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ABSTRACT

Vector Oblivious Linear Evaluation (VOLE) supports fast and scal-
able interactive Zero-Knowledge (ZK) proofs. Despite recent im-
provements to VOLE-based ZK, compiling proof statements to a
control-flow oblivious form (e.g., a circuit) continues to lead to
expensive proofs. One useful setting where this inefficiency stands
out is when the statement is a disjunction of clauses £1 VvV ---V Lp.
Typically, ZK requires paying the price to handle all B branches.
Prior works have shown how to avoid this price in communication,
but not in computation.

Our main result, Batchman, is asymptotically and concretely
efficient VOLE-based ZK for batched disjunctions, i.e. statements
containing R repetitions of the same disjunction. This is crucial for,
e.g., emulating CPU steps in ZK. Our prover and verifier complexity
is only O(RB+ R|C| + B|C|), where |C| is the maximum circuit size
of the B branches. Prior works’ computation scales in RB|C]|.

For non-batched disjunctions, we also construct a VOLE-based
ZK protocol, Robin, which is (only) communication efficient. For
small fields and for statistical security parameter A, this proto-
col’s communication improves over the previous state of the art
(Mac’n’Cheese, Baum et al., CRYPTO’21) by up to factor A.

Our implementation outperforms prior state of the art. E.g., we
achieve up to 6x improvement over Mac’n’Cheese (Boolean, single
disjunction), and for arithmetic batched disjunctions our experi-
ments show we improve over QuickSilver (Yang et al., CCS’21) by
up to 70x and over AntMan (Weng et al., CCS’22) by up to 36X.
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1 INTRODUCTION

Zero Knowledge (ZK) proofs [25] allow a prover # to demonstrate
to a verifier V the validity of a given statement while revealing
nothing beyond the validity of the statement. The past decade has
seen an explosion in the design, implementation and deployment
of concretely efficient zero-knowledge proofs systems.

Large overheads of # and ‘V remain a bottleneck in scaling zero-
knowledge to very large statements. One major overhead comes
from complex control flow, which, explicitly or implicitly, includes
repeated evaluation of disjunctions. Examples include complex
statements like ‘this program has a bug’ [27] or even (the more
complex) ‘this program does not have a bug’ [32].

We focus on minimizing total end-to-end proof time, which in-
cludes communication and total computation by both  and V.

VOLE-based ZK. Under this total end-to-end proof time metric,
designated-verifier interactive ZKP is particularly appealing for
its concrete efficiency. A recent line of work constructs such ZKP
systems from a cryptographic primitive called vector oblivious linear
evaluation (VOLE) [1-3, 18, 19, 37-40]. State-of-the-art VOLE-base
ZK is efficient. For instance, [40] handles >7 million arithmetic
gates per second.

While VOLE-based ZK is fast, its costs (communication,  and V
computation) still scale linearly in the size of the proof statement.!
It is interesting to exploit statement structure (e.g., disjunctions) to
achieve further improvement with the ultimate goal of costs that
grow sublinearly (with small constants) in the proof statement.

ZK proofs of disjunctions. Seeking improved performance and
motivated by the structure of real-world programs, prior works
[3, 23, 24, 27, 31] specifically optimized for proofs of disjunctive
statements of the form C;(w) =0V --- VvV Cg(w) = 0 for B different
subcircuits referred to as branches. Their underlying techniques

!The recent proof system of [39] achieved sublinear communication cost, but at the
cost of asymptotically increased computation; see Section 1.2.
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are often referred as stacking, following the notation introduced
by [27]. For disjunctions, because ¥ only needs to demonstrate the
truth of one branch, it is possible to design custom systems that
achieve up to factor B improvement.

Our first contribution, Robin, (see Section 1.1) is a protocol
that improves cost of disjunctive statements in VOLE-based ZK.

ZK proofs of batched disjunctions. We also consider proof state-
ments that consist of a batch of the same disjunctive statement.?
Le., suppose P holds R distinct witnesses w® . w® and she
wishes to prove Cl(w(j)) =0V---V CB(w(j)) =0 for eachw).

The crucial application of such statements is the emulation
of a CPU inside ZK. Indeed, each step of a basic CPU executes one
out of a possibly large set of instruction types, and this is repeated
many times until the program halts. ZK systems that emulate a CPU
are interesting, because they enable end users to express complex
proof statements as programs written in commodity programming
languages, see e.g. [29]. More generally, a program can be compiled
into a single large forloop over switch statement executing one of
many (hundreds or thousands) of straight-line program segments.
This is called loop coalescing [22]; loop coalescing is known to be
useful for fast RAM-based ZKP [35].

Concretely efficient ZK systems (sublinear in computation and
communication) for batched disjunctions have not been considered.

Our second — and most exciting — contribution, Batchman,
is an interactive VOLE-based ZKP system that efficiently handles
batched disjunctions. The surprising property of this proof system
is that, as compared to naive handling, it achieves not only factor B
communication improvement, but also up to factor B computation
improvement for both  and V. Thus, our protocol is sublinear
in the proof statement. While our total end-to-end runtime scales
with the number of branches B and repetitions R, it crucially does
not scale in the product RB. This enables CPU-emulation-based ZK
operating over large and expressive instruction sets.

Batching zero-knowledge proofs has proven an important step to-
wards in determining the feasibility of full-fledged zero-knowledge.
Understanding the complexity of disjunctive statements has also
been of theoretic interest and traces back to the work of Feige and
Shamir [20] and Cramer, Damgard and Schoenmakers [16] for the
design of witness indistinguishable proofs and efficient X-protocols
respectively.

Full version. Full version of this paper is available at [42].

1.1  Our Contribution
As mentioned above, we construct two VOLE-based ZK protocols:

¢ Single disjunctions. Robin (Refined Oblivious Branching
for INteractive zk) is a VOLE-based ZK for disjunctive state-
ments expressed as an arithmetic circuit over an arbitrary
field F. For a disjunction with B branches, each consisting of
amaximum of |C| (multiplication) gates,  and V each com-
pute O(B|C]) field operations and communicate O(B + |C|)
field elements. More precisely, ¥ and V communicate only
O(B[log%] +|C|) field elements.

2Previous constructions, including our first contribution, have linear in B computation,
and cannot simply be batched to achieve sublinear computation in BR|C]|.
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Protocol Prover Comm. Verifier
Comp. Comp.

[19, 40] O(RB|C]) O(RB|C|) O(RB|C])

[39] O(RB|C|logR) O(B|C|+R) O(RB|C|logR)

[3] O(RB|C]) O(Rlog B + R|C|) O(RB|C])

our, Robin O(RB|C]) O(RB+R|C|) O(RB|C])

our, Batchman | O(RB +R|C| + B|C]) O(RB+R|C]) O(RB +R|C| + B|C])

Table 1: Cost of recent VOLE-based ZK systems for batched
disjunctions of arithmetic circuits. B denotes number of
branches, |C| denotes branch size, and R denotes batch size.

e Batched disjunctions. Batchman extends Robin to batches
of R proofs of the same disjunction. Here,  and V each
compute O(RB+R|C|+B|C|) field operations and communi-
cate O(RB + R|C)|) field elements (assuming log |[F| = Q(A)
where A is the statistical security parameter).

In our batched protocol, except for a one-time additive B|C| cost,
P’s and V’s computation costs are independent of the number of
disjunctions. In comparison, “flattening” out the circuit would result
in computational complexity proportional to RB|C]|.

Our protocols are concretely performant. E.g., Robin scales in
branches up to 6x better than Mac’n’Cheese [3] when |C| = 10,
and demonstrates up to 16X improvement over QuickSilver [40]
when B = 100. Batchman demonstrates up to 36X improvement
over AntMan [39] when B = 64 and R = 1024, and up to 70x
improvement over QuickSilver [40] when B = R = 400. We provide
a summary of our comparison to prior work in Table 1; see detailed
comparison to prior work in Sections 1.2 and 7.

A bird’s-eye view of our protocols. We remark that achieving
computational cost sublinear in RB|C]| is possible when we wish
to evaluate the same disjunctive statement R > 1 times, if we are
allowed non-black-box access to some underlying cryptographic
primitive. Suppose ¥ and V in a pre-processing step compute the
hash of the description of each of the B branches under a collision-
resistant hash function. Then, for each instance of the disjunction
includes in her witness the circuit description of the active branch
and proves via a universal circuit that the circuit on some input
witness returns 0 and that the hash of the circuit description belongs
to the set of precomputed hashes. The complexity is O(B|C|) for
the first instance (to compute B hashes) and (j(B + |C]) thereafter.

Such an approach is impractical due to its use of universal circuits
and its non-black-box use of a hash function.

Seeking concretely efficient constructions, we restrict ourselves
to black-box use of underlying primitives only. Surprisingly, in
the same batched setting, we design an efficient construction that
builds on the high level concept of “checking circuit hashes”, but our
construction achieves asymptotic complexity O(RB + R|C| + B|C])
while making only black-box use of VOLE (and while using no other
cryptographic primitives). In short, our approach shows that the
“hash” of each branch can be determined by a random challenge
that is chosen by V after  has committed to her witness. To
compute and check these “hashes”, each party computes simple
linear combinations of field elements. See Section 3 for details.
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1.2 Related Work

VOLE-based interactive zero-knowledge protocols. Consider a fan-
in-2 circuit C with |C| multiplication/addition gates over some field.
[19] achieved 1 field element communication per multiplication
gate based on a technique called Line-Point Zero Knowledge (LPZK).
[40] further improved LPZK and implemented the technique. Our
work handles multiplication gates by directly applying the LPZK
technique, as well as [40]’s improvement for proving inner products.
Our implementation (see Section 7) builds on [40]’s open source
repo [36].

