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Abstract
The multiple-try Metropolis method is an interesting extension of the classical Metropolis–Hastings algorithm. However,
theoretical understanding about its usefulness and convergence behavior is still lacking. We here derive the exact convergence
rate for the multiple-try Metropolis Independent sampler (MTM-IS) via an explicit eigen analysis. As a by-product, we
prove that an naive application of the MTM-IS is less efficient than using the simpler approach of “thinned” independent
Metropolis–Hastings method at the same computational cost. We further explore more variants and find it possible to design
more efficient algorithms by applying MTM to part of the target distribution or creating correlated multiple trials.
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1 Introduction

1.1 Fundamental Metropolis–Hastings method

Markov chain Monte Carlo (MCMC) methods have played
important roles in statistical computing and Bayesian infer-
ence and have attracted much attention from both theoretical
researchers and practitioners. In a nutshell, the set ofmethods
provide general and practical recipes for generating random
draws from any given target probability distribution known
up to a normalizing constant. Specifically, such an algo-
rithm generates a time-homogeneous Markov chain with
its stationary distribution being the target one. Under mild
assumptions, this chain converges to the target distribution
geometrically (Roberts and Tweedie 1996; Liu et al. 1995).
See Liu (2008) and Brooks et al. (2011) for more compre-
hensive reviews. The scheme first proposed by Metropolis
et al. (1953) and then generalized by Hastings (1970) is
arguably the most popular and fundamental construction
among all MCMC methods. Let π(·) denote the target prob-
ability distribution/density function on the state space X .
The Metropolis–Hastings method constructs aMarkov chain
x (1), x (2), . . . , on X as follows. At step t + 1, it proposes a
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new state y from a user-specified transition function p(x, y),
i.e., y ∼ p(x (t), ·). Then, the next state x (t+1) is equal to y
with probability ρ and to x (t) with probability 1 − ρ, where

ρ = min

{
1,

π(y)p(y, x (t))

π(x (t))p(x (t), y)

}
.

This design ensures that the generatedMarkov chain satisfies
the detailed balance with respect to π , which guarantees the
chain’s reversibility and convergence under mild conditions.

1.2 Geometric convergence

AMarkov chain with transition function A is said to be geo-
metrically ergodic if, forπ -almost everywhere x , ‖An(x, ·)−
π(·)‖ ≤ C(x)rn holds true with constant r ∈ (0, 1). Here
‖ · ‖ denotes a distance metric between two probability mea-
sures, usually taken as the total variation (TV) distance.Other
modes of convergence, such as convergence in χ2-distance
(which implies the convergence in total variation), have also
been investigated (Liu et al. 1995; Liu 2008). Establishing
this inequality and deriving sharp bounds on the rate r are
seen as central tasks in studyingMCMC algorithms (Tierney
1994; Liu et al. 1995; Roberts and Tweedie 1996).

As a generalization of the standard Metropolis–Hastings
algorithm, themultiple-tryMetropolis (MTM) schemeas for-
malized in Liu et al. (2000) allows one to draw multiple
trials at each step and select one according to a spe-
cially designed probability distribution. Although intuitively
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the MTM scheme enables one to escape from local opti-
mums more easily, there is little theoretical understanding of
the convergence rate of any form of the MTM algorithm,
making it a challenging practical concern when deciding
whether a MTM approach should be employed for a specific
problem. Existing theoretical results on the Metropolis–
Hastings algorithm clearly cannot be easily extended to the
MTM algorithm. Indeed, getting sharp bounds on the con-
vergence rate of any general-purpose Metropolis–Hastings
algorithm can be extremely challenging, except for the Inde-
pendent Metropolis–Hastings (IMH) algorithm (which is
also called the Metropolised independence sampler by Liu
(1996) and the independence Metropolis chain by Tierney
(1994)). We are therefore tempted to consider whether the
IMH’s multiple-try version, which we call the multiple-try
Metropolis Independent sampler (MTM-IS), can be tackled
theoretically.

