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Abstract
This paper presents a novel algorithm for building an automatic
speech recognition (ASR) model with imperfect training data.
Imperfectly transcribed speech is a prevalent issue in human-
annotated speech corpora, which degrades the performance of
ASR models. To address this problem, we propose Bypass
Temporal Classification (BTC) as an expansion of the Connec-
tionist Temporal Classification (CTC) criterion. BTC explic-
itly encodes the uncertainties associated with transcripts during
training. This is accomplished by enhancing the flexibility of
the training graph, which is implemented as a weighted finite-
state transducer (WFST) composition. The proposed algorithm
improves the robustness and accuracy of ASR systems, partic-
ularly when working with imprecisely transcribed speech cor-
pora. Our implementation will be open-sourced.
Index Terms: weakly supervised learning, automatic speech
recognition, weighted finite-state transducer, CTC

1. Introduction
The quality and quantity of data are critical for training a suc-
cessful ASR system. State-of-the-art end-to-end (E2E) ASR
models rely heavily on large quantities of accurately annotated
speech data. However, transcription of speech corpora by hu-
man annotators, unlike read speech, is prone to errors. Re-
moving low-quality data can significantly reduce the amount of
available data. This is especially problematic for low-resource
languages and dialects, where data is scarce. Therefore, it is
imperative to develop methods that address imperfectly labeled
data for speech processing and other sequence classification
tasks, to maximize the utilization of existing data.

Previous studies have focused on extracting reliable paral-
lel speech and text from noisy data sources, such as television
news broadcasts and their closed captions. While closed cap-
tions provide useful information, they are often not completely
accurate, usually with a word error rate (WER) of between 10%
and 20% compared to a careful verbatim transcript [1]. To ad-
dress this issue, two-step solutions have been developed:
1. Use an extra ASR model to generate hypotheses for each ut-

terance, which is then aligned with the corresponding closed
caption to identify the matching speech fragment, either at
word level [2, 3, 4] or segment level [5, 6, 7, 8, 9].

2. Add the resulting speech and caption pairs to the training data
to improve the ASR model.

This process can be repeated iteratively until adding data does
not improve the ASR performance. Although these methods
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(a) Deletion (partial transcript) (b) Substitution

(c) Insertion (d) Substitution and insertion

Figure 1: Examples of error in the transcript. The grey box is
the exact text and the red box is the imperfect text. Inaccurate
words are marked in bold.

have provided a partial solution to the problem, their main lim-
itation is that they are not self-contained, meaning that external
ASR models are required for alignment. Furthermore, the itera-
tive training approach can be time-consuming, which may limit
its practicality in some scenarios.

Alternative efforts have been proposed to directly train a
model with inaccurate labels [10], which is commonly referred
to as weakly supervised learning. Prior research in this realm
of methods has primarily concentrated on tasks involving par-
tially labeled classification [11, 12]. Specifically, in ASR tasks,
each spoken utterance only has partial transcriptions available
(The term “deletion” is used in this case, as shown in Fig. 1(a)).
To address this challenge, [13] proposes a novel variant of the
CTC [14] criterion known as W-CTC. This approach enables
the handling of sequences that are missing both beginning and
ending labels. This work is extended by the Star Temporal Clas-
sification (STC) [15] to tackle the more general problem of par-
tial labeling. The proposed STC algorithm incorporates WFSTs
to explicitly manage an arbitrary number of missing labels, re-
gardless of their location in the sequence. This study suggests
that in situations where up to 70% of labels are missing, the per-
formance of STC can approach that of a supervised baseline.

Alongside this direction, we focus on the other two types
of errors, i.e., substitution and insertion in transcripts, as il-
lustrated in Fig. 1(b), (c), and (d). We propose an extended
CTC criterion, termed Bypass Temporal Classification (BTC),
to handle substitution and insertion errors during training ex-
plicitly. Our proposed approach can be effectively implemented
under WFSTs’ framework. We implemented WFST in the k2
toolkit1, which supports automatic differentiation for WFST to
enable seamless integration between WFST and neural models.
Notably, all our WFST operations can be executed on GPU,
thereby significantly accelerating the training process (STC re-

1https://github.com/k2-fsa/k2
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(a) Emission WFST (E) (b) Alignment WFST (H) (c) Lexicon WFST (L) (d) Grammar WFST (G)

Figure 2: WFST topology of transcript “a b” with lexicon {a:A, b:B}. A state with 0 is the start state. The arc with -1 is a special arc
in k2 pointing to the final state (double circle). Each arc is associated with an input symbol, an output symbol (delimited by a colon),
and weight after the slash. Arc with a single symbol indicates identical input and output. Arc without slash indicates zero weight.

quires switching between GPU and CPU[16]). We illustrate that
an ASR model can be trained from scratch using BTC with im-
perfect transcripts, containing up to 50 − 70% substitution or
insertion errors. The model achieves acceptable ASR perfor-
mance as measured by either phone error rate (PER) or word
error rate (WER).

