l‘)

Check for
updates

Tri-State Circuits
A Circuit Model that Captures RAM

David Heath'®) | Vladimir Kolesnikov?, and Rafail Ostrovsky?

! UIUC, Champaign, USA
daheath@illinois.edu
2 Qeorgia Tech, Atlanta, Georgia
kolesnikov@gatech.edu
3 UCLA, Los Angeles, USA

rafail@cs.ucla.edu

Abstract. We introduce tri-state circuits (TSCs). TSCs form a natural
model of computation that, to our knowledge, has not been considered by
theorists. The model captures a surprising combination of simplicity and
power. TSCs are simple in that they allow only three wire values (0, 1,
and undefined — Z) and three types of fan-in two gates; they are powerful
in that their statically placed gates fire (execute) eagerly as their inputs
become defined, implying orders of execution that depend on input. This
behavior is sufficient to efficiently evaluate RAM programs.

We construct a TSC that emulates T steps of any RAM program and
that has only O(T -log® T -loglog T) gates. Contrast this with the reduc-
tion from RAM to Boolean circuits, where the best approach scans all
of memory on each access, incurring quadratic cost.

We connect TSCs with Garbled Circuits (GC). TSCs capture the
power of garbling far better than Boolean Circuits, offering a more
expressive model of computation that leaves per-gate cost essentially
unchanged.

As an important application, we construct authenticated Garbled
RAM (GRAM), enabling constant-round maliciously-secure 2PC of
RAM programs. Let A denote the security parameter. We extend authen-
ticated garbling to TSCs; by simply plugging in our TSC-based RAM, we
obtain authenticated GRAM running at cost O(T - log® T -loglog T - \),
outperforming all prior work, including prior semi-honest GRAM.

We also give semi-honest garbling of TSCs from a one-way function
(OWF). This yields OWF-based GRAM at cost O(T -log® T-loglog T-\),
outperforming the best prior OWF-based GRAM by more than factor A.

Keywords: Garbled RAM - MPC - Models of Computation -
Malicious Security

1 Introduction

Boolean circuits form perhaps our simplest complete model of computation.
The model allows only a small set of gate types, each of which computes a basic

© International Association for Cryptologic Research 2023
H. Handschuh and A. Lysyanskaya (Eds.): CRYPTO 2023, LNCS 14084, pp. 128-160, 2023.
https://doi.org/10.1007/978-3-031-38551-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38551-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-38551-3_5

Tri-State Circuits 129

function. Moreover, a circuit’s structure is static and explicit. This simplicity is
ideal for both theory and practice, making them popular in complexity theory
and, in particular, in cryptography.

On the other hand, random access machine programs (RAM programs)®
form our most ubiquitous practical model of computation. The random access
capability approximates the power of real-world devices, so theoretical advances
in RAM can more readily translate to real-world impact.

Unfortunately, it is difficult to connect Boolean circuits and RAM. Indeed,
the two models seem inherently at odds. RAMs are inherently dynamic, allowing
the program to quickly and arbitrarily access one element in an immense array;
circuits are inherently static, requiring that the program fix the order in which
it manipulates data before input is known.

It is therefore unsurprising that reductions from RAMs to Boolean gates
are expensive. The straightforward reduction emulates each memory access by
linearly scanning the entire RAM memory. This simple approach is also the best
known. Since RAMs access memory at each step, this reduction yields a circuit
that grows quadratically in the RAM runtime 7.

Motivation for Introducing Tri-State Circuits: Constant Round 2PC. Tt is unfor-
tunate that reductions from RAMs to circuits are so expensive. Many technolo-
gies are more compatible with circuits than with RAMs, and a concretely efficient
reduction would automatically connect real-world RAM programs with circuit-
based technologies.

As our crucial example, we consider Yao’s Garbled Circuit (GC) [Yao86], a
multiparty computation (MPC) technology that achieves symmetric-key-based
constant-round protocols.

The GC literature is extensive, see [NPS99,ZRE15,HJO+16, GLNP18,RR21]
and many more. Most GC works, including all listed above, garble Boolean gates
only, suggesting a natural connection between garbling and circuits. On the other
hand, the goal of GC is to enable secure computation of arbitrary programs, and
many programs are best handled by RAMs, not by circuits.

It is possible — though challenging — to garble RAM programs. Garbled RAM
(GRAM) [LO13] does so without reducing to circuits. GRAM also has a rich lit-
erature [GHL+14, GLO15,GLOS15,CH16, CCHR16,L.O17,HKO22,PLS22]. The
basic observation of GRAM is that it is possible to garble interconnected col-
lections of circuits that execute in an order decided at runtime. This dynamic
ordering breaks from the circuit model, where the order of execution is static.

Advancing GRAM was challenging. The problem was that reasoning about
GRAM required reasoning simultaneously about multiple complex topics, includ-
ing gate garbling techniques, the above dynamic circuit execution, and construc-
tions of Oblivious RAM [GO96]. Worse still, the community lacked an effec-
tive vocabulary for discussing the dynamic mechanisms of GRAM; prior work

! The RAM model we consider is called the word RAM model [Hag98]; it is a RAM
with a fixed word size that incurs unit cost per random access. We state the definition
of the in Sect. 3. Throughout this work, by ‘RAM’ we mean ‘word RAM’.

130 D. Heath et al.

explained these mechanisms via a concept they called dynamic language transla-
tion, see e.g. [GLO15,GLOS15,HKO22, PLS22]. Language translation is deeply
intertwined with the specifics of circuit garbling, and thus understanding even
the basic ideas of GRAM required intimate GC knowledge.

Matching the Power of Garbling to a Model of Computation. The mere existence
of non-trivial GRAM, which leverages dynamic behavior, demonstrates that the
circuit model poorly approximates the power of garbling. Clearly some additional
expressive power is available, sufficient to efficiently execute RAM programs.

Thus, it is interesting to search for another model of computation — cheap
to garble, simpler than RAM, and more expressive than Boolean circuits — that
captures the dynamic power of garbling. Such a model would be useful, since it
would decompose the GRAM problem into pieces, allowing us to think modularly
about RAM constructions, untethered from garbling-specific concerns.

1.1 Owur Contribution

We demonstrate that there exists a simple, circuit-like model of computation that
closely approximates (within a polylogarithmic factor) the expressive power of
RAM. Our tri-state circuit (TSC) model is strongly compatible with our target
use-case of garbling, in the sense that it admits efficient and natural protocols.

Like a Boolean circuit, a TSC is composed from statically connected gates,
each of which has one of only a small number (three) of possible gate types. Each
gate computes a basic function of its two tri-value input wires. Despite their
simplicity, TSCs are distinctly more powerful than Boolean circuits; they admit
a primitive form of control flow where the order in which gates fire depends on the
input. This basic control flow can efficiently emulate RAM computation. Thus,
TSCs capture a surprising combination of conceptual simplicity and expressive
power which, to our knowledge, has not been explored by theorists.?:?

We emphasize that while we feel the tri-state circuit model has intrinsic value,
we are motivated by the concrete objective of improving symmetric-key-based
constant-round secure computation (i.e., garbling).

Our contributions include:

2 While tri-state circuits have not been theoretically explored, tri-state gates are used
in practice. We chose our naming based on these real-world gates. A key gate in
our model, which we call a buffer, exists as a digital logic element called a tri-state
buffer. We show that RAM reduces to a relatively small number of such gates.

3 Tri-state circuits are distinct from ternary logic. Ternary logic has been explored by
theorists, even in the context of garbling [LY18,NPS99]. In ternary logic, wires can
take three distinct values; however, the circuit executes in a standard topological
order. In tri-state circuits, gates execute in a data-dependent order.

Tri-State Circuits 131

‘We formalize the tri-state circuit model.

We reduce RAM programs to (deterministic) tri-state circuits. Let
T denote a runtime. We construct a tri-state circuit of size O(T - log* T') that
can emulate T steps of any RAM program.

We formalize randomized and oblivious tri-state circuits. In cryp-
tography, data-independent orders of execution are useful for protecting privacy.
Basic tri-state circuits discard input independence, losing cryptographic utility.
Oblivious tri-state circuits reclaim this utility. A tri-state circuit is oblivious if
its order of execution appears (to a distinguisher) independent of the input.

We reduce RAM programs to oblivious tri-state circuits. We con-
struct an oblivious tri-state circuit of size O(T - log® T - loglog T) that can sim-
ulate T steps of any RAM program. This oblivious reduction improves over our
deterministic reduction by leveraging randomness.

We apply tri-state circuits to secure 2PC. Let A denote the computa-
tional security parameter. We achieve two results:

— Our most exciting application is authenticated GRAM, a maliciously-secure
constant-round 2PC RAM protocol. Our authenticated GRAM executes T
RAM steps at cost O(T - log® T - loglog T - \). Prior malicious GRAM relied
on the expensive cut and choose technique, and was more than factor o slower,
for statistical security parameter o.

— Our second application is improved semi-honest Garbled RAM from only one-
way functions. Prior to our work, the best GRAMs were based on random-
oracle-like assumptions [HKO22,PLS22]. The best GRAM avoiding such an
assumption had quadratic scaling in A [PLS22]. Our construction outperforms
all prior RO-based GRAMSs, and it relies only on one-way functions. It runs
at cost O(T - log® T - loglog T - \).

TSC garbling is lean. For example, Boolean circuits can be compiled to tri-
state gates, and the communication cost of our resulting authenticated TSC
protocol is less than 2x that of state-of-the-art authenticated garbling of Boolean
gates [DILO22], and with effort this overhead can likely be removed.

Impact on Garbled RAM. While [HKO22] and follow-on work [PLS22] substan-
tially improved GRAM, these works left pressing and challenging open questions,
including efficient malicious GRAM and standard-assumption-based GRAM.

We abstract garbled computation as tri-state circuits, not Boolean circuits,
and the payoff is a modular approach to GRAM. This modularity allows us to
make significant advances that would have been highly technically involved if
expressed in the prior GRAM framework of language translation. We demon-
strate that the above more challenging versions of GRAM can be constructed
with overhead similar to basic GRAM. Going further, we discovered compatibil-
ity between a state-of-the-art Oblivious RAM construction [WCS15] and tri-state
circuits, further improving GRAM’s asymptotic cost.

