulation can securely evaluate arbitrary programs, but at
a cost. When we emulate a CPU, we pay to evaluate not just the
program, but also the machinery inside the CPU. In comparison
to straight-line execution, CPU emulation incurs very high per-
operation cost. In straight-line execution, the arguments to each
program operation are decided statically; in a CPU, the arguments
are dynamic and must be moved into and out of the register file.
Similarly, in straight-line execution, the operation to be performed
at each step is decided statically; in a CPU, we must look up the next
instruction from a large memory, then conditionally dispatch over
each operation in the ISA. In short, while CPU emulation solves
the control flow problem, it introduces high overhead.

Full version. Full version of this paper is available at [YPHK23].

1.1 Case study: Dijkstra’s algorithm

We illustrate the challenge of handling general programs in MPC.
Consider Dijkstra’s algorithm! (Figure 1).

Dijkstra’s is a graph algorithm that computes the shortest path
between a source node (b[@]) and a target node (b[1]). Assume
that the graph, the source, and the target are private inputs (e.g.,
secret-shared between the parties). Both straight-line execution
and CPU emulation struggle with this small program.

Straight-line execution. Straight-line execution-based tools will
generally achieve the wrong cost for the algorithm. Consider a
graph (V, E). Even if we suppose that |V| and |E| are public, this
simple program presents a challenge to straight-line execution. The
problem is that the loop on lines 26-31 dynamically accesses each
edge from a graph node. The number of edges from this node is
private, so the loop must be unrolled |E| times to accommodate
the maximum possible number of edges. In a cleartext execution of
Dijkstra’s, this inner loop will in total iterate only O(|E|) times; in
this unrolled version, the inner loop will iterate O(|E| - |V|) times.

Even worse, suppose that Dijkstra’s is not the full program, but
rather is a subprocedure of a larger program. Here, |V| and |E| are
likely dynamic and should be kept secret. In this case, straight-line
execution-based tools must pessimistically assume that |V| and |E|
are maximal, ruining performance.

!For performance, Dijkstra’s algorithm may be implemented with a priority queue
containing partial solutions sorted by distance from the start node. Standard Dijkstra
is based on a simple array, as is also done in [WGMK16]. We use standard Dijkstra for
illustration and direct performance comparison with [WGMK16].
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1 #define MAX 100

2 #define MAX_INT 1000000

3 int dijkstra(int xa, int *b) {

4 int n = a[@];

5 int e = a[1];

6 int x node = a + 2;

7 int * edge = a + 2 + 101;

8 int x weight = a + 2 + 401;

9 int vis[MAX];

10 int dis[MAX];

11 dis[b[@]] = o;

12 int i = 0;

13 while (i < n) {

14 int bestj = -1, bestdis = MAX_INT;
15 int j = 0;

16 while (j < n) {

17 if( vis[j] == 0 && dis[j] < bestdis ) {
18 bestj = j;

19 bestdis = dis[j];

20 1

21 Jjt+;

22 3}

23 vis[bestj] = 1;

24 j = node[bestj];

25 int bound = node[bestj+11];

26 while (j < bound) {

27 int newDis = bestdis + weight[j];
28 if(newDis < dis[edgel[j]])
29 dis[edge[j]] = newDis;
30 Jjt+;

31 3}

32 1 i++;

33 }

34 | return dis[b[1]1];

35 3}

Figure 1: Dijkstra’s algorithm written in C. Each vertical line
on the left denotes a contiguous string of instructions that are
grouped into a fragment. Le., this program has seven fragments.

ObliVM [LWN™15] showed that for Dijkstra’s algorithm and if
|V| and |E| are public, the straight-line approach can reclaim the
loop asymptotics via loop coalescing. Using loop coalescing, we can
flatten the nested loop on lines 13-33 into a single loop with an
internal conditional. Then, the number of iterations of this top level
loop is a function of |V| and |E|, so it is possible to properly bound
the loop. See further discussion in Section 3.

While loop coalescing can solve this particular problem, it places
a significant burden on the programmer: the programmer must now
reason about and properly specify upper bounds on coalesced loops.
This may be expensive if |V| and |E| are secret, such as if Dijkstra’s
is nested inside another data-dependent loop, requiring costly fur-
ther coalescing or excessive padding. This syntactic transformation
produces expensive code that is difficult to further optimize.
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CPU emulation. CPU emulation correctly implements Dijkstra’s
asymptotics?, but incurs significant concrete cost.

The state-of-the-art CPU emulator implements a sufficient subset
of the MIPS instruction set [WGMK16] to handle Dijkstra’s. This
CPU stores the compiled assembly program, the register file, and
the main memory in three separate RAMs. [WGMK16] implements
RAM using either Circuit ORAM [WCS15] or trivial linear scans,
depending on the size of the needed array. Their CPU proceeds by
continually fetching and executing instructions.

Storing the program in RAM and applying the fetch-and-
execute paradigm discards all useful static information, some of
which [WGMK16] manually reclaims by implementing various
heuristics, such as periodic (rather than per-instruction) RAM ac-
cess. Even applying this heuristic, their number of main memory
accesses is suboptimal. Further, they must always access smaller
memories to fetch instructions and to read/write registers. Their
ALU decodes the instruction and conditionally executes the opera-
tion for each instruction type that is statically possible at a given
step. As a result, each CPU step is a large circuit that often improves
on the circuit-based computation only for problem instances where
MPC is impractical.

Our approach, discussed next, systematically optimizes away
many of the principal inefficiencies of [WGMK16] and results in
significantly improved performance. For instance, for Dijkstra’s
with 100 nodes and 300 edges and when run on the same setup,
our VISA machine uses 5.8X fewer RAM accesses, consumes 7.3X
less bandwidth, and runs 44.9x faster. We are 1585X faster on a
100ms-latency network.

Our solution: VISA machines. The state of the art presents a di-
chotomy: CPU emulation or straight-line programs.

In this work, we suggest and explore a hybrid approach to han-
dling arbitrary programs inside MPC. Our variable instruction set
architecture machine, or VISA machine, handles programs with ar-
bitrary control flow, but avoids most of the overhead of the CPU
emulation approach. It uses the statically available context to opti-
mize the scope (and hence the cost) of each execution step.

In short, a VISA machine is distinct from a CPU in that it does
not repeatedly execute instructions, but rather repeatedly executes
entire fragments of the source program. Each fragment is an arbi-
trarily long straight-line portion of the source program text. The
basic advantage of this is that we can cheaply handle each fragment
as a circuit. While we still need CPU-like machinery to coordinate
the execution of the fragments and ensure privacy, the amount of
needed machinery is substantially reduced.

1.2 Contribution

We propose variable instruction set architectures, a basic approach to
evaluating arbitrary programs inside MPC. We believe that VISAs
are the sensible approach to executing arbitrary programs in MPC.
VISAs do not limit the programmer to straight-line programs, and
they do not incur the high overhead of a basic CPU. A VISA adapts

2To be pedantic, the CPU emulation approach achieves the correct asymptotics mod-
ulo polylog factors imposed by ORAM/GRAM. Neither CPU emulation nor straight-
line execution, nor indeed our approach, can avoid polylog overhead from ORAM/-
GRAM [LN18].
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to the target program of interest, an appropriate choice for MPC
where we generally assume that the parties agree on a program.
In more detail, we:

o Introduce and motivate the VISA model.

e Construct a complete VISA-based secure two-party compu-
tation (2PC) toolchain for assembly programs. Our toolchain
is implemented via garbled circuits (GC).

e Resolve technical issues needed to combine core compo-
nents of a GC-based VISA machine: GC conditional branch-
ing [HK20, HK21b] and Garbled RAM [HKOZ21].

e Formalize our instantiation as a garbling scheme [BHR12]
and prove the resulting formalism secure. Our garbling
scheme securely evaluates arbitrary assembly programs writ-
ten in our ISA. Using garbling schemes as the underlying
mechanism has two key benefits.

— First, we dramatically decrease the number of communica-
tion rounds, resulting in orders of magnitude improvement
(see Section 7.4.3). Prior work [WGMK16, Kel17] used tens
of rounds per CPU step, while we require one message plus
an OT for the entire 2PC.