2. Preliminaries
2.1. CTC

The CTC criterion was proposed for sequence labeling and is
commonly used in ASR. Given an acoustic feature sequence
x = [x1, . . . , xT ] of length T , and its corresponding transcript
l = [l1, . . . , lU ] ∈ V1×U of length U , where V is the vocabu-
lary, and with the constraint U ≤ T , CTC loss is defined as

Lctc = − logP (l|x). (1)

By introducing a blank token ⊘ and the framewise alignment
sequence π = [π1, . . . , πT ], where πt ∈ V ∪ ⊘, the posterior
distribution P (l|x) can be factorized as

P (l|x) =
∑

π∈B−1(l)

P (l,π|x) (2)

=
∑

π∈B−1(l)

P (l|π,x)P (π|x) (3)

=
∑

π∈B−1(l)

P (π|x), (4)

where B maps sequences from π to l by removing ⊘ and
adjacent repetitions, which is why P (l|π,x) ≡ 1 for every
π ∈ B−1(l). P (π|x) may be further factorized as

P (π|x) =
T∏

t=1

P (πt|π1, . . . , πt−1,x)

=

T∏

t=1

P (πt|x),
(5)

by assuming that π is conditionally i.i.d. given the sequence x.

2.2. WFST

The marginalization over token sequences represented by
B−1 (l) can be efficiently computed using WFSTs. A WFST
maps input symbol sequences to output symbol sequences and
assigns a weight to each transition in the transducer. The weight
of the mapping is often set to be the conditional probability of
the output sequence given the input. WFSTs have found ex-
tensive application in the field of ASR to model the probability

of decoding unit sequences [17, 18, 19]. This can be attributed
to the compactness of its representation of the model architec-
ture [20, 21].

Two WFSTs can be composed to cascade mapping opera-
tions. Given a WFST F1 that maps a to b with weight w1, and
a WFST F2 that maps b to c with weight w2. The composed
WFST, denoted F1 ◦ F2, maps a to c. Its weight can be either
max(w1, w2) (tropical semiring) or log-sum-exp(w1, w2) (log
semiring).

Figure 3: CTC graph of “a b”. ⊘ is the blank token and ϵ
represents no output symbol in WFST transitions. The reader
can refer to Fig. 2 for details of WFST representation.

The composition of the alignment WFST (H), with a
WFST representation of a lexicon (L) and transcript (G(l)) and
inverting the result, returns a transducer that maps from tran-
scripts to a graph that represents the space of all possible CTC
paths associated with the transcript. Marginalization is enabled
via the application of the forward algorithm on the resulting lat-
tice of paths. We show that Eq. 4 may be represented using a
composition of WFSTs:

P (l|π) =
∑

π∈(H◦L◦G(l))−1

P (π|x)︸ ︷︷ ︸
E

, (6)

where the superscript −1 denotes WFST inversion;
• E is the emission WFSA representing P (π|x), as shown in
Fig. 2(a). For state t, the weights on its arcs are the log-
probabilities on the set of decoding units (e.g., characters or
phones or sub-words or words, and ⊘) at time frame t;

• H is the CTC alignment WFST. It removes ⊘ and adjacent
repeated decoding units;

• L is the lexicon. It maps sequences of decoding units to
words. It is discarded if the decoding units are words;

• G(l) is the grammar or language model of l, assumed
represent-able as a WFST, as shown in Fig. 2(d).

Therefore, logP (l|x) equals to the total weight of E ◦H ◦L ◦
G(l) under the log-semiring. We refer to H ◦ L ◦ G(l) as the
graph of l, and illustrate it with an example in Fig. 3.
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Figure 4: BTC Grammar WFST (G) of transcript “a b”. Each
label has parallel arcs added with input symbol ⋆ and weight λ.

3. Method
In the training process of CTC models, for each training ex-
ample (x, l), a graph is constructed based on l. The presence of
substitution and insertion errors in l can lead to erroneous graph
construction, causing misalignment between certain segments
of x and incorrect tokens. The consequential misalignment can
adversely affect the ASR model through back-propagation.

In the CTC framework, P (πt|x) represents the underly-
ing model’s estimate of “which decoding unit best represents
this frame.” Setting πt = ⊘ represents a continuation-without-
explicit-repetition of the most recent non-blank symbol in π,
allowing for uncertainty in the temporal span of the words in
l. But there is no uncertainty in l = B(π). In BTC, we intro-
duce a special “wildcard” token ⋆ to model uncertainty in the
transcript l. The ⋆ arcs are added to G(l) in parallel to words
in the transcript, as shown in Fig. 4, and to L as an identity
mapping (i.e. with no subword decomposition). The alignment
transducerH treats ⋆ as a standard decoding unit, resulting in a
graph of the kind shown in Fig. 5. This topology is capable of
modeling insertions and substitution errors in l:

1. Substitution: since there is a ⋆ arc parallel to arc of an incor-
rect word l, P (πt|x) can bypass l and assign the acoustics
of the (unknowable) correct word to ⋆ with high probability,
thereby avoid corruption of its internal representation of l: ⋆
acts like a garbage collector.