1.3 Convergence rate of independent
Metropolis–Hastings algorithm

Geometrical ergodicity is not guaranteed for a general
Metropolis–Hastings algorithm unless we impose suitable
restrictions (Roberts and Tweedie 1996), and exact con-
vergence rates for Metropolis–Hastings algorithms are rare
to find (Diaconis and Saloff-Coste 1998). In practice, geo-
metric ergodicity is often established under the ‘drift-and-
minorization’ framework (Diaconis et al. 2008). But this
technique usually results in a very conservative bound of
the convergence rate, not quite practically useful. Because
of the very special structure of the IMH algorithm, explicit
eigen-analyses of its transition matrix for the finite-discrete
state space casewere obtained byLiu (1996), which results in
the exact convergence rate of the IMH algorithm (also a very
tight bound on the constant in front of the rate) and offers a
comparisonwith classical rejection sampling and importance
sampling. Atchadé and Perron (2007) studies the continuous
case by determining the full spectrum of the transition oper-
ator of the IMH algorithm. A recent preprint of Wang (2020)
combines previous results and provides a lower bound, hence
determining the exact convergence rate. In this paper, we
impose similar conditions on theMTM-IS and study its exact
convergence rate.

1.4 Multiple-try Metropolis and its variants

The original idea of multiple-try Metropolis (MTM) comes
from chemical physicists interested in molecular simulations
(Frenkel et al. 1996). Its general formulation constructed
in Liu et al. (2000) inspires the development of Ensem-
ble MCMC methods by Neal (2011), connects with particle
filtering (Martino et al. 2014), and stimulates ideas of par-
allelizing MCMC (Calderhead 2014; Yang et al. 2018). We

refer interested readers to the review ofMartino (2018). Intu-
itively, theMTM approach enables one to explore the sample
space more broadly, and thus potentially gains efficiency in
avoiding being trapped in local modes. The method has been
incorporated in some applications such as model selection
(Pandolfi et al. 2010) and Bayes factor estimation (Dai and
Liu 2020).

In the context of molecular simulations (Frenkel et al.
1996), themultiple-try strategy is often applied to a target dis-
tribution in which the state space can be partitioned into two
parts: position and orientation, i.e., x = (xp, xo). For a given
xp, evaluating multiple configurations corresponding to dif-
ferent orientations, π(xp, xo1), . . . , π(xp, xom) is not much
more expensive than evaluating a single π(xp, xo). Thus,
MTM can be quite useful in facilitating an efficient move:
we can propose the new configuration by (a) first proposing
the position xp

(new); (b) associating with it multiple orienta-

tions xo1
(new), . . . , x

om
(new); (c) picking one from them properly,

and (d) using the MTM rule to do acceptance/rejection. In
addition to this case, MTM is also particularly useful when
combined with directional sampling, as in (Liu et al. 2000;
Dai and Liu 2020). Specifically, given a sampling direction
e at position x, multiple trials are drawn simultaneously as
r1, . . . , rm ∼ p(r) to construct y j = x + r je.

Several variants of the MTM are worth mentioning: Craiu
and Lemieux (2007) propose to use correlated trials to accel-
erate MTM and introduces antithetic and stratified sampling
to bring correlation; Casarin et al. (2013) argue that multi-
ple independent trials from different distributions are worth
considering, and connect to interactive sampling algorithms.
Theoretically, Bédard et al. (2012) conducts a scaling analy-
sis for MTM. However, to the best of our efforts, we can not
find any existing result on the convergence rate of an MTM
algorithm.

In this paper, we report the exact convergence rate of
the MTM-IS for general target π(·) and proposal p(·). The
result is somewhat surprising as it shows that the MTM-IS
with k multiple tries is not as efficient as simply repeating
the standard IMH algorithm k times, thus suggesting that
the we may want to design the k multiple proposals to be
“over-dispersed” (e.g., negatively correlated) in order to take
advantage of the MTM structure. Another useful scenario,
as discussed previously and detailed in Sect. 5.1, is to help
proposing a better configuration for a general Metropolis–
Hastings algorithm by orienting part of the proposal better
via MTM.

The rest of the article is organized as follows. Section2 car-
ries out an eigenvalue analysis of MTM-IS; Sect. 3 specifies
the exact convergence rate of MTM-IS under the total vari-
ation distance and offers an inequality to compare MTM-IS
with its corresponding “thinned” IMH algorithm (i.e., tak-
ing one draw from every k iterations of the sampler); Sect. 4
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provides some empirical results for multivariate Gaussian
and Gaussian mixtures; Sect. 5 discusses several variants and
extensions of MTM; and Sect. 6 concludes the article with a
short remark.