— Second, our technique can be elevated to the covert, PVC,
and malicious models using standard techniques.

e We implemented VISA machine including, significantly, the
first implementation of Garbled RAM [HKOZ21].

o Experimentally evaluate performance of our toolchain. We
ran our VISA machine on a number of assembly benchmarks,
including Dijkstra’s, Knuth-Morris-Pratt, and a private set in-
tersection benchmark from [WGMK16]. Our results indicate
significant improvement over the prior best approach to ar-
bitrary assembly programs [WGMK16]: we run in constant
rounds, use 4-7X less bandwidth, use 5-10x fewer RAM
accesses, and run 40-70x faster (up to 1585X with 100ms
latency), yielding a machine that executes assembly instruc-
tions at 300-4000Hz. We also experimentally show our work,
as expected, overtakes circuit-based 2PC (EMP [WMK16])
even for small programs with non-trivial control flow.

e We plan to open source and maintain a cleaned version of
our prototype toolchain.

e While our focus is on MPC, the VISA model also directly ap-
plies to CPU-emulation-based Zero-Knowledge Proof (ZKP)
compilers, such as ZEE and EZEE [HYDK21, YHKD22]. In-
deed, they face similar problems of more efficient CPU design
(e.g., fragmentation and stacking), ZK ORAM integration
with branching, etc., and the VISA approach is similarly ben-
eficial to ZKP compiler work. We leave specific instantiations
of ZKP VISA as exciting future work.

Recent breakthrough GC and MPC improvements on free branch-
ing [HK20, HK21b, HKP20, HKP21] and efficient GRAM [HKO21]
removed fundamental technical roadblocks needed to move away
from straight-line circuit execution. We believe that our hybrid
approach — contextual fragment-based execution engines — will
underlie the next generation of 2PC and MPC toolchains. This paper
initiates this direction and sets the stage for future cryptographic
and interdisciplinary work that will likely involve programming
language, static analysis, and compiler techniques, and that will
interface with high-level programming languages.
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2 OVERVIEW

We at a high level introduce our model and explain the fundamental
benefits of our approach. We then introduce lower-level technical
challenges and briefly outline our approach to solving them.

Our basic observation is that CPU emulation is a blunt generic
mechanism: CPUs in cleartext machines are static devices that can
execute each step of any program. But in MPC, the program is
public, and there is no need to use a fixed generic set of instructions.
Instead, we can derive our machine’s ‘instruction types’, which we
call fragments, from the target program itself.

Each fragment can be arbitrarily large and complex, so long as
it does not contain data-dependent loops. We can generate custom
circuitry tailored to each fragment, avoiding the need to mechanis-
tically execute the fragment one instruction at a time. Thus, once
our machine enters a fragment, we pay essentially no overhead
to execute that fragment. In this sense, we obtain the benefit of
straight-line execution.

At the same time, our machine dynamically dispatches over the
fragments, so we can handle all possible execution paths. In this
sense, we obtain the benefit of CPU emulation.

Our execution engine does not necessarily need to dynamically
dispatch over each program fragment at each step. At each step
it is sufficient to only guarantee execution of fragments that may
occur at this step. In many useful programs, this active set is much
smaller and consists of cheaper fragments than the full set.

Program fragments are generated by a compiler. There are many
choices for how to fragment a program, and good fragmentation
is crucial to performance. We discuss related trade-offs (see Sec-
tion 5.4).

2.1 Notation

Our execution engine repeatedly conditionally dispatches over vary-
ing sets of fragments chosen from the target program. We call the
specification of a machine that operates this way a variable instruc-
tion set architecture (VISA). A VISA machine instantiates a VISA
specification. Our VISA machine, which we call GAR, is imple-
mented via GC; of course, one could implement a VISA machine
from different primitives, such as a secret-sharing-based protocol
and off-the-shelf ORAM.

At each step i, a VISA machine can execute any fragment in the
active set of step i. We compose each fragment from many base
instructions in the program text. Note we thus consider two kinds
of instructions: base instructions are typical low-level assembly
instructions, whereas fragments are the instructions of a VISA and
are composed from multiple base instructions. Fragments are auto-
matically chosen by a type of compiler that we call a fragmentation
strategy; our GAR construction includes a built-in fragmentation
strategy.

In the remainder of this section, we explain and motivate VISA
machines in more detail. We explain our advantages by referring
to Dijkstra’s algorithm (Figure 1).

2.2 VISA Advantages

VISA machines do not repeatedly execute instructions, but rather
repeatedly execute entire fragments of the source program. This
leads to several important advantages:
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Free register file. As each fragment is a straight-line piece of
code, we do not need to dynamically store and access local vari-
ables from a register file. Instead, like the straight-line approach, a
VISA machine routes arguments to operations directly and without
cryptographic cost.

We still pay to route the content of the register file between
fragments, but within a single fragment, the register file is free.

Example 2.1. Consider line 18 of Dijkstra’s (Figure 1). Under
CPU emulation, this simple assignment requires reading j from
and writing best j to the register file. In practice, these would be
implemented by linear scans of a modest array. Linear scans are
expensive. As a reference point, suppose the register file holds 16
32-bit registers. Using state-of-the-art GC, each linear scan of this
register file costs ~ 16KB of communication. In the CPU emulation
approach, this cost is paid multiple times per CPU cycle. In our
VISA machine, this overhead is erased: to handle line 18 the parties
may simply agree to name certain wires in the fragment circuit
bestj.

No instruction memory. Programs execute fewer fragments than
they do base instructions. Thus, when the VISA machine dynami-
cally decides which fragment to execute next, the space of choices
is smaller. This means that the VISA machine does not need to store
fragments in an instruction memory. Instead, we conditionally dis-
patch over an integer that indicates which of the small number of
statically known fragments should be executed next. This elimi-
nates many usages of ORAM/GRAM.

Example 2.2. In our ISA, Dijkstra’s has 56 instructions® but only
7 fragments. (Our actual fragmentation is more nuanced; see Sec-
tion 5.4.) At each step, we conditionally execute only those frag-
ments that are possible. As a simple example, on the first cycle of
Dijkstra’s, our VISA machine unconditionally executes the frag-
ment on lines 4-12, since this is statically the only fragment possible.
We track the fragments that are possible at each step by tracing the
target program’s control flow graph.

Fewer conditional choices. Each fragment implements a larger
portion of the overall execution than does each instruction. This
is significant because there is overhead associated with condition-
ally executing code inside MPC, whether classically or by stack-
ing [HK20]. Since we execute fewer fragments than CPU emula-
tion executes instructions, we make fewer conditional decisions,
and hence pay the overhead of conditional branching fewer times.
With SGC, this advantage manifests in the fact that we need fewer
SGC multiplexer gadgets [HK20, HK21b]. Importantly, for small
branches, these gadgets dominate the cost of SGC.

Example 2.3. Running Dijkstra’s with |V| = 100 and |E| = 300
involves executing 198, 814 instructions, and hence making 198, 814
conditional decisions. In contrast, we need only execute 21, 800
fragments, and hence make only 21, 800 conditional decisions.

Fewer data RAM accesses. Since each fragment is static, we know
precisely how many times each fragment must move data to/from
main memory. This allows a VISA machine to access memory less
3For readability, Figure 1 is written in C; our machine manipulates low level assembly,

and each line of C code can correspond to multiple assembly instructions. We include
assembly code for Dijkstra’s and for our benchmark programs in the full version.
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often than a CPU, since in a CPU it is possible that each instruction
is a memory access.

Example 2.4. Consider again line 18 of Dijkstra’s. Under CPU
emulation, the CPU cannot statically deduce that the current in-
struction is not a RAM access, so when emulating line 18, it must
perform a RAM access. Our VISA machine eliminates this access.

The sum advantage of our approach as compared to CPU em-
ulation is well illustrated by again considering line 18 of Dijkstra’s.
Under CPU emulation, this instruction will involve fetching and
decoding the instruction, linearly scanning the register file multiple
times, conditionally executing the various instruction types, and
accessing main memory. Each of these actions are expensive. In
our VISA-based approach, line 18 is free of cryptographic cost.

2.3 VISA Technical Challenges and Solutions

Our core contribution is the introduction of VISA-based MPC. Effi-
ciently implementing an MPC VISA machine presents crypto- and
system-technical challenges; we discuss the main challenges here.