Perhaps best of all, tri-state circuits markedly simplify GRAM fundamentals.
Indeed, our new garbling procedures are extremely similar in complexity to their

132 D. Heath et al.

Boolean-circuit-based counterparts. This reduced complexity will allow a broader
cryptographic audience to understand, improve, and apply GRAM.

2 Background and Related Work

2.1 Garbled Circuits and Garbled RAM

Garbled Circuit (GC) [Yao86] is a fundamental MPC primitive that allows two
parties — a garbler GG and an evaluator FE — to securely execute a program of their
choice on their private inputs. GC is distinct from other secure computation
primitives in that it allows for protocols that (1) run in a constant number of
rounds and (2) rely almost entirely on fast symmetric key primitives.

Roughly speaking, GC splits program execution into two steps: garbling and
evaluation. Garbling is independent of the input, and evaluation of the garbled
program appears independent of the input. When these two steps are carried out
by two different parties, we can arrange that each party’s execution hides the
input of the other, allowing privacy-preserving protocols.

While GC traditionally works in the Boolean circuit model, a number of
works starting with [LO13| developed Garbled RAM (GRAM), an extension to
the more expressive RAM model. [LO13| demonstrates that for a word-RAM
program running in time 7" and for computational security parameter A, we can
garble the program at the following cost:

O(T -log® T -1og®log T - |Cps| - N) [LO13]

Here, ¢ is an unspecified constant, and |Cp¢| is the circuit size of a PRF with X
bits of output (asymptotic analysis by [PLS22]).

A sequence of works subsequently improved the Garbled RAM primitive,
e.g. [GHL+14,GLOS15, GLO15,HK0O22,PLS22]. The most recent garbled RAM
constructions achieve the following costs:

O(T -log* T - \) [HKO22]
O(T -log® T - (loglog T)? - \) [PLS22]

[HKO22] and follow-on work [PLS22] far surpass prior GRAMs, bringing the
technique’s overhead in line with what is expected from more traditional
Boolean-circuit-based GC.

Improving GRAM remains a crucial direction. In particular, it is interesting
to (1) improve asymptotic cost, (2) extend GRAM to interesting and challenging
settings, and (3) simplify the GRAM formalism, easing further exploration and
application. Our work simultaneously achieves each of these goals.

Malicious GRAM. GC provides natural protection against malicious evaluator
E, but protecting against malicious garbler G is more challenging. G can incor-
rectly garble the program, causing the program to, for instance, erroneously
output bits of E’s input. It is difficult to arrange that E can detect incorrectly

Tri-State Circuits 133

garbled programs, because E’s inability to reason about garbled programs is
exactly the property that protects G’s input.

Despite this challenge, prior work developed powerful techniques for efficient
handling of malicious garbled circuits (see later discussion of authenticated gar-
bling). Until this work, malicious garbled RAM was far less effective.

Prior work, e.g. [GGMP16,HY16,Mia20]|, demonstrated feasibility of mali-
cious GRAM, but performance was poor, especially as compared to semi-honest
GRAM. The best prior GRAM could be constructed by combining semi-honest
GRAM [HKO22] (or the asymptotically more efficient [PLS22]|, framed as a gar-
bling scheme [BHR12]) with the classic cut and choose technique, see e.g. [Lin13].

Cut and choose upgrades semi-honest garbling to the malicious setting. The
idea is to have G garble many copies of the same program, then allow E to
challenge a randomly selected subset of those programs. While this works, G
must garble a number of copies that grows with the statistical security parameter
o, leading to highly undesirable factor o slowdown as compared to the semi-
honest execution. The best malicious GRAM had the following asymptotic cost:

O(T -log® T - (loglog T)? - X - o) [PLS22] with Cut and Choose

We avoid this factor o slowdown by implementing tri-state circuits via the
techniques of authenticated garbling (see next). Our maliciously secure GRAM
dramatically improves over prior state of the art, achieving the following cost:

O(T -log® T -loglog T - \) Our maliciously secure GRAM

Authenticated Garbling. The breakthrough work [WRK17| introduced a far supe-
rior approach to malicious GC. Their authenticated garbling technique achieves
performance that asymptotically matches semi-honest garbling, incurring only
O(n - \) cost for an n-gate circuit. The approach is also practically performant.
In classic GC, each wire value is represented by a length-\ label. These labels
are used as keys to encrypt/decrypt subsequent labels in a way that achieves
the program semantics. Authenticated GC extends each GC label with an addi-
tional o bits, forming a MAC on the wire value. These MACs allow G to reveal
particular wire values to F such that F is confident the value is indeed correct.
To securely evaluate each AND gate, the parties require an authenticated
multiplication triple. Multiplication triples can be computed offline in a function-
independent preprocessing phase. Improving the efficiency of authenticated gar-
bling is the subject of a growing body of works [KRRW18,YWZ20, DILO22].
We demonstrate natural compatibility between authenticated garbling and
tri-state circuits. Our construction achieves cost O(n - A) for an n-gate tri-state
circuit. While formal treatment of any non-trivial malicious technique is com-
plex, authenticated garbling of tri-state circuits is — at least at an intuitive level
— a straightforward extension of the core ideas given by the above prior works.

Standard-Assumption-Based GRAM. In the semi-honest setting, the fastest gar-
bling techniques rely on a non-standard random-oracle-like assumption called a

134 D. Heath et al.

circular correlation robust hash (CCRH) function [CKKZ12]. This assumption
stems from the classic “Free XOR” extension [KS08] whereby each GC wire has
two labels related by a global correlation. The CCRH assumption is needed to
achieve security in the presence of this correlation.

It is interesting to remove this assumption and to garble assuming only one-
way functions (OWFs) [GLNP18].% Prior to our work, Garbled RAM from one-
way functions was far inferior to GRAM based on Free XOR. Indeed, the best
construction had the following cost (note the problematic scaling in \):

O(T -1og® T - (loglog T)? - \?) [PLS22|

We demonstrate that classic OWF-based techniques from the literature can
be almost directly applied to tri-state circuits. Indeed, our standard-assumption-
based garbling scheme is relatively obvious, once the tri-state circuit model is
understood. Applying this scheme in conjunction with our RAM constructions,
we as a corollary achieve the best standard-assumption-based GRAM:

O(T -1og® T - loglog T - \) Our OWF-based semi-honest GRAM

2.2 Oblivious RAM

Oblivious RAM (or ORAM, [GO96]) is a powerful technology that allows a weak
client to outsource its database to a powerful untrusted server. The client can
repeatedly query its sensitive database without the server learning what data is
accessed, or even the pattern in which data elements are accessed. In ORAM, for
each logical access, the client issues a sequence of queries to physical locations.
These physical locations reveal nothing about the logical accesses, which can be
formalized by showing that the server’s view can be simulated.

ORAM is highly relevant to our notion of oblivious tri-state circuits. In par-
ticular, our reduction from RAM programs to oblivious tri-state circuits directly
leverages the Circuit Oblivious RAM construction of [WCS15|, implementing
their ORAM algorithms via tri-state gates. Our reduction leverages this con-
struction to hide memory access patterns, allowing for a circuit that executes
RAM programs and whose gates execute in an order that can be simulated.

2.3 Other Models of Computation

The tri-state circuit model shows that, surprisingly, there exists a concrete set of
gates that can efficiently (with polylog overhead) implement RAM. Said another

4 Of course, full semi-honest GC protocols also use OT, which is not implied by OWFs.
It is now traditional to view semi-honest GC as a primitive, independent of any
particular protocol [BHR12]. This primitive, called a garbling scheme, can be mean-
ingfully instantiated from OWFs alone.

Tri-State Circuits 135

way, tri-state circuits admit a small statically defined structure whose collection
of use-once components jointly implement RAM. This capability distinguishes
the model from other widely considered models.

Other models either inefficiently support RAM (e.g., Turing Machines, deci-
sion trees, Boolean circuits, arithmetic circuits, etc.), or have implicitly specified
“static structure” that is either large or involves components that can be used
repeatedly. For instance, while RAM can, of course, efficiently implement itself,
it in some sense involves a very large static structure, where each RAM step
is implicitly connected to each memory cell. Similarly pointer machines form a
model of computation that proceeds by editing a directed graph, see e.g. [Sch80];
because of the large number of possible graphs that can emerge at runtime,
pointer machines similarly have large implicit static structure.

Said yet another way, tri-state circuits require that we statically define a fixed
“stage” that establishes explicit connections between computational elements and
explicitly named memory cells. Runtime execution may only proceed within the
connection constraints of this stage, and we measure cost in terms of the size of
the stage, namely, the number of connections. Indeed, in GC, the garbler must
account for each possible action and state of the evaluator. This accounting
corresponds to generation of garbled tables — garbling the stage.

Despite these constraints, the model is expressive. It has sufficient freedom
to (obliviously) implement RAM. This expressiveness in the presence of GC-
compatible constraints is what makes tri-state circuits so useful in garbling.

While our focus is on secure computation and garbling, we envision that the
tri-state circuit model may be interesting in other settings as well. For instance,
it is intriguing that our tri-state circuit constructions can — at least in principle
— be implemented via digital circuits, and the model may also have interesting
connections to complexity theory.

3 Notation

Word RAM Model. In the word RAM model [Hag98|, an abstract machine oper-
ates on length-w words. Basic operations, such as addition, comparisons, and, in
particular, memory reads/writes are assumed to take constant time.

Let T denote RAM program runtime. We assume w is large enough to point
into the program input (i.e., w > logyn) and, for simplicity of analysis, we
assume w = O(logT). We assume that each non-memory-accessing instruction
can be implemented by a Boolean circuit of size O(w?) = O(log® T), sufficient
to capture powerful operations such as multiplication. Throughout this work, we
refer to word RAMs as RAMs.

Common Notation. z || y denotes the concatenation of strings = and y. We
denote by (x) a Boolean encoding of the value z. E.g., if P is a RAM program,
then (P) denotes a Boolean encoding of that RAM program. We leave the details
of such encodings unspecified, as they are not interesting. o denotes a statistical
security parameter (e.g. 40 or 60). A denotes a computational security parameter
(e.g. 128). X Y denotes that distributions X and Y are statistically close.

