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ABSTRACT
Vector Oblivious Linear Evaluation (VOLE) supports fast and scal-

able interactive Zero-Knowledge (ZK) proofs. Despite recent im-

provements to VOLE-based ZK, compiling proof statements to a

control-flow oblivious form (e.g., a circuit) continues to lead to

expensive proofs. One useful setting where this inefficiency stands

out is when the statement is a disjunction of clauses L1 ∨ · · · ∨ L𝐵 .

Typically, ZK requires paying the price to handle all 𝐵 branches.

Prior works have shown how to avoid this price in communication,

but not in computation.

Our main result, Batchman, is asymptotically and concretely

efficient VOLE-based ZK for batched disjunctions, i.e. statements

containing 𝑅 repetitions of the same disjunction. This is crucial for,

e.g., emulating CPU steps in ZK. Our prover and verifier complexity

is only O(𝑅𝐵 +𝑅 |C| +𝐵 |C|), where |C| is the maximum circuit size

of the 𝐵 branches. Prior works’ computation scales in 𝑅𝐵 |C|.
For non-batched disjunctions, we also construct a VOLE-based

ZK protocol, Robin, which is (only) communication efficient. For

small fields and for statistical security parameter 𝜆, this proto-

col’s communication improves over the previous state of the art

(Mac′n′Cheese, Baum et al., CRYPTO’21) by up to factor 𝜆.

Our implementation outperforms prior state of the art. E.g., we

achieve up to 6× improvement overMac′n′Cheese (Boolean, single
disjunction), and for arithmetic batched disjunctions our experi-

ments show we improve over QuickSilver (Yang et al., CCS’21) by

up to 70× and over AntMan (Weng et al., CCS’22) by up to 36×.
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1 INTRODUCTION
Zero Knowledge (ZK) proofs [25] allow a prover P to demonstrate

to a verifier V the validity of a given statement while revealing

nothing beyond the validity of the statement. The past decade has

seen an explosion in the design, implementation and deployment

of concretely efficient zero-knowledge proofs systems.

Large overheads of P andV remain a bottleneck in scaling zero-

knowledge to very large statements. One major overhead comes

from complex control flow, which, explicitly or implicitly, includes

repeated evaluation of disjunctions. Examples include complex

statements like ‘this program has a bug’ [27] or even (the more

complex) ‘this program does not have a bug’ [32].
We focus on minimizing total end-to-end proof time, which in-

cludes communication and total computation by both P and V .

VOLE-based ZK. Under this total end-to-end proof time metric,

designated-verifier interactive ZKP is particularly appealing for

its concrete efficiency. A recent line of work constructs such ZKP

systems from a cryptographic primitive called vector oblivious linear
evaluation (VOLE) [1–3, 18, 19, 37–40]. State-of-the-art VOLE-base

ZK is efficient. For instance, [40] handles >7 million arithmetic

gates per second.

While VOLE-based ZK is fast, its costs (communication, P andV
computation) still scale linearly in the size of the proof statement.

1

It is interesting to exploit statement structure (e.g., disjunctions) to

achieve further improvement with the ultimate goal of costs that

grow sublinearly (with small constants) in the proof statement.

ZK proofs of disjunctions. Seeking improved performance and

motivated by the structure of real-world programs, prior works

[3, 23, 24, 27, 31] specifically optimized for proofs of disjunctive
statements of the form C1 (𝒘) = 0 ∨ · · · ∨ C𝐵 (𝒘) = 0 for 𝐵 different

subcircuits referred to as branches. Their underlying techniques

1
The recent proof system of [39] achieved sublinear communication cost, but at the

cost of asymptotically increased computation; see Section 1.2.
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are often referred as stacking, following the notation introduced

by [27]. For disjunctions, because P only needs to demonstrate the

truth of one branch, it is possible to design custom systems that

achieve up to factor 𝐵 improvement.

Our first contribution, Robin, (see Section 1.1) is a protocol

that improves cost of disjunctive statements in VOLE-based ZK.

ZK proofs of batched disjunctions. We also consider proof state-

ments that consist of a batch of the same disjunctive statement.
2

I.e., suppose P holds 𝑅 distinct witnesses 𝒘 (1) , . . . ,𝒘 (𝑅)
, and she

wishes to prove C1 (𝒘 ( 𝑗 ) ) = 0 ∨ · · · ∨ C𝐵 (𝒘 ( 𝑗 ) ) = 0 for each 𝒘 ( 𝑗 )
.

The crucial application of such statements is the emulation

of a CPU inside ZK. Indeed, each step of a basic CPU executes one

out of a possibly large set of instruction types, and this is repeated

many times until the program halts. ZK systems that emulate a CPU

are interesting, because they enable end users to express complex

proof statements as programs written in commodity programming

languages, see e.g. [29]. More generally, a program can be compiled

into a single large forloop over switch statement executing one of

many (hundreds or thousands) of straight-line program segments.

This is called loop coalescing [22]; loop coalescing is known to be

useful for fast RAM-based ZKP [35].

Concretely efficient ZK systems (sublinear in computation and

communication) for batched disjunctions have not been considered.

Our second – and most exciting – contribution, Batchman,
is an interactive VOLE-based ZKP system that efficiently handles

batched disjunctions. The surprising property of this proof system

is that, as compared to naïve handling, it achieves not only factor 𝐵

communication improvement, but also up to factor 𝐵 computation
improvement for both P and V . Thus, our protocol is sublinear

in the proof statement. While our total end-to-end runtime scales

with the number of branches 𝐵 and repetitions 𝑅, it crucially does
not scale in the product 𝑅𝐵. This enables CPU-emulation-based ZK

operating over large and expressive instruction sets.

Batching zero-knowledge proofs has proven an important step to-

wards in determining the feasibility of full-fledged zero-knowledge.

Understanding the complexity of disjunctive statements has also

been of theoretic interest and traces back to the work of Feige and

Shamir [20] and Cramer, Damgård and Schoenmakers [16] for the

design of witness indistinguishable proofs and efficient Σ-protocols
respectively.

Full version. Full version of this paper is available at [42].

1.1 Our Contribution
As mentioned above, we construct two VOLE-based ZK protocols:

• Single disjunctions. Robin (Refined Oblivious Branching

for INteractive zk) is a VOLE-based ZK for disjunctive state-

ments expressed as an arithmetic circuit over an arbitrary

field F. For a disjunction with 𝐵 branches, each consisting of

a maximum of |C| (multiplication) gates, P andV each com-

pute O(𝐵 |C|) field operations and communicate O(𝐵 + |C|)
field elements. More precisely, P and V communicate only

O(𝐵⌈ 𝜆
log |F | ⌉ + |C|) field elements.

2
Previous constructions, including our first contribution, have linear in 𝐵 computation,

and cannot simply be batched to achieve sublinear computation in 𝐵𝑅 | C | .

Protocol Prover Comm. Verifier
Comp. Comp.

[19, 40] O(𝑅𝐵 |C|) O(𝑅𝐵 |C|) O(𝑅𝐵 |C|)
[39] O(𝑅𝐵 |C| log𝑅) O(𝐵 |C| + 𝑅) O(𝑅𝐵 |C| log𝑅)
[3] O(𝑅𝐵 |C|) O(𝑅 log𝐵 + 𝑅 |C|) O(𝑅𝐵 |C|)
our, Robin O(𝑅𝐵 |C|) O(𝑅𝐵 + 𝑅 |C|) O(𝑅𝐵 |C|)
our, Batchman O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|) O(𝑅𝐵 + 𝑅 |C|) O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|)

Table 1: Cost of recent VOLE-based ZK systems for batched
disjunctions of arithmetic circuits. 𝐵 denotes number of

branches, |C| denotes branch size, and 𝑅 denotes batch size.

• Batched disjunctions. Batchman extends Robin to batches
of 𝑅 proofs of the same disjunction. Here, P and V each

compute O(𝑅𝐵 +𝑅 |C| +𝐵 |C|) field operations and communi-

cate O(𝑅𝐵 + 𝑅 |C|) field elements (assuming log |F| = Ω(𝜆)
where 𝜆 is the statistical security parameter).

In our batched protocol, except for a one-time additive 𝐵 |C| cost,
P’s andV’s computation costs are independent of the number of

disjunctions. In comparison, “flattening” out the circuit would result

in computational complexity proportional to 𝑅𝐵 |C|.
Our protocols are concretely performant. E.g., Robin scales in

branches up to 6× better thanMac′n′Cheese [3] when |C| = 10
9
,

and demonstrates up to 16× improvement over QuickSilver [40]
when 𝐵 = 100. Batchman demonstrates up to 36× improvement

over AntMan [39] when 𝐵 = 64 and 𝑅 = 1024, and up to 70×
improvement overQuickSilver [40] when 𝐵 = 𝑅 = 400. We provide

a summary of our comparison to prior work in Table 1; see detailed

comparison to prior work in Sections 1.2 and 7.

A bird’s-eye view of our protocols. We remark that achieving

computational cost sublinear in 𝑅𝐵 |C| is possible when we wish

to evaluate the same disjunctive statement 𝑅 > 1 times, if we are

allowed non-black-box access to some underlying cryptographic

primitive. Suppose P and V in a pre-processing step compute the

hash of the description of each of the 𝐵 branches under a collision-

resistant hash function. Then, for each instance of the disjunction P
includes in her witness the circuit description of the active branch

and proves via a universal circuit that the circuit on some input

witness returns 0 and that the hash of the circuit description belongs

to the set of precomputed hashes. The complexity is
˜O(𝐵 |C|) for

the first instance (to compute 𝐵 hashes) and
˜O(𝐵 + |𝐶 |) thereafter.

Such an approach is impractical due to its use of universal circuits

and its non-black-box use of a hash function.

Seeking concretely efficient constructions, we restrict ourselves

to black-box use of underlying primitives only. Surprisingly, in

the same batched setting, we design an efficient construction that

builds on the high level concept of “checking circuit hashes”, but our

construction achieves asymptotic complexity O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|)
while making only black-box use of VOLE (and while using no other

cryptographic primitives). In short, our approach shows that the

“hash” of each branch can be determined by a random challenge

that is chosen by V after P has committed to her witness. To

compute and check these “hashes”, each party computes simple

linear combinations of field elements. See Section 3 for details.
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1.2 Related Work
VOLE-based interactive zero-knowledge protocols. Consider a fan-

in-2 circuit C with |C| multiplication/addition gates over some field.

[19] achieved 1 field element communication per multiplication

gate based on a technique called Line-Point Zero Knowledge (LPZK).

[40] further improved LPZK and implemented the technique. Our

work handles multiplication gates by directly applying the LPZK

technique, as well as [40]’s improvement for proving inner products.

Our implementation (see Section 7) builds on [40]’s open source

repo [36].

[18] improved LPZK communication to 0.5 field element per mul-

tiplication gate at the cost of increased computation and requiring

random oracle. Concrete performance of [18] is similar to [40]; we

build on [40] for simplicity.

[39] for the first time achieved a VOLE-based ZK systemwith sub-

linear communication and achieved communication cost O(|C|3/4).
While the approach remains quite efficient, its performance is not

strictly better than prior work, because it achieves its improved

communication at the cost of computation. The technique performs

polynomial interpolation, incurring factor O(log |C|) overhead,
and it also employs relatively expensive additively homomorphic

encryption. [39] consider batching, but not batched disjunctions;

we compare with them in Section 7.

ZK disjunctions. A line of works [3, 23, 24, 27] augments ZK

proofs with efficient handling for disjunctions. Consider 𝐵 circuits

C𝑖∈[𝐵 ] each with the same number of inputs/multiplications, and

suppose P holds a single witness for C𝑎∈[𝐵 ] (the active branch).
These works achieve communication that scales with |C| rather
than 𝐵 |C|. Such works say that they “stack” the branches, following

terminology introduced by [27].