Managing the active set. Inside a fragment, we have full static
knowledge of the straight-line code, so we can directly and effi-
ciently compile the code to a circuit. However, a VISA machine
must conditionally execute fragments in the active set at each step.

The cost of this conditional dispatch is greatly improved thanks
to the recent line of work on MPC conditional branching, in partic-
ular Stacked Garbling (SGC) [HK20, HK21b]. By integrating SGC,
we can conditionally dispatch over active set fragments with com-
munication proportional to a single (largest) fragment. Although
SGC improves communication, it still requires computation: for b
fragments, the computational cost scales with O(blogb) [HK21b].
Thus, we must not allow the active set to grow too large.

Further, SGC-based conditional branching incurs communication
cost that scales with the size of the conditional’s interface, i.e., the
number of input/output wires, with additional factor dependent
on the number of branches b. This cost imposes constraints on
the efficiency of using small fragments, and impacts the utility of
breaking down fragments, e.g., in alignment with RAM accesses.

In this work, we do not significantly optimize fragments, leaving
it as crucial and significant future work. Our fragments are syn-
tactically derived from the control flow structure of the assembly
program. This choice is sufficient for modest programs. We envision
that future work can use compiler techniques and static analysis to
more intelligently select fragments. For example, a fragment can be
split into pieces, or multiple fragments can be combined into one.
We emphasize the complexity of this problem space: a good solu-
tion should simultaneously consider the size of each active set, the
size of fragments, the number of RAM accesses, the per-fragment
overhead, such as the size of the interface to SGC, etc.

Stacked Garbling with RAM access. Using SGC to conditionally
evaluate fragments introduces a subtle technical challenge in han-
dling RAM accesses within fragments. For multiple technical rea-
sons, it is not possible or desired to access RAM directly from inside
an SGC conditional branch. This is primarily because GRAM and
ORAM reveal random-looking access patterns to the parties. If an
access comes from an inactive conditional SGC branch, then SGC’s
optimization will reveal information incompatible with the normal
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access pattern of the GRAM/ORAM. Thus, this use is insecure, as
it allows the GC evaluator to identify the active branch in a condi-
tional. See detailed discussion in Section 6. Other issues include
the increased computational cost of processing GRAM’s expensive
access procedure in each branch. Similar concerns may apply to ac-
cessing other types of resources, such as stacks, queues, expensive
procedure calls (e.g. non-black-box crypto primitives), or recent
improved and unstackable GC techniques [HK21a].

In Section 6, we design a novel mechanism for efficiently and
securely handling RAM accesses from within SGC branches. In
short, our mechanism allows us to cheaply escape the conditional
branch, access the resource, and then re-enter that same branch.
Each branch can access a resource multiple times. Our mechanism
allows fragments to access RAM without paying high cost for SGC
gadgets.

We also note the following lower-level contributions:

Entire system and security proof. We package our approach as a
garbling scheme and prove it secure.

Implementation. Our system is a non-trivial systems-technical
undertaking.

3 RELATED WORK

In our review of related work, we focus on prior general purpose
MPC tools.

Straight-line execution tools. The vast majority of MPC tools
use straight-line execution, e.g. [RHH14, ZE15, DSZ15, WMK16,
ACC*22, LHS*14]. These tools require that each program loop has
a hard-coded upper bound. CBMC-GC goes one step further by
trying to infer loop bounds automatically, but still ultimately models
the program as a straight-line circuit [FHK*14].

Straight-line execution cannot suitably support arbitrary pro-
grams where the number of loop iterations depends on the data. We
note that [HHNZ19] is an excellent systematization of knowledge
that explores the pros and cons of such tools.

CPU emulation tools. We consider two works that operated in the
CPU emulation paradigm [Kel17, WGMK16]. [Kel17] used SPDZ to
implement a CPU-emulation-based protocol for malicious adver-
saries. While their online efficiency is competitive with the total
cost of [WGMK16], their offline efficiency is & 100X slower. In our
evaluation (Section 7), we accordingly focus our comparison on
[WGMK16]. We described [WGMK16]’s approach in Section 1, and
we compare to their performance in Section 7.

[WGMK16]’s uses Circuit ORAM [WCS15], which could be mod-
ularly swapped for a different ORAM, such as [Ds17], correspond-
ingly affecting (improving) performance. We only compare to the
existing system [WGMK16]. Constant-round complexity (and hence
using EPIGRAM) is essential for CPU-emulation and VISA MPC
due to the sequential nature of RAM accesses in these models. Inter-
active ORAMs incur latency cost proportional to the (large) number
of steps of a typical program (cf. discussion in Section 7.4.3). Further,
GRAM can be easily and cheaply upgraded to stronger security
models, e.g. covert or malicious, using existing techniques. Such an
upgrade for ORAM constructions, including [Ds17], is a challenge.
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We note that TinyGarble implemented a MIPS ALU, but did not
build on this to implement a working CPU emulation tool [SHS*15].
For example, they do not integrate RAM support to their prototype.
Their main contributions are (1) better management of plaintext
function by avoiding unrolling it into a plaintext circuit, and (2)
applying hardware synthesis tools to reduce the size of the MIPS
CPU, improving over naive by up to 14.95%.

Loop coalescing. Loop coalescing is a compiler technique ex-
plored in the MPC context by [LWN*15] (and in the proof sys-
tem context by [WSR*15]). The basic idea is to combine the
bodies of loops into a single loop with an internal conditional.
[LWN*15, WSR*15] show that this can improve MPC (resp. proof
system) performance by reducing the number of hard-coded loop
bounds in the program (cf. Section 1.1). The technique does not
suggest (nor do [LWN*15, WSR*15] explore) further optimization,
such as fragment design.

There are common characteristics of loop coalescing and VISA.
Both techniques conditionally dispatch over program fragments.

Crucially, VISA approaches MPC optimization holistically, pro-
viding a clean abstraction and vocabulary for general optimization
of oblivious programs (e.g. include stacking, GRAM, our new gad-
gets, etc.) and for expressing optimization constraints. Indeed, VISA
emphasizes fragment design as a crucial optimization problem.
VISA also provides a convenient vocabulary for discussing low
level details, such as the size of a register file and managing the
active set. See further discussion in Sections 5.3 and 5.4. In contrast,
coalescing is a source code transformation, and is at the wrong
level of abstraction for fragmentation and low-level optimization.

4 PRELIMINARIES

We implement our VISA machine using garbled circuits (GC). GC
allows for powerful protocols that achieve secure computation
in only a constant number of protocol rounds. We build on the
half-gates GC technique [ZRE15], which requires that the parties
communicate two ciphertexts per AND gate and zero ciphertexts
per XOR gate [KS08].

We combine the basic [ZRE15] scheme with recent improve-
ments in Garbled RAM [HKO21] and with Stacked Garbling [HK20,
HK21b]. Garbled RAM is needed when accessing data from the
VISA machine’s main memory, and Stacked Garbling improves the
communication consumption incurred when conditionally handling
fragments.

We use these GC improvements heavily, and we overcome tech-
nical problems needed to compose them.

4.1 Garbled RAM

Compiling large arrays to Boolean circuits is infeasible. The problem
is that on each array access, the circuit must touch each element
of the array. Hence, on each access we pay cost proportional to
the size of the array. Garbled RAM (GRAM) [LO13] equips GC
with random-access arrays that incur only sublinear cost. GRAM
preserves GC’s important constant-round property.

A recent GRAM, called EPIGRAM, dramatically improved the
concrete cost of the technique [HKO21]. We implemented Ep1-
GRAM, and we use it to instantiate our VISA machine’s main
memory.
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Our formalism manipulates GRAM directly by using two gates
provided by EPIGRAM:

e An ARRAY gate takes as input public natural numbers n
and w. It outputs a zero-initialized size-n array of width-w
elements. We initialize all of our arrays width w = 32.

e An ACCESS gate performs an array access. The gate accepts
as input (1) an array A, (2) log, n bits that together encode
an array index «, (3) a bit rw that indicates if this is a read or
a write, and (4) a w-bit value y that indicates what to store
in the array if this is a write. As output, the gate yields (1)
Ala] and (2) the updated array where the content of index
a has been replaced by y iff rw = 1.

4.2 Stacked Garbling (SGC)

Until recent breakthrough work [HK20, HK21b], GC techniques
required communication proportional to the computed program,
including inactive branches. SGC [HK20, HK21b] achieves commu-
nication proportional to only the single longest execution path of
the program.