136 D. Heath et al.

@01z
0|0 12 1 procedure notify(gate):
111 02 . .
2 ,ing, i1, out) «— gate
zlzzz (f> o, ima, out) = g
3 x « wires[ing)
/012 4y« wires[ini]
01202
11z1 2 5 z— f(z,y)
ZIZZZ 6 if z # Z and wires[out] = Z:
sal0 1 2 7 wires[out] — z
0joLo 8 for gate’ € subscribers(out):
1|4 11 9 notify(gate”)
Z|I012Z2

Fig. 1. The semantics of tri-state circuits. Tri-state circuits have three types of fan-in
two gates: XORs (@), buffers (/), and joins (p<). We define the function of each gate
type (left), and we define a recursive procedure notify (right) which defines semantics.
The array wires is a global object that stores the value of each wire. Each wire can take
on three different values: 0, 1, or Z. Z indicates that a wire has not yet been assigned.
At initialization, all non-input wires are set to Z. The function subscribers maps from
wire ID w to the set of gates that take wire w as input. Circuit execution begins by
calling notify on each gate subscribed to an input wire. The symbol L denotes an illegal
state; if any join evaluates to L, we set all wires to L, execution terminates, and the
circuit outputs L.

Tri-State Notation. Section4 introduces the following; we catalog for reference.
Based on notation from digital circuits, Z denotes the distinguished tri-state
high impedance value. Z can be pronounced “nil”, and can be informally under-
stood as the value of a wire that is not yet defined. A wire carrying 0 or 1 is
set; a wire carrying Z is not set. We denote buffers by division® (written/or
5), and joins by <. The second argument to each buffer is called its control.
The symbol & denotes XOR. XOR is extended to tri-state values in a natural
manner. Namely, if either XOR input is Z, then the output is Z (see Fig.1).

4 Tri-State Circuits

This section describes and formalizes the tri-state circuit model. Sections 5 and
6 later shows that tri-state circuits can efficiently implement RAM programs.

Tri-state circuits center on a non-Boolean gate that we call a buffer. A buffer
takes two inputs, a control wire and a data wire:

5 We chose division to denote buffers because buffer semantics produce the ‘undefined’
value Z when dividing by 0.

Tri-State Circuits 137

control

output

If the control is set to 1, then the output wire acquires the value of the data
wire; if the control is set to 0, then the output wire remains unassigned, which
we denote by stating the output wire has value Z.% If the control is set to 1,
we say that the buffer is active and that the output is set; else the buffer is
inactive and the output is not set.

Because a buffer might not set its output, it is possible to implement inter-
esting circuit arrangements, such as the following:

Sy

Here, we connect the outputs of two buffers, denoted by the black circle which
we formalize as a gate that we refer to as a join. The join polls its two inputs,
forwarding an input to its output as soon as some input is set. We connect the
join’s output to a subcircuit labelled f.

The crucial point is that the two buffers might be far apart in the circuit
topology. Subcircuit f eagerly fires as soon as its inputs are set. Since the buffers
fire at different times, the time at which f fires depends on wire values, not just
the topology. This input-dependent order of execution is the key ingredient of
tri-state circuits and is what distinguishes them from Boolean circuits.

Definition 1 (Tri-state Circuit). A tri-state circuit is a circuit allowing
cycles (i.e., its graph need not be acyclic) with three gate types: XORs, buffers,
and joins. Each tri-state wire carries one of three values: 0, 1, or Z. The seman-
tics of each gate type and of circuit execution are formally specified in Fig. 1. Tri-
state circuits may use two distinguished wires, named 0 and 1, which respectively
carry the corresponding constants 0 and 1.

Looking forward, we will consider constrained classes of tri-state circuits satis-
fying (combinations of) additional properties (see Definitions 4, 5 and 8).

The dynamic nature of tri-state circuits is formalized by notify (Fig.1). When
a wire is set to 0 or to 1 —i.e., when it is not Z — each gate subscribed to that
wire (each gate taking the wire as input) is notified and fires.

At initialization, each non-input wire holds Z. As gates fire, wire values
change from Z to 0 or 1. Once set, a wire value cannot change again. Thus, the
state of the wires converges to a final configuration, the halt-time state.

Definition 2 (Halt-time state). The halt-time state of a tri-state circuit C
is a wiring w (i.e., a map from circuit wires to wire values) such that there is
no gate g € C where notify(g) changes w.

5 We use Z, pronounced ‘nil,’ to denote ‘no signal’. In digital circuits, the ‘no signal’
value is called high impedance, and is denoted ‘hi-Z’. In GC, Z on a wire corresponds
to E holding no key on that wire; see Sect. 7.

138 D. Heath et al.

A gate only notifies its subscribers if it sets its output. This, combined with
the fact that each gate has only two inputs, means that each gate is notified
at most twice, tightly bounding the total runtime. L.e., it is a straightforward
fact that a random access machine (e.g., a computer evaluating the TSC) can
emulate a size-n tri-state circuit in time O(n) by simply running notify.

The halt-time state of a tri-state circuit C is unique, even when we allow
calls to notify to occur in an arbitrary order. Indeed, in Appendix A of the full
version of this paper” we prove the following:

Lemma 1 (Halt-Time State Unique). LetC be a TSC that, on input x and
for some sequence of calls to notify, reaches a halt-time state w. Any sequence
of calls to notify reaching a halt-time state will reach the same state w.

Circuits with Cycles. Definition 1 explicitly allows circuit graphs with cycles.
Indeed, cycles seem to be essential for implementing efficient RAM with TSCs.

Consider two executions of a RAM program. In the first execution, suppose
we first access some index 7, then we access some index j; in the second execution,
suppose we first access index j, then index i. Ideally, we would save indexes %
and j on particular collections of wires such that the two executions read the
same two collections of wires, just in different orders. To achieve this, we must
admit cycles in our circuits: there is a possible data path from the i wires to the
j wires, and from the j wires to the i wires.

There is no inherent inconsistency in allowing circuits with cycles, so long as
we are careful in our circuit designs. Namely, tri-state circuits are allowed to have
cycles, but their runtime data paths are not. Consider the following example:

ing user
O

control
O

storage iny

Here, we connect a wire named user to a wire named storage, allowing user to
read from/write to storage. At first glance, the circuit appears to allow user to
write to itself, a potentially problematic arrangement (especially when proving
GC security). On closer inspection, it becomes clear that the wire control stat-
ically rules out this possibility: at most one buffer can activate, so there is no
way for user to write to itself. This circuit has a cycle, but there is no possible
cycle in the runtime data paths through the circuit.

We rule out runtime cycles by considering circuits that are runtime acyclic:

Definition 3 (Runtime Dependency). A tri-state gate g is runtime
dependent on another gate g' with respect to a circuit input x if:

— g is an XOR, join, or a buffer with control 1, and g is subscribed to the output
wire of ¢'.

— g is a buffer with control 0 or Z (at halt-time), and g is subscribed to g’ w.r.t.
g’s control wire (i.e., g’ outputs the control of g).

" https://eprint.iacr.org/2023/455.

https://eprint.iacr.org/2023/455

Tri-State Circuits 139

We explicitly emphasize that a buffer with control 0 or Z (at halt-time) is not
runtime dependent on the gate that outputs its data wire.

Definition 4 (Runtime Acyclic). A tri-state circuit C is runtime acyclic
if for all inputs x, there exists a winning strateqy to a graph pebbling game with
the following rules:

— The player is allowed to place a pebble on each circuit input.

— The player is allowed to place a pebble on a gate g iff there is a pebble on
each of g’s runtime dependencies with respect to x (Definition 3).

— The player wins if it successfully places a pebble on each gate.

Roughly speaking, Definition 4 states that for any input, there is no data
cycle; if there were, then it would be impossible to win the pebbling game, since
pebbling a gate requires first pebbling each of that gate’s runtime dependencies.?
Note, the above example circuit is runtime acyclic. Indeed, if control = 0, then
the left buffer is inactive, and we can pebble the cycle by first pebbling this left
buffer; if instead control = 1, then we can first pebble the right buffer.

For the rest of this work, we only consider tri-state circuits that are runtime
acyclic, and our formal security theorems (see Appendices C and D of the full
version) require runtime acyclicity.

Subcircuit Sharing. Because tri-state gates run dynamically, we can arrange a
trick that we call subcircuit sharing. Consider the following circuit:

ing outy
o—

control
o— f

iny outy
o—

For sake of argument, suppose subcircuit f is composed from a large number of
gates. Our example allows f to be called in two different ways: we can either
set control = 1, running circuit f on input port ing and setting output port
outg, or we can symmetrically set control = 0, running f on input port in; and
setting output port out;. Since we can only set control to either 0 or 1, we can
only activate one of the pairs of buffers, and so f is used only once. We again
emphasize that the time at which f fires depends on control: ing and in; might
each be set by the calling circuit at an arbitrary time.

Thus, f can be used in a conditional manner, solving a subproblem at one
of two very different points in time. Crucially, our example is efficient in the
sense that it contains only enough gates to implement f once; the gates in f are
shared across the two call sites.

8 One might wish to consider simpler definitions of runtime acyclicity, such as removing
inactive buffers from the circuit, then requiring that the remaining graph is acyclic.
Unfortunately, our attempts at such a definition admitted circuit designs for which
we cannot prove GC security. Such designs feature cycles which set their own control
wires. Our pebbling-game-based definition leads to a natural proof of GC security;
it is inspired by pebbling-based techniques from adaptively secure GC [HJO+16].

140 D. Heath et al.

RAM from Cyclic Circuits with Subcircuit Sharing. Subcircuit sharing is the
key idea of our RAM reductions. In short — and as we later explain in detail
— we arrange our RAM memory as a collection of small subcircuits, each of
which stores RAM elements and is shared across many accesses. By sharing
each such subcircuit, we allow each data-dependent access to consume only the
subcircuit storing its desired element. Thus, the number of required gates is
amortized across accesses; in total, we only need a number of gates that grows
quasilinearly in the number of accesses. Fach gate in our RAM can be used to
satisfy a variety of different accesses because our RAM circuits feature cycles,
allowing accessed memory elements to “flow backwards through the topology”
to the particular RAM step where it is needed.

The complexity of our RAM constructions arises from arranging subcircuit
sharing at a large scale. We ultimately share each of a large number of subcircuits
across a large number of memory accesses. This is achieved by arranging sub-
circuits in a binary tree where each node is itself a shared subcircuit providing
shared access to further subcircuits. Section 5 explains in detail.