[18] improved LPZK communication to 0.5 field element per mul-
tiplication gate at the cost of increased computation and requiring
random oracle. Concrete performance of [18] is similar to [40]; we
build on [40] for simplicity.

[39] for the first time achieved a VOLE-based ZK system with sub-
linear communication and achieved communication cost O(|C|3/%).
While the approach remains quite efficient, its performance is not
strictly better than prior work, because it achieves its improved
communication at the cost of computation. The technique performs
polynomial interpolation, incurring factor O(log|C|) overhead,
and it also employs relatively expensive additively homomorphic
encryption. [39] consider batching, but not batched disjunctions;
we compare with them in Section 7.

ZK disjunctions. A line of works [3, 23, 24, 27] augments ZK
proofs with efficient handling for disjunctions. Consider B circuits
Cic[p] each with the same number of inputs/multiplications, and
suppose P holds a single witness for C,¢[p] (the active branch).
These works achieve communication that scales with |C| rather
than B|C|. Such works say that they “stack” the branches, following
terminology introduced by [27].

Most related to our work, [3] was the first (and the only) work
to stack in the VOLE-based ZK setting. [3] implements multiplica-
tion gates with a custom protocol, and it is incompatible with the
LPZK technique. Their multiplication procedure communicates 2
extra extension field elements per multiplication. Our protocols are
compatible with LPZK. Our protocols communicate extra 2 field
elements (not extension field elements) per multiplication, and our
work is the first to consider batched disjunctions.

Even at a high level, our approach seems quite different from
these prior approaches. In prior works,  proves satisfiability of
each branch (thus paying computation scaling with B), but even
honest  can “cheat” on each inactive branch. For example, [27]
allows P to learn cryptographic seeds used to garble the inactive
branch circuits. Our approach instead achieves branching by lever-
aging (1) simple properties of VOLE correlations and (2) a random
challenge from V to “compress” the description of each branch.

RAM-based ZK (RAM-ZK). Prior works have considered ZK state-
ments expressed as RAM programs, e.g. [4-7, 9, 13, 17, 21, 26, 28,
30, 33, 35, 43]. These works present the exciting possibility of struc-
turing ZK proof statements as programs written in commodity
languages.

The RAM model of computation is relevant to the batched dis-
junctions setting. Indeed, because of constant RAM access cost in
ZK [17, 21], for batch size R > B, RAM-ZK can be used to achieve
batched disjunctions. By simply structuring the proof statement
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. . R,B
Functionality %/

Upon receiving (prove,Cy,...,Cp,w1i,...,WR, a1, ..., ar) from
prover P and (verify,Cy,...,Cp) from verifier V:
o If for all i € [R] it holds that Cy; (w;) = 0, then output
(true) to V; else output (false) to V.

Figure 1: The batched disjunctive ZK functionality.

as a RAM program, loading the program (of size B|C|) into the
RAM memory, and running the RAM-ZK, the proof will naturally
terminate in time O(B|C| + R|C]).

RAM-based ZK is not competitive with our batched protocol for
two reasons. First, our approach demonstrates a theoretical advan-
tage. Suppose the batch is relatively small, i.e. R = o(B). In this case,
the RAM approach is less appealing, since it is necessary to load the
program into memory, immediately incurring O(B|C|) cost. At the
same time, our communication cost is independent of the quantity
O(B|C|), and so it works well in this setting. More importantly,
our approach elides the expensive machinery required for RAM
emulation and is concretely performant. Indeed, our motivating
application is the acceleration of such RAM-based proofs, so our
low constant costs are crucial.

2 PRELIMINARIES
2.1 Notation

o ] is the statistical security parameter (e.g., 40).

o x is the computational security parameter (e.g., 128).

e The prover is . We refer to P by she, her, hers...

o The verifier is V. We refer to V' by he, him, his...

e x £ y denotes that x is defined as v.

e We denote that x is uniformly drawn from a set S by x €5 S.

e We denote {1,...,n} by [n].

e We denote column vectors by bold lower-case letters (e.g.,
a), where a; (or a[i]) denotes the ith component of a (start-
ing from 1) and a[i : j] the subvector [a;,. .., aj]T. We use
glue(-) to stitch column vectors (e.g., glue(a, b) = [aT |pT]7).

e We denote matrices by bold upper-case letters (e.g., A), where
A(i) denotes the ith row vector of A (starting from 1) and
Ali] denotes the ith column vector of A (starting from 1).
A(i)[j] denotes jth value in ith row.

e We prove batches of disjunctions. We call each member of
the batch a repetition. B denotes the number of branches and
R denotes the number of repetitions.

e We use i to index branches (e.g., i € [B]), j to index repeti-
tions (e.g., j € [R]), and k to index gates (e.g., k € [|C]]).

e We denote a finite field of size p by F, where p > 2 is a
prime or a power of a prime. Extension fields are defined
and denoted in the standard way.

2.2 Security Model

We formalize our protocols under the universally composable (UC)
framework [14]. We use UC to formalize our protocols and to prove
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. . p.q
Functionality ¥/,

Consider a base field F, and an extension field Fpq. Functionality
interacts with $, V and the adversary A as follows:

Initialize. Upon receiving (init) from # and V, if V is honest,
sample A € Fpa, else receive A from A. Store A and send it to
V. Ignore subsequent (init).

Extend. Upon receiving (extend,n) from # and V, do the
following;:
e If V is honest, sample v € qu, else receive v € qu from A.

e If # is honest, sample u €5 F and compute w Ly-u-Ae
F;q, else receive u € Fg andw € qu from A and compute
vEw+u-A GIF‘;q,

e Send (u,w) to P and v to V.

Figure 2: The subfield VOLE correlation functionality

security in the presence of a malicious, static adversary. The func-
tionality 77ZRkB (C.f., Figure 1) is used to realize a zero-knowledge
proof (of knowledge) for R-repetitions disjunction of B circuits.
WhenR = B = 1, 7721|<1 is the standard ZK functionality. When

R=1, 7"ZIKB is the ZK functionality for a single disjunction. Looking

ahead, our protocol for single disjunction implements Tzll’(B (for
B € Z*) and our protocol for batched disjunctions implements
FRP (for R, B € Z7).

2.3 VOLE and IT-MACs

Recent works [10-12, 15, 34, 41] have improved the efficiency of
subfield VOLE (i.e., Figure 2). The state-of-the-art VOLE implemen-
tation requires only linear computation and sublinear communica-
tion in the number of generated VOLE correlations.

In VOLE-based ZK, VOLE correlations allow P to commit to wire
values using information-theoretic MACs (IT-MACs). Let x € F be
a field element known to # (e.g., part of her witness). An IT-MAC
commitment to x is a pair of values held respectively by # and V.
Specifically, V holds a key k €g F and # holds m = k —x - A, where
A €¢ F is a key which is global to the entire proof, known to V,
and hidden from . We denote a commitment to x under global key
A by writing [x]a, where A will be omitted if it is clear from the
context. Le., [x] is a pair of tuples (my, x), held by P, and (ky, A),
held by V. We use [x]a to denote IT-MACs of vector x. Note that
P can efficiently open a commitment [x]p by sending (my, x).

An IT-MAC [x]a has the following notable features:

e Hiding: V’ s share the (kyx, A) is independent of the secret
x, so the share trivially hides x.

e Binding: Malicious # cannot cheat and open a commitment
[x]A to some x” # x. Indeed, forging a suitable opening is
as hard as guessing A. Note that (my, x) conveys no infor-
mation about A.

e Linear homomorphism: [x + y]p = [x]a + [y]a. [ex]a =
c[x]a and [x +c]a = [x]a + ¢, for some public c.

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

The VOLE functionality allows P and V to construct n IT-MAC
commitments, each to a uniformly random value [r]a where r €¢ F.
A random commitment [r]a can be easily translated into a com-
mitment [x] A where x is a value chosen by #: P simply sends to
V the single field element (x —r), and V correspondingly locally
shifts his key by (x — r) - A. Thus, to commit to n field elements,
and YV first execute VOLE, and then P transmits n - [log |F|] bits.

Field extension. When the ZK statement is defined over a small
field Fp (e.g., Boolean), we need to use IT-MACs defined over an
extension field Fpq to ensure that A cannot be easily guessed. In
this case, it suffices to consider random IT-MACs [r]a where r is
drawn from the base field F, because r is only used to mask x € Fy.
There exists a VOLE variant that works over Fpa, but generates
IT-MAC:s of such r values from the subfield Fp. This variant is called
subfield VOLE. Le., an IT-MAC [r]a generated by subfield VOLE
will have my, k,, A € Fpa but r € Fp.