Most related to our work, [3] was the first (and the only) work

to stack in the VOLE-based ZK setting. [3] implements multiplica-

tion gates with a custom protocol, and it is incompatible with the

LPZK technique. Their multiplication procedure communicates 2

extra extension field elements per multiplication. Our protocols are

compatible with LPZK. Our protocols communicate extra 2 field

elements (not extension field elements) per multiplication, and our

work is the first to consider batched disjunctions.

Even at a high level, our approach seems quite different from

these prior approaches. In prior works, P proves satisfiability of

each branch (thus paying computation scaling with 𝐵), but even

honest P can “cheat” on each inactive branch. For example, [27]

allows P to learn cryptographic seeds used to garble the inactive

branch circuits. Our approach instead achieves branching by lever-

aging (1) simple properties of VOLE correlations and (2) a random

challenge from V to “compress” the description of each branch.

RAM-based ZK (RAM-ZK). Prior works have considered ZK state-

ments expressed as RAM programs, e.g. [4–7, 9, 13, 17, 21, 26, 28,

30, 33, 35, 43]. These works present the exciting possibility of struc-

turing ZK proof statements as programs written in commodity

languages.

The RAM model of computation is relevant to the batched dis-

junctions setting. Indeed, because of constant RAM access cost in

ZK [17, 21], for batch size 𝑅 ≥ 𝐵, RAM-ZK can be used to achieve

batched disjunctions. By simply structuring the proof statement

Functionality F 𝑅,𝐵
ZK

Upon receiving (prove, C1, . . . , C𝐵,𝒘1, . . . ,𝒘𝑅, 𝑎1, . . . , 𝑎𝑅) from
prover P and (verify, C1, . . . , C𝐵) from verifier V:

• If for all 𝑖 ∈ [𝑅] it holds that C𝑎𝑖 (𝒘𝑖 ) = 0, then output

(true) to V; else output (false) to V .

Figure 1: The batched disjunctive ZK functionality.

as a RAM program, loading the program (of size 𝐵 |𝐶 |) into the

RAM memory, and running the RAM-ZK, the proof will naturally

terminate in time O(𝐵 |C| + 𝑅 |C|).
RAM-based ZK is not competitive with our batched protocol for

two reasons. First, our approach demonstrates a theoretical advan-

tage. Suppose the batch is relatively small, i.e. 𝑅 = 𝑜 (𝐵). In this case,

the RAM approach is less appealing, since it is necessary to load the

program into memory, immediately incurring O(𝐵 |C|) cost. At the
same time, our communication cost is independent of the quantity
O(𝐵 |C|), and so it works well in this setting. More importantly,

our approach elides the expensive machinery required for RAM

emulation and is concretely performant. Indeed, our motivating

application is the acceleration of such RAM-based proofs, so our

low constant costs are crucial.

2 PRELIMINARIES
2.1 Notation

• 𝜆 is the statistical security parameter (e.g., 40).

• 𝜅 is the computational security parameter (e.g., 128).

• The prover is P. We refer to P by she, her, hers...

• The verifier is V . We refer to V by he, him, his...

• 𝑥 ≜ 𝑦 denotes that 𝑥 is defined as 𝑦.

• We denote that 𝑥 is uniformly drawn from a set 𝑆 by 𝑥 ∈
$
𝑆 .

• We denote {1, . . . , 𝑛} by [𝑛].
• We denote column vectors by bold lower-case letters (e.g.,

𝒂), where 𝑎𝑖 (or 𝑎[𝑖]) denotes the 𝑖th component of 𝒂 (start-

ing from 1) and 𝒂 [𝑖 : 𝑗] the subvector [𝑎𝑖 , . . . , 𝑎 𝑗 ]𝑇 . We use

glue(·) to stitch column vectors (e.g., glue(𝒂, 𝒃) ≜ [𝒂𝑇 |𝒃𝑇 ]𝑇 ).
• Wedenotematrices by bold upper-case letters (e.g.,𝑨), where
𝑨(𝑖) denotes the 𝑖th row vector of 𝑨 (starting from 1) and

𝑨[𝑖] denotes the 𝑖th column vector of 𝑨 (starting from 1).

𝑨(𝑖) [ 𝑗] denotes 𝑗th value in 𝑖th row.

• We prove batches of disjunctions. We call each member of

the batch a repetition. 𝐵 denotes the number of branches and

𝑅 denotes the number of repetitions.

• We use 𝑖 to index branches (e.g., 𝑖 ∈ [𝐵]), 𝑗 to index repeti-
tions (e.g., 𝑗 ∈ [𝑅]), and 𝑘 to index gates (e.g., 𝑘 ∈ [|C|]).

• We denote a finite field of size 𝑝 by F𝑝 where 𝑝 ≥ 2 is a

prime or a power of a prime. Extension fields are defined

and denoted in the standard way.

2.2 Security Model
We formalize our protocols under the universally composable (UC)

framework [14]. We use UC to formalize our protocols and to prove
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Functionality F 𝑝,𝑞

sVOLE

Consider a base field F𝑝 and an extension field F𝑝𝑞 . Functionality

interacts with P,V and the adversary A as follows:

Initialize. Upon receiving (init) from P andV , ifV is honest,

sample Δ ∈
$
F𝑝𝑞 , else receive Δ from A. Store Δ and send it to

V . Ignore subsequent (init).

Extend. Upon receiving (extend, 𝑛) from P and V , do the

following:

• IfV is honest, sample 𝒗 ∈
$
F𝑛
𝑝𝑞

, else receive 𝒗 ∈ F𝑛
𝑝𝑞

from A.

• If P is honest, sample 𝒖 ∈
$
F𝑛𝑝 and compute𝒘 ≜ 𝒗 − 𝒖 · Δ ∈

F𝑛
𝑝𝑞
, else receive 𝒖 ∈ F𝑛𝑝 and 𝒘 ∈ F𝑛

𝑝𝑞
from A and compute

𝒗 ≜ 𝒘 + 𝒖 · Δ ∈ F𝑛
𝑝𝑞
.

• Send (𝒖,𝒘) to P and 𝒗 to V .

Figure 2: The subfield VOLE correlation functionality

security in the presence of a malicious, static adversary. The func-
tionality F 𝑅,𝐵

ZK (C.f., Figure 1) is used to realize a zero-knowledge

proof (of knowledge) for 𝑅-repetitions disjunction of 𝐵 circuits.

When 𝑅 = 𝐵 = 1, F 1,1
ZK is the standard ZK functionality. When

𝑅 = 1, F 1,𝐵
ZK is the ZK functionality for a single disjunction. Looking

ahead, our protocol for single disjunction implements F 1,𝐵
ZK (for

𝐵 ∈ Z+) and our protocol for batched disjunctions implements

F 𝑅,𝐵
ZK (for 𝑅, 𝐵 ∈ Z+).

2.3 VOLE and IT-MACs
Recent works [10–12, 15, 34, 41] have improved the efficiency of

subfield VOLE (i.e., Figure 2). The state-of-the-art VOLE implemen-

tation requires only linear computation and sublinear communica-

tion in the number of generated VOLE correlations.

In VOLE-based ZK, VOLE correlations allow P to commit to wire

values using information-theoretic MACs (IT-MACs). Let 𝑥 ∈ F be
a field element known to P (e.g., part of her witness). An IT-MAC

commitment to 𝑥 is a pair of values held respectively by P and V .

Specifically,V holds a key 𝑘 ∈
$
F and P holds𝑚 = 𝑘 −𝑥 ·Δ, where

Δ ∈
$
F is a key which is global to the entire proof, known to V ,

and hidden from P. We denote a commitment to 𝑥 under global key

Δ by writing [𝑥]Δ, where Δ will be omitted if it is clear from the

context. I.e., [𝑥]Δ is a pair of tuples (𝑚𝑥 , 𝑥), held by P, and (𝑘𝑥 ,Δ),
held by V . We use [𝒙]Δ to denote IT-MACs of vector 𝒙 . Note that
P can efficiently open a commitment [𝑥]Δ by sending (𝑚𝑥 , 𝑥).

An IT-MAC [𝑥]Δ has the following notable features:

• Hiding:V’ s share the (𝑘𝑥 ,Δ) is independent of the secret
𝑥 , so the share trivially hides 𝑥 .

• Binding:Malicious P cannot cheat and open a commitment

[𝑥]Δ to some 𝑥 ′ ≠ 𝑥 . Indeed, forging a suitable opening is

as hard as guessing Δ. Note that (𝑚𝑥 , 𝑥) conveys no infor-

mation about Δ.
• Linear homomorphism: [𝑥 + 𝑦]Δ = [𝑥]Δ + [𝑦]Δ. [𝑐𝑥]Δ =

𝑐 [𝑥]Δ and [𝑥 + 𝑐]Δ = [𝑥]Δ + 𝑐 , for some public 𝑐 .

The VOLE functionality allows P andV to construct 𝑛 IT-MAC

commitments, each to a uniformly random value [𝑟 ]Δ where 𝑟 ∈
$
F.

A random commitment [𝑟 ]Δ can be easily translated into a com-

mitment [𝑥]Δ where 𝑥 is a value chosen by P: P simply sends to

V the single field element (𝑥 − 𝑟 ), and V correspondingly locally

shifts his key by (𝑥 − 𝑟 ) · Δ. Thus, to commit to 𝑛 field elements, P
and V first execute VOLE, and then P transmits 𝑛 · ⌈log |F|⌉ bits.

Field extension. When the ZK statement is defined over a small

field F𝑝 (e.g., Boolean), we need to use IT-MACs defined over an

extension field F𝑝𝑞 to ensure that Δ cannot be easily guessed. In

this case, it suffices to consider random IT-MACs [𝑟 ]Δ where 𝑟 is

drawn from the base field F𝑝 because 𝑟 is only used to mask 𝑥 ∈ F𝑝 .
There exists a VOLE variant that works over F𝑝𝑞 , but generates
IT-MACs of such 𝑟 values from the subfield F𝑝 . This variant is called
subfield VOLE. I.e., an IT-MAC [𝑟 ]Δ generated by subfield VOLE

will have𝑚𝑟 , 𝑘𝑟 ,Δ ∈ F𝑝𝑞 but 𝑟 ∈ F𝑝 .
It is sometimes necessary to mix VOLE and subfield VOLE cor-

relations in a single proof. This is easy: we can linearly combine 𝑞

subfield VOLE correlations into 1 VOLE correlation over the exten-

sion field F𝑝𝑞 . This incurs factor 𝑞 blowup.

2.4 LPZK [19] and QuickSilver [40]
VOLE-based ZK works in the “commit-and-prove” paradigm: P
commits to her extended witness with IT-MACs, and later proves to

V that committed values are consistent with the proof statement.

Consider a proof statement encoded as an arithmetic circuit C,
and let P hold a witness 𝒘 . To prove C(𝒘) = 0, P first computes

her extended witness 𝒘ext , which consists of𝒘 along with each mul-

tiplication gate’s output value upon evaluating C(𝒘). The parties
then construct commitments to𝒘ext , as described above. From here,

P andV can use the linear homomorphism property of IT-MACs

to construct commitments to the output value of each addition gate.

Note that at this point, P is now committed to a particular value

for every wire in the circuit. Two tasks remain:

• P must prove toV that the committed value of the output

wire is 0. This is achieved simply by opening.

• For each multiplication gate, P must prove that the gate’s

committed input values indeed multiply to the gate’s com-

mitted output value.

Previous VOLE-based ZKs mainly differ in the way they han-

dle multiplication gates. State-of-the-art VOLE-based ZK [19, 40]

handles multiplication gates via a technique called line-point zero-
knowledge (LPZK). At a high level, LPZK [19] proves that 𝑛 IT-

MAC tuples {[𝑙𝑖 ]Δ, [𝑟𝑖 ]Δ, [𝑜𝑖 ]Δ}𝑖∈[𝑛] satisfy the multiplication re-

lation 𝑜𝑖 = 𝑙𝑖 · 𝑟𝑖 by utilizing (1) another random IT-MAC and

(2) algebra over IT-MAC shares. The technique can be achieved

at the cost of (1) V sending a random challenge and (2) P send-

ing 2 field elements. Each party computes O(𝑛) field operations.