2 Eigen-analysis of multiple-try Metropolis
independent sampler

2.1 Notations

Throughout the article, we use X to denote the state space,
which can be either discrete or continuous. Notations π(x)

and p(x, y) represent the target and proposal distributions,
respectively, with x, y ∈ X . If proposal distribution is inde-
pendent of the current state x , we write it as p(y). The actual
transition function/probability/density of the MCMC algo-
rithm is denoted by A(x, y). A collection of multiple trials
of size k is written as y = (y1, . . . , yk). We consider the total
variation distance for any two (signed) measures P and Q,
which is defined as ‖P − Q‖T V = supA∈F |P(A) − Q(A)|,
where F denotes the σ -field common to P and Q (e.g., the
Borel σ -field for most common uses). In Sect. 5, we slightly
abuse the notation by letting p(x, y) be the proposal distri-
bution for x ∈ X and y = (y1, . . . , yk) ∈ X k , as we would
consider multiple correlated trials in this section. Besides,
we write p(x, y(− j) | y j ) as the conditional distribution
of y(− j) ≡ (y1, . . . , y j−1, y j+1, . . . , yk) given y j and x .
Lastly, p j (x, y j ) = ∫

p(x, y)dy− j denotes the conditional
marginal distribution of y j given x .

2.2 Description of the algorithms

The general framework of the MTM as formulated in Liu
et al. (2000) is summarized in Algorithm 1. Let the current
state be x , and let the number of multiple tries be k. With a
proposal transition function p(x, y) that defines the condi-
tional distribution of y, we define the generalized importance
weight as

w(y|x) = π(y)

p(x, y)
λ(x, y) (1)

whereλ is a symmetric non-negative function (i.e., λ(x, y) =
λ(y, x) ≥ 0, ∀x, y). Thus, the acceptance/rejection ratio in
a general MH algorithm is just the ratio of the generalized
importance weights.

Here, x∗
1 , x∗

2 , . . . , x∗
k−1 are called balancing trials, which

are drawn to guarantee the detailed balance. Liu et al. (2000)
also extend the MTM for generating non-independent mul-
tiple trials such as semi-deterministic ones along a direction.
If we choose p(x, y) = p(y), we can modify this algorithm
to avoid drawing additional balancing trials as the algorithm

Algorithm 1Multiple-Try Metropolis: the current state is x .
1: Generate multiple trials y1, . . . , yk independently from p(x, ·);

compute their respective weights w(y j | x) as defined in (1) for
j = 1, . . . , k.

2: Select index J with probability proportional tow(y j | x) and define
y = yJ .

3: Draw x∗
1 , x∗

2 , . . . , x∗
k−1 independently from p(y, ·). And set x∗

k = x .

4: Accept y with the ratio ρ = min

{
1,

∑
j w(y j |x)∑
j w(x∗

j |y)

}
.

is still valid if we simply replace the x∗
j by y j in comput-

ing ρ. This modified version is summarized in Algorithm 2
and named the MTM-IS(k). In this case, we further select
λ(x, y) ≡ 1 then the generalized importanceweight (1) turns
out to be w(y | x) = π(y)/p(y), coinciding with the stan-
dard notation of importance ratio. In order to simplify the
notations, we could write

w(y) = π(y)/p(y). (2)

Algorithm 2MTM-IS: the current state is x .
1: Draw multiple trials y1, . . . , yk independently from p(·); compute

w(y j ) as defined in (2) for j = 1, . . . , k.
2: Select index J with probability proportional to w(y j ) and define

y = yJ .
3: Compute W = ∑k

j=1 w(y j ).
4: Accept y with the following probability ρ =

min

{
1,

W

W − w(y) + w(x)

}
.

In theory, we assume that π is absolutely continuous with
respect to p, so that this importanceweight can be interpreted
as the Radon-Nikodym derivative. In practice, one should
always choose p so that its support covers that of π for the
algorithm to work well. The main result of this section is
stated in Theorem 2, which can be viewed as a generalization
of the results in Liu (1996) and Atchadé and Perron (2007)
and provides the exact convergence rate of MTM-IS.