It is sometimes necessary to mix VOLE and subfield VOLE cor-
relations in a single proof. This is easy: we can linearly combine ¢
subfield VOLE correlations into 1 VOLE correlation over the exten-
sion field Fpq. This incurs factor g blowup.

2.4 LPZK [19] and QuickSilver [40]

VOLE-based ZK works in the “commit-and-prove” paradigm: P
commits to her extended witness with IT-MACs, and later proves to
V that committed values are consistent with the proof statement.

Consider a proof statement encoded as an arithmetic circuit C,
and let # hold a witness w. To prove C(w) = 0, P first computes
her extended witness wex;, which consists of w along with each mul-
tiplication gate’s output value upon evaluating C(w). The parties
then construct commitments to wey, as described above. From here,
% and V can use the linear homomorphism property of IT-MACs
to construct commitments to the output value of each addition gate.

Note that at this point, # is now committed to a particular value
for every wire in the circuit. Two tasks remain:

e P must prove to V that the committed value of the output
wire is 0. This is achieved simply by opening.

e For each multiplication gate, £ must prove that the gate’s
committed input values indeed multiply to the gate’s com-
mitted output value.

Previous VOLE-based ZKs mainly differ in the way they han-
dle multiplication gates. State-of-the-art VOLE-based ZK [19, 40]
handles multiplication gates via a technique called line-point zero-
knowledge (LPZK). At a high level, LPZK [19] proves that n IT-
MAC tuples {[Li]a, [ri]a, [0i]a}tie[n] satisfy the multiplication re-
lation o; = [; - r; by utilizing (1) another random IT-MAC and
(2) algebra over IT-MAC shares. The technique can be achieved
at the cost of (1) V sending a random challenge and (2) £ send-
ing 2 field elements. Each party computes O(n) field operations.
We denote the procedure to prove multiplications for IT-MACs
as LPZK({[Li]a. [rila, [0ila}ie[n])> Which we use as a black-box.
LPZK has (n + 2)/p? soundness error and information-theoretic
security in the F4,J .-hybrid model [40]°.

3[40] uses “extended subfield VOLE”, which handles higher degree polynomials. We
only use degree-2 polynomials, so ?ﬁ;gLE is sufficient.
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QuickSilver [40] subsequently generalized LPZK to efficiently
handle arbitrary polynomials over committed values. Our pro-
tocols use this trick for proving the inner-product of IT-MACs.
Namely, given 2m IT-MACs ([x1]a,---, [¥m]a) and ([y1]a,-- -,
[ym]a), QuickSilver shows how to efficiently prove that xjy; +
...+ XmYm = 0. The proof requires O(1) communication and O(m)
computation. Further, incorporating a random challenge from V', k
inner-product proofs can be batched, preserving O(1) communica-
tion. We denote the procedure to prove k-batched inner-products
for IT-MACs as QS({[xl.(])]A, [yi(J)]A}ie[m],je[k])- We will use it
as a black-box subprotocol. This sub-proof, as shown by [40], is
zero-knowledge with (k + 2)/p9 soundness error and information-
theoretic security in the F2:4 _-hybrid model®.

sVOLE
We defer additional details on LPZK and QS to the full version.

3 TECHNICAL OVERVIEW

In this section, we present our techniques with sufficient detail to
understand our contribution. Our ZK protocol considers standard
arithmetic circuits with fan-in-2 gates. For ease of presentation,
throughout this section, we consider circuits defined over a prime
field F;, where p is large enough to achieve the desired soundness
(e.g., p = 2! — 1) without using VOLE with an extension field.

Recall that our goal is to extend VOLE-based ZK such that it can
efficiently handle proofs of (batched) disjunctive statements.

Consider B circuits Ci, ..., Cpg (each called a branch) with the
same number of input wires and multiplication gates, which is
padded if needed. To begin, suppose P wishes to prove a single
disjunction (we will discuss batching shortly). Le., # wishes to
prove C1(w) =0V ---V Cg(w) =0.

Note that basic VOLE-based ZK (e.g., [40]) scales with the num-
ber of branches B, both in communication and computation. The
primary source of this cost is simply the commitment of #’s ex-
tended witness, which is linear in the total number of multiplication
gates.

In our approach, £ commits to a much shorter string whose
length scales only with the number of multiplications (and inputs)
in a single branch. This reduction in the size of the committed string
is the source of our improvement.

In slightly more detail,  commits to a modified version of the
extended witness wey;. In addition to the inputs of the active circuit,
Wext includes input/output wire values of each multiplication gate of
the active branch*. We use out(wey;) (resp. left(Wext), right(wext))
to denote the vector of multiplication-gate outputs (resp. mult-gate
left inputs, mult-gate right inputs) taken from wex;. From here, P
proves that the committed multiplication inputs/outputs indeed
respect multiplication. Namely, P proves out(wext) = left(wext) ©
right(wex:) where o denotes the element-wise product. This check
is performed using the techniques of prior work (LPZK). Note that
the number of checks does not scale with the number of branches.

So far, P has simply introduced and committed to a length-n;,
vector of inputs and a length-ny vector of tuples, each of which
respects multiplication. The remaining task is to force # to choose
this vector such that it satisfies the structure of some active branch

4This means that our extended witness is up to 3x longer than the one considered
by prior work if B = 1. While we pay a small constant factor overhead on the active
branch, we asymptotically decrease the size of £’s commitment by up to factor B.
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Cg. That is, P must prove that w.y respects the topology of branch
Cg, as well as the linear constraints implied by C,’s addition gates.
As we will describe in detail later, we can enforce such constraints
by introducing public matrices M; of size O(|C|) xO(|C|), encoding
the topology of C; a-la adjacency matrix. For each branch C; with
matrix M;, consider the following crucial equation:

M; Xwext =0 (1

Equation (1) has two notable properties:

e If P is honest and holds a witness that satisfies active branch
a, Equation (1) will hold for branch a.

o If P attempts to cheat and does not have a valid witness,
w.h.p. Equation (1) will not hold for any i.

We defer further details on the structure of these matrices un-
til Section 3.3. It is worth noting that although the size of these
matrices is O(|C|?), we will demonstrate that all relevant opera-
tions we used on these matrices can be computed in time O(|C]).

Terminology. Our approach centers on the manipulation of matri-
ces M; which encode the topology of circuits C;. We find it helpful
to introduce terminology for these matrices.

o We refer to each matrix M as a topology matrix. M is a matrix
of dimension O(|C|) X O(|C]).

e We will allow V to select random challenge vectors s, and
we will consider products sT x M. We refer to the resulting
length O(|C|) vector as a compressed topology vector.

o Additionally, we will right multiply compressed topologies
by vectors. The result of such a multiplication is a scalar that
we refer to as a compressed topology token.

3.1 Robin: Single Disjunction Protocol

In the single instance setting, we wish to improve communi-
cation. Recall that we consider statements of the form (C; (w) =
0V ---V Cg(w) =0). Our goal is to achieve communication that
scales with B+|C|, not B|C|, while preserving the low computation
cost of the basic VOLE-based ZK.

Our key insight is that V can challenge # with a random vector
s after P commits to wey;. Both parties can then use the IT-MAC
commitment [wext] A to homomorphically (i.e., without further com-
munication) derive B IT-MAC commitments of the following com-
pressed topology tokens:

sTle xwext]A,..., [STXMB X Wext A

Crucially, we prove that from the properties of Equation (1), these
B IT-MAC commitments have the following induced properties:

e If # is honest and commits a witness that satisfies active
branch a, [sT X Mg X wext] A will always be [0]a.

e If cheating # does not have a valid witness, then with over-
whelming probability, none of these values will be [0]A.

To complete the proof, # simply needs to demonstrate that one
of these committed tokens is a 0. We achieve this in a direct way:
we run a (much smaller) VOLE-based ZK proof demonstrating that
the product of the B elements is 0.

All in all, P demonstrates: There exists an extended witnesses
Wext s.t. for a random challenge s, the following holds:
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(left(wext) o right(wexr) = out(weyr)) multiplication check

A ((ﬁ[ sT x M; XWext) = 0)

Note that the order of quantifiers in the above statement is cru-
cial, implying the order in which the proof proceeds. In short, the
full proof proceeds as follows:

topology check

(1) P commits to the extended witness wey;.

(2) P and V check that multiplication wires are properly com-
mitted by using the existing LPZK technique.

(3) V sends to P the random challenge vector s.

(4) P and V locally compute [sT X M; XWext]  for each i € [B].

(5) P and V use VOLE-based ZK to prove that the product of
these B commitments is 0.

3.2 Batchman: Batched Disjunctions Protocol

In the batched setting, we wish to improve not only communi-
cation, but also computation. Recall, we consider the statement
(Ci(wj) =0V --- Vv Cg(wj) = 0) on R different witnesses.> Our
goal is to achieve computation that scales with B + R, not BR.

As a first attempt, one could try simply applying our single
instance approach R times; this fails, because computing each com-
mitment [sT X M; X Wext] o requires O(|C|) field operations, and
so ultimately this attempt uses O(RB|C]|) field operations.

As a second attempt, one could use RAM-based ZKs. While this
works for large R, it does not match our asymptotics for small R
and is concretely expensive; see Section 1.2.

Our batched approach relies on three key insights:

(1) P knows the active branch Cg/matrix M for each repetition.