Preventing Short Circuits. Definition 1 includes the possibility of illegal states,
denoted 1. One can erroneously join two wires where one wire holds 0 and the
other holds 1. This causes a ‘short circuit’, and is ill defined. We must restrict
ourselves to circuit designs that cannot enter an illegal state. For this reason, we
focus on tri-state circuits that compute Boolean functions:

Definition 5 (Computing a Boolean function). Let f:{0,1}" — {0,1}™
denote a Boolean function and C denote a tri-state circuit. We say that C com-
putes f if for all z € {0,1}", C(x) = f(x).

This definition rules out illegal states, because entering an illegal state causes
the circuit to output L, which is not a possible output of a Boolean function.

Note, the property of computing a Boolean function (Definition 5) neither
implies nor is implied by runtime acyclicity (Definition 4).

Completeness. Definition 1 does not include AND gates. Even without AND,
tri-state circuits are as expressive as Boolean circuits. Indeed, for every Boolean
circuit, there is a similarly-sized tri-state circuit computing the same function:

Theorem 1 (Emulating Boolean circuits; tri-state AND gates). For
any Boolean circuit C, there exists a tri-state circuit C' such that:

C' computes C and |C'| = O(|C])

Proof. By constructing Boolean gates from tri-state gates.

Indeed, it suffices to construct AND gates; XORs and constants are part of
the tri-state circuit definition, and {A, @, 1} is a complete Boolean basis. We use
division to denote the buffer operation (Sect. 3). An AND gate can be constructed

as follows:
0
AND(z,y) 2 x) > ()
(z,y) <y ST

Tri-State Circuits 141

The above definition can be read as follows: When the value of y is 1, the result
is x; when the value of y ® 1 is 1, the result is 0. a

4.1 Randomized and Oblivious Tri-State Circuits

In cryptographic settings, one of the principal advantages of non-tri-state circuits
is their input independent order of execution. However, the entire point of the
tri-state circuit model is its dependence on the input. This leads to a natural
question: can we construct tri-state circuits where orders of execution — which
depend on inputs — appear to be independent of the input?

Indeed, we can meaningfully define oblivious tri-state circuits. This definition
is sufficient for cryptographic applications, as we demonstrate in Sect.7. The
definition of oblivious tri-state circuits is analogous to that of oblivious Turing
Machines and of oblivious RAMs (ORAM, [GO96]).

In short, a tri-state circuit is oblivious if we can simulate all of its buffer
control wires. L.e., there exists a poly-time simulator that outputs a distribution
of control bits which — on every input — is close to the distribution of the real
controls. This idea is reasonable because the order in which gates are executed
can be deduced from the controls alone. Indeed, buffer control wires are the only
mechanism in a tri-state circuit that can set a wire conditionally, and hence they
determine the order of execution. Thus, if the controls can be simulated, then
the order of gate execution hides the input.

Given our definitions so far, we cannot construct non-trivial oblivious circuits.
So far, there is no mechanism for deviating from an order of execution that is
deterministically prescribed by the input. Thus, the value on each control wire
is a determined by the input, and we cannot simulate. Somehow we must mask
each sensitive wire value before using it to control a buffer, e.g. by applying a
one-time pad. Thus, we consider tri-state circuits with randomized inputs:

Definition 6 (Randomized Tri-State Circuit). A randomized tri-state
circuit is a pair consisting of a tri-state circuit C and a distribution of bit-
strings D. The execution of a randomized tri-state circuit on input x is defined
by randomly sampling a string r from D, then running C on x and r:

(C,D)(x) £ C(x;7) where r €g D

A randomized tri-state circuit obliviously computes f if its controls (Defini-
tion 7) can be simulated:

Definition 7 (Controls). Let C be a tri-state circuit with input x € {0,1}™.
The controls of C on z, denoted controls(C,x) € {0,1, Z}*, is the set of all
buffer control wire values (each labeled by its gate ID) at halt-time.

Definition 8 (Obliviously computing a function). Let f : {0,1}" —
{0,1}™ be a Boolean function. Let o € N be the statistical security parame-
ter. Let (C,D);cn denote a family of randomized tri-state circuits. The family
obliviously computes f if:

142 D. Heath et al.

1. For all x € {0,1}"™, (C,D), outputs f(x) with overwhelming probability:

Pr [C(x;r) = f(x)] > 1 —negl(o)
regD
2. The distribution of controls of (C,D), can be simulated. Le., there exists a
simulator S such that for all inputs x € {0,1}" the following holds:

S(17) Z { controls(C, (x;7)) | r €D }

While only tri-state circuit families obliviously compute functions, we will
sometimes slightly abuse notation and omit the explicit mention of families.

As a warm up, we show that for every Boolean circuit, there exists a similarly-
sized randomized tri-state circuit obliviously computing the same function:

Theorem 2 (Obliviously Emulating Boolean Circuits). For any Boolean
circuit C, there exists a randomized tri-state circuit (C', D) s.t.:

(C', D) obliviously computes C and |C'| = O(|C|)

Proof. By reducing Boolean gates to tri-state gates with randomized input.

As in Theorem 1, we need only demonstrate how to build an oblivious AND
gate, since XOR gates are part of the tri-state circuit definition.

To construct each AND gate, we use the classic idea of Beaver multiplication
triples [Bea92]. For each AND gate, we define a distribution D as follows:

DE{o,fB,a-8 | a,B€5{0,1}}

Our oblivious AND gate uses the multiplication triple to mask its input bits
before using them as buffer controls:

ANDobv(xay;avﬁa’y = Oéﬂ) £

((%éam (méBg)@l)@(ygﬂN @@2)@1))@7

Both z @« and y® (3 (and their complements) are controls, so to prove this gate
is oblivious, we must simulate these values. This is straightforward: « and 3 act
as one-time pads, masking = and y:

S(A17) & {ro,ro®1L,r1,r1®1 | ro,71 €5{0,1} }

Formally, the full circuit (C, D) consists of many such AND gates, each with
its own triple, and we must jointly simulate all controls. This is trivial: multi-
plication triples are mutually independent and each is used only once. O

Simple Distributions. The formal definition of randomized tri-state circuits
allows arbitrary distributions D. In practice, we cannot handle any distribu-
tion. For instance, some distributions are not computable. Moreover, in some
settings — and in particular in the authenticated garbling setting — we wish to

Tri-State Circuits 143

consider distributions that are as simple as possible, such that they are easy to
sample.

Constructions presented in this work use simple distributions. In particular,
our distributions can be described as the concatenation of independent copies of
the following two sub-distributions: (1) a uniformly sampled bit r €¢ {0,1} and
(2) a uniform multiplication triple { o, 8, G | a, 8 €¢ {0,1} }. Uniform bits
and multiplication triples suffice for our oblivious tri-state RAM.

Simple distributions are important because, as we will see, our approach to
authenticated garbled tri-state circuits samples D via a (malicious) preprocess-
ing functionality. Efficient protocols exist for our considered class of distribu-
tions [WRK17, KRRW18, YWZ20,DILO22].

5 Deterministic Tri-State RAM

In this section, we reduce RAM execution to deterministic tri-state circuits. We
emphasize that this section constructs only RAM, not oblivious RAM.

Our focus is our later oblivious reduction (Sect.6), which has utility in 2PC.
We give a deterministic reduction here for two reasons. First, it explores the
theoretical capabilities of TSCs. Second — and more importantly — our deter-
ministic reduction is simpler than our oblivious reduction. Our deterministic
RAM sets the stage for our more complex oblivious reduction, which mixes the
same high-level ideas with the Oblivious RAM construction of [WCS15].

We set the stage by defining what it means for a TSC to emulate a RAM:

Definition 9 (T-Emulation). Let T € N denote a runtime. A tri-state circuit
C T-emulates a RAM if C computes (Definition 5) the following function: Let
P denote a word RAM program and x € {0,1}™ denote a string. (x) denotes a
Boolean encoding of value x.

P(z) if P halts on input & within T steps
(L) otherwise

Theorem 3 (Deterministic Tri-State RAM). For any runtime T € N,
there is a tri-state circuit C s.t. C T-emulates a RAM and |C| = O(T - log" T)).

We describe our deterministic RAM. Our oblivious construction (Sect.6) is
more sophisticated, but builds on the ideas developed in this section.

The challenge of emulating a RAM is in accessing a large main memory.
Other details — including operating on machine words and managing internal
state — are straightforward, even without tri-state-specific capabilities. Thus we
focus on repeatedly and arbitrarily accessing main memory.

Our approach is strongly inspired by the GRAM construction of [HKO22]; we
show that their high level ideas are compatible with tri-state circuits, replacing
their complex language translation mechanism by simple tri-state gates. We later
asymptotically improve over [HKO22]’s construction.

Throughout the following discussion, we refer the reader to Fig.2, which
depicts our deterministic RAM construction.

144 D. Heath et al.

random
access D]

machine

il 0¥ 0 b
"EEEREET

Fig. 2. Our deterministic tri-state RAM is arranged as a binary tree where memory
elements are stored in the leaves. Each inner node has two stacks (concatenated rectan-
gles) which allow the node to dynamically communicate with its two children. On each
access, the RAM sets the desired leaf address on a top port of the RAM. This causes
the circuit to dynamically traverse a path to the addressed leaf (example depicted in
green). At each node, the RAM pops one stack and not the other, allowing the RAM
to proceed either left or right. This establishes a path through which the requested
element will flow back up to the root. Traversing the tree uses up parts of the cir-
cuit (previously used up components are in grey). Since the accessed memory element
might be needed again later, the RAM writes an element back to a statically chosen
and unused leaf. (Color figure online)

5.1 Deterministic Tri-State RAM Overview

Our main idea is to construct inside a tri-state circuit a binary tree of nodes,
where each leaf holds one memory element, and where each internal node con-
tains machinery needed to access its descendants.

On an access, the emulated RAM uses this machinery to dynamically traverse
a path towards the particular leaf holding the target memory element. By lever-
aging subcircuit sharing, we ensure that while each traversal uses up some
gates, it crucially does not use any gates off of its path. Thus, those gates can
be used later. This basic idea leads to single circuit structure that is amortized
across all RAM accesses.

Note that Boolean circuits cannot realize the above amortization since there
is no mechanism by which to set aside a portion of the circuit for later use. In
contrast, TSCs can, based on their dynamic order of execution and support for
cyclic graphs. This is the expressive advantage of TSCs.