2.3 Transition distribution decomposition

Theorem 1 The transition distribution of MTM-IS can be
decomposed as

A(x, dy) = R(x)δx (dy) + min{Hk[w(x)], Hk [w(y)]}π(y)dy,

(3)

where Hk is defined as

Hk(z) = k
∫

. . .

∫
︸ ︷︷ ︸

k−1

1

z +∑k−1
i=1 w(yi )

k−1∏
i=1

p(yi )dyi , (4)
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and R(x) = 1 − ∫
X min {Hk[w(x)], Hk[w(y)]} π(y)dy ∈

[0, 1] denotes the rejection probability when the current state
is x ∈ X . In particular, Hk(z) is a strictly decreasing function
in z. For k = 1, Hk degenerates to H1(z) = z−1.

Proof Let x /∈ B ⊂ X be measurable, the probability of
proposing an element in B and accepting it is

A(x, B) = P

⎡
⎣ k⋃

j=1

{(
y j ∈ B

) ∩ (J = j) ∩ (yJ gets accepted)
}⎤⎦

= kP
[{(yk ∈ B) ∩ (J = k) ∩ (yk gets accepted)}] .

The last equality appears irrelevant to x , but the importance
ratio w(x) = π(x)/p(x) matters when deciding whether or
not the chosen yJ is accepted. Furthermore,

A(x, B)

= k
∫

. . .

∫
︸ ︷︷ ︸

k−1

∫
B

w(y)

w(y) +∑k−1
j=1 w(y j )

min

[
1,

w(y) +∑k−1
j=1 w(y j )

w(x) +∑k−1
j=1 w(y j )

]
p(y)dy

k−1∏
j=1

p(y j )dy j

= k
∫

. . .

∫
︸ ︷︷ ︸

k−1

∫
B

min

[
w(y)

w(y) +∑k−1
j=1 w(y j )

,
w(y)

w(x) +∑k−1
j=1 w(y j )

]

p(y)dy
k−1∏
j=1

p(y j )dy j

=
∫

B
min {Hk[w(x)], Hk[w(y)]} π(y)dy,

where Hk is as defined in (4). Thus, the overall rejection
probability is

R(x) = 1 −
∫
X
min {Hk[w(x)], Hk[w(y)]} π(y)dy, (5)

and the prescribed decomposition (3) is thus proved. �

Let w∗ � inf{u > 0 : π(x : w(x) ≤ u) = 1} be the

essential supremum of w(x) on X w.r.t. π(·) (i.e., w∗ is the
smallest value such that w(x) ≤ w∗ with π -probability 1).
Since Hk(w) is a monotone decreasing function of w (The-
orem 1), we have an upper bound R(x) ≤ 1 − Hk(w

∗).
Furthermore, since

A(x, dy) = R(x)δx (dy) + min{Hk[w(x)],
Hk[w(y)]}π(y)dy ≥ Hk(w

∗)π(y)dy,

wehave the followingmixture representation of the transition
function, convenient for comparing with π :

A(x, dy) = H(w∗)π(y)dy + [1 − H(w∗)]qres(x, dy), (6)

where qres(x, B) := A(x, B) − H(w∗)π(B)

1 − H(w∗)
. This repre-

sentation can be used to facilitate a coupling argument to
prove the geometric convergence of the Markov chain (more
details in Sect. 3).

2.4 Spectrum of the transition operator

Now we provide a result to fully characterize the spectrum
of the transition operator induced by the MTM-IS algorithm.
A similar result was derived for the IMH algorithm by Liu
(1996) for the discrete state-space case, and then by Atchadé
and Perron (2007) in general. To be concrete, we introduce
the following definitions.

Definition 1 Let A(x, y) be the transition function of a
Markov chain with π as its invariant distribution. We

define its transition operator K : L2(π) → L2(π) as

K f (x) =
∫

f (y)A(x, y)dy. (7)

It computes the conditional mean and is called the forward
operator in Liu et al. (1995).