(2) Itis safe to re-use the challenge vector s across all R instances.

(3) The compressed topology vector sT X Mg is small, having
length only O(|C]|) field elements.

Thus, for each repetition j € [R], we can require that  commits

to her extended witness wg}]ct) and to her desired branch a(/). In
particular, if # is honest, she will commit to the compressed topol-
ogy vector of the active branch as [col) & T x M, ]a. From
here, the parties use a regular VOLE-based ZK proof (QS) to show
that £’s committed witness respects the committed compressed

topology vector. Namely, they check:
T ;
(cv(])) Xw((ejjcg =0, forall j € [R]

Crucially, the computation cost of this inner product check does not
scale with the number of branches B, because P directly chooses
and commits to only the active branch.

Suppose that a cheating # does not have a witness for some
repetition j. Based on our reasoning in Section 3.1, passing the
above check is negligibly likely, if coll) is equal to the compressed
topology vector of some branch. Of course, it might be the case
that cheating # committed to some vector co') which is not equal
to any branch’s compressed topology sT x M;¢ [B]-

SOf course, it is not useful to prove the same statement more than once without
imposing additional constraints; it is easy to incorporate extra mechanisms that force
% to R times prove the statement wrt related witnesses. See discussion in Section 6.
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To repair this, we add a step to validate that # indeed committed
to the compressed topology of some branch. In particular, we allow
V to issue a second challenge vector ¢, and then the parties once
and for all precompute the following compressed topology tokens:

ct; 2 sT x M; xt, for each i € [B]

Computing these values takes time proportional to B, but not propor-
tional to R as each value is computed exactly once; once computed,
and V re-use these values in each of the R batched proof instances.

The above validation will catch a cheating # with overwhelming
probability (in the size of the field F). More precisely, we observe
(and prove) that if co ¢ {sT x M;}c[B], with overwhelming proba-
bility, (coT xt) ¢ {cti}ic[B]- Furthermore, for each j € [R], parties
already hold [co]a, s0 they can locally compute [(coN)T xt]p
and perform a regular VOLE-based ZK proof to show:

((w(j))T X t) € {cti}ie[B)

Each token ct; is a single field element, so this check is efficient.
All in all, $ demonstrates: There exist R extended witnesses

wgg e ,wgft) s.t. for a random challenge s there exist R vectors

cv(l), e, co™® st for a random challenge t, the following holds:
for each j € [R],

(Ieﬁ(wgg) o right(wgt)) = out(wgt))) mult. check
A ((cv(j))T Xwgﬁ = 0) topo. check
A (((cv(j))T X t) e {sT x M; x t}ie[B]) topo. valid

The order of quantifiers in the above statement is crucial, imply-
ing the order in which the proof proceeds. In short, the full batched
proof proceeds as follows:

e P commits to each extended witness wgct)

o P and V check multiplication wires are properly committed
by using the existing LPZK technique.

e V sends to # the random challenge vector s.

e P commits to each compressed topology coh),

o P and V check each inner-product (coNT xw
to zero by using the existing QS technique.

e V sends to P the random challenge vector ¢.

e P and V locally compute s” x M; x t for each i € [B].

e P and V use VOLE-based ZK to prove that each committed
vector (co)T x ¢ is a valid compressed topology token.

()
xi

oxt 18 equal

3.3 Topology Matrices

We now discuss how we construct and use branch-specific public
topology matrices M. Recall, these matrices allow V to verify that
P’s extended witness indeed satisfies the structure of some branch
of Cy,...,Cg. This verification is achieved by Equation (1).

Recall, our extended witness wey; includes (1) P’s witness w and,
for each multiplication gate in the active branch, (2) its output wire
and (3) its two input wires.

Consider a branch C, and suppose that we remove each multi-
plication gate from C. Whenever we remove a multiplication gate,
we replace its input and output wires with inputs to C. What re-
mains is a skeleton of the circuit containing only addition gates
that expresses a linear relationship on the extended witness (and
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Figure 3: A simple arithmetic circuit computing (in; - inz) +
(ing+in3)? (left) and its corresponding topology matrix (right).
Note, the shaded portion of the matrix is dense.

C’s output). It is convenient to encode this linear relationship as a
matrix M € FCCO+D)X(Cint3Cx+1) and we refer to this matrix as a
topology matrix. Figure 3 shows an example.

Note that wey; is a valid extended witness for C if and only if:

(1) Multiplication gates in the wy; are formed correctly.
(2) M X glue(Wext, 1) = 0, where glue appends 1 to vector weyS.

The above requirements imply that, for an invalid extended
witness weyt, if Item 1 is satisfied, Item 2 will not be satisfied. This
is precisely our Equation (1) and associated properties with one
caveat: we did not append 1 to wey;. This can be trivially fixed,
because P and V can locally generate shares of [1]z

Efficient operations on topology matrices. Recall that we left mul-
tiply topology matrices M by vectors s’ : we compute s7 x M.

Computed naively, the above multiplication is expensive. In-
deed, M can be dense, due to unlimited fan-out from addition gates.
Therefore, storing M and naively computing the product will incur
O(|C|?) overhead, far exceeding our asymptotic budget.

Perhaps surprisingly, given the gate-by-gate representation of
C, this multiplication can be computed in time O(|C|) with our
technique “evaluating C backwards” — see Section 4. We name
the corresponding algorithm MUL| gpr. MUL|gpT never explicitly
computes M. Thus, the topology matrix M is merely an analysis
tool, and our protocols work entirely with efficient gate-by-gate
circuit representations. In other words, it suffices to think of circuits
as topology matrices, while in reality all algorithms operate on
compact gate-by-gate representations.

4 FORMALIZING TOPOLOGY MATRICES

In this section, we formalize topology matrices, a tool used to prove
the correctness and security of our approach; see Section 3. We also
give an algorithm that allows efficient vector-matrix multiplication
on topology matrices.

Linear constraint on a wire. Consider a wire wy. in a circuit C.
The wire wy can be defined as a linear combination of input wires
of C and output wires of all multiplication gates. We call this linear
combination the linear constraint on wy.

This 1 enables offset gates, which take a public constant as input.
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Figure 4: A circuit’s induced DAG. In the topology matrix of
this circuit, the last row defines out £ 6iny + 7ins + 601. In this
DAG, there are 6 paths from iny to out, 7 paths from in3 to out,
and 6 paths from o1 to out. E.g., from o4, there are 5 paths (dashed)
passing through the scale gate and 1 path (dotted) passing through
the addition gate +4, so there are 6 paths in total. The topology
matrix reflects these numbers of paths. Since there is no offset gate,
the unit vertex is isolated.

Following this, a circuit’s linear constraints can be captured by
its associated topology matrix (see Figure 3 for an example):

Definition 4.1 (Topology Matrix). Let C denote a circuit over some
field F such that C has n;, input wires and nyx multiplication gates.
The topology matrix associated with C is a (2nx + 1) X (nj, +
3ny + 1) matrix over F defined as follows.

Let aux £ (int, .., 0, - by T oo Ty 01, - -+, Oy l)T
denote a vector of circuit metadata. Here, iny represents the kth
input, £ (resp. rg, o) represents the left (resp. right, output) wire
of the kth multiplication gate, and 1 is the multiplicative identity
of F. The rows of the topology matrix M are:

(1) Left wires: For the first ny rows, for each k € [nx], M(k) X
aux is the linear constraint on wire . E.g., iny — ; = 0. We
require M(k)[nj, + k] = -

(2) Right wires: For the second ny rows, for each k € [ny],
M(nx + k) x aux is the linear constraint on wire rg. E.g.,
ing —r; = 0. We require M(ny + k) [nj, + nx + k] = -1.

(3) Circuit output: For the last row M(2nyx + 1), M(2nx +1) X
aux is the linear constraint on the output of the circuit. E.g.,
01 + 02 is the circuit output.

Item 3 can be naturally extended to capture circuits with multiple
outputs. Note that for aux to be a valid extended witness, M X aux
must be the all zeros vector.

Left multiplication for topology matrices. Recall, our £ and V
left multiply topology matrices M; by random vectors s’ . Using
naive vector-matrix multiplication, computing sTx M requires
O(|C|?) field operations, exceeding our asymptotic budget. Instead,
we propose an efficient algorithm called MUL| g¢t to support the
above operation. Given the gate-by-gate circuit representation’ of
C, our algorithm essentially gate-by-gate evaluates C “backwards”
in O(|C|) operations without ever writing down the matrix M.

It is not obvious that this multiplication can be achieved in O(|C|)
operations, as the matrix M can be dense due to high fan-out ad-
dition gates (see Figure 3 as an example). While the matrix M is
not sparse, it is highly structured: indeed, the circuit C is itself a
succinct representation of M, and our algorithm exploits this.

"The full version defines a standard arithmetic circuit gate-by-gate representation.
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Algorithm 1: MUL g7 takes as input (1) an arithmetic
circuit C over a field F written in gate-by-gate represen-
tation (see the full version for the formal definitions) and
(2) a vector s over some extension field of F with length
2nyx + 1. It outputs s7 x M where M is the topology matrix
associated with C. Array indices start at 1.