We denote the procedure to prove multiplications for IT-MACs

as LPZK({[𝑙𝑖 ]Δ, [𝑟𝑖 ]Δ, [𝑜𝑖 ]Δ}𝑖∈[𝑛] ), which we use as a black-box.

LPZK has (𝑛 + 2)/𝑝𝑞 soundness error and information-theoretic

security in the F 𝑝,𝑞

sVOLE-hybrid model [40]
3
.

3
[40] uses “extended subfield VOLE”, which handles higher degree polynomials. We

only use degree-2 polynomials, so F𝑝,𝑞

sVOLE is sufficient.
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QuickSilver [40] subsequently generalized LPZK to efficiently

handle arbitrary polynomials over committed values. Our pro-

tocols use this trick for proving the inner-product of IT-MACs.

Namely, given 2𝑚 IT-MACs ( [𝑥1]Δ, . . . , [𝑥𝑚]Δ) and ( [𝑦1]Δ, . . . ,
[𝑦𝑚]Δ), QuickSilver shows how to efficiently prove that 𝑥1𝑦1 +
. . .+𝑥𝑚𝑦𝑚 = 0. The proof requires O(1) communication and O(𝑚)
computation. Further, incorporating a random challenge fromV , 𝑘

inner-product proofs can be batched, preserving O(1) communica-

tion. We denote the procedure to prove 𝑘-batched inner-products

for IT-MACs as QS({[𝑥 ( 𝑗 )
𝑖

]Δ, [𝑦 ( 𝑗 )𝑖
]Δ}𝑖∈[𝑚], 𝑗∈[𝑘 ] ). We will use it

as a black-box subprotocol. This sub-proof, as shown by [40], is

zero-knowledge with (𝑘 + 2)/𝑝𝑞 soundness error and information-

theoretic security in the F 𝑝,𝑞

sVOLE-hybrid model
3
.

We defer additional details on LPZK and QS to the full version.

3 TECHNICAL OVERVIEW
In this section, we present our techniques with sufficient detail to

understand our contribution. Our ZK protocol considers standard

arithmetic circuits with fan-in-2 gates. For ease of presentation,

throughout this section, we consider circuits defined over a prime

field F𝑝 where 𝑝 is large enough to achieve the desired soundness

(e.g., 𝑝 = 2
61 − 1) without using VOLE with an extension field.

Recall that our goal is to extend VOLE-based ZK such that it can

efficiently handle proofs of (batched) disjunctive statements.

Consider 𝐵 circuits C1, . . . , C𝐵 (each called a branch) with the

same number of input wires and multiplication gates, which is

padded if needed. To begin, suppose P wishes to prove a single

disjunction (we will discuss batching shortly). I.e., P wishes to

prove C1 (𝒘) = 0 ∨ · · · ∨ C𝐵 (𝒘) = 0.

Note that basic VOLE-based ZK (e.g., [40]) scales with the num-

ber of branches 𝐵, both in communication and computation. The

primary source of this cost is simply the commitment of P’s ex-

tended witness, which is linear in the total number of multiplication

gates.

In our approach, P commits to a much shorter string whose

length scales only with the number of multiplications (and inputs)

in a single branch. This reduction in the size of the committed string

is the source of our improvement.

In slightly more detail, P commits to a modified version of the

extended witness𝒘ext . In addition to the inputs of the active circuit,
𝒘ext includes input/output wire values of eachmultiplication gate of

the active branch
4
. We use out(𝒘ext ) (resp. left(𝒘ext ), right(𝒘ext ))

to denote the vector of multiplication-gate outputs (resp. mult-gate

left inputs, mult-gate right inputs) taken from𝒘ext . From here, P
proves that the committed multiplication inputs/outputs indeed

respect multiplication. Namely, P proves out(𝒘ext ) = left(𝒘ext ) ◦
right(𝒘ext ) where ◦ denotes the element-wise product. This check

is performed using the techniques of prior work (LPZK). Note that
the number of checks does not scale with the number of branches.

So far, P has simply introduced and committed to a length-𝑛in
vector of inputs and a length-𝑛× vector of tuples, each of which

respects multiplication. The remaining task is to force P to choose

this vector such that it satisfies the structure of some active branch

4
This means that our extended witness is up to 3× longer than the one considered

by prior work if 𝐵 = 1. While we pay a small constant factor overhead on the active
branch, we asymptotically decrease the size of P’s commitment by up to factor 𝐵.

C𝑎 . That is, P must prove that𝒘ext respects the topology of branch

C𝑎 , as well as the linear constraints implied by C𝑎 ’s addition gates.

As we will describe in detail later, we can enforce such constraints

by introducing publicmatrices𝑴𝑖 of size𝑂 ( |C|)×𝑂 ( |C|), encoding
the topology of C𝑖 a-la adjacency matrix. For each branch C𝑖 with
matrix 𝑴𝑖 , consider the following crucial equation:

𝑴𝑖 ×𝒘ext = 0 (1)

Equation (1) has two notable properties:

• If P is honest and holds a witness that satisfies active branch

𝑎, Equation (1) will hold for branch 𝑎.

• If P attempts to cheat and does not have a valid witness,

w.h.p. Equation (1) will not hold for any 𝑖 .

We defer further details on the structure of these matrices un-

til Section 3.3. It is worth noting that although the size of these

matrices is O(|C|2), we will demonstrate that all relevant opera-

tions we used on these matrices can be computed in time O(|C|).

Terminology. Our approach centers on the manipulation of matri-

ces 𝑴𝑖 which encode the topology of circuits C𝑖 . We find it helpful

to introduce terminology for these matrices.

• We refer to each matrix𝑴 as a topology matrix.𝑴 is a matrix

of dimension 𝑂 ( |C|) ×𝑂 ( |C|).
• We will allowV to select random challenge vectors 𝒔, and
we will consider products 𝒔𝑇 ×𝑴 . We refer to the resulting

length 𝑂 ( |C|) vector as a compressed topology vector.
• Additionally, we will right multiply compressed topologies

by vectors. The result of such a multiplication is a scalar that

we refer to as a compressed topology token.

3.1 Robin: Single Disjunction Protocol
In the single instance setting, we wish to improve communi-

cation. Recall that we consider statements of the form (C1 (𝒘) =
0 ∨ · · · ∨ C𝐵 (𝒘) = 0). Our goal is to achieve communication that

scales with 𝐵 + |C|, not 𝐵 |C|, while preserving the low computation

cost of the basic VOLE-based ZK.

Our key insight is thatV can challenge P with a random vector

𝒔 after P commits to𝒘ext . Both parties can then use the IT-MAC

commitment [𝒘ext ]Δ to homomorphically (i.e., without further com-

munication) derive 𝐵 IT-MAC commitments of the following com-

pressed topology tokens:[
𝒔𝑇 ×𝑴1 ×𝒘ext

]
Δ
, . . . ,

[
𝒔𝑇 ×𝑴𝐵 ×𝒘ext

]
Δ

Crucially, we prove that from the properties of Equation (1), these

𝐵 IT-MAC commitments have the following induced properties:

• If P is honest and commits a witness that satisfies active

branch 𝑎, [𝒔𝑇 ×𝑴𝑎 ×𝒘ext ]Δ will always be [0]Δ.
• If cheating P does not have a valid witness, then with over-
whelming probability, none of these values will be [0]Δ.

To complete the proof, P simply needs to demonstrate that one

of these committed tokens is a 0. We achieve this in a direct way:

we run a (much smaller) VOLE-based ZK proof demonstrating that

the product of the 𝐵 elements is 0.

All in all, P demonstrates: There exists an extended witnesses

𝒘ext s.t. for a random challenge 𝒔, the following holds:
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(left(𝒘ext ) ◦ right(𝒘ext ) = out(𝒘ext )) multiplication check

∧
((

𝐵∏
𝑖

𝒔𝑇 ×𝑴𝑖 ×𝒘ext

)
= 0

)
topology check

Note that the order of quantifiers in the above statement is cru-

cial, implying the order in which the proof proceeds. In short, the

full proof proceeds as follows:

(1) P commits to the extended witness𝒘ext .

(2) P and V check that multiplication wires are properly com-

mitted by using the existing LPZK technique.

(3) V sends to P the random challenge vector 𝒔.
(4) P andV locally compute [𝒔𝑇 ×𝑴𝑖 ×𝒘ext ]Δ for each 𝑖 ∈ [𝐵].
(5) P andV use VOLE-based ZK to prove that the product of

these 𝐵 commitments is 0.

3.2 Batchman: Batched Disjunctions Protocol
In the batched setting, we wish to improve not only communi-

cation, but also computation. Recall, we consider the statement

(C1 (𝒘 𝑗 ) = 0 ∨ · · · ∨ C𝐵 (𝒘 𝑗 ) = 0) on 𝑅 different witnesses.
5
Our

goal is to achieve computation that scales with 𝐵 + 𝑅, not 𝐵𝑅.

As a first attempt, one could try simply applying our single

instance approach 𝑅 times; this fails, because computing each com-

mitment [𝑠𝑇 ×𝑴𝑖 ×𝒘ext ]Δ requires 𝑂 ( |C|) field operations, and

so ultimately this attempt uses 𝑂 (𝑅𝐵 |C|) field operations.

As a second attempt, one could use RAM-based ZKs. While this

works for large 𝑅, it does not match our asymptotics for small 𝑅

and is concretely expensive; see Section 1.2.

Our batched approach relies on three key insights:

(1) P knows the active branch C𝑎/matrix𝑴𝑎 for each repetition.

(2) It is safe to re-use the challenge vector 𝒔 across all𝑅 instances.

(3) The compressed topology vector 𝒔𝑇 ×𝑴𝑎 is small, having
length only O(|C|) field elements.

Thus, for each repetition 𝑗 ∈ [𝑅], we can require that P commits

to her extended witness 𝒘 ( 𝑗 )
ext and to her desired branch 𝑎 ( 𝑗 ) . In

particular, if P is honest, she will commit to the compressed topol-

ogy vector of the active branch as [𝒄𝒗 ( 𝑗 ) ≜ 𝒔𝑇 × 𝑴𝑎 ( 𝑗 ) ]Δ. From
here, the parties use a regular VOLE-based ZK proof (QS) to show

that P’s committed witness respects the committed compressed

topology vector. Namely, they check:(
𝒄𝒗 ( 𝑗 )

)𝑇
×𝒘 ( 𝑗 )

ext = 0, for all 𝑗 ∈ [𝑅]

Crucially, the computation cost of this inner product check does not
scale with the number of branches 𝐵, because P directly chooses

and commits to only the active branch.

Suppose that a cheating P does not have a witness for some

repetition 𝑗 . Based on our reasoning in Section 3.1, passing the

above check is negligibly likely, if 𝒄𝒗 ( 𝑗 ) is equal to the compressed

topology vector of some branch. Of course, it might be the case

that cheating P committed to some vector 𝒄𝒗 ( 𝑗 ) which is not equal
to any branch’s compressed topology 𝒔𝑇 ×𝑴𝑖∈[𝐵 ] .

5
Of course, it is not useful to prove the same statement more than once without

imposing additional constraints; it is easy to incorporate extra mechanisms that force

P to 𝑅 times prove the statement wrt related witnesses. See discussion in Section 6.