Communicating Nodes. Leveraging this ability to amortize gates, the next crucial
insight of our deterministic RAM is to view each tree node as an object that
can dynamically send messages to and receive messages from its two children,
consuming only “on-the-path” TSC gates. (Boolean circuits do not have this
ability, and each access to a child requires processing both children, ultimately
resulting in a linear scan.) Messages are passed by setting particular collections

Tri-State Circuits 145

of wires that we refer to as ports. By setting a child’s input port, a parent
can send a message to its child; by setting its own output port, the child can
respond to its parent. The challenge is in allowing each parent to communicate
with its children dynamically. Namely, we must arrange that a parent sends a
message to its child if and only if that child is on a dynamically traversed path.

Clircuit-Based Stacks. Like [HKO22], we arrange this dynamic communication
via circuit-based stacks [ZE13|. Namely, there exists a Boolean-circuit-based
analog of a stack data structure. These stacks are created with n elements and
can support up to m conditional pop (cpop) operations. On each cpop, a stack
takes as argument a single control bit p. If p = 1, then the stack indeed pops,
returning and removing its top element; if p = 0, then the stack instead returns
the all zeros string and its contents remain unchanged.

We can port stacks to tri-state gates by simply substituting ANDs by buffers
and XORs by joins.? A stack with n w-bit elements supporting m cpop opera-
tions requires O(w-m-logn) tri-state gates. Thus, each of the m cpop operations
requires only an amortized log number of gates. This straightforward substitu-
tion unlocks substantial utility. Leveraging tri-state semantics, we can use stacks
as dynamic communication channels between nodes; see next.

Using Stacks. A parent node and its children communicate via a stack. The par-
ent manages the stack’s control bits and outputs. The child manages the stack’s
content: it appropriately connects the stack’s content wires to its input/output
ports. To communicate with its child, the parent pops the stack (the call to cpop
with p = 1 is non-oblivious). This establishes a chain of buffers whose control
wires are each set to 1, but whose data wires are not yet set. As soon as we
set the data wire of the first buffer in the chain, the buffers will one-by-one fire,
sending the data through the chain, from parent to child.

To enable two-way communication, we place two kinds of buffers in the stack.
Some buffers are oriented from parent to child, allowing messages to flow from
the parent into the input port of the child; other buffers are oriented from child
to parent, allowing the child to set messages on its output port which will flow
through the stack to its parent. (In Appendix B.1 of the full version, we formalize
this notion by giving two variants of a stack, one that sends messages from inputs
to outputs and the other that sends messages from outputs to inputs.) Thus,
by calling cpop with p = 1, the parent dynamically connects itself to one input
port and one output port of its child.

Now that ports are connected, the parent can send a message to its child
by setting data wires on its side of the stack. These values automatically flow
through the stack into the child’s input port, causing gates in the child to fire,
compute the relevant response, and load the response onto an output port, where
it, again, automatically flows through the stack back to the parent.

9 In addition to wires that store data elements, stacks include control logic that tracks
element positions. Here, we do not simply replace ANDs by buffers (XORs by joins),
but rather translate Boolean control logic into tri-state gates via Theorem 1.

146 D. Heath et al.

Crucially, if the parent instead calls cpop with p = 0, no communication
occurs. The parent does not connect to its child’s port, and hence no gates
inside the child fire, so all gates in the unused child remain ready for later use.

Inner Nodes. Let tree level 0 denote the root; level ¢ has 2* nodes. Let level ¢
denote the tree’s largest level. Each node on level i has two stacks, each support-
ing 2/~ calls to cpop, of which half can be called with p = 1. Le., each stack
allows the node to communicate with its respective child up to 2¢~*~! times.

Each node also consists of 2¢=% subcircuits, each of which performs the fol-
lowing task: (1) receive the address of some leaf from an input port, (2) use
the first bit of this address as a stack control bit such that we pop only the
stack corresponding to the subtree that stores the requested address, (3) save
the remaining bits of the address on the output wires of each stack (sending
the bits to the active child), (4) read the response from each child, (5) join the
responses together, and (6) save the joined response on the output port. We
note that as we inspect nodes closer and closer to the leaves, the nodes become
progressively smaller, until the leaves are subcircuits capable of handling exactly
one request.

Read Traversals. The RAM can read elements from memory by traversing full
root-to-leaf paths through the tree. To do so, the RAM loads into the root the
address of the target leaf. The root strips the most significant bit from this
address and uses it to conditionally communicate with its two children, indeed
popping (i.e. calling cpop with p = 1) the stack for the child on the target path,
and not popping (i.e. calling cpop with p = 0) the other child’s stack. The root
can now forward a message to its child, so it forwards the address’s remaining
bits. The child then recursively computes this same procedure, and so on, until
we reach the target leaf.

This leaf stores a single element, and it sets its single output port to this
element. Based on the semantics of tri-state circuits, this automatically triggers
a cascade of events. The element flows through the stack of its immediate parent,
causing the parent to fire and set its own output port to this newly received
element. This causes the element to flow through a stack in the next level of the
tree, and so on until the element reaches the root. At this point, the RAM can
read the element from the root, completing the memory read.

Direct Writes. Now that the RAM has read its desired element, it must write
something back. Note, we require this even if the goal of the memory access is
simply to read. The problem is that we have now used up the gates associated
with the accessed leaf, so we cannot reach that same leaf again. Thus, we need to
write back to a fresh leaf, allowing later reads to access the same element again.

It is straightforward to arrange that each step of the RAM is statically
and directly connected to one leaf, allowing it to directly write back without
a dynamic traversal. Note, these connections induce cycles in the circuit graph,
but not at runtime (Definition 4).

Tri-State Circuits 147

Recursive Position Map. As just discussed, each time we read a memory ele-
ment, we write it back to a fresh location. This introduces a problem: how does
the RAM remember where it last placed a particular element? This problem
is typical in Oblivious RAM constructions, e.g. [SvS+13,WCS15|, and can be
solved via recursion. Namely, we explicitly store the current position of each
memory element in a smaller, recursively-instantiated position map.

We can ensure that each recursively instantiated memory holds half the num-
ber of elements as the last, so only O(logT) levels of memory are needed. To
achieve this, we arrange that each position map element holds the positions of
(at least) two elements in memory. To terminate the recursion, we instantiate
the smallest, constant-sized memory via Boolean-logic-based linear scans.

In sum, the RAM construction is binary tree where each node on level i is
capable of handling 2" RAM read requests. We dynamically traverse the tree
via tri-state-circuit-based stacks; each node holds two stacks, and on each access
we pop only the stack on the path to the desired element.

5.2 Sources of Logarithmic Overhead

Our deterministic tri-state RAM has O(T - log" T') gates. We characterize four
distinct sources of cost, each of which adds a logarithmic factor:

1. Word size. The first source of scaling is unavoidable, as it stems simply
from the size of RAM words. Words are assumed to have size ©(log T'), and
tri-state gates operate on only one bit at a time. Hence, each action on a word
requires O(logT) gates. This factor highlights that the comparison between
the word RAM model and the circuit model is “unfair”. Word RAMs can
manipulate entire words at unit cost; tri-state circuits cannot.

2. Binary Tree. On each access, our RAM traverses a path through a binary
tree of size O(T). Each traversal touches O(logT') nodes.

3. Stacks. During each traversal and at each tree node, our RAM calls cpop on
a constant number of stacks, each of size O(T). Circuit-based stacks of size n
have O(logn) overhead per cpop, yielding an additional O(log T') factor. Our
oblivious construction leverages randomness to reduce the size of stacks
from O(T) to only O(poly(logT')), and hence reduces stack overhead from
O(logT') to only O(loglogT'). This is how our oblivious construction is able
to improve over our deterministic RAM.

4. Recursion. To track positions of elements, we use O(logT') position maps.

It is difficult to foresee methods for achieving a tri-state RAM with fewer
than O(T - log® T - log log T') gates. Indeed, each above source of scaling seems
relatively inherent to our constructions, so further asymptotic improvement will
likely require fundamentally new techniques.

5.3 Formal Construction

We present our formal reduction from RAM to deterministic tri-state circuits in
Appendix B.2 of the full version of this paper. We emphasize that the circuit
described there is simply a formalism of the key ideas explained in Sect.5.1.

148 D. Heath et al.

6 Oblivious Tri-State RAM

In this section, we reduce RAM programs to oblivious tri-state circuits. At the
highest level, we demonstrate that techniques in Sect.5 can be combined with
the Circuit Oblivious RAM construction of [WCS15].

We note that as a proof of concept, one can achieve oblivious tri-state RAM
by simply employing off-the-shelf ORAM. Namely, use our deterministic RAM
construction to emulate an ORAM server, and use oblivious tri-state Boolean
gates (Theorem 2) to emulate an ORAM client. This works, but introduces high
overhead which we would like to avoid. Here, we give a direct construction that
is far more efficient than this proof of concept.

We begin by formalizing our claim:

Definition 10 (Oblivious T-Emulation). Let T € N denote a runtime. A
randomized tri-state circuit family (C,D);cn) obliviously T-emulates a RAM
if it obliviously computes the following function: Let P denote a word RAM
program and x € {0,1}"™ denote a string.

P(z) if P halts on input x within T steps
(L)Y otherwise

Theorem 4 (RAM to Oblivious Tri-State Circuits). For any runtime
T = O(poly(0)), there is a randomized tri-state circuit family (C,D);en such
that (C, D)y obliviously T-emulates a RAM and |C| = O(T -log® T - loglog T))

6.1 Circuit ORAM [WCS15] Review

Our key idea is to implement inside a tri-state circuit the Circuit Oblivious RAM
construction of [WCS15]. We thus review the relevant ideas of Circuit ORAM.

Circuit ORAM is a statistically-secure ORAM: it hides memory access pat-
terns without computational assumptions. This property is achieved because the
Circuit ORAM client does not use cryptographic primitives to choose its queries.
The simplicity of the ORAM client is compatible with the tri-state circuit setting
where implementing cryptographic primitives via gates is expensive.

Circuit ORAM arranges memory elements in a binary tree with O(T') leaves.
Each node holds up to a constant number (e.g., 3) of memory elements. The root
is the only exception: it stores a larger stash with capacity ©(logT - loglogT).

When the ORAM client accesses an element, that element is retrieved from
its node and moved to the stash. To prevent the stash from overflowing, Circuit
ORAM consistently moves elements away from the root in a process called evic-
tion. The key invariant — originally proposed by Path ORAM [SvS+13] — is that
even as an element is evicted, it remains on the path to a fized leaf.