Definition 2 Let K0 be the restriction of K onto L2
0(π), the

orthogonal complement of the constant function of L2(π).
Then the spectrum of K0 is

σ(K0) � {λ ∈ R : K0 − λI is non-invertible}. (8)

The essential range of a function R is

ess-ran(R) � {λ ∈ R : π(x :| R(x)−λ |< ε) > 0,∀ε > 0}.

Theorem 2 Let K be the transition operator defined by the
MTM-IS algorithm, and let K0 be similarly defined as in
Definition 1. Then, σ(K0) ⊆ ess-ran(R), where R is the
rejection probability defined in (5). The equality holds if ∀
α ∈ ess-ran(R), π{y : R(y) = α} = 0.

Since the proof is mostly technical, we defer it to the
Appendix. From (5) and Theorem 1, it is obvious to see that
an upper bound of R(x) is 1 − Hk(w

∗). This implies that
there is a gap between 1 and the upper edge 1 − H(w∗) of
the spectrum σ(K0), provided that w∗ < ∞. For the finite
discrete state-space case, H(w∗) = 1/w∗, and 1 − H(w∗)
is the exact convergence rate of the chain.
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3 Convergence rate and algorithmic
comparison

3.1 Convergence in �2-distance

The χ2-distance between two probability distributions π and
p is defined as

d2
χ (π, p) = varπ [p(x)/π(x)]. (9)

Let pn(x) = An(p0, x) denote the distribution of Xn , the
state of the Markov chain after n steps from initialization
p0. It was shown in Liu et al. (1995) that dχ (π, pn) ≤
‖K n

0 ‖2dχ (π, p0), where ‖ · ‖2 is L2-norm of the operator
K0. It is easy to show that (Liu et al. 1995)

ρ = lim
n→∞ ‖K n

0 ‖1/n
2 (10)

is the spectral radius of K0 (Liu et al. 1995), which is equal
to the maximum of σ(K0) in absolute value. As shown in
Theorem2, this is bounded by 1−H(w∗). Thus, dχ (π, pn) ≤
(1 − H(w∗))ndχ (π, p0). It also follows from the Cauchy-
Schwartz inequality that

‖pn − π‖L1 =
∫ | pn(x) − π(x) |√

π(x)

√
π(x)dx

≤
[∫

(pn(x) − π(x))2

π(x)
dx

]1/2
= dχ (π, pn)

≤ (1 − H(w∗))ndχ (π, p0). (11)

Thus, the L1 distance between pn and the target π , also
known as their total variation distribution and denoted as
‖pn − π‖T V , decreases geometrically bounded by the same
rate.

3.2 Maximal total variation distance

Definition 3 Let the transition function of aMarkov chain be
A(·, ·), with the corresponding stationary distribution π(·).
The maximal total variation distance between the Markov
chain’s n-step distribution and π is

d(n) = ess sup
x∈X

‖An(x, ·) − π(·)‖T V . (12)

Moreover, the quantity

r = lim sup
n→∞

d(n)
1
n (13)

is called the exact convergence rate of the Markov chain.

Since the total variation distance is equivalent to the L1

distance ‖p−π‖T V = 2‖p−π‖L1 between two probability

measures π and p, it is easy to see from definition of (10)
and Eq. (11) that rate r ≤ ρ. In the following, we use another
a coupling argument to validate this upper bound r . More-
over, we will also show that for the transition kernel defined
by Algorithm 2, inequality r ≥ ρ also holds. We need the
following lemmas to prove our results.

Lemma 1 (Coupling) (Levin and Peres 2017) Suppose
(
t , 
̃t )

∞
t=0 are a pair of Markov chains with the same

transition rule satisfying: (i) If 
i = 
̃i for some i , then
for any j ≥ i , 
 j = 
̃ j ; and (ii) 
̃0 ∼ π . Then, for
τ = min{n : 
n = 
̃n}, we have a bound

‖An(x, ·) − π(·)‖T V ≤ P(τ ≥ n).

Lemma 2 (Lower bound) (Wang 2020) Let R(x) denote the
rejection probability (5) given current state x. That is,

R(x) = 1 −
∫

min {H [w(x)], H [w(y)]} π(y)dy.

Then, we have a lower bound

‖An(x, ·) − π(·)‖T V ≥ [R(x)]n .