To repair this, we add a step to validate that P indeed committed

to the compressed topology of some branch. In particular, we allow

V to issue a second challenge vector 𝒕 , and then the parties once

and for all precompute the following compressed topology tokens:

ct𝑖 ≜ 𝒔𝑇 ×𝑴𝑖 × 𝒕, for each 𝑖 ∈ [𝐵]
Computing these values takes time proportional to 𝐵, but not propor-
tional to𝑅 as each value is computed exactly once; once computed,P
andV re-use these values in each of the 𝑅 batched proof instances.

The above validation will catch a cheating P with overwhelming

probability (in the size of the field F). More precisely, we observe

(and prove) that if 𝒄𝒗 ∉ {𝒔𝑇 ×𝑴𝑖 }𝑖∈[𝐵 ] , with overwhelming proba-
bility, (𝒄𝒗𝑇 × 𝒕) ∉ {ct𝑖 }𝑖∈[𝐵 ] . Furthermore, for each 𝑗 ∈ [𝑅], parties
already hold [𝒄𝒗 ( 𝑗 ) ]Δ, so they can locally compute [(𝒄𝒗 ( 𝑗 ) )𝑇 × 𝒕]Δ
and perform a regular VOLE-based ZK proof to show:(

(𝒄𝒗 ( 𝑗 ) )𝑇 × 𝒕
)
∈ {ct𝑖 }𝑖∈[𝐵 ]

Each token ct𝑖 is a single field element, so this check is efficient.

All in all, P demonstrates: There exist 𝑅 extended witnesses

𝒘 (1)
ext , . . . ,𝒘

(𝑅)
ext s.t. for a random challenge 𝒔 there exist 𝑅 vectors

𝒄𝒗 (1) , . . . , 𝒄𝒗 (𝑅) s.t. for a random challenge 𝒕 , the following holds:
for each 𝑗 ∈ [𝑅],(

left(𝒘 ( 𝑗 )
ext ) ◦ right(𝒘

( 𝑗 )
ext ) = out(𝒘 ( 𝑗 )

ext )
)

mult. check

∧
(
(𝒄𝒗 ( 𝑗 ) )𝑇 ×𝒘 ( 𝑗 )

ext = 0

)
topo. check

∧
((
(𝒄𝒗 ( 𝑗 ) )𝑇 × 𝒕

)
∈ {𝒔𝑇 ×𝑴𝑖 × 𝒕}𝑖∈[𝐵 ]

)
topo. valid

The order of quantifiers in the above statement is crucial, imply-

ing the order in which the proof proceeds. In short, the full batched

proof proceeds as follows:

• P commits to each extended witness𝒘 ( 𝑗 )
ext .

• P andV check multiplication wires are properly committed

by using the existing LPZK technique.

• V sends to P the random challenge vector 𝒔.
• P commits to each compressed topology 𝒄𝒗 ( 𝑗 ) .
• P andV check each inner-product (𝒄𝒗 ( 𝑗 ) )𝑇 ×𝒘 ( 𝑗 )

ext is equal

to zero by using the existing QS technique.

• V sends to P the random challenge vector 𝒕 .
• P and V locally compute 𝒔𝑇 ×𝑴𝑖 × 𝒕 for each 𝑖 ∈ [𝐵].
• P and V use VOLE-based ZK to prove that each committed

vector (𝒄𝒗 ( 𝑗 ) )𝑇 × 𝒕 is a valid compressed topology token.

3.3 Topology Matrices
We now discuss how we construct and use branch-specific public

topology matrices 𝑴 . Recall, these matrices allow V to verify that

P’s extended witness indeed satisfies the structure of some branch
of C1, . . . , C𝐵 . This verification is achieved by Equation (1).

Recall, our extended witness𝒘ext includes (1) P’s witness𝒘 and,

for each multiplication gate in the active branch, (2) its output wire

and (3) its two input wires.

Consider a branch C, and suppose that we remove each multi-

plication gate from C. Whenever we remove a multiplication gate,

we replace its input and output wires with inputs to C. What re-

mains is a skeleton of the circuit containing only addition gates

that expresses a linear relationship on the extended witness (and
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+

××

+

in1

o2

in2 in3

o1

out

ℓ1 r1 ℓ2 r2 
1 0 0 −1 0 0 0 0 0 0

0 1 1 0 −1 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0

0 1 1 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1 1 0


×



in1
in2
in3
ℓ1
ℓ2
𝑟1
𝑟2
𝑜1
𝑜2
1


=

[
in1 − ℓ1 in2 + in3 − ℓ2 in2 − 𝑟1 in2 + in3 − 𝑟2 𝑜1 + 𝑜2

]𝑇
Figure 3: A simple arithmetic circuit computing (in1 · in2) +
(in2+in3)2 (left) and its corresponding topologymatrix (right).
Note, the shaded portion of the matrix is dense.

C’s output). It is convenient to encode this linear relationship as a

matrix 𝑴 ∈ F(2C×+1)×(C𝑖𝑛+3C×+1)
, and we refer to this matrix as a

topology matrix. Figure 3 shows an example.

Note that𝒘ext is a valid extended witness for C if and only if:

(1) Multiplication gates in the𝒘ext are formed correctly.

(2) 𝑴 × glue(𝒘ext , 1) = 0, where glue appends 1 to vector𝒘ext
6
.

The above requirements imply that, for an invalid extended

witness𝒘ext , if Item 1 is satisfied, Item 2 will not be satisfied. This

is precisely our Equation (1) and associated properties with one

caveat: we did not append 1 to 𝒘ext . This can be trivially fixed,

because P and V can locally generate shares of [1]Δ.

Efficient operations on topology matrices. Recall that we left mul-

tiply topology matrices 𝑴 by vectors 𝒔𝑇 : we compute 𝒔𝑇 ×𝑴 .

Computed naïvely, the above multiplication is expensive. In-

deed, 𝑴 can be dense, due to unlimited fan-out from addition gates.

Therefore, storing 𝑴 and naïvely computing the product will incur

𝑂 ( |C|2) overhead, far exceeding our asymptotic budget.

Perhaps surprisingly, given the gate-by-gate representation of

C, this multiplication can be computed in time 𝑂 ( |C|) with our

technique “evaluating C backwards” – see Section 4. We name

the corresponding algorithm MULLEFT.MULLEFT never explicitly

computes 𝑴 . Thus, the topology matrix 𝑴 is merely an analysis

tool, and our protocols work entirely with efficient gate-by-gate

circuit representations. In other words, it suffices to think of circuits
as topology matrices, while in reality all algorithms operate on

compact gate-by-gate representations.

4 FORMALIZING TOPOLOGY MATRICES
In this section, we formalize topology matrices, a tool used to prove

the correctness and security of our approach; see Section 3. We also

give an algorithm that allows efficient vector-matrix multiplication

on topology matrices.

Linear constraint on a wire. Consider a wire 𝑤𝑘 in a circuit C.
The wire𝑤𝑘 can be defined as a linear combination of input wires

of C and output wires of all multiplication gates. We call this linear

combination the linear constraint on𝑤𝑘 .

6
This 1 enables offset gates, which take a public constant as input.

in1

in2

in3

+1

+2

×1 +3

scale

+4 unit

+5 out

5

ℓ1

𝑟1

𝑜1

Figure 4: A circuit’s induced DAG. In the topology matrix of

this circuit, the last row defines out ≜ 6in2 + 7in3 + 6𝑜1. In this

DAG, there are 6 paths from in2 to out, 7 paths from in3 to out,
and 6 paths from 𝑜1 to out. E.g., from 𝑜1, there are 5 paths (dashed)

passing through the scale gate and 1 path (dotted) passing through

the addition gate +4, so there are 6 paths in total. The topology

matrix reflects these numbers of paths. Since there is no offset gate,

the unit vertex is isolated.

Following this, a circuit’s linear constraints can be captured by

its associated topology matrix (see Figure 3 for an example):

Definition 4.1 (Topology Matrix). Let C denote a circuit over some

field F such that C has 𝑛in input wires and 𝑛× multiplication gates.

The topology matrix associated with C is a (2𝑛× + 1) × (𝑛in +
3𝑛× + 1) matrix over F defined as follows.

Let 𝒂𝒖𝒙 ≜ (in1, . . . , in𝑛in , ℓ1, . . . , ℓ𝑛× , 𝑟1, . . . , 𝑟𝑛× , 𝑜1, . . . , 𝑜𝑛× , 1)𝑇
denote a vector of circuit metadata. Here, in𝑘 represents the 𝑘th

input, ℓ𝑘 (resp. 𝑟𝑘 , 𝑜𝑘 ) represents the left (resp. right, output) wire

of the 𝑘th multiplication gate, and 1 is the multiplicative identity

of F. The rows of the topology matrix𝑀 are:

(1) Left wires: For the first 𝑛× rows, for each 𝑘 ∈ [𝑛×],𝑴 (𝑘) ×
𝒂𝒖𝒙 is the linear constraint on wire ℓ𝑘 . E.g., in1 − ℓ1 = 0. We

require 𝑴 (𝑘) [𝑛in + 𝑘] = −1.
(2) Right wires: For the second 𝑛× rows, for each 𝑘 ∈ [𝑛×],

𝑴 (𝑛× + 𝑘) × 𝒂𝒖𝒙 is the linear constraint on wire 𝑟𝑘 . E.g.,

in2 − 𝑟1 = 0. We require 𝑴 (𝑛× + 𝑘) [𝑛in + 𝑛× + 𝑘] = −1.
(3) Circuit output: For the last row𝑴 (2𝑛× + 1),𝑴 (2𝑛× + 1) ×

𝒂𝒖𝒙 is the linear constraint on the output of the circuit. E.g.,

𝑜1 + 𝑜2 is the circuit output.

Item 3 can be naturally extended to capture circuits with multiple

outputs. Note that for 𝒂𝒖𝒙 to be a valid extended witness,𝑴 × 𝒂𝒖𝒙
must be the all zeros vector.

Left multiplication for topology matrices. Recall, our P and V
left multiply topology matrices 𝑴𝑖 by random vectors 𝒔𝑇 . Using
naïve vector-matrix multiplication, computing 𝒔𝑇 × 𝑴 requires

O(|C|2) field operations, exceeding our asymptotic budget. Instead,

we propose an efficient algorithm calledMULLEFT to support the

above operation. Given the gate-by-gate circuit representation
7
of

C, our algorithm essentially gate-by-gate evaluates C “backwards”

in O(|C|) operations without ever writing down the matrix 𝑴 .

It is not obvious that thismultiplication can be achieved in𝑂 ( |C|)
operations, as the matrix 𝑴 can be dense due to high fan-out ad-

dition gates (see Figure 3 as an example). While the matrix 𝑴 is

not sparse, it is highly structured: indeed, the circuit C is itself a

succinct representation of 𝑴 , and our algorithm exploits this.

7
The full version defines a standard arithmetic circuit gate-by-gate representation.
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Algorithm 1: MULLEFT takes as input (1) an arithmetic

circuit C over a field F written in gate-by-gate represen-

tation (see the full version for the formal definitions) and

(2) a vector 𝒔 over some extension field of F with length

2𝑛× + 1. It outputs 𝑠𝑇 ×𝑴 where 𝑴 is the topology matrix

associated with C. Array indices start at 1.