To access an element, we scan only those nodes along that element’s path.
By the invariant, this scan is guaranteed to find the target element, and because
each non-root node holds only a few elements, the scan is relatively cheap: the
entire path — including the stash — holds only O(log T - loglog T') total elements.

Tri-State Circuits 149

Once the element is accessed, the ORAM places that element in the stash and

reassigns the element to a fresh, uniformly chosen (with replacement) path.
Because each path is chosen randomly, it is easy to simulate Circuit ORAM’s

access pattern: the simulator handles each access by choosing a uniform path.

Remembering Paths. To access an element, the ORAM client must somehow
remember that element’s path. Recall that each element’s path was chosen when
it was last accessed, and there might be long gaps between accesses of a par-
ticular element. There are too many data elements for the client to remember
paths locally, so the client remembers paths by recursively instantiating a smaller
ORAM called the position map. See also our discussion of recursion in Sect. 5.

Eviction. After each access, the RAM deterministically chooses two paths and
evicts elements along those paths. Each node on a chosen path evicts up to
one RAM element to its child. To ensure that the RAM does not get ‘stuck’
with too many elements in the stash, the identity of evicted elements must be
chosen carefully. The goal is to move elements towards the leaves — where there
is more space — as quickly as possible. [WCS15]’s key contribution is an efficient
procedure for deciding which element each node should evict.

Some details of this eviction strategy are highly relevant here, because we
must implement the procedure with tri-state gates within our asymptotic budget.

[WCS15]’s Eviction Strategy. During eviction, [WCS15] first computes metadata,
deciding for each path node which element to evict. This metadata computation
scans the path twice, starting at the root, performing a (cheap) step of computa-
tion at each node towards the leaf, then performing a second scan starting from
the leaf and returning to the root. Crucially, this metadata computation has
high locality: each step only considers local information stored in the currently
considered node, plus O(logT) bits from the previous step.

Jumping ahead to our construction, this locality is absolutely essential,
because it bounds the amount of information that needs to be passed from a
tree node to its parent/child, and hence bounds the amount of information that
needs to pass through circuit-based stacks (see discussion in Sect. 5). Thus, our
reduction can use stacks of small items, each of size O(log T') bits.

The remaining details of metadata computation are not crucial for under-
standing our construction, except that they ensure eviction prevents the stash
from overflowing (except with negligible probability). For further detail, we refer
the reader to [WCS15] (see their Algorithms 2 and 3 as well as their Fig. 2).

After metadata is computed, Circuit ORAM again performs a scan from root
to leaf where each node evicts (up to) one element to its child. The identity of
this child is chosen according to the metadata.

By evicting elements this way, Circuit ORAM maintains its crucial path
invariant while ensuring that the root will never overflow.

150 D. Heath et al.

6.2 Overview of Our Oblivious Tri-State RAM

In short, our oblivious tri-state RAM reuses almost every idea explained in
Sect. 5. It similarly maintains a binary tree of nodes, each of which condition-
ally communicates with its two children via circuit-based stacks, and our RAM
reads elements by traversing paths through the tree. Our oblivious construction
improves over our deterministic RAM in two ways: it is oblivious, making it
suitable for cryptographic use, and it is asymptotically smaller.

These properties are achieved by using tri-state circuits to directly imple-
ment the Circuit ORAM construction [WCS15]. We also leverage an insight
described by [PLS22| that allows us to use smaller circuit-based stacks, reducing
asymptotic cost. We describe our oblivious tri-state RAM by highlighting the
differences as compared to our deterministic reduction (Sect. 5).

Storage in FEvery Node. In our deterministic RAM, only the leaves store memory
elements. Our oblivious construction follows Circuit ORAM, where each node
can hold O(1) elements and where the root stores O(log T - loglog T') elements.
When the RAM accesses an element, that element is written back to the root
(and not written directly to a leaf). These elements subsequently move down the
tree via Circuit ORAM’s eviction strategy, implemented via tri-state gates.

Multi-purpose Node Subcircuits. In our deterministic construction, each node
holds O(T') subcircuits, each of which completes a basic task: conditionally pop
both stacks, then join the resulting values and send them back to the parent. Our
oblivious construction’s subcircuits are more complex. They each conditionally
perform various tasks, depending on the current need of the ORAM construction.

Each subcircuit conditionally performs one of three tasks: (1) read, including
scanning the node’s local content, (2) evict, including computing appropriate
metadata and sending an element to a child, or (3) do nothing (the need for
this option is explained when we discuss “smaller stacks”). While each subcircuit
must include enough circuitry to complete any of these tasks, the subcircuit is
small. This is achieved by reusing parts of the circuit across the different possible
tasks. In particular, we need only two total calls to cpop per subcircuit.

Multiple Scans. In our deterministic RAM, each access scans a path twice, from
root to leaf and then back to the root. Our oblivious tri-state RAM performs
three scans. While only two scans are needed to read, three are needed to evict.
When evicting, the RAM uses two scans to compute Circuit ORAM’s relevant
metadata, and it uses the third scan to evict elements from parent to child.

Our tri-state stacks are thus used multiple times per access: the parent sends
a message to its child, receives a message back, and then sends a second message.
We emphasize that there is no technical challenge in using a circuit-based stack
to communicate more than once: just increase the size of stack elements and
leverage tri-state semantics to send bits at the right time.

Even though our nodes use three scans, the total information flowing through
stacks remains small. In total, each node sends/receives O(log T') bits of informa-
tion. Keeping this amount of information small is crucial, because transmitted

Tri-State Circuits 151

bits pass through stacks, and hence we must pay in additional gates for every
bit of information transmitted between parent and child.

Smaller Stacks. In our deterministic RAM, each node communicates with each
of its children via a circuit-based stack of size O(T"). Our oblivious construction
improves on this by leveraging an elegant idea demonstrated by [PLS22], allowing
much smaller stacks that hold only O(poly(logT)) elements. The smaller stacks
account for our oblivious construction’s improved asymptotic size.

We explain [PLS22]’s observation — which is derived from an observation of
[FNR+15] — in the context of Circuit ORAM. Recall that in Circuit ORAM,
each memory access scans a uniformly chosen path.

Let B = 9(10g1+€ o) denote a parameter super-logarithmic in the security
parameter for constant € > 0. We call B the batch parameter. Let level 0 denote
the root of the RAM tree; each level 4 has 2° nodes. Consider: how often will a
particular node on level 4 be scanned over the course of 2¢ - B accesses?

[FNR-+15]’s insight is that because elements are randomly assigned to leaves,
accesses should be roughly evenly distributed amongst nodes on level i. Indeed,
it is incredibly unlikely that a particular node will be scanned significantly more
often than its peers. [FNR+15] proved that it is only negligibly likely that over
2¢. B accesses any node on level i will be used more than 2 - B times.

The upshot is that we need never instantiate a stack with more than O(B)
entries (e.g., 256 entries in practice), since it is unlikely that we will exhaust its
entries over the course of 2¢ - B accesses. Instead, every 2° - B accesses, we insert
a reset step, forcibly clearing all stacks on level ¢ and instantiating fresh stacks.
Since each cpop operation is made to a smaller stack, this strategy reduces stack
overhead from factor log T to factor loglogT.

Smaller stacks introduce nuance in implementing node subcircuits. Consider a
particular node, consisting of many sequentially composed subcircuits. [PLS22]’s
strategy partitions these subcircuits into generations of size 2- B. After each gen-
eration, we insert a statically scheduled reset, preparing for the next generation.
For this to work, we must ensure that over the course of 2° - B accesses, every
subcircuit in the current generation is consumed. If not, the circuit is not well
defined, since our reset will manipulate wires coming out of the generation’s last
subcircuit, and the wires of this last subcircuit are defined only if it and all of
its predecessors have been used. Thus we must ensure that each subcircuit is
ultimately used. Since subcircuits are used only if they are on a randomly chosen
path, it is highly unlikely that every subcircuit will be used up naturally.

To account for this problem, we insert additional logic allowing a parent to
burn through subcircuits in its children’s current generations. This is the role of
the do nothing subcircuit task. When a parent calls its child with a particular
flag set, the child’s subcircuit simply calls cpop on each of its respective stacks
with p = 0, and no further action is taken. This burns the subcircuit.

Because we reset level i every 2¢ - B accesses, we reset level i + 1 in synchrony
with one out of every two resets of level 7. On each second reset of level i, we add
circuitry that causes each node on level i to call cpop on each of its stacks 2- B
additional times, sending a message that instructs the corresponding child to

152 D. Heath et al.

burn a subcircuit (once all subcircuits are burned, the parent stops forwarding
this message by instead calling cpop with p = 0). A statically known state, and
we can correctly wire gates.

Oblivious Clircuitry. To allow a simulator, our oblivious reduction uses oblivious
Boolean gates (see Theorem 2). There is nuance here: circuit-based stacks con-
tinue to elide obliviousness, and the role each subcircuit ends up executing (read,
evict, or do nothing) is leaked by the circuit. This leakage is fine, however, since
this information is implied by the RAM’s physical access pattern, and Circuit
ORAM ensures that the physical access pattern hides the logical access pattern.

On the other hand, some oblivious gates are required. In particular, any
circuitry that actually scans the content of a RAM node is oblivious. It is cheap
to instantiate these components with oblivious ANDs (Theorem 2).

In sum, our oblivious reduction builds on the basic ideas of Sect. 5, and then lay-
ers in the key ideas of Circuit ORAM [WCS15] and of [PLS22]. Circuit ORAM’s
eviction procedure can be implemented by tri-state gates, allowing for a lean
memory structure whose access pattern can be simulated. The resulting memory
features an access pattern that touches nodes on each tree level uniformly, allow-
ing us to use smaller stacks, reducing the size of circuitry required to support
intra-node communication. Together, these ideas yield a circuit that obliviously
simulates RAM and that has low poly-logarithmic overhead.

6.3 Formal Construction

We present our formal reduction from RAM to oblivious tri-state circuits in
Appendix B.3 of the full version of this paper. We emphasize that the circuit
described there is simply a formalism of the key ideas explained in Sect. 6.2.

7 Garbling Tri-State Circuits

In this section, we demonstrate how to garble tri-state circuits. We give two con-
structions. Our first construction garbles tri-state gates based only on one-way
functions, achieving a garbling scheme [BHR12] suited to semi-honest protocols.
Our second construction builds on authenticated garbling [WRK17] to achieve
malicious security. Both constructions leverage similar high level ideas.