Input: circuit C, vector s
Output: sT x M
1 w = 0UCWidD) defined over the extension field;
2 acc = 0 defined over the extension field;
3 w[|C.wid|] = s[2nx +1];
4 for each multiplication gate (£, i, o) do
5 ‘ wlt] = wlt] +slk]; wlre] = wlre] +slk +nx];
6 for each linear gate G in reverse topological order do
7 if G is an addition gate (¢], 1] o;c) then

8 ‘ wlg ] =wlg]+wlo]; ]i/v[rl’(] =wlr ] +wlo];
9 if G is a scale gate (ci, x, yr) then

10 ‘ wlxg] = wlxe] + e - wlyels

1 if G is an offset gate (c;, x;, y;) then

12 ‘ w[xl’c] = w[xl’c] + w[yl’c]; acc = acc + cl’C . w[y/’c];
13 res = {};

14 for each input wire in in order do res.append(w(ing]) ;
15 for each k € [2nx] do res.append(—s[k]) ;

16 for each multiplication gate (£, ., ox) in order do

17 ‘ res.append(w|[og]);

res.append(acc);

—
®

9 returnres

=

Our O(|C|) solution. Algorithm 1 presents MUL_gpr. To under-
stand our algorithm, we analyze the semantics of topology matrices.
Let C denote a circuit, and consider C’s underlying directed acyclic
graph G; i.e, the vertices in G represent gates and edges in G repre-
sent wires (see Figure 4 as an example). Now, remove each vertex
corresponding to a multiplication gate in C. Additionally, add one
special vertex to G called the unit vertex, which will denote a wire
holding value 1 to capture offset gates.

Let M denote the topology matrix associated with C. Now, con-
sider the first row of M (denoted as M(1)). As specified by Defini-
tion 4.1, this row defines the linear constraint on #;, the left input
wire of C’s first multiplication gate. The first element of M(1) can
be understood as the number of paths in G that start at vertex ing
and terminate at vertex £;. (Arithmetic circuits admit scalar gates
which scale the input by a public constant; for a gate with scalar s,
we say that there are s paths from that gate’s input to its output.
We also consider offset gates which add a public constant to a wire;
for a gate with offset s, we say that there are s paths from the unit
vertex to the gate output.) See Figure 4 for an example.

More generally, M(i)[j] can be understood as the number of
paths from auxiliary wire (see Definition 4.1) aux; to multiplication
gate input i. There are two special cases: (1) we define the number
of paths from a wire to itself to be —1; (2) the last row determines
the number of paths to the circuit output wire (not multiplication).

Now, consider the first column of M (denoted as M[1]). Based on
the above analysis, this column can be understood as the number
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of paths from inj to #1,...,4n,, "1, ..., n,, out. The crucial point is
this: in the graph G, the number of paths from wire a to wire b is
trivially equal to the number of backwards paths (i.e., paths through
the graph with all edges reversed) from b to a. Thus, if we wish to
compute the inner product of some vector s with M[1], we can (1)
put those values of s onto the wires ¢1,..., ., "1,.. ., ny, out, (2)
evaluate the circuit (with multiplication gates removed) backwards
and (3) output the value on wire inj.

Note that backwards evaluation of linear gates has a clear in-
terpretation. In particular, for an addition gate we add together its
output wire values, then place the sum onto the two input wires.

Therefore, to compute the full vector-matrix product s x M, we
simply evaluate the arithmetic gates backwards, and then output
wire values in the order prescribed by aux. This is precisely the
approach of Algorithm 1. Because we evaluate each linear gate
exactly once, the complexity of Algorithm 1 is trivially O(|C]).

5 Robin: SINGLE DISJUNCTION PROTOCOL

5.1 Soundness Lemmas

As discussed in Section 3, our protocols heavily rely on the fact that
V can issue random vectors to compress commitments, leading to
small proofs. Formally, these random challenges preserve soundness
based on the following lemmas® and associated corollaries, which
are the kernel of our protocols and proofs.

LEmMA 5.1. Consider a field F and let k,m € Z*. Consider k
arbitrary non-zero vectors x(l), e, xK) e pm, The following holds:

Pr[3i € [k], (x))T xs=0]s €5 F"] < k/|F|
COROLLARY 5.2. If's is drawn from the extension field F1 where

q € Z*, the upper bound of Lemma 5.1 is k/|F|9.

COROLLARY 5.3. Consider a field F and let k,m € Z*. Consider k
arbitrary non-zero vectors x1), ..., x(k) € F™ and a vectory € F™
such thaty ¢ {x(1, ... x¥)}. The following holds:

Pr(y” xs) € {(x)T xs,..., (x")T x s} | s €g F"] < k/|F|
LEMMA 5.4. Consider a field F and let k,m € Z*. Consider k
arbitrary non-zero vectors D x() e pm The following holds:
Pr[3i € [k], ()T xs=0] y €5 F] < k(m - 1)/|F|

where s = (1, )(,...,)(m_l).

5.2 Formal Protocol and Analysis

We refer the reader to Section 3.1 for the intuition behind our ZK
protocol for disjunctive circuit satisfiability in the single instance
setting. Figure 5 formalizes our protocol; its main security property
is as follows:

THEOREM 5.5 (SINGLE DISJUNCTION SECURITY). HIS);ZgIe (Figure 5)
UC-realizes 7_-21,3 (Figure 1) in the P -hybrid model with sound-

K sVOLE

nx+2B+4 . . . .
ness error Xp—q and information-theoretic security.

We provide a detailed proof of Theorem 5.5 in the full version;
for now, we sketch the main argument.

8Check the full version for the proofs.
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Protocol H[S) ngle
Inputs. The prover £ and the verifier V hold B circuits
C1,...,Cp over any field Fp, where each circuit has n;, inputs
and ny multiplication gates. Prover ¥ also holds a witness w
and an integer a € [B] such that C;(w) = 0 and |w| = njp.

Generate extended witness on C,.

0. P evaluates C,(w) and generates ¢,r,0 € F;X where ¢ (resp.
r, 0) denotes the values on left (resp. right, output) wires of each
multiplication gate, in topological order.

Initialize/Preprocessing.
1. P and V send (init) to ¥4
A €5 Fpa to V.

2. P and V send (extend,nj, + 3nx) to 7'51\7/OLE’ which re-

turns IT-MACs {[ ] }ke[n,,]» (@] kene ] {[Ek]}ken, ) and
{lPk]}ke[ny to the parties.

3. P and V send (extend, q(B — 1)) to 7‘_51\7/8&, which returns
q(B - 1) IT-MACs of random values over Fp,. # and V then
combine these IT-MACs into (B — 1) IT-MACs of random values

over Fpq denoted as {[7;]};ie[B-1]-

“VOLE’ which returns a uniform

Commit to extended witness on C,.

4. For k € [nin], P sends 5y := wi — . € Fp to V, and then
both compute [wy] := [pg] + .

5. For k € [nx], P sends 0y := f — w € Fp to V, and then
both compute [£] = [wg] + .

6.For k € [nx], P sends Oy := ri — & € Fp to V, and then both
compute [rg] = [&] + .-

7. For k € [nx], P sends &y := of — pr € Fp to V, and then
both compute [ox] := [px] + O

Check multiplication gates. # convinces V that the nx com-
mitted multiplication gates are well-formed.

8. # and V run a VOLE-based zero-knowledge proof for mul-
tiplications as LPZK({[£], [rx]. [ok]}ke[ny)s if ZKP fails, V
outputs (false) and halts.

Check witness satisfies some topology. Denote My,..., Mp
c IF4.,;)2n><+1)><(n,v,1+3n><+1) CB- Let
Wext 2 glue(w,t,r,0,1) € in””nxﬂ and associated IT-MAC
[Wext] 2 glue([w], [£], [r]. [o], [1]). P convinces V that M, x
Wext = 0 without leaking a. Le., there exists a satisfied circuit.
2n><+1 .

and sends it to P.

10. For each i € [B], £ and V compute cv; = sT X M; €
(Fn,-,l+3n><+1)T
q9

the topology matrices of Cy, . . .,

9.V samples a random vector s €g ]F

, then compute [v;] = cviT X [Wext].

11. £ and V run a VOLE-based zero-knowledge proof to show
Hie[pjoi = 0 by using IT-MAC [v]. Note that this is a B-
product circuit defined over Fpa, so it can be performed with
{[zi]}ie[B-1] and LPZK. If ZKP succeeds, V outputs (true);
otherwise, V outputs (false).

Figure 5: Robin: ZKP protocol for disjunctive circuit satisfia-

bility over any field F;, in the TVOLE -hybrid model.
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PRroOF SKETCH. By constructing a simulator S, and by extracting
the witness from malicious P.

For malicious verifier A, S interacts with the ideal functionality
7:21"(B by running A as a subroutine. S implements the ideal func-

tionality 77VOLE on behalf of A. Therefore, S knows A, and it can
use A to prove any statement to A by opening commitments to
whatever value it likes. S uses this capability to send to A messages
identically distributed to honest #’s real-world messages, which
allows it to complete the ideal world execution.

For malicious prover ﬂ the witness can be trivially extracted

from messages sent to F24 S runsa proof interaction with A

sVOLE"
by acting as honest V, and it sends the extracted witness to Tzll’(B
if the interaction leads to a successful proof. The only difference
between the two worlds occurs when A successfully proves a false
statement; this can occur when A manages to pass checks built
into the protocol. In such cases, real-world V will accept the proof,
whereas ideal-world V will reject, because S does not hold a valid
witness. This discrepancy occurs with low probability because the
protocol is sound.