Input: circuit C, vector 𝒔
Output: 𝒔𝑇 ×𝑴

1 𝒘 = 0( | C.wid | ) defined over the extension field;

2 𝑎𝑐𝑐 = 0 defined over the extension field;

3 𝑤 [|C.wid|] = 𝑠 [2𝑛× + 1];
4 for each multiplication gate (ℓ𝑘 , 𝑟𝑘 , 𝑜𝑘 ) do
5 𝑤 [ℓ𝑘 ] = 𝑤 [ℓ𝑘 ] + 𝑠 [𝑘]; 𝑤 [𝑟𝑘 ] = 𝑤 [𝑟𝑘 ] + 𝑠 [𝑘 + 𝑛×];
6 for each linear gate 𝐺 in reverse topological order do
7 if 𝐺 is an addition gate (ℓ′

𝑘
, 𝑟 ′
𝑘
, 𝑜′

𝑘
) then

8 𝑤 [ℓ′
𝑘
] = 𝑤 [ℓ′

𝑘
] +𝑤 [𝑜′

𝑘
]; 𝑤 [𝑟 ′

𝑘
] = 𝑤 [𝑟 ′

𝑘
] +𝑤 [𝑜′

𝑘
];

9 if 𝐺 is a scale gate (𝑐𝑘 , 𝑥𝑘 , 𝑦𝑘 ) then
10 𝑤 [𝑥𝑘 ] = 𝑤 [𝑥𝑘 ] + 𝑐𝑘 ·𝑤 [𝑦𝑘 ];
11 if 𝐺 is an offset gate (𝑐′

𝑘
, 𝑥 ′

𝑘
, 𝑦′

𝑘
) then

12 𝑤 [𝑥 ′
𝑘
] = 𝑤 [𝑥 ′

𝑘
] +𝑤 [𝑦′

𝑘
]; 𝑎𝑐𝑐 = 𝑎𝑐𝑐 + 𝑐′

𝑘
·𝑤 [𝑦′

𝑘
];

13 𝒓𝒆𝒔 = {};
14 for each input wire in𝑘 in order do 𝒓𝒆𝒔 .append(𝑤 [in𝑘 ]) ;
15 for each 𝑘 ∈ [2𝑛×] do 𝒓𝒆𝒔 .append(−𝑠 [𝑘]) ;
16 for each multiplication gate (ℓ𝑘 , 𝑟𝑘 , 𝑜𝑘 ) in order do
17 𝒓𝒆𝒔 .append(𝑤 [𝑜𝑘 ]);
18 𝒓𝒆𝒔 .append(𝑎𝑐𝑐);
19 return 𝒓𝒆𝒔

Our O(|C|) solution. Algorithm 1 presentsMULLEFT. To under-

stand our algorithm, we analyze the semantics of topology matrices.

Let C denote a circuit, and consider C’s underlying directed acyclic
graph𝐺 ; i.e, the vertices in𝐺 represent gates and edges in𝐺 repre-

sent wires (see Figure 4 as an example). Now, remove each vertex

corresponding to a multiplication gate in C. Additionally, add one

special vertex to 𝐺 called the unit vertex, which will denote a wire

holding value 1 to capture offset gates.
Let 𝑴 denote the topology matrix associated with C. Now, con-

sider the first row of 𝑴 (denoted as 𝑴 (1)). As specified by Defini-

tion 4.1, this row defines the linear constraint on ℓ1, the left input

wire of C’s first multiplication gate. The first element of 𝑴 (1) can
be understood as the number of paths in 𝐺 that start at vertex in1
and terminate at vertex ℓ1. (Arithmetic circuits admit scalar gates
which scale the input by a public constant; for a gate with scalar 𝑠 ,

we say that there are 𝑠 paths from that gate’s input to its output.

We also consider offset gates which add a public constant to a wire;

for a gate with offset 𝑠 , we say that there are 𝑠 paths from the unit

vertex to the gate output.) See Figure 4 for an example.

More generally, 𝑴 (𝑖) [ 𝑗] can be understood as the number of

paths from auxiliary wire (see Definition 4.1) aux 𝑗 to multiplication

gate input 𝑖 . There are two special cases: (1) we define the number

of paths from a wire to itself to be −1; (2) the last row determines

the number of paths to the circuit output wire (not multiplication).

Now, consider the first column of𝑴 (denoted as𝑴 [1]). Based on
the above analysis, this column can be understood as the number

of paths from in1 to ℓ1, . . . , ℓ𝑛× , 𝑟1, . . . , 𝑟𝑛× , out. The crucial point is
this: in the graph 𝐺 , the number of paths from wire 𝑎 to wire 𝑏 is

trivially equal to the number of backwards paths (i.e., paths through
the graph with all edges reversed) from 𝑏 to 𝑎. Thus, if we wish to

compute the inner product of some vector 𝒔 with 𝑴 [1], we can (1)

put those values of 𝒔 onto the wires ℓ1, . . . , ℓ𝑛× , 𝑟1, . . . , 𝑟𝑛× , out, (2)
evaluate the circuit (with multiplication gates removed) backwards
and (3) output the value on wire in1.

Note that backwards evaluation of linear gates has a clear in-

terpretation. In particular, for an addition gate we add together its

output wire values, then place the sum onto the two input wires.

Therefore, to compute the full vector-matrix product 𝒔𝑇 ×𝑴 , we

simply evaluate the arithmetic gates backwards, and then output

wire values in the order prescribed by 𝒂𝒖𝒙 . This is precisely the

approach of Algorithm 1. Because we evaluate each linear gate

exactly once, the complexity of Algorithm 1 is trivially O(|C|).

5 Robin: SINGLE DISJUNCTION PROTOCOL
5.1 Soundness Lemmas
As discussed in Section 3, our protocols heavily rely on the fact that

V can issue random vectors to compress commitments, leading to

small proofs. Formally, these random challenges preserve soundness

based on the following lemmas
8
and associated corollaries, which

are the kernel of our protocols and proofs.

Lemma 5.1. Consider a field F and let 𝑘,𝑚 ∈ Z+. Consider 𝑘
arbitrary non-zero vectors 𝒙 (1) , . . . , 𝒙 (𝑘 ) ∈ F𝑚 . The following holds:

Pr[∃𝑖 ∈ [𝑘], (𝒙 (𝑖 ) )𝑇 × 𝒔 = 0 | 𝒔 ∈
$
F𝑚] ≤ 𝑘/|F|

Corollary 5.2. If 𝒔 is drawn from the extension field F𝑞 where
𝑞 ∈ Z+, the upper bound of Lemma 5.1 is 𝑘/|F|𝑞 .

Corollary 5.3. Consider a field F and let 𝑘,𝑚 ∈ Z+. Consider 𝑘
arbitrary non-zero vectors 𝒙 (1) , . . . , 𝒙 (𝑘 ) ∈ F𝑚 and a vector 𝒚 ∈ F𝑚
such that 𝒚 ∉ {𝒙 (1) , . . . , 𝒙 (𝑘 ) }. The following holds:

Pr[(𝒚𝑇 × 𝒔) ∈ {(𝒙 (1) )𝑇 × 𝒔, . . . , (𝒙 (𝑘 ) )𝑇 × 𝒔} | 𝒔 ∈
$
F𝑚] ≤ 𝑘/|F|

Lemma 5.4. Consider a field F and let 𝑘,𝑚 ∈ Z+. Consider 𝑘
arbitrary non-zero vectors 𝒙 (1) , . . . , 𝒙 (𝑘 ) ∈ F𝑚 . The following holds:

Pr[∃𝑖 ∈ [𝑘], (𝒙 (𝑖 ) )𝑇 × 𝒔 = 0 | 𝜒 ∈
$
F] ≤ 𝑘 (𝑚 − 1)/|F|

where 𝒔 ≜ (1, 𝜒, . . . , 𝜒𝑚−1).

5.2 Formal Protocol and Analysis
We refer the reader to Section 3.1 for the intuition behind our ZK

protocol for disjunctive circuit satisfiability in the single instance

setting. Figure 5 formalizes our protocol; its main security property

is as follows:

Theorem 5.5 (Single Disjunction Security). Π
𝑝,𝑞

Single (Figure 5)

UC-realizes F 1,𝐵
ZK (Figure 1) in the F 𝑝,𝑞

sVOLE-hybrid model with sound-

ness error 𝑛×+2𝐵+4
𝑝𝑞 and information-theoretic security.

We provide a detailed proof of Theorem 5.5 in the full version;

for now, we sketch the main argument.

8
Check the full version for the proofs.
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Protocol Π𝑝,𝑞

Single

Inputs. The prover P and the verifier V hold 𝐵 circuits

C1, . . . , C𝐵 over any field F𝑝 , where each circuit has 𝑛in inputs

and 𝑛× multiplication gates. Prover P also holds a witness 𝒘
and an integer 𝑎 ∈ [𝐵] such that C𝑎 (𝒘) = 0 and |𝒘 | = 𝑛in.

Generate extended witness on C𝑎 .
0. P evaluates C𝑎 (𝒘) and generates ℓ, 𝒓, 𝒐 ∈ F𝑛×

𝑝 where ℓ (resp.
𝒓, 𝒐) denotes the values on left (resp. right, output) wires of each

multiplication gate, in topological order.

Initialize/Preprocessing.
1. P and V send (init) to F 𝑝,𝑞

sVOLE, which returns a uniform

Δ ∈
$
F𝑝𝑞 to V .

2. P and V send (extend, 𝑛in + 3𝑛×) to F 𝑝,𝑞

sVOLE, which re-

turns IT-MACs {[𝜇𝑘 ]}𝑘∈[𝑛in ] , {[𝜔𝑘 ]}𝑘∈[𝑛× ] , {[𝜉𝑘 ]}𝑘∈[𝑛× ] and
{[𝜌𝑘 ]}𝑘∈[𝑛× ] to the parties.

3. P and V send (extend, 𝑞(𝐵 − 1)) to F 𝑝,𝑞

sVOLE, which returns

𝑞(𝐵 − 1) IT-MACs of random values over F𝑝 . P and V then

combine these IT-MACs into (𝐵 − 1) IT-MACs of random values

over F𝑝𝑞 denoted as {[𝜏𝑖 ]}𝑖∈[𝐵−1] .

Commit to extended witness on C𝑎 .
4. For 𝑘 ∈ [𝑛in], P sends 𝛿𝑘 := 𝑤𝑘 − 𝜇𝑘 ∈ F𝑝 to V , and then

both compute [𝑤𝑘 ] := [𝜇𝑘 ] + 𝛿𝑘 .

5. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := ℓ𝑘 − 𝜔𝑘 ∈ F𝑝 to V , and then

both compute [ℓ𝑘 ] := [𝜔𝑘 ] + 𝛿𝑘 .

6. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := 𝑟𝑘 − 𝜉𝑘 ∈ F𝑝 toV , and then both

compute [𝑟𝑘 ] := [𝜉𝑘 ] + 𝛿𝑘 .

7. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := 𝑜𝑘 − 𝜌𝑘 ∈ F𝑝 to V , and then

both compute [𝑜𝑘 ] := [𝜌𝑘 ] + 𝛿𝑘 .

Check multiplication gates. P convincesV that the 𝑛× com-

mitted multiplication gates are well-formed.

8. P andV run a VOLE-based zero-knowledge proof for mul-

tiplications as LPZK({[ℓ𝑘 ], [𝑟𝑘 ], [𝑜𝑘 ]}𝑘∈[𝑛× ] ); if ZKP fails, V
outputs (false) and halts.

Check witness satisfies some topology. Denote 𝑴1, . . . ,𝑴𝐵

∈ F(2𝑛×+1)×(𝑛in+3𝑛×+1)
𝑝 the topology matrices of C1, . . . , C𝐵 . Let

𝒘ext ≜ glue(𝒘, ℓ, 𝒓 , 𝒐, 1) ∈ F𝑛in+3𝑛×+1
𝑝 and associated IT-MAC

[𝒘ext ] ≜ glue( [𝒘], [ℓ], [𝒓], [𝒐], [1]). P convincesV that 𝑴𝑎 ×
𝒘ext = 0 without leaking 𝑎. I.e., there exists a satisfied circuit.

9. V samples a random vector 𝒔 ∈
$
F2𝑛×+1
𝑝𝑞

and sends it to P.

10. For each 𝑖 ∈ [𝐵], P and V compute 𝒄𝒗𝑖 := 𝒔𝑇 × 𝑴𝑖 ∈
(F𝑛in+3𝑛×+1

𝑝𝑞
)𝑇 , then compute [𝑣𝑖 ] = 𝒄𝒗𝑇

𝑖
× [𝒘ext ].