2. Insertion: when l contains more words than were spoken,
P (πt|x) can again bypass an inserted word l, assigning a
minimally necessary number of frames to the ⋆ arc in parallel
to l, and continue. This again avoids corrupting the internal
representation of l, albeit by “stealing” a minimal number of
frames from the adjacent words to assign to ⋆.

Figure 5: Topology of the BTC graph for “a b” after composi-
tion with the CTC alignment transducer H .

Training naively on the BTC grammar with random initial-
ization, however, leads to a degenerate solution: map all acous-
tic features to ⋆ with high probability. In order to avoid this so-
lution, we introduce a penalty, i.e. a negative weight denoted by
λ, to all ⋆ arcs. We then investigate a scheduling algorithm that
adjusts this penalty during training: it is initially set to a large
value to encourage the model to start learning the correspon-
dence between acoustics and the imperfect transcripts. As the
training progresses, and the models understanding of this rela-
tionship begins to take form, we gradually decrease the penalty.

Specifically, for the i-th epoch, the penalty is set as

λi = β ∗ τ i, (7)

where β is the initial (high) penalty that decays geometrically
by a factor τ ∈ (0, 1). We determine β and τ empirically.

4. Experimental Setup
4.1. Datasets

We use two standard datasets for our experiments.
TIMIT [22] is comprised of 6300 sentences, totaling 5.4 hours
of recorded read speech. Each sentence has been phonetically
transcribed. We adhere to the standard training, development,
and test partitions, consisting of 3696, 400, and 192 sentences,
respectively.
LibriSpeech [23] is comprised of 960 hours of read speech
for training, further divided into three subsets of 100, 360 and
500 hours of clean speech and “other” speech. Two develop-
ment subsets and two test subsets, each consisting of 5 hours of
speech, are also included in the data set.

4.2. Imperfect transcripts generation

In our study, we generate synthetically erroneous transcripts
from the provided transcripts, which we assume to be perfect,
for three scenarios.
• For substitution, each token in the transcript is replaced by a
random token with psub ∈ [0.1, 0.3, 0.5, 0.7].

• For insertion, a random token is inserted with pins ∈
[0.1, 0.3, 0.5, 0.7] between any two tokens in the transcript.

• For substitution+insertion, insertion is followed by sub-
stitution with psub ∈ [0.05, 0.15, 0.25, 0.35] and pins ∈
[0.05, 0.15, 0.25, 0.35].

Different choices of psub and pins are studied and compared.

4.3. Acoustic feature

We utilize a pre-trained wav2vec 2.0 model [24] (wav2vec2-
base) to extract 768-dimensional acoustic features. This self-
supervised model contains 12 transformer blocks with 8 atten-
tion heads [25]. The acoustic features are extracted using the
S3PRL toolkit.

4.4. Model architecture

We investigate two distinct model architectures utilizing the
BTC criterion:
TDNN-LSTM [26, 27]: It combines time-delay neural net-
works (TDNN) and long short-term memory(LSTM) [28] net-
works. The model consists of 3 TDNN layers followed by the
LSTM layer, and a linear decoder layer. This hybrid architec-
ture can effectively capture both local and global dependencies
in speech signals.
Conformer [29]: It employs a combination of convolutional
neural networks (CNNs) [30] and self-attention mechanisms to
model speech signals effectively. The Conformer encoder in our
study consists of 12 layers, with each layer comprising a con-
former block that includes a convolution module stacked after
the self-attention module. The decoder is simply a linear layer.

5. Results
5.1. TIMIT

We first evaluate BTC on the TIMIT dataset to gain insight into
BTC as well as tuning hyper-parameters, specifically the initial
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Table 1: WER (%) on LibriSpeech test-clean and test-other dataset. We compared CTC (highlighted in grey) and BTC in three
scenarios: substitution-only, insertion-only, and substitution and insertion. We measure WER with and without LM (delimited by a
slash). “-” indicates that the model does not converge.