Theorem 3 Consider the MTM-IS defined in Algorithm 2
and let w∗ < ∞ be the essential supremum of w(x) =
π(x)/p(x). Then, the maximal total variation distance of
the algorithm to its target distribution π is

d(n) = [1 − Hk(w
∗)]n .

Thus, the exact convergence rate of the MTM-IS is 1 −
Hk(w

∗).

Proof Wewill establish that upper and lower bounds of d(n)

are equal in the limit.

3.2.1 Upper bound

Anupper bound can be obtained by using the coupling idea of
Lemma 1. Consider twoMarkov chains {xt } and {x̃t } defined
by MTM-IS. Because of the the decomposition (6), we can
interpret the actual transition measure A(x, ·) as a mixture
of π(·) and qres(x, ·), and define the following coupling rule
for the two chains. First, we let x0 = x (for some arbitrary
x ∈ X ) and assume that x̃0 ∼ π(·) as the initialization of
these two chains. Then, suppose that the two chains are at xt

and x̃t , respectively, at time t . If xt = x̃t , then sample xt+1

from A(xt , ·) and set x̃t+1 = xt+1. Thus, their future paths
coalesce into one. If xt �= x̃t ,wedraw z ∼ Bernoulli(H(w∗))
and sample x ∼ π(·). We set xt+1 = x̃t+1 = x if z = 1. Oth-
erwise, we sample xt+1 ∼ qres(xt , ·) and x̃t+1 ∼ qres(x̃t , ·),
independently.
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Our constructions of {xt } and {x̃t } have the following prop-
erties: (i) marginally these two chains both evolve according
to A(·, ·); (ii) the distribution of xt is exactly At (x, ·) and the
distribution of x̃t is π(·); (iii) once xt = x̃t for some t , the
two chains coalesce into one afterwards. Applying Lemma 1,
we have

‖An(x, ·) − π(·)‖T V ≤ P(τ ≥ n) ≤ [1 − H(w∗)]n . (14)

Taking the supremum over x ∈ X we have d(n) ≤ [1 −
H(w∗)]n .

3.2.2 Lower bound

For the lower bound, we consider the worst case as demon-
strated in the proof of Lemma 2 inWang (2020). In particular,
if we can find some x∗ such that w(x∗) = w∗, then the
proof is over; but sometimes this is not achievable, in which
case we take advantage of the continuity and monotonic-
ity of Hk . For any ε > 0, there exists δ > 0 such that
H(w) < H(w∗) + ε once w∗ − δ < w ≤ w∗. By the
definition of essential supremum, we can always find some
xδ ∈ X such that w∗ − δ < w(xδ) ≤ w∗, thus

d(n) ≥ ‖An(xδ, ·)−π(·)‖T V ≥ R(xδ)
n ≥ [1−H(w∗)−ε]n,

since we know from (5) that

R(xδ) ≥ 1 −
∫
X

Hk[w(xδ)]π(dy) ≥ 1 − H(w∗) − ε.

Letting ε → 0, we derive the final result. �


3.3 Comparison with the IMH sampler

Since one iteration of MTM-IS is computationally as expen-
sive as k-iterations of the IMH algorithm, we are interested
in knowing which one has a better convergence rate. We
denote the MTM-IS algorithm with k trials as MTM-IS(k) to
emphasize the role of k. Correspondingly, we denote the k-
fold thinned IMH algorithm IMH(k) (i.e., collecting 1 draw
after every k steps of the standard IMH).Note, however, that a
clear advantage ofMTM-IS(k) over IMH(k) is that the former
is straightforward to parallelise as suggested in Calderhead
(2014), which can considerably speed up the algorithm in
practice.

Previously, we obtain the exact convergence rate ofMTM-
IS(k) as 1 − Hk(w

∗). We rewrite (4) as an expectation form
to gain some insights:

Hk(z) = k
∫

. . .

∫
︸ ︷︷ ︸

k−1

1

z +∑k−1
i=1 w(yi )

k−1∏
i=1

p(yi )dyi

= Ep

[
k

z +∑k−1
i=1 w(Xi )

]
,

where X1, . . . , Xk−1 are independent samples from p(·).
Setting k = 1, the formula reduces to H1(z) = z−1, which
gives rise to the exact convergence rate 1 − 1/w∗ of the
IMH algorithm as shown in Liu (1996) and Atchadé and Per-
ron (2007). The convergence rate of IMH(k) is then exactly
(1−1/w∗)k .We have the followingmain result, whose proof
is deferred to the Appendix.