Indeed, A must pass all checks, and the probability that checks
erroneously pass is bounded by the (statistical) soundness of LPZKs
in Steps 8,11 ("X+B *1 in total) and by the probability of the fol-
lowing bad event: Let Wpeq denote a vector that is not an extended
witness for any branch. Honest V samples a vector s such that
s X Mj Xwp,q = 0 for some i € [B] in Step 10. Each M; X wp,g is a
non-zero vector, so this only happens with (statistical) probability
at most 5 B 7 (see Corollary 5.2). O

Protocol cost. In total, Hé’;ggle consumes the following resources:

e Communication. The parties transmit n;, + (2q + 3)nx +
q(B+7) = O(q|C| +¢B) field elements. We next explain how
to adjust H‘gi’zgle such that the number of transmitted field
elements is only O(|C| + ¢gB), suitable for small fields.

e VOLE correlations. The parties use nj, + 3nx + q(B+1) =
O(|C| + ¢B) subfield VOLE correlations.

e Rounds. The protocol runs in 5 rounds.

e Computation. Each party uses O(|C|) field operations.
Appendix A provides detailed explanation of this cost accounting.
1—I}iS) Zgle
a random challenge s of size O(q|C|) field elements. There are
several methods to compress s such that it does not asymptotically
dominate; these are standard, see e.g. discussion in [40]. These
methods trade off in soundness, communication, and computation:

Powers of y. V can send 1 random field element y € Fpq
and define s as (1, y, x2,..., ¥>™). This variant uses O(|C| + ¢B)

communication and O(|C|) computation. While this saves commu-
2Bny+B+ny+4 b .
— g —, because it

Generating random challenges. Step 9 requires V send

nication, it increases soundness error to
increases the chance (see Lemma 5.4) that cheating # can randomly
achieve an IT-MAC encoding of 0 on some branch.

Random Oracle. V can send a A-bit seed, and the parties can
use a random oracle (RO) to generate s. This variant has O (|C|+¢B)
communication, but the parties use computation to expand the RO.
The soundness error (with extra random oracle assumption) is now
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t ny+2B+4
A
RO queries made by the adversary. We implement this variant.

, where t denotes an upper bound of the number of

6 Batchman: BATCHED DISJUNCTIONS

We refer the reader to Section 3.2 for the intuition of our ZK protocol
for batched disjunctive circuit satisfiability. Figure 6 formalizes our
protocol; its main security property is as follows:

THEOREM 6.1 (BATCHED DISJUNCTIONS SECURITY). H‘g’aqtch (Fig-

ure 6) UC-realizes 7"ZRkB (Figure 1) in the ﬁegLE—hybrid model with
W and information-theoretic security.

We provide a proof of Theorem 6.1 in the full version. In short,
the proof is very similar to that of Theorem 5.5, except that we
must additionally account for (1) the soundness of QS in Step 13
and (2) an additional bad event made possible by the check on #’s
committed topology vectors in Step 15.

soundness error

P.q
Batch

o Communication. The parties transmit (Rq+ R)n;, + (3Rq +
3R)nx + qR(B+ 1) + 2qg = O(¢RB + ¢qR|C)) field elements.

e VOLE correlations. The parties use (Rq + R)nj, + (3Rq +
3R)nyx + qR(B + 1) + 2q¢ = O(qRB + qR|C|) subfield VOLE
correlations.

e Rounds. The protocol runs in 7 rounds.

e Computation. Each party computes O(RB + R|C| + B|C|).
field operations.

Protocol cost. In total, IT consumes the following resources:

Appendix A provides detailed explanation of this cost accounting.

Field size. Unlike our single disjunction protocol, our batched
protocol improves on prior work w.r.t. communication only for
large fields. This is because in Step 12,  commits to R compressed
topology vectors, and these are defined over the extension field. If
one wishes to work with a small field (e.g., Boolean), repeating our
single disjunction protocol is more effective w.r.t. communication.

Generating random challenges. As in our single disjunction pro-
tocol, we can reduce communication needed for V’s random chal-
lenge vectors s and ¢ by applying standard methods. In particular,
these challenges can be generated using a two-row Vandermonde
matrix of two random field elements, or using a random oracle. We
implement the RO variant.

Constraining batch witnesses. Batched disjunctions allow # to
prove the same disjunction with respect to R witnesses. This is only
interesting if we impose additional constraints on $’s witnesses;
otherwise, # with only one witness can trivially re-use her witness
R times to satisfy the full statement. We present how to incorporate
two typical types of additional constraints:

o Per-repetition public parameters. One potential constraint
is to associate with each repetition some public parameters.
These public parameters are partial inputs to the branch cir-
cuit known to both # and V, and ’s witness must satisfy
the circuit, even in the context of these extra inputs. Incorpo-
rating public parameters in our protocol is straightforward:
% can simply open portions of the committed extended wit-
ness to prove to V that she indeed used the correct param-
eters. An even simpler (and less expensive) method would
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require £ and V to generate IT-MACs of these public inputs
directly. Note, because we must hide which branch is taken
in each repetition, the parameters must be shared across
branches.

e Connecting repetitions. A more powerful constraint re-
quires P to prove some consistency between the repetition
witnesses. For instance, some wires of the first repetition
should be used as particular input wires to the second repeti-
tion. We cannot ask P to open two different commitments to
demonstrate equality, because these values are private. How-
ever, we can require ¥ to provide extra proof demonstrating
that the committed values are indeed the same. Such proves
can be efficiently achieved by the IT-MAC linear homomor-
phism: the parties simply subtract two supposedly-equal
values, and then P proves that the result is a IT-"MAC of
zero. Thus, P can finish the extra proof by sending one field
element per constraint. By leveraging random oracle in a
standard way, many such zero checks can be compressed
into one element, yielding overall O(1) overhead. See [3] for
details of this RO trick.

7 IMPLEMENTATION AND BENCHMARKING

We implemented our ZK protocols for both Boolean circuits (field
F») and for circuits of the Mersenne prime field Foe1 _;.

Our implementation extends the publicly available implementa-
tion of QuickSilver [40] (their code is part of the EMP Toolkit [36]).
We use their VOLE and LPZK implementations.

Our implementations achieve computational security parameter
k = 128 (for VOLE) and statistical security parameter A > 100 for
Boolean and A > 40 for arithmetic circuits, matching QuickSilver.

Unless otherwise specified, our experiments were run on two
Amazon EC2 m5.2xlarge machines (respectively implementing P
and V). Our implementations run single threaded.

Benchmark. Unless otherwise specified, our experiments use a
benchmark where each of the B branches features a matrix multi-
plication (implementing the naive algorithm) where ¥ wishes to
prove that she knows two square £ X £ matrices whose product is
equal to a public £ x £ matrix. Each such circuit has O(£3) gates.
We acknowledge that this benchmark is contrived; its purpose is to
evaluate performance only.

7.1 Robin: Single Disjunction Protocol

7.1.1  Comparison with Mac’n’ Cheese [3]. We compare Robin with
the prior state-of-the-art VOLE-based ZK protocol supporting dis-
junctions: Mac’n’ Cheese [3]. The Mac’n’ Cheese implementation
is not publicly available, so we use the numbers available in their
paper.

[3] reported execution time when handling B branches, each con-
sisting of ~ 1 billion AND gates. Each branch computes 45000 iter-
ations of the SHA-2 circuit.!® For these large Boolean branches, [3]
uses an elegant trick based on [8] to reduce the communication cost
of each AND gate to only 1 bit (rather than paying two extension

°Intel Xeon Platinum 8175 CPU @ 3.10GHz, 8 vCPUs, 32GiB Memory, 10Gbps Network
OMore precisely, they also consider a branch that computes 150000 iterations of AES,
but this branch is smaller than the SHA-2 circuit.
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P.q
Protocol HB teh

Inputs. # and V agree on B circuits Ct, . .., Cp over any field F,, where each circuit has n;, inputs and nx multiplication gates. # holds
R witnesses w1, ..., w® and R integers aW, . a® e [B] such that for all j € [R], C () (w(j)) =0and |w(i)| = njp.

Generate extended witnesses for C.1),...,C,r®).

0. For each j € [R],  evaluates C(; (w)) in cleartext to generate vectors ) () ol ¢ FZX, where ¢(/) (resp. r(), 0())) denotes
the values on the left (resp. right, output) wires of multiplication gates (listed in topological order).

Initialize/Preprocessing.
1. P and V send (init) to (FVOLE’ which returns a uniform A €g Fpq to V.

2. P and V send (extend,R(nj, + 3nx)) to (FVOLE’ which returns IT-MACs {[ }ke [ni]> {[@ }kE[nx] ol §k I} ke[ny] and

{10 1} keny] for each j  [R].
3. P and V send (extend, gR(nj, + 3nx + 1)) to TVOLE’ which returns gR(nj, + 3nx + 1) IT-MACs of random F;, values.  and V

combine these IT-MACs into R(nj, + 3nx + 1) IT-MACs of random Fjq values, denoted {[qlij)] }ke[nim+3ny+1] for each j € [R].
4. P and V send (extend,qR(B — 1)) to 7—;{’,’8&, which returns gR(B - 1) IT-MACs of random F values.  and V combine these

IT-MACs into R(B — 1) IT-MACs of random Fjq values, denoted {[Ti(j)]}ie[B—l] for each j € [R].