This improvement is a boon to our approach, because we re-
peatedly conditionally evaluate the target program’s fragments.
SGC greatly improves the communication cost of fragments (see
Section 7).

4.3 Cryptographic Assumptions

Our garbling scheme (Section 6.2) is secure under a typical GC
assumption: We assume that the function H is a circular correlation
robust hash function [CKKZ12, ZRE15].

As is standard in MPC (e.g., [GKK* 12, WGMK16)), total runtime,
i.e., the number of CPU emulation steps, is public. If desired, the
steps can be padded.

We consider security in the presence of a semi-honest adversary.
Since our construction is a garbling scheme, its security can be ex-
tended into covert, public verifiable covert (PVC), malicious models
using standard techniques.

5 OUR VISA

The general idea of a VISA is agnostic of low-level details. Of course,
it is interesting to instantiate and experiment with a specific archi-
tecture. We formalize our specific VISA here.

Our VISA is built on top of a base ISA. Our base ISA is indeed
basic, providing primitive instructions that (1) perform algebraic
operations, (2) achieve dynamic control flow, and (3) read/write
main memory. We first formalize this base ISA. We choose a custom
base ISA for simplicity of presentation and implementation; it may
be desirable in future work to replace the base ISA with an off-the-
shelf ISA, such as MIPS.

Once we establish the base ISA, we formalize our VISA, which
essentially aggregates base instructions into fragments.

5.1 BaseISA

The base ISA specifies the instructions that can appear in our sup-
ported assembly programs. We emphasize that we do not execute
these instructions one by one; rather, our VISA groups base instruc-
tions into fragments, and our VISA machine treats fragments as its
atomic units of computation.
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Semantics

COPY tar src
CCOPY tar srcg srcy

ADD tar srco {src1}
SUB tar srcy {src1}
MUL tar srco {src1}
XOR tar srcy {src1}

Algebra AND tar srcy {src1}

EQ tar srco {src1}

CMP tar srcg srcy
SWAP srcg srcq

R[tar] «— R[src]

Ritar] {g:ﬁl

if R[srep] =1

otherwise

R|[tar] « R|[srco] + val(srcy)

R|[tar] « R[srco]| — val(srcq)

R|[tar] « R[srco] - val(srer)

R|[tar] « R|[srco] & val(srcy)

R|[tar] « R[srco] A val(sreq)

R[tar] — {1, ifR[src.o] = val(srcy)
0, otherwise

R[tar] « 2 - (R[sreo] < R|[srer]) + (Rsreo] 2 R([sre1])
R|[sreol, R[sre1] « Rsre1], R[sreo]
Rl

RS1 dst dst] « [R[dst]/2]
IMM dst imm R|dst] « imm
J imm pc «— imm
) imm, if R[src] #0
JE src imm pc «— .
pc+1, otherwise
. imm, ifR[src] =0
INE src imm pc «— .
pc+1, otherwise
Control Flow .
. imm, if R[src]&1 # 0
JL src imm pc «— )
pc+1, otherwise
) imm, if R[src]&2 # 0
JB src imm pc «— .
pc+1, otherwise
HALT - no effect, pc unchanged -

LOAD tar src

R([tar] «— M[R[src]]

Memory STORE tar src M[R[tar]] « R[src]
A % if x is an immediate
val(x) = o L
R[x], ifxis aregisterid

Figure 2: Our base ISA. Each instruction type handles between zero and three arguments. In general, arguments refer to registers, but
some arguments, denoted {-}, can also optionally be immediates (i.e., compile-time constants). val is a helper function that resolves an
argument that can be either a register or an immediate. Unless the semantics otherwise mention an effect on the pc, each instruction also
increments the pc. The symbol < with an overset u (resp. s) denotes a comparison where the arguments are treated as an unsigned (resp.

signed) integers.

The base ISA formalizes both the syntax and the semantics of
instructions. Our instructions each provide a simple mechanism for
performing algebra, achieving control flow, or accessing memory.
To define instruction semantics, we define an abstract machine
that executes instructions. Our ISA simultaneously defines our
instruction set and the abstract machine that runs them.

Definition 5.1 (Base ISA). Our instruction set is formally defined
in Figure 2. The semantics of instructions are defined by reference
to an abstract machine with a program counter pc, a register file
R, a main memory M, and a program P. pc is a 32-bit index that
indicates which base instruction to execute next. R is a length-m
array of 32-bit integers. M is a length-n array of 32-bit integers. P is
an array of instructions. Both n and m are configurable parameters
of the abstract machine. A machine is initialized with an arbitrary
program. At initialization, pc, R, and M are zero initialized. At

each step, the machine updates itself based on the semantics of
instruction P [pc].

In our implementation, we instantiate a machine with a size-13
register file; we vary the size of RAM depending on the require-
ments of the executed program.

We emphasize that while both the register file and the memory
are key-value data structures, our VISA machine handles them very
differently. Our memory supports dynamic access and is imple-
mented using Garbled RAM. On the other hand, our register file
does not need to implement dynamic access: each usage of the
register file is statically specified by an instruction, so each register
is essentially just a named collection of 32 circuit wires. Inside a
fragment, accessing the register file is free.
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5.2 Fragments

As discussed and motivated in Section 2, batching multiple instruc-
tions by creating fragments resolves the bulk of the cost of the CPU
emulation approach.

Definition 5.2 (Fragment). A fragment is a straight-line sequence
of base ISA instructions where only the final instruction may be a
Control Flow instruction (c.f. Figure 2).

Definition 5.2 coincides with the notion of a program basic block.
We still elect to use new terminology because the notion of a frag-
ment can be (and, we expect, will be) generalized, for example by
allowing intra-fragment control flow. The only limitation in extend-
ing the above definition is that a fragment should never contain a
data-dependent loop, since this would break the straight-line nature
of the fragment. For simplicity, we do not explore this direction
here, but we believe that this can be exploited heavily in future
work.

We now define the syntax/semantics of our VISA.

Definition 5.3 (Our VISA). Like our base ISA, a VISA is a set
of instructions together with the abstract machine that executes
them. A VISA instruction is a fragment (Definition 5.2). The VISA
abstract machine is identical to the base ISA machine, except that
the program % consists of fragments, and at each step the machine
executes the semantics of the current fragment #[pc].

REMARK 1. Note, a VISA program is thus viewed as including the
corresponding variable instruction set. A VISA then specifies the in-
terpretation of the program. A VISA machine instantiates the (secure)
execution of the program. While a full toolchain starts from programs
written in a base ISA, the VISA definition is about programs that
have been fragmented. In practice, the VISA machine toolchain will
generate the fragmentation and hence the program’s instruction set.

While the above specification indicates an array lookup % [pc],
our instantiation dispatches fragments via conditional branching.
Note that to achieve the prescribed semantics, we do not need to
conditionally dispatch over each fragment at each step. In general,
not all fragments will be possible at a given step. We reduce the
number of conditionally dispatched fragments by considering a
control flow graph (CFG) representation of the target program. We
maintain a set of pointers into the CFG that indicates the set of
possible pc values. At each step, our VISA machine only dispatches
over those fragments that are currently pointed to.

5.3 Memory Hierarchy

A VISA introduces the opportunity to distinguish three types of
memory:

e Main memory. Most program state is stored in a large main
memory that is accessed dynamically at high cost.

o Persistent registers. The local state of a VISA machine is
held in persistent registers. Inside the fragment, these registers
are free. However, to conditionally dispatch over fragments,
this local state must be passed to each branch. SGC imposes
cost for each bit that crosses the interface to/from the condi-
tional. It is sensible to store frequently used data in persistent
registers, but the number of these registers should be kept
in check.
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e Local registers. Since register access is free inside a frag-
ment, a VISA program can introduce arbitrary numbers of
local registers, allowing the fragment to store a large state
without paying for it. At the exit of the fragment, the content
of local registers is lost.

Allocating data to these levels of memory is a large and interesting
optimization space. We use 13 persistent registers and a RAM of
size up to 213 32-bit words in our experiments.