11. P and V run a VOLE-based zero-knowledge proof to show

Π𝑖∈[𝐵 ]𝑣𝑖 = 0 by using IT-MAC [𝒗]. Note that this is a 𝐵-

product circuit defined over F𝑝𝑞 , so it can be performed with

{[𝜏𝑖 ]}𝑖∈[𝐵−1] and LPZK. If ZKP succeeds, V outputs (true);
otherwise, V outputs (false).

Figure 5: Robin: ZKP protocol for disjunctive circuit satisfia-
bility over any field F𝑝 in the F 𝑝,𝑞

sVOLE-hybrid model.

Proof Sketch. By constructing a simulatorS, and by extracting
the witness from malicious P.

For malicious verifier A, S interacts with the ideal functionality

F 1,𝐵
ZK by running A as a subroutine. S implements the ideal func-

tionality F 𝑝,𝑞

sVOLE on behalf of A. Therefore, S knows Δ, and it can

use Δ to prove any statement to A by opening commitments to

whatever value it likes.S uses this capability to send toA messages

identically distributed to honest P’s real-world messages, which

allows it to complete the ideal world execution.

For malicious prover A, the witness can be trivially extracted

from messages sent to F 𝑝,𝑞

sVOLE. S runs a proof interaction with A
by acting as honest V , and it sends the extracted witness to F 1,𝐵

ZK
if the interaction leads to a successful proof. The only difference

between the two worlds occurs when A successfully proves a false

statement; this can occur when A manages to pass checks built

into the protocol. In such cases, real-worldV will accept the proof,

whereas ideal-world V will reject, because S does not hold a valid

witness. This discrepancy occurs with low probability because the

protocol is sound.

Indeed, A must pass all checks, and the probability that checks

erroneously pass is bounded by the (statistical) soundness of LPZKs
in Steps 8, 11 (

𝑛×+𝐵+4
𝑝𝑞 in total) and by the probability of the fol-

lowing bad event: Let𝒘bad denote a vector that is not an extended

witness for any branch. Honest V samples a vector 𝒔 such that

𝒔 ×𝑴𝑖 ×𝒘bad = 0 for some 𝑖 ∈ [𝐵] in Step 10. Each 𝑴𝑖 ×𝒘bad is a

non-zero vector, so this only happens with (statistical) probability

at most
𝐵
𝑝𝑞 (see Corollary 5.2). □

Protocol cost. In total, Π
𝑝,𝑞

Single consumes the following resources:

• Communication. The parties transmit 𝑛in + (2𝑞 + 3)𝑛× +
𝑞(𝐵 +7) = O(𝑞 |C| +𝑞𝐵) field elements. We next explain how

to adjust Π
𝑝,𝑞

Single such that the number of transmitted field

elements is only O(|C| + 𝑞𝐵), suitable for small fields.

• VOLE correlations. The parties use 𝑛in + 3𝑛× + 𝑞(𝐵 + 1) =
O(|C| + 𝑞𝐵) subfield VOLE correlations.

• Rounds. The protocol runs in 5 rounds.

• Computation. Each party uses O(|C|) field operations.

Appendix A provides detailed explanation of this cost accounting.

Generating random challenges. Π𝑝,𝑞

Single Step 9 requires V send

a random challenge 𝒔 of size O(𝑞 |C|) field elements. There are

several methods to compress 𝒔 such that it does not asymptotically

dominate; these are standard, see e.g. discussion in [40]. These

methods trade off in soundness, communication, and computation:

Powers of 𝜒 . V can send 1 random field element 𝜒 ∈ F𝑝𝑞
and define 𝒔 as (1, 𝜒, 𝜒2, . . . , 𝜒2𝑛× ). This variant uses O(|C| + 𝑞𝐵)
communication and O(|C|) computation. While this saves commu-

nication, it increases soundness error to
2𝐵𝑛×+𝐵+𝑛×+4

𝑝𝑞 , because it

increases the chance (see Lemma 5.4) that cheating P can randomly

achieve an IT-MAC encoding of 0 on some branch.

Random Oracle. V can send a 𝜆-bit seed, and the parties can

use a random oracle (RO) to generate 𝒔. This variant has O(|C|+𝑞𝐵)
communication, but the parties use computation to expand the RO.

The soundness error (with extra random oracle assumption) is now
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𝑡
2
𝜆 + 𝑛×+2𝐵+4

𝑝𝑞 , where 𝑡 denotes an upper bound of the number of

RO queries made by the adversary. We implement this variant.

6 Batchman: BATCHED DISJUNCTIONS
We refer the reader to Section 3.2 for the intuition of our ZK protocol

for batched disjunctive circuit satisfiability. Figure 6 formalizes our

protocol; its main security property is as follows:

Theorem 6.1 (Batched Disjunctions Security). Π
𝑝,𝑞

Batch (Fig-

ure 6) UC-realizes F 𝑅,𝐵
ZK (Figure 1) in the F 𝑝,𝑞

sVOLE-hybrid model with

soundness error 𝑅𝑛×+𝑅+3𝐵+6
𝑝𝑞 and information-theoretic security.

We provide a proof of Theorem 6.1 in the full version. In short,

the proof is very similar to that of Theorem 5.5, except that we

must additionally account for (1) the soundness of QS in Step 13

and (2) an additional bad event made possible by the check on P’s

committed topology vectors in Step 15.

Protocol cost. In total, Π
𝑝,𝑞

Batchconsumes the following resources:

• Communication. The parties transmit (𝑅𝑞 +𝑅)𝑛in + (3𝑅𝑞 +
3𝑅)𝑛× + 𝑞𝑅(𝐵 + 1) + 2𝑞 = O(𝑞𝑅𝐵 + 𝑞𝑅 |C|) field elements.

• VOLE correlations. The parties use (𝑅𝑞 + 𝑅)𝑛in + (3𝑅𝑞 +
3𝑅)𝑛× + 𝑞𝑅(𝐵 + 1) + 2𝑞 = O(𝑞𝑅𝐵 + 𝑞𝑅 |C|) subfield VOLE

correlations.

• Rounds. The protocol runs in 7 rounds.

• Computation. Each party computes O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|).
field operations.

Appendix A provides detailed explanation of this cost accounting.

Field size. Unlike our single disjunction protocol, our batched

protocol improves on prior work w.r.t. communication only for

large fields. This is because in Step 12, P commits to 𝑅 compressed

topology vectors, and these are defined over the extension field. If
one wishes to work with a small field (e.g., Boolean), repeating our

single disjunction protocol is more effective w.r.t. communication.

Generating random challenges. As in our single disjunction pro-

tocol, we can reduce communication needed for V’s random chal-

lenge vectors 𝒔 and 𝒕 by applying standard methods. In particular,

these challenges can be generated using a two-row Vandermonde

matrix of two random field elements, or using a random oracle.We
implement the RO variant.

Constraining batch witnesses. Batched disjunctions allow P to

prove the same disjunction with respect to 𝑅 witnesses. This is only

interesting if we impose additional constraints on P’s witnesses;

otherwise, P with only one witness can trivially re-use her witness

𝑅 times to satisfy the full statement. We present how to incorporate

two typical types of additional constraints:

• Per-repetition public parameters.One potential constraint
is to associate with each repetition some public parameters.

These public parameters are partial inputs to the branch cir-

cuit known to both P andV , and P’s witness must satisfy

the circuit, even in the context of these extra inputs. Incorpo-

rating public parameters in our protocol is straightforward:

P can simply open portions of the committed extended wit-

ness to prove to V that she indeed used the correct param-

eters. An even simpler (and less expensive) method would

require P andV to generate IT-MACs of these public inputs

directly. Note, because we must hide which branch is taken

in each repetition, the parameters must be shared across

branches.

• Connecting repetitions. A more powerful constraint re-

quires P to prove some consistency between the repetition

witnesses. For instance, some wires of the first repetition

should be used as particular input wires to the second repeti-

tion. We cannot ask P to open two different commitments to

demonstrate equality, because these values are private. How-

ever, we can require P to provide extra proof demonstrating

that the committed values are indeed the same. Such proves

can be efficiently achieved by the IT-MAC linear homomor-

phism: the parties simply subtract two supposedly-equal

values, and then P proves that the result is a IT-MAC of

zero. Thus, P can finish the extra proof by sending one field

element per constraint. By leveraging random oracle in a

standard way, many such zero checks can be compressed

into one element, yielding overall O(1) overhead. See [3] for
details of this RO trick.

7 IMPLEMENTATION AND BENCHMARKING
We implemented our ZK protocols for both Boolean circuits (field

F2) and for circuits of the Mersenne prime field F
2
61−1.

Our implementation extends the publicly available implementa-

tion ofQuickSilver [40] (their code is part of the EMP Toolkit [36]).

We use their VOLE and LPZK implementations.

Our implementations achieve computational security parameter

𝜅 = 128 (for VOLE) and statistical security parameter 𝜆 ≥ 100 for

Boolean and 𝜆 ≥ 40 for arithmetic circuits, matching QuickSilver.
Unless otherwise specified, our experiments were run on two

Amazon EC2 m5.2xlarge machines
9
(respectively implementing P

and V). Our implementations run single threaded.

Benchmark. Unless otherwise specified, our experiments use a

benchmark where each of the 𝐵 branches features a matrix multi-

plication (implementing the naïve algorithm) where P wishes to

prove that she knows two square ℓ × ℓ matrices whose product is

equal to a public ℓ × ℓ matrix. Each such circuit has O(ℓ3) gates.
We acknowledge that this benchmark is contrived; its purpose is to

evaluate performance only.

7.1 Robin: Single Disjunction Protocol
7.1.1 Comparison withMac′n′Cheese [3]. We compareRobinwith
the prior state-of-the-art VOLE-based ZK protocol supporting dis-

junctions: Mac′n′Cheese [3]. The Mac′n′Cheese implementation

is not publicly available, so we use the numbers available in their

paper.

[3] reported execution time when handling 𝐵 branches, each con-

sisting of ≈ 1 billion AND gates. Each branch computes 45000 iter-

ations of the SHA-2 circuit.
10

For these large Boolean branches, [3]

uses an elegant trick based on [8] to reduce the communication cost

of each AND gate to only 1 bit (rather than paying two extension

9
Intel Xeon Platinum 8175 CPU@ 3.10GHz, 8 vCPUs, 32GiBMemory, 10Gbps Network

10
More precisely, they also consider a branch that computes 150000 iterations of AES,

but this branch is smaller than the SHA-2 circuit.
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Protocol Π𝑝,𝑞

Batch

Inputs. P andV agree on 𝐵 circuits C1, . . . , C𝐵 over any field F𝑝 , where each circuit has 𝑛in inputs and 𝑛× multiplication gates. P holds

𝑅 witnesses𝒘 (1) , . . . ,𝒘 (𝑅)
and 𝑅 integers 𝑎 (1) , . . . , 𝑎 (𝑅) ∈ [𝐵] such that for all 𝑗 ∈ [𝑅], C𝑎 ( 𝑗 ) (𝒘 ( 𝑗 ) ) = 0 and |𝒘 (𝒋) | = 𝑛in.

Generate extended witnesses for C𝑎 (1) , . . . , C𝑎 (𝑅) .
0. For each 𝑗 ∈ [𝑅], P evaluates C𝑎 ( 𝑗 ) (𝒘 ( 𝑗 ) ) in cleartext to generate vectors ℓ ( 𝑗 ) , 𝒓 ( 𝑗 ) , 𝒐 ( 𝑗 ) ∈ F𝑛×

𝑝 , where ℓ ( 𝑗 ) (resp. 𝒓 ( 𝑗 ) , 𝒐 ( 𝑗 ) ) denotes
the values on the left (resp. right, output) wires of multiplication gates (listed in topological order).