Commit to extended witnesses on C 1), ..., C,r . For each j € [R], proceed as follows:

a

5. For k € [niy], P sends Oy := wlgj) - ,ul(cj) € Fp to V, and then both compute [w (])] [u (j)] + O

6. For k € [nx], P sends &y = f(J> - a)l(cj) € Fp to V, and then both compute [{’(J)] = [w (J>] + Ok

7.For k € [nx], P sends &y = r 5(1) € Fp to V, and then both compute [r (])] [5(1)]
[nx]

8.For k € [ny], P sends ;. := o ](( 7 —pli e Fp to V', and then both compute [0 (])] [p I(cj)] +5k.

Check multiplication gates. # convinces V that the Rnx committed multiplication gates are well-formed.

9. P and V run a VOLE-based zero-knowledge proof for (batched) multiplications LPZK({[t’]ij)], [rlgj)] [o (j)] tkelnyl,je(R))- If ZKP
fails, V outputs (false) and halts.

Generate compressed topology vectors. Let My, ..., Mp € IF;,ZWH)X(annXﬂ) denote the topology matrices of Cy, ..., Cp.

10. V samples a random vector s € anxﬂ and sends it to P.

11. For each i € [B], P and V compute cvi = (sT x M)T e F"‘”+3"X+1‘

Commit compressed topology vectors. For each j € [R]:

12. For each k € [njn + 3nx + 1], P sends 0y := (cv,() )k — r;l((j) € Fpa to V, and then both compute [cvl(cj)] = [17]((])] + Ok

Check satisfiability of committed compressed topology vectors. For each j € [R], Let wi) 2 glue(w(]) W r() 60 1) €

ext

in"J'a"XH and associated IT-MAC [wgcz] = glue([w(j)], [eW)], [r(j)], [0U)],[1]). P convinces V that (cv(J))T X wg)jcg = 0 for each
J € [R]. Le., the committed circuits are satisfied.
13. P and V run a VOLE-based zero-knowledge proof for (batched) inner-products QS({[co(/)], [wgct) 1D je[r)- If ZKP fails, V outputs

(false) and halts.

Validate committed compressed topology vectors. P convinces V that co(J) € {cv1,...,cop} for each j € [R]. Le., the committed

circuits are well-formed.

nm+3n><+1

14. V samples a random vector t €g F and sends it to . For each i € [B], £ and V compute ct; := cvl.T X t € Fpq. For each

j € [R], P and V compute IT-MAC [ct(f)] = [co]T
15. For each j € [R], # and V run a VOLE-based zero-knowledge proof to show II;¢|p; {ct() — ct;} = 0 by using IT-MAC [ct())] and

public {ct;};e[p]- Note that this is a B-product circuit defined over Fpq so can be performed with {[Ti(j)]}ie[B—l] and LPZK. If all R
ZKPs succeed, V outputs (true); otherwise, V outputs (false).

Figure 6: Batchman: ZKP protocol for batched disjunctive circuit satisfiability over any field F;, in the TVOLE hybrid model.
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Mac’n’Cheese [3] Robin
# Branch 50 threads, A > 40, without VOLE 1 thread, A > 100, with VOLE
Rep. SHA2 Rep. SHA2 Mat. Mul.
2 307 468 466
4 568 520 517
8 1254 615 617
16 - 812 816
32 - 1209 1213
64 - 2004 2005

Figure 7: Comparison with Mac’n’Cheese [3]. We tabulate end-
to-end runtime in seconds. Our reported numbers for [3] are directly
from their paper. Rep. SHA2 denotes a circuit computing 45000
iterations of SHA-2. Mat. Mul denotes a circuit that multiplies two
1000 X 1000 Boolean matrices. Both circuits have ~ 1 billion AND
gates. [3] uses 124 MB of communication while ours uses 628 MB. As
B increases, communication remains almost constant. The network
has 30 Mbps bandwidth and 100 ms latency.

16

100 Mbps

14 {500 Mbps
1 Gbps

12 - 2 Gbps

10

Speedup over QuickSilver [40]
o

) yd B ——

4 V/

oW R O e
0 20 40 60 80 100

Number of Branches B

Figure 8: The speedup of our single disjunction protocol
Robin over QuickSilver [40]. We report end-to-end proof runtime.
Circuits are over Fye1 _;; each branch has 8M mult. gates.

fields communication per AND gate); this trick increases round
complexity by factor O(log|C]).

We ran Robin on the same branches and the same network con-
figuration. Due to size, we ran our experiment on two Amazon EC2
mb5.8xlarge machines!!. Figure 7 tabulates the results.

[3]’s implementation does not include a VOLE backend, and it
only achieves 40 bit statistical security. Our implementation in-
cludes a real VOLE backend with 100 bit statistical security. Be-
cause of these differences, it is difficult to present a completely fair
comparison. Despite generating real VOLE correlations, Robin still
improves performance. Figure 7 shows that we pay = 25 seconds
per extra branch, whereas [3] uses ~ 150 seconds.

Figure 7 also tabulates the results for branches with matrix mul-
tiplication. This additional column demonstrates that our perfor-
mance does not depend on branch structure.

7.1.2  Comparison with QuickSilver [40]. [40] is a state-of-the-art
VOLE-based ZK protocol for Boolean/arithmetic circuits. It uses
O(B|C|) computation and communication with low constants, and
it serves as the baseline for our approach. We compare our single

Hntel Xeon Platinum 8175 CPU @ 3.10GHz, 32 vCPUs, 128GiB Memory, 10Gbps
Network
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disjunction protocol Robin with [40] on circuits defined over Fa1_.
Asymptotically, Robin improves communication from O(B|C]) to
O(B+|C|).

We compare using branches that each have 8 million multipli-
cation gates, and we vary B between 5 and 100. Figure 8 plots our
speedup. [40] requires 73.7 MB communication per branch; Robin
requires ~ 200 MB communication for all branches.

When network bandwidth is low (e.g., 100 Mbps), communica-
tion remains the bottleneck, and for B > 40 Robin achieves over
10X improvement. Even when network bandwidth is high (e.g.,
500 Mbps), Robin improves performance by ~ 4%, because Robin
computes fewer VOLE correlations.

7.1.3  More Evaluation. The full version includes further evalution.

7.2 Batchman: Batched Disjunctions Protocol

Our batched protocol Batchman is best for circuits over large fields.
Therefore, our evaluation considers circuits over Foei _;.

7.2.1  Comparison with AntMan [39]. AntMan [39] presents a pro-
tocol optimized for circuits with batched SIMD circuits, but AntMan
does not consider batched disjunctions. To implement batched dis-
junctions in AntMan, one can consider a size B|C| instruction which
is executed R times. Recall that AntMan incurs O (RB|C|log R) com-
putation and O(B|C| + R) communication. Our batched protocol
improves in terms of computation, incurring O(RB + R|C| + B|C|)
computation and O(RB + R|C|) communication.

The AntMan implementation is not publicly available, so we use
numbers from the paper. To compare, we ran experiments on the
same setup: two Amazon EC2 m5.8xlarge!! machines. [39] reported
the execution of a batch of 1024 circuits where each circuit has 22!
multiplication gates. Accordingly, we tested Batchman to ensure
all branches in each repetition have 22! total multiplication gates.
([39] circuits are defined over Fyso_y2s,;.) Figure 9 tabulates the
results; higher numbers are better.

Batchman is sensitive to network bandwidth due to its O (R|C|)
asymptotic scaling, but it is computation efficient. As B increases,
our improvement also increases. In the extreme case where there
are 512 branches and with 1 Gbps bandwidth, Batchman is 221x
faster than (single thread) AntMan [39].

Of course, AntMan solves a more general problem than Batchman.
However, for our special-case problem of batched disjunctions, we
demonstrate significant improvement.

7.2.2  Comparison with QuickSilver [40] and Robin. We compare
Batchman to the baseline QuickSilver [40] protocol and to repeated
runs of Robin. We experiment with benchmarks satisfying R = B,
and we consider branches with 1.25 X 10°> multiplication gates.
Figure 10 plots speedup as compared to QuickSilver.

Compared to QuickSilver, Robin only improves communication,
limiting its speedup. On the other hand, Batchman improves both
communication and computation, and our speedup is almost inde-
pendent of network bandwidth. Our experiment shows that Batchman
enjoys an extra 2 — 9X improvement as compared to Robin.

7.2.3  Fine-grained Analysis. Figure 11 breaks down the runtime
cost of Batchman. Most of the execution time is spent committing
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Network Bandwidth
Protocol
50 Mbps 100 Mbps 500 Mbps 1 Gbps
AntMan-1 2.00 2.05 2.08 2.09
AntMan-2 3.78 3.91 3.99 4.26
AntMan-4 6.88 6.69 6.99 7.01
Batchman-(2%,218)  0.96 1.83 6.60 9.60
Batchman-(2°, 21%) 7.55 14.43 51.28 75.40
Batchman-(2°,21%)  56.20 104.91 335.02  461.82

Figure 9: Comparison with AntMan [39]. We tabulate millions of
multiplication gates executed per second (mgps). AntMan-t refers
to AntMan with ¢ threads (numbers from [39]). Batchman uses only
1 thread. Batchman-(B, C) refers to our batched protocol Batchman
with B branches where each branch has C multiplication gates. Both
protocols execute batches where each repetition has 22! multiplica-
tion gates.