5.4 Fragment Generation

As discussed in Section 2, the choice of strategy for breaking a
program into fragments can dramatically affect performance. In
this work, we align fragments with program basic blocks (i.e., each
control flow instruction maps to a fragment), with one exception:
we introduce extra fragments for RAM accesses such that each
fragment has at most one RAM access. We found that this simple
strategy reduces the overall number of RAM accesses?, which we
found is the performance bottleneck.

Note that for simplicity of presentation, Figure 1 does not show
the extra fragments resulting from RAM accesses. Our actual frag-
mentation has 14 fragments.

While we leave further in-depth exploration of intelligently se-
lecting fragments as significant future work, we outline several
guidelines for such strategies. We note that these guidelines some-
times contradict one another, as fragment optimization is a chal-
lenging problem.

Generate fragments such that each conditional dispatch is over
fragments of similar size and with a similar number of RAM accesses.
SGC, and other approaches to MPC free branching [HKP20, HKP21],
achieves communication cost proportional to the single most expen-
sive branch. To best take advantage of free branching, ensure that
branches have similar cost. This can be achieved, e.g., by splitting
large program basic blocks into more than one fragment and/or by
merging multiple basic blocks into a single fragment.

RAM access is an expensive resource; an unbalanced allocation
across dispatched fragments misses an opportunity to amortize
accesses.

Prefer larger fragments. This reduces the number of VISA ma-
chine steps. Hence, larger fragments further reduce the amount of
CPU-emulation-style machinery.

Compress the interface to each fragment. As explained in Sec-
tion 5.3, we pay to transport the content of persistent registers
into and out of branches. Using compiler techniques to reduce the
number of needed persistent registers will reduce cost.

Prefer fragmentation that leads to smaller active sets. SGC compu-
tational and interface costs scale with the number of branches, so
we should seek to reduce the number of branches per step (i.e., to
shrink each active set). One way this guideline might be achieved
is by artificially introducing periodicity into a program’s execution.
For instance, we can split each loop into a number of fragments
that is a power of two. Without periodicity in consecutive loops
the active set will tend to grow with each step until it includes
each program fragment. Artificially introducing periodicity groups

“Ie., all active set fragments will have a same number of accesses.
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fragments into “congruence classes” and ensures that most frag-
ments never coincide in the same active set. [WGMK16] considered
a similar technique in their MIPS processor. Introducing periodicity
for fragments introduces further opportunities to align code and
amortize cost.

6 GAR: OUR VISA MACHINE

This section introduces GAR (Garbled Assembly with RAM) our
implementation of the VISA machine. GAR is formalized as a gar-
bling scheme [BHR12]. As already mentioned, GAR conditionally
dispatches fragments using SGC and implements main memory via
GRAM.

We first discuss technical issues and our solution in combining
our two main building blocks, SGC and GRAM. Then, in Section 6.2
we present the GAR scheme and state the main security theorem
(proofs are presented in the Appendix).

6.1 SGC with GRAM

The incompatibility of SGC and GRAM. SGC is compatible with
many, but not all GC techniques. SGC requires that the string of
material encoding each branch be indistinguishable from a uniform
string. This restriction is needed to mask from the GC evaluator the
identity of the conditional’s active branch: if a branch is inactive,
SGC arranges that the evaluator obtains uniform garbage material.

Unfortunately, GRAM’s material is distinguishable from a uni-
form string. In short, GRAM will one-by-one reveal to the eval-
uator RAM indices that are randomly generated without replace-
ment [HKO21]. These revealed indices are indistinguishable from
a uniform permutation, but not from a uniform string. Thus it is
not secure to use GRAM’s ACCESS gate inside an SGC conditional.

SGC’s uniform string requirement and GRAM’s revealed uniform
permutations seem somewhat inherent to the techniques, and it
is not clear that we can revise these techniques to make them
compatible with one another. Even if it were possible to make the
two techniques compatible, it would not be desirable. SGC requires
that each party garble each branch multiple times, introducing
added computational cost. Since the GRAM access procedure is
large, we would like to avoid repeatedly garbling it. It is more
pragmatic to simply garble each access once, as we end up doing.

Our approach. One way we could handle RAM access in a VISA
machine would be to place each RAM access instruction in its own
single-instruction fragment. While correct and secure, the approach
violates several of our guidelines for program fragmentation (Sec-
tion 5.4), and is undesirable for a number of performance reasons.
In particular, the resulting fragments are smaller, more numerous,
and each RAM access will service a smaller fragment. Ultimately,
this discards many of the VISA’s benefits.

A much better way would be to temporarily escape a fragment
just to perform the RAM access, then re-enter that fragment. This
is the approach we take. We design a new scheme that allows us
to temporarily escape an SGC conditional branch (i.e., a fragment),
perform the access, then re-enter that same branch. Because we
escape the SGC branch before accessing RAM, we avoid SGC’s
uniform string requirement. Thus, RAM access is simulatable. Cru-
cially for performance, our gadgets escape, and not fully exit SGC,
and transfer across the SGC interface only those specific bits that

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

are directly related to the RAM access. Thus, we do not, for example,
pay to transfer the full register file on each RAM access.

Instrumenting GRAM access in SGC. SGC uses two garbled gad-
gets, the demux and the mux, to enter and exit a conditional, re-
spectively. Each of these gadgets handles branch input/output wire-
by-wire, where each wire is (indirectly) connected from the outside
of the conditional to the internal circuit of each branch. We refer to
each of these wire connections as a port of the demux/mux. There
is one port per external wire.

Our observation is that, in contrast with standard SGC, the de-
mux/mux need not be evaluated in one shot at the very begin-
ning/end of the conditional. Instead, the GC evaluator can process
ports of the gadgets in an arbitrary order, so long as data depen-
dencies in the circuit are satisfied.

This in particular means that the evaluator can (1) process input
to a branch by handling only some ports of the demux, (2) evaluate
some gates in that branch, generating input to a RAM query, (3)
feed the RAM query through ports in the mux to temporarily escape
the branch, (4) execute the RAM access outside of SGC, in plain GC,
(5) feed the RAM result through ports of the demux back into the
branch, and (6) continue evaluation of the branch.

Interestingly, the GC generator’s order of building the corre-
sponding GC material is different. Because each branch must be
generated from a seed (this is a key trick behind SGC’s improve-
ment), the generator garbles each branch all at once, before any
RAM accesses are handled. As part of doing so, he assigns uni-
formly random GC labels to the branch side of each demux port.
Only once each branch is fully generated, does he generate GC for
RAM access(es). Labels of these GCs match the labels of the ports
of the SGC conditional. Finally, he generates the GC material for
the demux and mux.

Our modification to SGC still uses the main ideas of Stacked Gar-
bling [HK20]: our GC generator garbles each branch starting from a
distinct PRG seed and then stacks the material together using XOR.
Our GC evaluator can decrypt the seed for each inactive branch and
hence can reconstruct their garblings, unstack the material for the
active branch, and evaluate. Le., our scheme retains the important
communication advantage of SGC.

Next, we formalize our full garbling scheme GAR, which includes
the above trick.

6.2 Our Scheme: Formalization and Theorems

We formalize our VISA machine as a garbling scheme [BHR12].
SGC [HK21b] and GRAM [HKO21] are also formalized as garbling
schemes; our scheme reorganizes and adjusts their procedures, mak-
ing them compatible with each other and with our VISA (Section 5).

At a high level, our scheme should be understood as a new SGC
scheme equipped with black-box GRAM. As an aside, it is possible to
replace black-box GRAM with other garbled resources, for example
a stack or queue [ZE13].

Program description. A garbling scheme securely handles any
program from some specified language. Our goal is to support
programs expressed in our base ISA (Figure 2). At the lowest
level, we have primitive support for AND gates [ZRE15], XOR
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gates [KS08], SWITCH statements [HK21b], and ARRAY and AC-
CESS gates [HKO21]. The semantics of XOR and AND gates are
natural; ARRAY and ACCESS gate semantics are specified in Sec-
tion 4.1. A SWITCH executes only the indicated branch and outputs
the result. We group instructions from our base ISA, then compile
these to our low level primitives. Thus, our formal garbling scheme
consists of three major steps:

e Compile base ISA program to VISA program. Our
scheme first groups base ISA instructions into fragments
using the strategy described in Section 5.4.

e Compile VISA program to primitives. We compile each
fragment primitive operation using standard techniques.
Each basic instruction has a corresponding straight-line cir-
cuit, and our scheme stitches together each of the circuits in
the fragment. To conditionally dispatch, the scheme wraps
the fragment circuits in a SWITCH.

e Evaluate primitives via GC. The most interesting step is
the evaluation of primitives, which is explained below.