Intuition. In short, garbling of tri-state circuits is similar to classic garbling of
Boolean circuits. Just as in classic garbling, the garbler G chooses two keys per
wire. One key encodes logical zero, the other encodes one. To garble the circuit,
G proceeds gate by gate. At each gate, G uses appropriate combinations of input
keys to encrypt output keys according to the gate’s function.

At runtime, the evaluator E obtains at most one key per wire. E walks the
circuit, using keys to decrypt subsequent keys until obtaining output keys.

The crucial point is this: G only chooses keys that encode 0 and 1; the
distinguished value Z is encoded by the lack of a key. If a particular wire holds

Tri-State Circuits 153

Z at halt-time, then E will never learn a key for that wire. The inability to
decrypt certain wires differentiates tri-state garbling from classic garbling.

Throughout evaluation, F will keep track of which wires are set and which
are not set. To arrange this, we reveal to E the cleartext value of every buffer
control wire. (It is easy to arrange that E learns the cleartext values of particular
wires.) Because F knows which wires hold Z and which do not, E can execute the
circuit in a dynamic order, at each step handling those gates for which input keys
are available. It is safe to reveal controls because the obliviousness (Definition
8) of the circuit ensures that these bits give F no information about the input.

Note the fit between garbling and the out-of-order nature of tri-state circuits:
E can, of course, decrypt each GC gate as soon as matching keys are obtained,
making it easy to execute gates in an order prescribed by notify (Fig. 1).

The following sections show how we garble tri-state gates. Our approaches
build on known techniques for garbling from one-way functions (e.g., see [LP09])
and for authenticated garbling [WRK17].

7.1 Tri-State Garbling from One-Way Functions

Recall that tri-state circuits include XORs, buffers, and joins. We present our
semi-honest garbling of each gate type from one-way functions.

Wire Keys; Point and Permute. For each wire w, G uniformly samples two
length-\ keys K and K. The first key encodes logical zero; the second encodes
one.

We use the classic point and permute trick [NPS99]. In GC, each gate uses
several ciphertexts, of which E should decrypt one. Point and permute allows
FE to decrypt the correct ciphertext without using awkward tricks like trying to
decrypt a ciphertext and then checking if it decrypted correctly or not.

The trick requires that for each wire w, the least significant bits of K2 and
K} differ. G conditionally flips the least significant bit of K} to ensure it differs
from that of KO. G then permutes gate ciphertexts according to these keys.

In the following, we elide details of point and permute, opting for a simpler
presentation. Appendix C of the full version presents a formal construction.

Gate Handling. With keys chosen, GG garbles each gate one at a time. Consider
a gate with input wires z and y and with output wire z. Let Enc(:,-) denote
CPA-secure encryption (which can be instantiated from one-way functions).

— XOR. For each XOR gate, G classically garbles the gate by encrypting each
output key according to the appropriate combination of inputs keys:

Enc(KY, Enc(K),K?)) Enc(K}, Enc(K,,K}))
Enc(K}, Enc(K?, K1) Enc(K!, Enc(K}, K?))

Yo Yo

These four ciphertexts are shuffled according to point and permute and sent
to F. At runtime and when two input keys become available, E decrypts one
ciphertext, obtaining the corresponding output key.

154 D. Heath et al.

— Buffer. For each buffer, G ensures that E can obtain an output key iff F
holds the one key for the control. Recall, £ must learn the value of each
control. To achieve this, G send to E the least significant bit of Kg ; E can
compare this to its own Isb and learn y. Altogether, G sends:

Isb(KJ)) Enc(KY, Enc(K,,K})) Enc(K,,Enc(K,,K))

The two encryptions are shuffled according to point and permute.
— Join. For each join, G ensures F obtains an output key if E holds any input
key. G sends the following rows (shuffled wire-wise with point-and-permute):

0 70 1 gl 0 70 1 gl
Enc(K,, K?) Enc(K,,K) Enc(K,, K) Enc(K,, K;)

As soon as E obtains any input key, E decrypts the appropriate ciphertext,
obtaining a corresponding output key. Here it is essential that (C,D) com-
putes a Boolean function, preventing the possibility of a short circuit (see
discussion near Definition 5) which would allow E to learn both output keys.

Sampling D. Recall that an oblivious tri-state circuit includes a distribution on
bits D. In the semi-honest setting, it is trivial to handle input randomness: G
locally samples r €g D, then sends to F wire keys corresponding to r.

In sum, our OWF-based garbling scheme is simple: we gate-by-gate garble the
circuit, and each garbled gate has size O(A) bits. E evaluates the circuit as keys
become available, implementing the dynamic behavior of the tri-state model.

Formal Construction. We present our OWF-based tri-state garbling scheme in
Appendix C of the full version of this paper. We emphasize that the presentation
there is just a formalization of the ideas presented above.

In terms of security, our proof gives a simulator and a hybrid argument
demonstrating that the garbled circuit hides the input. This proof is similar
to classic proofs of GC security, e.g. [LP09], with two key exceptions: we use
our oblivious tri-state circuit’s simulator (Definition 8) to argue that the E’s
observed order of execution can be simulated, and we use runtime acyclicity
(Definition 4) to guide our hybrid argument.

By combining facts of Appendix C with Theorem 4, we obtain:

Corollary 1 (Garbled RAM from one-way functions). Assuming one-way
functions and in the OT-hybrid model, there exists a constant-round, semi-honest
secure 2PC protocol for word-RAM programs such that for any program halting
in T steps, communication cost is O(T - log® T - loglog T - A) bits.

7.2 Authenticated Garbling of Tri-State Circuits

In this section, we extend authenticated garbling [WRK17] to tri-state circuits.
This extension implies an efficient constant-round maliciously-secure 2PC pro-
tocol for RAM programs.

Our authenticated handling is similar to that of our standard-assumption
-based garbling (Sect.7.1). We highlight the key differences:

Tri-State Circuits 155

— Doubly-authenticated labels. In standard GC, we encode each wire by a
pair of keys chosen by G. In authenticated GC, each key contains components
chosen by each party. In particular, each key includes a MAC, allowing E to
authenticate that certain values are well formed.

— Preprocessing. In Sect. 7.1, we allowed G to sample randomness r €g D. In
the authenticated setting, we instead require that G and E jointly sample r
via a preprocessing functionality. This achieves two goals. First, it ensures that
r is indeed sampled from D, and not arbitrarily chosen by malicious G. Second
it ensures that neither G nor E knows r. This (1) prevents E from learning
wire values and (2) prevents G from performing selective abort attacks. Note,
prior work on authenticated garbling also leverages preprocessed randomness
in the form of doubly authenticated multiplication triples.

— Correlations; Random Oracle Assumption. In Sect. 7.1, we garbled tri-
state gates using only one-way functions. Our authenticated approach uses a
function H modeled as a random oracle. The use of RO stems from correla-
tions in wire labels. It is typical to use RO for authenticated GC.

We next describe authenticated garbling in more detail.

Garblings. The crucial authenticated GC invariant [WRK17] is that on each

wire, G and E hold XOR secret shares of two MACs, one that authenticates the

cleartext value to G and one that authenticates the cleartext value to E.
These garblings are defined over two global secrets:

~ A €4 {0,1}* is a global key drawn by G and hidden from E. G uses A as a
key with which to encrypt gates.

- €g {0,1}9 is a global MAC drawn by F and hidden from G. E uses u to
check that values opened by G are honestly constructed.

For convenience of notation, we define a value I' = A || p || 1.
As the circuit executes, for each wire holding value , G and E will hold
XOR secret shares of the value x - I'. We refer to these shares as garblings:

Notation 1 (Distributed Pair). We denote by (z,y)) a distributed pair of
values, where G holds value x and E holds value y.

Definition 11 (Garbling). Let z € {0,1, 2} be a tri-state value. The gar-
bling of x is a secret share held between G and E. G’s share is a string
X € {0,1}M°+L E’s share is either (1) the symbol Z if x = Z or (2) the
following:

XP@-Allz-pllz)=X@z-T

We denote a garbling of x by []:

ool 222}
X®x-I' otherwise

For values x # Z, we refer to the A component of a garbling as the key part of
the garbling, to the u component as the MAC part, and to the third component

156 D. Heath et al.

as the value part. We use key, mac, val to denote appropriate projections. Le.,
when x© # Z, we define the following projections:

key([z]) = (Xo, Xo ® z - A)) where X, € {0,1}*
mac([z]) = (X1, X1 Dz - p1) where X, € {0,1}7
val([z]) = (X2, X2 & z) where X, € {0,1}

and Xo || X1 H X2:X

Garbling XORs. Garblings are linearly homomorphic. Namely, if each party
locally XORs the shares of two garbled bits, the result is itself a garbled bit.
XOR gates are ‘free’ [KS08]:

Lemma 2 (Free XOR). [z] ® [y] = [z ® y]

Revealing Values to E. Recall that in tri-state execution we reveal to E the
cleartext value of each control bit. In the authenticated setting, we must be
careful when revealing values. In particular, we must preserve two properties:

— Privacy. Revealed values should not leak G’s input to E. Data privacy is
preserved via tri-state obliviousness (Definition 8).

— Authenticity. Even a malicious G should not be able to reveal the wrong
value. We prevent G from cheating via the MAC g on the revealed wire.

It is relatively straightforward for G to reveal a circuit value [z] to E. The
parties first compute:

(X1, Xp @z - p)) = mac([z]) (X2, Xo @ 2)) val([])

If G is honest, G can reveal z by sending to E the strings X; and X5. Of course,
G might attempt to cheat, so it may be the case that G sends X| # X; and
X/} # Xo. Thus, E must check that the strings are well formed. Recall that F
knows the MAC pu. E checks the following:

X od p=X1 @z p where 7’ = (Xo ®) ® X} (1)

If this passes, F is convinced that the wire indeed holds z’; otherwise, E aborts.

The above check passes whenever GG indeed sends X; and X,. Moreover,
if G attempts to cheat, then the above check will only pass with probability
negligible in o. Indeed, to successfully reveal z @ 1, G must send X} = Xy, @ 1
and X| = X; @ u. However, G does not know p, and so G’s attempt to send
X1 @ p requires guessing p, which succeeds with probability at most 1/27.