80
100‘Mbps,‘ Batchan :
= 70 500 Mbps, Batchman ——— i
= 1 Gbps, Batchman ——— /
5 60 - 100 Mbps, Robin
é) 500 Mbps, Robin ——— /
L 50 1 Gbps, Robin —— |4
S
& 40
5 pe
Z 30 2
g /
bt 20 -
L
&10 //
p—
0 L

0 50 100 150 200 250 300 350 400 450
Number of Branches and Batches B = R

Figure 10: The speedup of Batchman and Robin over
QuickSilver [40]. We plot factor improvement in terms of end-
to-end runtime. Circuits are defined over Fys1_; and each branch
has 1.25 X 10° multiplication gates.

Bandwidth | B R multi. check topo., check ) topo. valid
MULgpr  commit topo. inner-prod.

50 50 14.6 0.1 13.5 0.2 0.2
100 Mbps | 100 100 28.1 0.2 26.9 0.3 0.4
400 400 109.7 0.8 107.6 0.9 2.3
50 50 4.8 0.1 3.6 0.1 0.2
500 Mbps | 100 100 8.4 0.2 7.3 0.2 0.4
400 400 30.4 0.8 28.7 0.7 2.2
50 50 3.4 0.1 24 0.1 0.2
1 Gbps 100 100 6.2 0.2 49 0.2 0.4
400 400 20.3 0.8 18.6 0.7 2.2

Figure 11: Fine-grained analysis of our batched disjunctions
protocol Batchman. Measurements are in seconds.

Network Bandwidth

100 Mbps 500 Mbps 1 Gbps
QuickSilver [40] 181 Hz 625 Hz 902 Hz
Batchman 1525 Hz 5375Hz 7891 Hz

Protocol

Figure 12: CPU speed in a proof-of-concept setting. We con-
sider a CPU with B = 50 instructions; each instruction is an arith-
metic circuit with 125 multiplication gates.

to the witness and to the compressed topology vectors. Figure 11
confirms MUL| grr’s high concrete efficiency.
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7.2.4  CPU Emulation Benchmark. Our final benchmark shows that
Batchman is suitable to the use-case of CPU-emulation-based ZK.
We consider a proof-of-concept CPU (without RAM) with B = 50
instructions where each instruction has 125 multiplication gates.
We vary R between 50K and 500K (guided by ZEE [29]) and calculate
average CPU speed. While ZEE achieves a comparable Hz rate, it
has a smaller branching factor B = 20, and, crucially, our CPU step
is vastly more powerful in that it executes 125 multiplications per
instruction, vs a single one in ZEE.

As shown in Figure 12, Batchman achieves 9x improvement as
compared to QuickSilver [40]. We note that this is purely a proof
of concept. To implement true CPU emulation based on Batchman,
one needs to carefully design the instruction set, and ZK RAM
(e.g, [17, 21]) needs to be incorporated.
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Batchman and Robin:
Batched and Non-batched Branching for Interactive ZK

A DETAILED COST ACCOUNTING

A.1 Single Disjunction Protocol Costs

Communication. We analyze the communication complexity of

Pa4 g . Pa p o .
HSing[e (Figure 5) in the ¥, c-hybrid model. In our analysis, we
count the number of transmitted F,, elements:

e In Steps 4,5,6,7, P commits to her extended witness by
transmitting (n;, + 3nx) elements.

o In Step 8, the call to LPZK requires V to transmit a random
challenge. This challenge contains g elements, and # replies
to by transmitting 2q elements.

e In Step 9, V transmits the compressing vector s, which con-
sists of q(2nx + 1) elements.

e In Step 11, # and V run a small VOLE-based proof to handle
the small product circuit. This requires the following commu-
nication: g(B—1) elements from # to commit to intermediate
wire values, q elements from % to open the circuit output,
q elements from V for a random LPZK challenge, and 2q
elements from P for the LPZK response.

Tallying these costs, the total communication is n;, + (2 + 3)nx +
q(B+7) = O(q|C| + ¢B) elements. We will soon show a simple
variant that achieves O(|C| + ¢B) communication by sacrificing
some soundness. This variant is far more friendly to circuits over
small fields (e.g., Boolean).

Number of required subfield VOLE correlations. Hg;ggle
quires a total of nj, + 3nx + q(B + 1) = O(|C| + ¢B) subfield VOLE
correlations, almost all of which are used in the initialization phase;
2q subfield VOLEs are required for the two LPZK instances.
Computation. The computation for each party is dominated by
Step 10, where they each compute s x M; and corresponding I'T-
MAC:s for each i € [B]. By leveraging MUL| gft (see Section 4), the
computation cost is O(B|C|) field operations. Other Steps require
either O(B) or O(|C|) operations.

5-round online phase. The VOLE correlations needed for LPZKs
at Step 8, 11 can be parallelized with initialization. Viewing initial-
ization as preprocessing, our protocol can be viewed as a 5-round
online phase:

re-

(1) P commits to her extended witness.

(2) V sends the random challenge for the first LPZK and s.

(3) P sends the proof of the first LPZK and commits the inter-
mediate values of the final product circuit.

(4) V sends the random challenge for the second LPZK.

(5) P sends the proof of the second LPZK and opens the final
output (to prove it is 0).

A.2 Batched Disjunction Protocol Costs

We tally the costs of Hgftch:
Communication. We analyze the communication complexity of
Hgftch in the ?;[\;’gLE—hybrid model. Our analysis counts the number
of transmitted F;, elements:
e In Steps 5,6,7,8, £ commits to her extended witness by
transmitting R(n;, + 3nx) elements.
e In Step 9, the call to LPZK requires V to transmit a random
challenge. This challenge contains g elements, and # replies
by transmitting 2q elements.
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e In Step 10, V transmits the compressing vector s, which
consists of q(2nx + 1) elements.

e In Step 12, P commits to her compressed topology vectors
by transmitting Rq(n;, + 3nx + 1) elements.

e In Step 13, the call to QS requires V to transmit a random
challenge. This challenge contains g elements, and P replies
by transmitting 2q elements.

e In Step 14, V transmits the second compressing vector t,
which consists of g(nj, + 3nx + 1) elements.

o In Step 15, for each of the R repetitions, £ and V run a small
VOLE-based proof to handle each small product circuit. This
requires the following communication: Rq(B — 1) elements
from P to commit to intermediate wire values, Rq elements
to open each circuit output, Rq elements from V for random
LPZK challenges, and 2Rq elements from # for LPZK replies.

Tallying these costs, the total communication is (Rg + R+ q)n, +
(3Rq + 3R+ 5q)nx + Rq(B +4) + 8¢ = O(gRB + gR|C|) elements.
Number of subfield VOLE correlations. H‘g"zch requires a total of
(Rq+R)nijn+(3Rq+3R)nx +qR(B+1)+2q = O(qRB+qR|C]|) subfield
VOLE correlations. Almost all of these are use to initialize; (R + 1)q
correlations are needed for the (R + 1) calls to LPZK instances, and
q correlations are used for the call to QS.

7-round online phase. Generating VOLE correlations needed for
LPZKs and QS at Step 9, 13, 15 can be parallelized with initialization.
When initialization is viewed as preprocessing, our protocol has a
7 round online phase:

(1) $ commits to her R extended witnesses.

(2) V sends s and the challenge for the first call to LPZK.

(3) P replies to the first LPZK challenge and commits to her R
compressed topology vectors.

(4) <V sends r and the challenge for the call to QS.

(5) P replies to the QS challenge and commits to intermediate
values of the R product circuits.

(6) V sends a random challenge for each of the R calls to LPZK.

(7) P replies to each of the R LPZK challenges and opens the R
final outputs (to prove each product circuit outputs 0).

pPq .
Batch i1 the

Vak I\J;gLE—hybrid model. Our analysis counts field operations:

e In Step 0, # uses O(R|C|) Fp operations to generate her R
extended witnesses.

e In Steps 3,4, P and V use O(R|C| + RB) operations to com-
bine subfield VOLE correlations into VOLE correlations.

e In Steps 5,6,7,8, P and V use O(R|C|) operations to gener-
ate commitments to the R extended witnesses.

e In Step 9, P and V use O(R|C|) operations to execute LPZK.

e In Step 11, P and V use O(B|C|) operations to compute B
compressed topology vectors by using MUL|gFt.

e In Step 12, £ and V use O(R|C|) operations to generate
commitments to R compressed topology vectors.

e In Step 13, P and V use O(R|C|) operations to execute QS.

e In Step 14, P and V use O(B|C|) operations to compute B
compressed topology tokens.

e In Step 15,  and V use O(RB) to execute R calls to LPZK,
each on a circuit of size B.

The overall computation for each party is O(RB + R|C| + B|C]).

Computation. We analyze the computation cost of IT
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