Note that the first two steps of our handling are quite modular. It is
easy to replace the ISA to VISA compiler with one that, for example,
more intelligently selects fragments. Similarly, we could replace
the compiler from fragments to circuits with more sophisticated
techniques. From here, our scheme focuses on the handling of
primitives, which is its crypto-technical component.

Definition 6.1 (Primitive Circuit Program). A primitive circuit pro-
gram is a circuit consisting of AND gates, XOR gates, ARRAY gates,
ACCESS gates, and SWITCH statements. ARRAY and ACCESS gates
are defined in Section 4.1. A SWITCH statement is recursively pa-
rameterized over b primitive circuit programs and [log, b] wires
that indicate which branch to execute. Note that an ACCESS gate
is allowed inside a SWITCH statement.

Our GAR scheme handles arbitrary assembly programs by appro-
priately implementing the above circuit primitives. We note that our
assembly compiler generates restricted classes of circuit programs,
and we need not handle them in full generality of Definition 6.1. For
example, the resulting primitive program will not feature nested
conditionals, and the ARRAY gate will be used exactly once to ini-
tialize main memory MEM at the start of the program. Furthermore,
each ACCESS gate will be parameterized by the specific array MEM.
Looking ahead, our formalism will handle only the relevant special
forms of primitive circuit programs.

We are now ready to present our main construction, the GAR®
(Garbled Assembly with RAM) garbling scheme [BHR12].

CoNsTRUCTION 1 (GAR). GAR consists of three components:

o A fragmentation strategy that specifies how to convert a base
ISA program into a VISA program. GAR uses the strategy
discussed in Section 5.4; we do not formally specify further.

o A compiler that transforms a VISA program (Definition 5.3)
into a primitive circuit program (Definition 6.1); because each
fragment has no data-dependent control flow, compiling each
fragment to a primitive circuit program is straight-forward,
and we do not specify further.

o A garbling scheme that securely executes primitive circuit
programs (Definition 6.1).

SA gar is a predatory and particularly menacingly looking fish.
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The GAR garbling scheme is the tuple of procedures:
(GAR.ev, GAR.Ev, GAR.Gb, GAR.En, GAR.De)

Note, GAR’s functionality goes beyond simply instantiating a
VISA machine; in particular GAR fragments programs written in
base ISA and generates VISA programs. We could have treated this
functionality separately as part of our toolchain.

We formally present procedures of the GAR garbling scheme in
Appendix A, see Figures 10 to 13. Here, we review them at a high
level.

GAR.ev. This procedure defines the semantics of primitives (Def-
inition 6.1). The semantics of AND gates and XOR gates are natural.
ARRAY and ACCESS gate semantics are specified in Section 4.1. A
SWITCH executes only the indicated branch and outputs the result.

GAR.Ev. This procedure specifies the GC evaluator’s han-
dling. In short, the handling of primitives is inherited from prior
work [ZRE15, HKO21]. The exception is our new SWITCH primi-
tive, which supports RAM ACCESS inside its branches. We dis-
cussed our method for handling ACCESS gates from within a
SWITCH in Section 6.1.

GAR.Gb. This procedure specifies the GC generator’s han-
dling. Again, the handling of primitives is inherited from prior
work [ZRE15, HKO21]. See Section 6.1 for the handling of our
SWITCH primitive.

GAR.En. This procedure specifies how cleartext GC inputs are
mapped to GC labels. The procedure is standard: on each input
wire, a zero maps to one label and a one maps to a different label.

GAR.De. This procedure specifies how output GC labels are
mapped to cleartext outputs. The procedure is standard.

GAR meets the standard garbling scheme definitions of correct-
ness, authenticity, obliviousness and privacy [BHR12]. Meeting these
is sufficient to instantiate 2PC/MPC protocols. We state the defi-
nitions and prove that GAR meets them in the full version of this
paper. Theorems in the full version imply the following:

THEOREM 6.2 (MAIN). Assuming a circular correlation robust hash
function, GAR’s garbling scheme is correct, authentic, oblivious, and
private.

7 EVALUATION

7.1 Implementation and Testing Environment

We implemented GAR and used it to instantiate a semi-honest
2PC protocol in ~ 5200 lines of C/C++. We instantiated Oblivious
Transfer and Network I/O using the EMP Toolkit [WMK16]. We
ran our experiments on two méi.16x1arge® machines in the same
region of an Amazon EC2 cluster. One machine ran the GC genera-
tor and the other ran the GC evaluator. We also ran [WGMK16]’s
implementation on the exact same setup to establish our baseline.
We configured both systems with the same inputs and with RAM
of the same size. GAR handles the program written in our assembly
language. [WGMK16] takes a MIPS binary compiled by an off-the
shelf compiler, thus placing them somewhat at a disadvantage.

®Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz, 256GiB Memory, 25Gbps Network
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Program # Mem Ent Time (s) Comm. (GB) # RAM Accesses
[WGMK16] Ours Impr. | [WGMK16] Ours Impr. | [WGMK16] Ours Impr.
64 128 29.4 0.6 49.0x 0.7 0.1 6.0Xx 2455 256 9.6X
PSI 256 512 311.7 7.1  43.9% 7.1 1.8 3.9%x 9755 1024 9.5%X
1024 2048 4378.6 619 70.7x 102.0 17.1 6.0 38855 4096 9.5%
40 2601.3 62.6 41.6X 58.5 9.5 6.2X 21579 3902 5.5%X
Dijkstra’s 60 1024 5462.7 127.3  42.9% 127.0 18.5 6.9%X 46679 8302 5.6x
80 9723.0 216.5 44.9x 221.0 30.5 7.2X 81379 14202 5.7X
100 14910.0 332.2  44.9x 341.0 47.0 7.3X 125779 21802 5.8%x

Figure 3: Comparison of our GAR system with [WGMK16]. We run PSI and Dijkstra’s for a range of input sizes. We ran both GAR and
[WGMK16] on the same hardware setup. Our approach substantially improves wall-clock time, communication consumption, and RAM
usage. Our count of [WGMK16]’s RAM accesses does not include instruction fetching; We list them separately in Figure 5.

G’s Pattern E’s String | GRAM Size # Executed Gb.  Trans. Ev. Total #Inst. Speed #Mem Comm.
Length Length (32-bits) Fragments Time(s) Time(s) Time(s) Time(s) #Inst/s Access (GB)
50 400 512 1400 9.7 5.3 4.4 19.4 12535 646Hz 1401 2.53
150 700 1024 2700 21.2 15.4 9.8 46.4 23635 509Hz 2701 7.44
250 1500 2048 5500 49.6 47.1 23.1 119.8 48735 407Hz 5501 22.70
500 7000 8192 23000 275.3 358.7 131.3 765.3 209485 274Hz 23001 173.00

Figure 4: GAR’s evaluation on KMP with different inputs and GRAM sizes.

7.2 Benchmarks and Metrics

As explained in Section 1 and further demonstrated in Section 7.4.5,
straight-line execution is not feasible for programs with complex
control flow. Accordingly, we focus comparison on [WGMK16]’s
CPU emulation approach. We demonstrate significant improvement
on three programs.

e Private Set Intersection (PSI): Two parties each hold a
sorted integer array and wish to compute the number of
common elements. While fast tailored PSI protocols exist,
we use this benchmark for direct comparison with prior
work [WGMK16].

¢ Dijkstra’s shortest path (Dijkstra): One party holds a
directed graph while the other holds a pair of source and des-
tination nodes (This is the setting of [WGMK16]; other input
configurations, e.g., all inputs secret-shared, incur no extra
cost). Parties wish to compute the shortest path between
the two nodes. This benchmark was used by [WGMK16]
and [LWN*15].

e Knuth-Morris-Pratt string search (KMP): One party
inputs a pattern string and the other inputs a search string.
They wish to compute the number of occurrences of the
pattern in the search string. This benchmark was suggested
by [LHS*14].

We note that our reported runtimes for [WGMK16] are in some
cases slower than what was reported in [WGMK16] itself. We be-
lieve this is due to the fact that program runtime is variable and
depends on the program input. Crucially, we ran our GAR system
on the same input as [WGMK16], and thus our reported numbers
are directly comparable.