Initialize/Preprocessing.
1. P and V send (init) to F 𝑝,𝑞

sVOLE, which returns a uniform Δ ∈
$
F𝑝𝑞 to V .

2. P and V send (extend, 𝑅(𝑛in + 3𝑛×)) to F 𝑝,𝑞

sVOLE, which returns IT-MACs {[𝜇 ( 𝑗 )
𝑘

]}𝑘∈[𝑛in ] , {[𝜔
( 𝑗 )
𝑘

]}𝑘∈[𝑛× ] , {[𝜉
( 𝑗 )
𝑘

]}𝑘∈[𝑛× ] and

{[𝜌 ( 𝑗 )
𝑘

]}𝑘∈[𝑛× ] for each 𝑗 ∈ [𝑅].
3. P and V send (extend, 𝑞𝑅(𝑛in + 3𝑛× + 1)) to F 𝑝,𝑞

sVOLE, which returns 𝑞𝑅(𝑛in + 3𝑛× + 1) IT-MACs of random F𝑝 values. P and V
combine these IT-MACs into 𝑅(𝑛in + 3𝑛× + 1) IT-MACs of random F𝑝𝑞 values, denoted {[𝜂 ( 𝑗 )

𝑘
]}𝑘∈[𝑛in+3𝑛×+1] for each 𝑗 ∈ [𝑅].

4. P and V send (extend, 𝑞𝑅(𝐵 − 1)) to F 𝑝,𝑞

sVOLE, which returns 𝑞𝑅(𝐵 − 1) IT-MACs of random F𝑝 values. P and V combine these

IT-MACs into 𝑅(𝐵 − 1) IT-MACs of random F𝑝𝑞 values, denoted {[𝜏 ( 𝑗 )
𝑖

]}𝑖∈[𝐵−1] for each 𝑗 ∈ [𝑅].

Commit to extended witnesses on C𝑎 (1) , . . . , C𝑎 (𝑅) . For each 𝑗 ∈ [𝑅], proceed as follows:

5. For 𝑘 ∈ [𝑛in], P sends 𝛿𝑘 := 𝑤
( 𝑗 )
𝑘

− 𝜇
( 𝑗 )
𝑘

∈ F𝑝 to V , and then both compute [𝑤 ( 𝑗 )
𝑘

] := [𝜇 ( 𝑗 )
𝑘

] + 𝛿𝑘 .

6. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := ℓ
( 𝑗 )
𝑘

− 𝜔
( 𝑗 )
𝑘

∈ F𝑝 to V , and then both compute [ℓ ( 𝑗 )
𝑘

] := [𝜔 ( 𝑗 )
𝑘

] + 𝛿𝑘 .

7. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := 𝑟
( 𝑗 )
𝑘

− 𝜉
( 𝑗 )
𝑘

∈ F𝑝 to V , and then both compute [𝑟 ( 𝑗 )
𝑘

] := [𝜉 ( 𝑗 )
𝑘

] + 𝛿𝑘 .

8. For 𝑘 ∈ [𝑛×], P sends 𝛿𝑘 := 𝑜
( 𝑗 )
𝑘

− 𝜌
( 𝑗 )
𝑘

∈ F𝑝 to V , and then both compute [𝑜 ( 𝑗 )
𝑘

] := [𝜌 ( 𝑗 )
𝑘

] + 𝛿𝑘 .

Check multiplication gates. P convinces V that the 𝑅𝑛× committed multiplication gates are well-formed.

9. P and V run a VOLE-based zero-knowledge proof for (batched) multiplications LPZK({[ℓ ( 𝑗 )
𝑘

], [𝑟 ( 𝑗 )
𝑘

], [𝑜 ( 𝑗 )
𝑘

]}𝑘∈[𝑛× ], 𝑗∈[𝑅 ] ). If ZKP
fails, V outputs (false) and halts.

Generate compressed topology vectors. Let 𝑴1, . . . ,𝑴𝐵 ∈ F(2𝑛×+1)×(𝑛in+3𝑛×+1)
𝑝 denote the topology matrices of C1, . . . , C𝐵 .

10. V samples a random vector 𝒔 ∈
$
F2𝑛×+1
𝑝𝑞

and sends it to P.

11. For each 𝑖 ∈ [𝐵], P and V compute 𝒄𝒗𝑖 := (𝒔𝑇 ×𝑴𝑖 )𝑇 ∈ F𝑛in+3𝑛×+1
𝑝𝑞

.

Commit compressed topology vectors. For each 𝑗 ∈ [𝑅]:

12. For each 𝑘 ∈ [𝑛in + 3𝑛× + 1], P sends 𝛿𝑘 := (𝑐𝑣𝑎 ( 𝑗 ) )𝑘 − 𝜂
( 𝑗 )
𝑘

∈ F𝑝𝑞 to V , and then both compute [�𝑐𝑣 ( 𝑗 )
𝑘

] := [𝜂 ( 𝑗 )
𝑘

] + 𝛿𝑘 .

Check satisfiability of committed compressed topology vectors. For each 𝑗 ∈ [𝑅], Let 𝒘 ( 𝑗 )
ext ≜ glue(𝒘 ( 𝑗 ) , ℓ ( 𝑗 ) , 𝒓 ( 𝑗 ) , 𝒐 ( 𝑗 ) , 1) ∈

F𝑛in+3𝑛×+1
𝑝 and associated IT-MAC [𝒘 ( 𝑗 )

ext ] ≜ glue( [𝒘 ( 𝑗 ) ], [ℓ ( 𝑗 ) ], [𝒓 ( 𝑗 ) ], [𝒐 ( 𝑗 ) ], [1]). P convinces V that (�𝒄𝒗 ( 𝑗 ) )𝑇 ×𝒘 ( 𝑗 )
ext = 0 for each

𝑗 ∈ [𝑅]. I.e., the committed circuits are satisfied.

13. P and V run a VOLE-based zero-knowledge proof for (batched) inner-products QS({[�𝒄𝒗 ( 𝑗 ) ], [𝒘 ( 𝑗 )
ext ]}) 𝑗∈[𝑅 ] . If ZKP fails, V outputs

(false) and halts.

Validate committed compressed topology vectors. P convinces V that
�𝒄𝒗 ( 𝑗 ) ∈ {𝒄𝒗1, . . . , 𝒄𝒗𝐵} for each 𝑗 ∈ [𝑅]. I.e., the committed

circuits are well-formed.

14. V samples a random vector 𝒕 ∈
$
F𝑛in+3𝑛×+1
𝑝𝑞

and sends it to P. For each 𝑖 ∈ [𝐵], P and V compute ct𝑖 := 𝒄𝒗𝑇
𝑖
× 𝒕 ∈ F𝑝𝑞 . For each

𝑗 ∈ [𝑅], P and V compute IT-MAC [�ct ( 𝑗 ) ] := [�𝒄𝒗 ( 𝑗 ) ]𝑇 × 𝒕 .

15. For each 𝑗 ∈ [𝑅], P andV run a VOLE-based zero-knowledge proof to show Π𝑖∈[𝐵 ] {�ct ( 𝑗 ) − ct𝑖 } = 0 by using IT-MAC [�ct ( 𝑗 ) ] and
public {ct𝑖 }𝑖∈[𝐵 ] . Note that this is a 𝐵-product circuit defined over F𝑝𝑞 so can be performed with {[𝜏 ( 𝑗 )

𝑖
]}𝑖∈[𝐵−1] and LPZK. If all 𝑅

ZKPs succeed, V outputs (true); otherwise, V outputs (false).

Figure 6: Batchman: ZKP protocol for batched disjunctive circuit satisfiability over any field F𝑝 in the F 𝑝,𝑞

sVOLE-hybrid model.
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# Branch

Mac′n′Cheese [3] Robin
50 threads, 𝜆 ≥ 40, without VOLE 1 thread, 𝜆 ≥ 100, with VOLE

Rep. SHA2 Rep. SHA2 Mat. Mul.

2 307 468 466

4 568 520 517

8 1254 615 617

16 - 812 816

32 - 1209 1213

64 - 2004 2005

Figure 7: Comparison with Mac′n′Cheese [3]. We tabulate end-

to-end runtime in seconds. Our reported numbers for [3] are directly

from their paper. Rep. SHA2 denotes a circuit computing 45000

iterations of SHA-2. Mat. Mul denotes a circuit that multiplies two

1000 × 1000 Boolean matrices. Both circuits have ≈ 1 billion AND

gates. [3] uses 124MBof communicationwhile ours uses 628MB. As

𝐵 increases, communication remains almost constant. The network

has 30 Mbps bandwidth and 100 ms latency.
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Figure 8: The speedup of our single disjunction protocol
Robin overQuickSilver [40]. We report end-to-end proof runtime.

Circuits are over F
2
61−1; each branch has 8M mult. gates.

fields communication per AND gate); this trick increases round

complexity by factor O(log |C|).
We ran Robin on the same branches and the same network con-

figuration. Due to size, we ran our experiment on two Amazon EC2

m5.8xlarge machines
11
. Figure 7 tabulates the results.

[3]’s implementation does not include a VOLE backend, and it

only achieves 40 bit statistical security. Our implementation in-

cludes a real VOLE backend with 100 bit statistical security. Be-

cause of these differences, it is difficult to present a completely fair

comparison. Despite generating real VOLE correlations, Robin still

improves performance. Figure 7 shows that we pay ≈ 25 seconds

per extra branch, whereas [3] uses ≈ 150 seconds.

Figure 7 also tabulates the results for branches with matrix mul-

tiplication. This additional column demonstrates that our perfor-

mance does not depend on branch structure.

7.1.2 Comparison withQuickSilver [40]. [40] is a state-of-the-art
VOLE-based ZK protocol for Boolean/arithmetic circuits. It uses

O(𝐵 |C|) computation and communication with low constants, and

it serves as the baseline for our approach. We compare our single

11
Intel Xeon Platinum 8175 CPU @ 3.10GHz, 32 vCPUs, 128GiB Memory, 10Gbps

Network

disjunction protocol Robinwith [40] on circuits defined over F
2
61−1.

Asymptotically, Robin improves communication from O(𝐵 |C|) to
O(𝐵 + |C|).

We compare using branches that each have 8 million multipli-

cation gates, and we vary 𝐵 between 5 and 100. Figure 8 plots our

speedup. [40] requires 73.7MB communication per branch; Robin
requires ≈ 200 MB communication for all branches.

When network bandwidth is low (e.g., 100Mbps), communica-

tion remains the bottleneck, and for 𝐵 > 40 Robin achieves over

10× improvement. Even when network bandwidth is high (e.g.,

500 Mbps), Robin improves performance by ≈ 4×, because Robin
computes fewer VOLE correlations.

7.1.3 More Evaluation. The full version includes further evalution.

7.2 Batchman: Batched Disjunctions Protocol
Our batched protocol Batchman is best for circuits over large fields.

Therefore, our evaluation considers circuits over F
2
61−1.

7.2.1 Comparison with AntMan [39]. AntMan [39] presents a pro-

tocol optimized for circuits with batched SIMD circuits, butAntMan
does not consider batched disjunctions. To implement batched dis-

junctions inAntMan, one can consider a size𝐵 |C| instructionwhich
is executed𝑅 times. Recall thatAntMan incursO(𝑅𝐵 |C| log𝑅) com-

putation and O(𝐵 |C| + 𝑅) communication. Our batched protocol

improves in terms of computation, incurring O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|)
computation and O(𝑅𝐵 + 𝑅 |C|) communication.

The AntMan implementation is not publicly available, so we use

numbers from the paper. To compare, we ran experiments on the

same setup: two Amazon EC2 m5.8xlarge
11

machines. [39] reported

the execution of a batch of 1024 circuits where each circuit has 2
21

multiplication gates. Accordingly, we tested Batchman to ensure

all branches in each repetition have 2
21

total multiplication gates.