Note that obliviousness ensures that each revealed value x can be simulated.
This is important not only for protecting G’s privacy, but also for protecting E’s.
In particular, G cannot employ a selective abort attack. Without obliviousness, G
could cause E’s check to fail iff « has a particular value; E’s choice to abort/not
abort reveals to G information about x. Indeed, G can still attempt such an
“attack”. However, the attempt is useless, since it only reveals information about
a control wire which, by obliviousness, can be simulated anyway. Note that this
argument crucially relies on the fact that G does not know the circuit randomness
7 €¢ D, which is one reason r must be jointly computed in preprocessing.

Tri-State Circuits 157

Authenticated Buffers. Consider a buffer with data input [z] and control [s].
Suppose s # Z and z # Z. We show how the parties compute [z / s].
First, the parties reveal the control s to F, as described above. Now, let:

(S, S®s-A) =key([s]) (X, X@z-T) =[]

Honest G wishes to let E propagate [z] to the gate output iff s = 1. The parties
publicly agree on gate-specific nonce v, and G sets its output share as follows:

YA2HSOAV)®X

At runtime, E checks if s = 1. Note that if s = 1, in an honest execution
holds S @ A. In this case, E computes:

HSeAv)e(Xos- IN=YoX)e Xz I=Y®z-T

FE places this value on the output wire, matching G’s share Y. Thus, if s = 1,
the output wire holds [z], as prescribed by buffer semantics. If instead s = 0
then the gate is indeed inactive: E' cannot compute H (S ® A, v) without S@® A.

Thus, a buffer is implemented by G revealing one value and having each party
compute H at most once.

Authenticated Joins. Consider a join with inputs [«] and [y] and suppose that
at runtime at least one input is set. We show how the parties compute [z < y].
Let the shares of [z], [y] be as follows:

[2] = (X, Xg) = (X, X ®x-I) [yl = (Y. Ye) = (V.Y ©y-I)

G sets its output share as X. Thus, if z # Z is set, then E simply copies its share
X @« - I' onto the gate output wire. If instead x = Z, then F must translate its
share Y @y - I" to a format compatible with G’s share. Hence, GG includes in the
GC the message X &Y, which E can use to compute a matching share:

X ify=2 X I ify =2
. Y e =X @ (vpay) T
Yed XY fax=2Z Xy I' ife=2
Thus, a join is implemented by having G send one correction value, which F
conditionally XORs with its local value.

In sum, the authenticated garbling of tri-state gates is a relatively straightfor-
ward extension of existing techniques. Adding a MAC to each key prevents G
from arbitrarily flipping wire values. Crucially, it remains possible for G to reveal
values to F, allowing E to execute the dynamic behavior of the tri-state model.

Communication cost of our protocol is low. For example, plugging in Theo-
rem 2, we evaluate an oblivious AND gate using an authenticated triple and 2+
4042 additional communicated bits (two buffers, two joins). This is only slightly
worse than the authenticated AND garbling of [KRRW18], which consumes an
authenticated triple and 2\ + 1 additional bits. For typical parameters A = 128
and o = 40, our approach is less than 2x worse. Optimizations of [KRRW18]|
can likely be integrated with TSC handling, improving performance.

158 D. Heath et al.

Formal Construction. We defer our full malicious protocol to Appendix D of
the full version. Our protocol and its security proof are very similar to those of
[WRK17|, with the crucial difference that we use the above gate handling.

By combining facts proved in Appendix D with Theorem 4, we trivially obtain
the following corollary:

Corollary 2 (Authenticated Garbled RAM). In the random oracle/OT-
hybrid model, there exists a constant-round, maliciously-secure 2PC' protocol for
word RAMs such that for any program halting in T steps, communication cost
is O(T -log® T - loglog T - \) bits.

Acknowledgements. Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited). This research was developed with funding from the
Defense Advanced Research Projects Agency (DARPA), supported in part by
DARPA under Cooperative Agreement HR0011-20-2-0025, and DARPA Contract No.
HR001120C0087, Algorand Centers of Excellence programme managed by Algorand
Foundation, NSF grants CNS-2246353, CNS-2246354, CNS-2246355, CNS-2001096 and
CCF-2220450, US-Israel BSF grant 2015782, Amazon Faculty Award, Cisco Research
Award and Sunday Group. Any views, opinions, findings, conclusions or recommen-
dations contained herein are those of the author(s) and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of DARPA,
the Department of Defense, the Algorand Foundation, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes not withstanding any copyright annotation therein.

References

[Bea92] Beaver, D.: Efficient multiparty protocols using circuit randomization.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34
[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784-796.
ACM Press, October 2012
[CCHR16] Canetti, R., Chen, Y., Holmgren, J., Raykova, M.: Adaptive succinct gar-
bled RAM or: how to delegate your database. In: Hirt, M., Smith, A.
(eds.) TCC 2016. LNCS, vol. 9986, pp. 61-90. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 3
[CH16] Canetti, R., Holmgren, J.: Fully succinct garbled RAM. In: Sudan, M. (ed.)
ITCS 2016, pp. 169-178. ACM, January 2016
[CKKZ12] Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of
the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 39-53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28914-9 3
[DILO22| Dittmer, S., Ishai, Y., Steve, L., Ostrovsky, R.: Authenticated garbling
from simple correlations. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022. LNCS, vol. 13510, pp. 57-87. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-15985-5 3

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-53644-5_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-031-15985-5_3
https://doi.org/10.1007/978-3-031-15985-5_3

[FNR+15|

[GGMP16]

[GHL+14|

[GLNP18]

[GLO15]

[GLOS15]

[GOY6]

[Hag98)

[HJO+16]

[HKO22]

[HY16]

[KRRW 18|

[KS08]

[Lin13]

Tri-State Circuits 159

Fletcher, C., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM:
single online roundtrip, constant bandwidth oblivious RAM. Cryptology
ePrint Archive, Report 2015/1065 (2015). https://eprint.iacr.org/2015/
1065

Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM compu-
tation in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9985, pp. 491-520. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 19

Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.:
Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 405-422. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 23

Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under
standard assumptions. J. Cryptol. 31(3), 798-844 (2018)

Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami,
V. (ed.) 56th FOCS, pp. 210-229. IEEE Computer Society Press, October
2015

Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way
functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
449-458. ACM Press, June 2015

Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious RAMs. J. ACM 43(3), 431-473 (1996)

Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M.,
Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366—398.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028575
Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A.; Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 149-178. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 6

Heath, D., Kolesnikov, V., Ostrovsky, R.: EPIGRAM: practical garbled
RAM. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022.
LNCS, vol. 13275, pp. 3-33. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06944-4 1

Hazay, C., Yanai, A.: Constant-round maliciously secure two-party com-
putation in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 521-553. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53641-4 20

Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenti-
cated garbling for faster secure two-party computation. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 365-391.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 13
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damgérd, 1., Goldberg, L..A., Halldérsson,
M.M., Ingolfsdottir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486-498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert
adversaries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8043, pp. 1-17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 1

https://eprint.iacr.org/2015/1065
https://eprint.iacr.org/2015/1065
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/978-3-662-53015-3_6
https://doi.org/10.1007/978-3-031-06944-4_1
https://doi.org/10.1007/978-3-031-06944-4_1
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-642-40084-1_1

160 D. Heath et al.

[LO13]

[LO17|

[LPOY]

[LY18]

[Mia20]

[NPS99]

[PLS22]

[RR21]

[Schs0]

[SvS+13]

[WCS15]

[WRK17]

[Yao86]

[YWZ20]

[ZE13]

[ZRE15]

Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719-734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

Lu, S., Ostrovsky, R.: Black-box parallel garbled RAM. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 66-92. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 3

Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161-188 (2009)

Lindell, Y., Yanai, A.: Fast garbling of circuits over 3-valued logic. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 620-643.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 21
Miao, P.: Cut-and-choose for garbled RAM. In: Jarecki, S. (ed.) CT-RSA
2020. LNCS, vol. 12006, pp. 610-637. Springer, Cham (2020). https://doi.
org/10.1007,/978-3-030-40186-3 26

Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM Conference on Electronic
Commerce, pp. 129-139. ACM (1999)

Park, A., Lin, W.-K., Shi, E.: NanoGRAM: garbled RAM with O(log N)
overhead. Cryptology ePrint Archive, Report 2022/191 (2022). https://
eprint.iacr.org/2022/191

Rosulek, M., Roy, L.: Three halves make a whole? Beating the half-
gates lower bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 94-124. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0 5

Schonhage, A.: Storage modification machines. SIAM J. Comput. 9(3),
490-508 (1980)

Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS
2013, pp. 299-310. ACM Press, November 2013

Wang, X., Hubert Chan, T.-H., Shi, E.: Circuit ORAM: on tightness of
the Goldreich-Ostrovsky lower bound. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 850-861. ACM Press, October 2015

Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and effi-
cient maliciously secure two-party computation. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 21-37. ACM
Press, October/November 2017

Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162-167. IEEE Computer Society Press, October 1986
Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple
generation and authenticated garbling. In: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (eds.) ACM CCS 2020, pp. 1627-1646. ACM Press, November
2020

Zahur, S., Evans, D.: Circuit structures for improving efficiency of security
and privacy tools. In: 2013 IEEE Symposium on Security and Privacy, pp.
493-507. IEEE Computer Society Press, May 2013

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220-250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_ 8

https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-319-63715-0_3
https://doi.org/10.1007/978-3-319-76578-5_21
https://doi.org/10.1007/978-3-030-40186-3_26
https://doi.org/10.1007/978-3-030-40186-3_26
https://eprint.iacr.org/2022/191
https://eprint.iacr.org/2022/191
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-662-46803-6_8

	Tri-State Circuits
	1 Introduction
	1.1 Our Contribution

	2 Background and Related Work
	2.1 Garbled Circuits and Garbled RAM
	2.2 Oblivious RAM
	2.3 Other Models of Computation

	3 Notation
	4 Tri-State Circuits
	4.1 Randomized and Oblivious Tri-State Circuits

	5 Deterministic Tri-State RAM
	5.1 Deterministic Tri-State RAM Overview
	5.2 Sources of Logarithmic Overhead
	5.3 Formal Construction

	6 Oblivious Tri-State RAM
	6.1 Circuit ORAM ch5CCS:WanChaShi15 Review
	6.2 Overview of Our Oblivious Tri-State RAM
	6.3 Formal Construction

	7 Garbling Tri-State Circuits
	7.1 Tri-State Garbling from One-Way Functions
	7.2 Authenticated Garbling of Tri-State Circuits

	References