Assembly code for each benchmark is included in the full version.

We report the following metrics:

e Wall-clock time: Wall-clock time includes the time needed
for the GC generator to garble, for network transmission,

and for the GC evaluator to evaluate. Figure 6 provides a
breakdown of these three metrics.

e Communication: Both [WGMK16] and GAR communicate
through one TCP/IP connection. We directly measure com-
munication from the TCP port and report the amount of
transmitted data.

o # RAM accesses: RAM accesses are the most expensive op-
eration in our approach. Recall that [WGMK16] uses ORAM
while GAR uses GRAM. We report the number of times we
and [WGMK16] access RAM. Recall that [WGMK16] uses
RAM to fetch instructions; we do not. Figure 3 does not in-
clude [WGMK16]’s RAM accesses to fetch instructions. We
list them separately in Figure 5.

7.3 Overall Improvement

Figure 3 tabulates GAR’s improvement over [WGMK16] for PSI and
Dijkstra’s.

PSI. We ran the PSI benchmark on three different pairs of in-
put arrays: two 64-element arrays, two 256-element arrays, and
two 1024-element arrays. The PSI program primarily consists of
a loop that compares a single element from each array. Our VISA
approach captures PSI’s loop in a single fragment. This results in
simple control flow and high performance. In total, we use only
three fragments: one that initializes state before the loop, one that
implements the body of the loop, and one that handles the end
of the program. Because the loop is captured by one fragment,
our approach uses precisely the number of RAM accesses that are
prescribed by the program’s execution path.

GAR is 44-70x% faster than [WGMK16] on each input, uses 4-6X
less bandwidth, and uses ~ 10x fewer RAM accesses.

Dijkstra’s. We ran Dijkstra’s (Figure 1) on a graph with 40, 60,
80, and 100 nodes. For a graph with n nodes, we set the number of
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PSI Dijkstra
Input Size 64 256 1024 | 40 60 80 100
Thousands of Fetches | 25 9.8 389 | 21.6 46.7 814 1258

Figure 5: [WGMK16]’s number of instruction fetch.

Bench. Gb. Trans. Ev. Total
Time(s) Time(s) Time(s) Time(s)

64 0.2 0.3 0.1 0.6

PSI 256 2.3 3.7 1.1 7.1
1024 18.3 35.9 7.7 61.9

40 29.4 19.5 13.7 62.6

.. 60 61.0 38.3 28.0 127.3
Dijkstra g 103.6 62.9 50.0 216.5
100 159.1 97.0 76.1 332.2

Figure 6: Breakdown of our total wall-clock time into the
time needed to (1) garble the circuit, (2) transmit the GC
across the network, and (3) evaluate the GC.

Program #Inst. #Fragments Impr. | Speed
#Inst/s

64 2419 129 18.8x | 4032Hz

PSI 256 9715 513 18.9x | 1368Hz
1024 38899 2049  19.0x 628Hz

40 | 33914 3900  8.7x | 542Hz

Dijkstra’s 6 73714 8300 8.9% 579Hz
80 | 128614 14200 9.1X 594Hz

100 | 198814 21800  9.1x | 598Hz

Figure 7: Comparison of the number of fragments with the

number of base ISA instructions for PSI and Dijkstra’s with
#instructions
#fragments

that we reduce the number of execution steps by an order of mag-
nitude. Our Hz rate is base instructions per second.

different input sizes. The improvement ( ) illustrates

edges |E| = 3n. The sparse graph is stored in the adjacency list. Our
program is split into 14 fragments.

For each input, GAR is 42-45x faster than the baseline
[WGMK16], uses 6-7x less bandwidth, and uses 5-6x fewer RAM
accesses.

7.4 Performance Breakdown and Discussion

7.4.1  Breakdown of Wall-Clock Time. Figure 6 breaks down the
wall-clock-time for each of our runs of PSI and Dijkstra. No one cost
clearly stands out as the bottleneck. We note that we did not stream
the GC from the generator to the evaluator; we expect that proper
streaming would allow to overlap garbling and evaluation with
transmission, essentially eliminating the separate cost of garbling
and evaluation. We also include detailed GAR costs in Figure 4.

7.4.2  SGC Savings. Recall that we use SGC to stack GC material
from fragments in the active set. In our Dijkstra experiments, we
observed that SGC improved communication by roughly 3x, ex-
cluding the cost of GRAM access. We expect that this improvement
will become more significant for larger and more complex programs

Round-trip Delay

Oms 50ms 100ms

[WGMK16] (s) 314.5 114954 (+11180.9) 22984.8 (+22670.3)
GAR (s) 11.5 12.8 (+1.3) 14.5 (+3.0)
Improvement 27.3% 898.1x 1585.2x

Figure 8: Runtime comparison of GAR and [WGMK16] when
solving PSI-256 for different latency settings. To tightly con-
trol latency, we ran these experiments on a single machine with a
simulated (via the Linux tc command) 2Gbps network. For clarity,
we note the added cost of latency in parentheses. Note, the sliding
window in TCP implicitly forces latency-like delays on GAR.

G’s E’s EMP EMP GAR Impr.
Pattern String #AND Total Total

Length Length | Gates (x10°) | Time(s) Time(s)

50 400 0.142 7.4 19.4 0.4x
150 700 2.264 120.0 46.4 2.6X
250 1500 13.11 732.7 119.8 6.1X
500 7000 233.0 12843.3 765.3 16.8X

Figure 9: Comparison of GAR with EMP’s straight-line execu-
tion on KMP. Our improvement over EMP increases with larger
inputs. Note, EMP implements array lookup with linear scans, not
GRAM. For very small arrays, linear scans outperform EPIGRAM,
which explains EMP’s performance in the smallest instance.

where the total number of fragments and likely the size of the active
set will be larger.

7.4.3  Communication Rounds and Latency Impact. GAR is imple-
mented via a garbling scheme, and our instantiation in the semi-
honest model only requires performing (parallel) OTs and sending
a single message from the generator to the evaluator. In contrast,
[WGMK16]’s ORAM-based CPU uses multiple rounds of communi-
cation per RAM access.

This distinction is not significant in the ultra-low latency setup
we have explored so far, but even modest latency harshly penal-
izes multi-round approaches. We evaluate the impact by executing
one program (PSI-256) with various latencies. We used the Linux
traffic control tool tc to configure a network with 2Gbps band-
width and 0/50/100ms latencies. Figure 8 tabulates wall-clock time
performance. (In this experiment we run both parties on a single
machine, so measurements in Figure 8 are not identical to our other
experiments.) With higher latency, GAR’s execution speed is almost
unchanged, but [WGMK16] becomes significantly slower; GAR’s
advantage grows from 27X on a Oms latency network to 898x (resp.
1585%) with 50ms (resp. 100ms) latency.

7.4.4  Active Set Sizes. GAR (and VISA) performance declines with
the increase of sizes of active sets (i.e., sets of fragments that can
be possibly executed in the corresponding step). Let M be the total
number of fragments. In our experiments we observe that the active
set size starts with 1 and quickly grows to M — 1 as execution
proceeds: M = 4 (resp. 15 and 11) for PSI (resp. Dijkstra and KMP).
We view active set optimization as crucial future work.



Towards Generic MPC Compilers
via Variable Instruction Set Architectures (VISAs)

7.4.5 Comparison with Straight-Line Circuit Evaluation. Finally,
we illustrate the advantage of the VISA approach over straight-
line circuit evaluation by comparing with the semi-honest 2PC of
the widely adopted EMP Toolkit [WMK16]. We implemented the
Knuth-Morris-Pratt (KMP) string-searching algorithm in both GAR
and EMP. (We do not include [WGMK16]’s performance, because
their repository did not include this benchmark.) Figure 9 tabulates
the results, and Figure 4 presents a fine-grained analysis of GAR’s
performance results.

KMP searches for occurrences of a length-k pattern held by G in
a length-m string held by E and outputs the number of occurrences.
An important feature of KMP is its O(m+k) time complexity, rather
than the naive O(m- k). Circuits are not a suitable representation as
KMP contains an inner loop that must be pessimistically unrolled a
total of O(m - k) times when in fact only O(m + k) total iterations
are needed.
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A FULL GARBLING SCHEME

We provide the formal procedures for GAR. Figure 12 lists the
scheme procedures (i.e., Construction 1) of GAR. Figure 13 explains
how we handle ACCESS gates internal to SGC branches. Figure 10
and Figure 11 are unrolled modifications of the COND gate proce-
dures from LOGSTACK.