([39] circuits are defined over F
2
59−228+1.) Figure 9 tabulates the

results; higher numbers are better.

Batchman is sensitive to network bandwidth due to its O(𝑅 |C|)
asymptotic scaling, but it is computation efficient. As 𝐵 increases,

our improvement also increases. In the extreme case where there

are 512 branches and with 1 Gbps bandwidth, Batchman is 221×
faster than (single thread) AntMan [39].

Of course,AntMan solves amore general problem thanBatchman.
However, for our special-case problem of batched disjunctions, we

demonstrate significant improvement.

7.2.2 Comparison withQuickSilver [40] and Robin. We compare

Batchman to the baselineQuickSilver [40] protocol and to repeated
runs of Robin. We experiment with benchmarks satisfying 𝑅 = 𝐵,

and we consider branches with 1.25 × 10
5
multiplication gates.

Figure 10 plots speedup as compared to QuickSilver.
Compared to QuickSilver, Robin only improves communication,

limiting its speedup. On the other hand, Batchman improves both

communication and computation, and our speedup is almost inde-
pendent of network bandwidth. Our experiment shows thatBatchman
enjoys an extra 2 − 9× improvement as compared to Robin.

7.2.3 Fine-grained Analysis. Figure 11 breaks down the runtime

cost of Batchman. Most of the execution time is spent committing
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Protocol

Network Bandwidth

50 Mbps 100Mbps 500Mbps 1 Gbps

AntMan-1 2.00 2.05 2.08 2.09

AntMan-2 3.78 3.91 3.99 4.26

AntMan-4 6.88 6.69 6.99 7.01

Batchman-(23, 218) 0.96 1.83 6.60 9.60

Batchman-(26, 215) 7.55 14.43 51.28 75.40

Batchman-(29, 212) 56.20 104.91 335.02 461.82

Figure 9: Comparisonwith AntMan [39].We tabulate millions of

multiplication gates executed per second (mgps). AntMan-𝑡 refers
toAntManwith 𝑡 threads (numbers from [39]).Batchman uses only
1 thread.Batchman-(𝐵,𝐶) refers to our batched protocolBatchman
with 𝐵 branches where each branch has𝐶 multiplication gates. Both

protocols execute batches where each repetition has 2
21

multiplica-

tion gates.
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Figure 10: The speedup of Batchman and Robin over
QuickSilver [40]. We plot factor improvement in terms of end-

to-end runtime. Circuits are defined over F
2
61−1 and each branch

has 1.25 × 10
5
multiplication gates.

Bandwidth 𝐵 𝑅
multi. check topo. check topo. valid

MULLEFT commit topo. inner-prod.

100 Mbps

50 50 14.6 0.1 13.5 0.2 0.2

100 100 28.1 0.2 26.9 0.3 0.4

400 400 109.7 0.8 107.6 0.9 2.3

500 Mbps

50 50 4.8 0.1 3.6 0.1 0.2

100 100 8.4 0.2 7.3 0.2 0.4

400 400 30.4 0.8 28.7 0.7 2.2

1 Gbps

50 50 3.4 0.1 2.4 0.1 0.2

100 100 6.2 0.2 4.9 0.2 0.4

400 400 20.3 0.8 18.6 0.7 2.2

Figure 11: Fine-grained analysis of our batched disjunctions
protocol Batchman. Measurements are in seconds.

Protocol

Network Bandwidth

100Mbps 500 Mbps 1 Gbps

QuickSilver [40] 181 Hz 625 Hz 902 Hz

Batchman 1525 Hz 5375 Hz 7891 Hz

Figure 12: CPU speed in a proof-of-concept setting. We con-

sider a CPU with 𝐵 = 50 instructions; each instruction is an arith-

metic circuit with 125 multiplication gates.

to the witness and to the compressed topology vectors. Figure 11

confirms MULLEFT’s high concrete efficiency.

7.2.4 CPU Emulation Benchmark. Our final benchmark shows that

Batchman is suitable to the use-case of CPU-emulation-based ZK.

We consider a proof-of-concept CPU (without RAM) with 𝐵 = 50

instructions where each instruction has 125 multiplication gates.

We vary𝑅 between 50K and 500K (guided by ZEE [29]) and calculate

average CPU speed. While ZEE achieves a comparable Hz rate, it

has a smaller branching factor 𝐵 = 20, and, crucially, our CPU step

is vastly more powerful in that it executes 125 multiplications per

instruction, vs a single one in ZEE.

As shown in Figure 12, Batchman achieves 9× improvement as

compared to QuickSilver [40]. We note that this is purely a proof

of concept. To implement true CPU emulation based on Batchman,
one needs to carefully design the instruction set, and ZK RAM

(e.g, [17, 21]) needs to be incorporated.
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A DETAILED COST ACCOUNTING
A.1 Single Disjunction Protocol Costs
Communication.We analyze the communication complexity of

Π
𝑝,𝑞

Single (Figure 5) in the F 𝑝,𝑞

sVOLE-hybrid model. In our analysis, we

count the number of transmitted F𝑝 elements:

• In Steps 4, 5, 6, 7, P commits to her extended witness by

transmitting (𝑛in + 3𝑛×) elements.

• In Step 8, the call to LPZK requires V to transmit a random

challenge. This challenge contains 𝑞 elements, and P replies

to by transmitting 2𝑞 elements.

• In Step 9, V transmits the compressing vector 𝒔, which con-

sists of 𝑞(2𝑛× + 1) elements.

• In Step 11, P andV run a small VOLE-based proof to handle

the small product circuit. This requires the following commu-

nication:𝑞(𝐵−1) elements fromP to commit to intermediate

wire values, 𝑞 elements from P to open the circuit output,

𝑞 elements from V for a random LPZK challenge, and 2𝑞

elements from P for the LPZK response.

Tallying these costs, the total communication is 𝑛in + (2𝑞 + 3)𝑛× +
𝑞(𝐵 + 7) = O(𝑞 |C| + 𝑞𝐵) elements. We will soon show a simple

variant that achieves O(|C| + 𝑞𝐵) communication by sacrificing

some soundness. This variant is far more friendly to circuits over

small fields (e.g., Boolean).

Number of required subfield VOLE correlations. Π𝑝,𝑞

Single re-

quires a total of 𝑛in + 3𝑛× + 𝑞(𝐵 + 1) = O(|C| + 𝑞𝐵) subfield VOLE

correlations, almost all of which are used in the initialization phase;

2𝑞 subfield VOLEs are required for the two LPZK instances.

Computation. The computation for each party is dominated by

Step 10, where they each compute 𝒔𝑇 ×𝑴𝑖 and corresponding IT-

MACs for each 𝑖 ∈ [𝐵]. By leveragingMULLEFT (see Section 4), the

computation cost is O(𝐵 |C|) field operations. Other Steps require

either O(𝐵) or O(|C|) operations.
5-round online phase. The VOLE correlations needed for LPZKs
at Step 8, 11 can be parallelized with initialization. Viewing initial-

ization as preprocessing, our protocol can be viewed as a 5-round

online phase:

(1) P commits to her extended witness.

(2) V sends the random challenge for the first LPZK and 𝒔.
(3) P sends the proof of the first LPZK and commits the inter-

mediate values of the final product circuit.

(4) V sends the random challenge for the second LPZK.
(5) P sends the proof of the second LPZK and opens the final

output (to prove it is 0).

A.2 Batched Disjunction Protocol Costs
We tally the costs of Π

𝑝,𝑞

Batch:

Communication.We analyze the communication complexity of

Π
𝑝,𝑞

Batch in the F
𝑝,𝑞

sVOLE-hybridmodel. Our analysis counts the number

of transmitted F𝑝 elements:

• In Steps 5, 6, 7, 8, P commits to her extended witness by

transmitting 𝑅(𝑛in + 3𝑛×) elements.

• In Step 9, the call to LPZK requires V to transmit a random

challenge. This challenge contains 𝑞 elements, and P replies

by transmitting 2𝑞 elements.

• In Step 10, V transmits the compressing vector 𝒔, which
consists of 𝑞(2𝑛× + 1) elements.

• In Step 12, P commits to her compressed topology vectors

by transmitting 𝑅𝑞(𝑛in + 3𝑛× + 1) elements.

• In Step 13, the call to QS requiresV to transmit a random

challenge. This challenge contains 𝑞 elements, and P replies

by transmitting 2𝑞 elements.

• In Step 14, V transmits the second compressing vector 𝒕 ,
which consists of 𝑞(𝑛in + 3𝑛× + 1) elements.

• In Step 15, for each of the 𝑅 repetitions, P andV run a small

VOLE-based proof to handle each small product circuit. This

requires the following communication: 𝑅𝑞(𝐵 − 1) elements

from P to commit to intermediate wire values, 𝑅𝑞 elements

to open each circuit output, 𝑅𝑞 elements fromV for random

LPZK challenges, and 2𝑅𝑞 elements from P for LPZK replies.

Tallying these costs, the total communication is (𝑅𝑞 + 𝑅 + 𝑞)𝑛in +
(3𝑅𝑞 + 3𝑅 + 5𝑞)𝑛× + 𝑅𝑞(𝐵 + 4) + 8𝑞 = O(𝑞𝑅𝐵 + 𝑞𝑅 |C|) elements.

Number of subfieldVOLE correlations.Π𝑝,𝑞

Batch requires a total of

(𝑅𝑞+𝑅)𝑛in+(3𝑅𝑞+3𝑅)𝑛×+𝑞𝑅(𝐵+1)+2𝑞 = O(𝑞𝑅𝐵+𝑞𝑅 |C|) subfield
VOLE correlations. Almost all of these are use to initialize; (𝑅 + 1)𝑞
correlations are needed for the (𝑅 + 1) calls to LPZK instances, and

𝑞 correlations are used for the call to QS.
7-round online phase. Generating VOLE correlations needed for

LPZKs andQS at Step 9, 13, 15 can be parallelized with initialization.
When initialization is viewed as preprocessing, our protocol has a

7 round online phase:

(1) P commits to her 𝑅 extended witnesses.

(2) V sends 𝒔 and the challenge for the first call to LPZK.
(3) P replies to the first LPZK challenge and commits to her 𝑅

compressed topology vectors.

(4) V sends 𝒓 and the challenge for the call to QS.
(5) P replies to the QS challenge and commits to intermediate

values of the 𝑅 product circuits.

(6) V sends a random challenge for each of the 𝑅 calls to LPZK.
(7) P replies to each of the 𝑅 LPZK challenges and opens the 𝑅

final outputs (to prove each product circuit outputs 0).

Computation.We analyze the computation cost of Π
𝑝,𝑞

Batch in the

F 𝑝,𝑞

sVOLE-hybrid model. Our analysis counts field operations:

• In Step 0, P uses O(𝑅 |C|) F𝑝 operations to generate her 𝑅

extended witnesses.

• In Steps 3, 4, P and V use O(𝑅 |C| + 𝑅𝐵) operations to com-

bine subfield VOLE correlations into VOLE correlations.

• In Steps 5, 6, 7, 8, P and V use O(𝑅 |C|) operations to gener-

ate commitments to the 𝑅 extended witnesses.

• In Step 9, P andV use O(𝑅 |C|) operations to execute LPZK.
• In Step 11, P andV use O(𝐵 |C|) operations to compute 𝐵

compressed topology vectors by using MULLEFT.
• In Step 12, P and V use O(𝑅 |C|) operations to generate

commitments to 𝑅 compressed topology vectors.

• In Step 13, P and V use O(𝑅 |C|) operations to execute QS.
• In Step 14, P andV use O(𝐵 |C|) operations to compute 𝐵

compressed topology tokens.

• In Step 15, P andV use O(𝑅𝐵) to execute 𝑅 calls to LPZK,
each on a circuit of size 𝐵.

The overall computation for each party is O(𝑅𝐵 + 𝑅 |C| + 𝐵 |C|).
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