Error Criterion psub, pins, psub+ins
0.1 0.3 0.5 0.7

clean other clean other clean other clean other

sub CTC 6.9/15.4 15.7/29.2 12.9/20.4 24.5/36.5 36.1/43.2 54.9/60.5 -/- -/-
BTC 6.1/14.7 14.5/29.0 6.6/17.5 15.6/33.3 7.4/19.8 18.0/36.5 -/- -/-

ins CTC 6.9/16.6 15.8/31.0 19.5/29.3 30.0/44.3 -/- -/- -/- -/-
BTC 5.5/12.0 14.1/24.0 5.6/12.1 14.1/24.1 5.6/12.1 14.2/24.4 6.0/12.7 14.8/24.6

sub+ins CTC 7.3/17.3 16.2/31.9 19.5/25.1 31.9/41.2 45.6/45.4 59.94/61.2 -/- -/-
BTC 5.8/13.9 13.8/27.8 6.2/15.6 14.1/29.8 6.6/16.2 14.8/30.8 6.9/16.9 15.6/32.3

penalty and penalty decay factor. The TDNN-LSTM model is
utilized, with phone as the decoding unit.

Table 2: PER (%) on TIMIT test set with substitution error. CTC
is highlighted in grey.

Error Criterion psub,pins,psub+ins
0.1 0.3 0.5 0.7

sub CTC 28.3 40.9 49.2 63.1
BTC 13.1 16.8 17.2 21.4

ins CTC 16.1 18.1 28.8 32.8
BTC 13.6 14.2 14.3 14.7

sub+ins CTC 20.3 27.7 31.2 42.6
BTC 13.4 14.0 15.9 21.4

We establish a CTC baseline and compare the phone error
rate (PER) between BTC and CTC. Our findings, presented in
Table 2, demonstrate that CTC’s performance degrades as the
error rate increases. Even with a relatively low mistranscription
rate of 10%, the PER increases from 13.51 to 28.33, indicating
a near-doubling of the error rate. The PER can reach as high
as 63.13 under more severe mistranscription conditions (70%
substitution error rate). In contrast, our evaluation reveals that
the BTC shows high robustness across varying error scenarios.
Even when faced with a challenging scenario involving both
substitution and insertion errors, BTC achieved a phone error
rate (PER) of approximately 20, despite 70% of transcripts be-
ing incorrect.

5.2. LibriSpeech

For LibriSpeech, we use clean 100 hours set as the training set.
As mentioned in Section 2.2, the use of a lexicon WFST L con-
verts decoding units to words, thereby enabling the measure-
ment of WER.

5.2.1. Model and decoding unit selection

Given the similarity in trend between substitution and insertion,
we focus on comparing TDNN-LSTM and Conformer models
in the substitution case. Phones are utilized as the decoding
unit, and the findings presented in Table 3 demonstrate the con-
sistent superiority of the Conformer model over TDNN-LSTM
in terms of word error rate (WER) across different substitution
error rates. So we choose the Conformer model for the follow-
ing experiments.

We then compare the effectiveness of BPE subwords and
phones for decoding using Conformer architecture. We conduct
the analysis of phones against BPE with vocabulary sizes of 100
and 500. Our results in Table 4 indicate that phones outperform

Table 3: WER (%) of TDNN-LSTM and Conformer with substi-
tution error. “-” indicates that the model does not converge.

Architecture psub
0.1 0.3 0.5 0.7

TDNN-LSTM 6.8 7.1 8.6 -
Conformer 6.1 6.6 7.4 -

BPE in terms of performance and robustness. Notably, BPE
fails to converge at a substitution error rate of 0.5, even with
a comparable vocabulary size of phones (100 versus 71). This
is attributed to the ability of phones to capture acoustic feature
patterns.

Table 4: WER (%) of phone and BPE with substitution error.
“-” indicates that the model does not converge.

Unit Vocab size psub
0.1 0.3 0.5 0.7

BPE 500 6.5 7.1 - -
100 6.3 6.7 - -

phone 71 6.1 6.6 7.4 -

5.2.2. Results

We show the result with and without integrating a tri-gram lan-
guage model (LM) in Table 1. The performance of BTC is
consistent with that observed in the TIMIT dataset. The ASR
model failed to converge when subject to a substitution error
rate of 70%. Other than that, the system trained using BTC
still remains satisfactory, with minor degradation. Moreover,
for error-free transcripts, BTC does not hurt the performance
compared with CTC: 5.5 vs. 5.6 on test-clean and 14.4 vs. 14.5
on test-other.

6. Conclusion and future work
This research introduces BTC as a promising approach for
weakly supervised ASR. BTC, a variant of the CTC algorithm,
enables ASR model training from scratch using an imperfect
transcript that contains substitution and insertion errors. The
implementation of the algorithm is efficient within the WFST
framework, and all operations can be fully performed on GPU
to expedite the training process. Our experiments on the TIMIT
and LibriSpeech datasets demonstrate that the BTC approach
can effectively train an ASR model without much degradation
occurring when 50% to 70% of the transcripts contain errors.

Moving forward, our goal is to integrate BTC with STC to
address all three types of errors (deletion, substitution, and in-
sertion) within a unified framework for weakly supervised tasks.
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