In Definition 6.1, we define primitive programs as having explicit
AND gates, XOR gates, etc. For brevity and to closely match the
procedures of [HK21b], which are conceptually quite similar, we
use slightly different syntax our figures. Le., a netlist is a sequence of
AND and XOR gates. Netlists are handled via the [ZRE15] garbling
scheme. ‘Cond’ statements correspond to the SWITCH keyword.
‘Seq’ statements denote two circuit components that are run in
sequence. We emphasize that this language-level difference does
not change the meaning of primitive circuit programs.

Gbcond(C, S) :
b—I|C|

(> Find maximum RAM access count among all branches from the circuits.)

¢ — ComputeMaxAcc(C)

> Recursively derive all ‘good’ seeds for the entire tree.

s « DeriveSeedTree(s, b)
> Sample input/output encodings for the conditional.
e — GenProjection(S, inpSize(Cond(C)))
(@ = GenProjection(s, outSize(Cond(C)) + ¢ + (n+33))

> Parse encoding into encoding of « and encoding of rest of input.

e e

(> Parse encoding into encoding of ¢ access arguments and encoding of rest of outputs. |

do|.|de-y |d —d

> Garble SortingHat based on the encoding of a.

> This outputs material as well as the tree of all ‘bad’ seeds s'.
Msortingtats s’ — SortingHat.Gb(eq, s)
> Construct the stacked material and input encodings for each branch.

(Meond: econd: deond — GbSubtreeFromseed* (C.0.b ~ 1,505-1) |
(> Parse encodings for each branch into encodings on ¢ access results and rest of inputs. |

[econdo | - | condic—1 | €Long  €cond |
> Parse encodings for each branch into encodings on ¢ access arguments and rest of outputs.

deondo | - | deondic=1 | dong — deond
&> The demux conditionally translates the input encoding ¢’

> to one of the branch encodings in ¢/,,,;

based on eq.

Maem Ain — demux.Gh(eq, ¢, €/,

> Compute all possible garbage outputs.
Aout — ComputeGarbage” (G, Meong> Ain 5,5")
> The demultiplexer collects garbage outputs.
Myux — mux.Gh(ea,d’,d!, 1. Aout)
(Mram — Macemux | Macco | M I | Macemux—1 | Macee1 | M, )
(return (Msortinghat | Maem | Meond | Mmux | Mram €,d')]

Figure 10: The algorithm for garbling a conditional with b
branches where each branch has at most ¢ RAM accesses.
Main memory is a length-2" GRAM with 32-bit entries. GbCond
follows the structure of LoGSTACK’s procedure of the same name.
Our colored boxes highlight diffences as compared to LoGSTACK,
and the green box highlights the most important modification.
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EvCond(C, M, X) :
b IC|
(> Find maximum RAM access count among all branches from the circuits.)

e ComputeMaxAcc(é)

> Parse the active branch index from the rest of the input.
a|X X

» Parse material for gadgets and body of conditional.
(Msortingtat | Miem | Meond | Mmux | Mram < M)
(Macemuuxo | Maceo | Macedemu | - | Macemure=1 | Maceo—1 | Macedemuxe—1 — Mram)
> Run SortingHat to compute all of E’s seeds.

es « SortingHat.Ev(a, MsortingHat)

> Run the demultiplexer to compute input (except access results) for each branch C;.

Keond — demux.Ev(a, X, Maem)

> We define a recursive subprocedure that evaluates C; — C; using material M.
EvCond’ (i, j, My j) :
ifi=j:
> Base case: compute output by evaluating the branch normally.

» This base case corresponds to guess = i.

> Accumulate output labels into the vector Y,,,q (for later garbage collection).
Veonalil < EV(Cis M, Reonalil)
else:
k — halfway(i, j)
> Garble the right subtree using the available seed,

> unstack, and recursively evaluate the left subtree.

(M7, — GbsubtreeFromseed” (G, k+ 1, j,esirn )|
EvCond’ (i, k, My j ® Myyy, ;)

> Symmetrically evaluate the right subtree.

[Mi‘k, ., « GbSubtreeFromseed* (C, i, k, esi‘k)]

EvCond’ (k + 1, j, My j @ M; )

> Start recursive process from the top of the tree.
EvCond’(0,b — 1, Meong)
> Eliminate garbage and propagate Y, via the multiplexer.

return mux.Ev(a, 17,,,,,.1, Mpmux)

Figure 11: E’s procedure, EvCond, evaluates a conditional with
b branches and at most c RAM accesses. Our procedure follows
the structure of LoGSTACK’s procedure of the same name. Colored
boxes highlight the major differences as compared to LoGSTACK,
and the green box highlights the most important modification.
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GAR.ev(C,X) :
> 1 is a global array initialized to all 0.
> What are the circuit semantics?
Switch C :
case Netlist(+) : return HALFGATES.ev(C, X)
case Seq(Cp, C1) : return GAR.ev(Cy, GAR.ev(Cy, X))
case Cond(é) :
> split branch index from input
al| X X%
> Run the active branch.
return GAR.ev(C[al], )
case ACCeSS(iJX, v?zl, rw, d;t) :
if X[rw] ==
> Load
#[dst] — m[Z[idx]]
else:
> Store
m[E[idx]] — %[val]

return ¥

GAR.Ev(C,M,X) :

> MEM is a unique global Array object by EPIGRAM.init(-)

> How does E evaluate the GC?
Switch(C) :
case Netlist(+) : return HALFGATES.Ev(C, M,)?)
case Seq(Co, C1) :
Mo | My | My & M

return GAR.Ev(Cy, My, trans.Ev(GAR.Ev(Co, Mo, X), Mzy)

case Cond(C) : return EvCond(C, M, X)

case Access(iax, v?zl, rw, d;t) :

> Call GRAM access procedure

MEM,Y « EPIGRAM.access(MEM,)?[igx],f(‘[v?zl],)?[rw], M)

X[dst] — ¥

return)?

Figure 12: GAR’s garbling scheme. The included algorithms are typical except for the handling of conditionals. Ev and Gb delegate the
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GAR.Gb(1%,C, S)
> MEM is a unique global Array object by EPIGRAM.init(-)
> How does G garble the GC?
> S is an explicit seed.
Switch C :
case Netlist(+) :
return HALFGATEs.Gb(1%, C, S)
case Seq(Co, C1) :
> Derive seeds for two circuits.
So < Fs(0)
S1 « Fs(1)
(Mo, eg, dy) < GAR.Gb(1%, Cy, So)
(M1, e1,d1) — GAR.Gb(1¥,Cy, S1)
> Labels out of Cy must be translated
> to labels into Cy.
My < trans.Gb(dp, e1)
M — Moy | Mer | My
return (M, eg, d1)
case Cond(é) :return GbCond(é, S)
case Access(ia?x, val, rw, de) :
> Generate encodings for access arguments
e« repeatedly-sample Fs(-)
e repeatedly-sample Fs(-)
erw « repeatedly-sample Fs(-)
> Call GRAM access procedure
d, MEM, Mgcc < EPIGRAM.access(MEM, €50 Cnp erw)
le~ | end)

return (Mgce, Tl

e
idx

core of our approach: EvCond (Figure 11) and GbCond (Figure 10). En and De are not listed as they are standard.

GAR.EV*(C,M,X) :
> Similar as Ev until access case
case ACC&SS(I‘JX, szl, rw, d;t) :
Mace | My — M
> The access happened outside conditional
> M should be L

if X has dst ready : return X

else : » HALT and return X to top layer

Figure 13: Variants for Gb and Ev. These variants are called inside GbCond and EvCond. We implicitly use function® to denote function

GAR.Gb*(1%,C,S)
> Similar as Gb until access case
case Access(icix, v?zl, rw, dzt) :
> Generate encodings
e,d « repeatedly-sample Fs(-)
> Treat it as inputs and outputs

return (L, e, d)

from where the underlying calling to Gb (resp. Ev) is replace by Gb* (resp. Ev™).
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