Theorem 4 With the same notations as in Theorem3, we have

1−Hk(w
∗) = 1−Ep

[
k

w∗ +∑k−1
i=1 w(Xi )

]
≥
(
1 − 1

w∗

)k

(15)

for any k ≥ 1, where all Xi ’s are taken independently from
p(·). Thus, MTM-IS(k) is no more efficient than IMH(k)

although the two algorithms are of similar computational
cost.

This theorem provides the first theoretical guidance on
the use of MTM methods. It implies that in this rather sim-
ple MTM-IS framework, multiple independent proposals are
not helpful in improving the the mixing of the algorithm. It is
not surprising that IMH is preferable when the target distri-
bution is “easy”—after all, the IMH is perfect if the proposal
matches the target exactly and havingmultiple trials is simply
a waste. It is surprising to us, though, that such a preference
holds universally.

We speculate that k independent multiple proposals in a
general MTM framework are also not more efficient than
the corresponding k-fold thinnedMCMC algorithm. It there-
fore casts a doubt on the utility of MTM. Our numerical
experiences in the past suggest that the MTM strategy is
most helpful in jumping among multiple modes of the tar-
get distribution (Liu et al. 2000; Dai and Liu 2020). Also as
demonstrated in the molecular simulation literature (Frenkel
et al. 1996), a form of partial MTM is very useful in build-
ing part of the proposal and will be examined in more detail
in Sect. 5.1. More general correlated multiple proposals may
also help (Craiu and Lemieux 2007) and will be discussed in
Sects. 5.2 and 5.4.

4 Numerical illustrations

We illustrate the discrepancy between convergence rates of
MTM-IS(k) and IMH(k) numerically. As expected, if the
proposal p is already very close to targetπ , IMH(k) is signif-
icantly better than MTM-IS(k). The performance difference
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Fig. 1 Convergence rates for example 1 with a finite discrete target
distribution

of the two algorithms becomes quite minimal if the pro-
posal distribution differs from the target one considerably,
i.e., when w∗ is large. In these examples, the explicit con-
vergence rate formula forMTM-IS(k) is still complicated, so
we use Monte Carlo to approximate the expectation in (15).

4.1 Univariate examples

The first two examples were previously used in Liu (1996)
to compare the IMH algorithm with importance sampling
and rejection sampling and are reexamined here. The third
example is a continuous case with an unbounded domain.

Example 1 Let the state space be X = {1, . . . , m}, p(i) =
1/m and π(i) = (2m + 1 − 2i)/m2, p(i) = 1/m. In this
case, w∗ = 2− 1/m is close to 2, leading to an approximate
convergence rate 0.5 for the IMHalgorithm.Figure1displays
the convergence rates of MTM-IS(k) and IMH(k) with m =
1000 and k ranging from 1 to 10 computed from 50,000
independent uniform Monte Carlo samples.

Example 2 We consider the case where the target distribution
is binomial Bin(m, θ), and p(x) = 1/(m + 1) is uniform.
Then

w(x) = (m + 1)
m!

x !(m − x)!θ
x (1 − θ)m−x .

Using the standard normal approximation, we find that

w∗ ≈
√

m

2πθ(1 − θ)
.

Figure2 is computed from 50,000 independent uniform
Monte Carlo samples with m = 100 for two θ values. We
that in the latter case when the distribution is very skewed,
the discrepancy between MTM-IS(k) and IMH(k) is much
smaller.

Example 3 We investigate a one-dimensional continuous
case with the target beingN (0, 1), and the proposal distribu-
tion being a scaled t-distribution with 10 degrees of freedom,
p(x) = ct10(cx) with c ≥ 1. For practical uses of both
importance sampling and IMH-type algorithms, we strongly
recommend to choose a proposal distribution that has a heav-
ier tail than but does not differ toomuchwith the target. In our
case, both t-distribution proposals satisfy the fat-tail require-
ment. But a larger c leads to a larger discrepancy between
the target and the proposal. Figure3 is computed based on
50,000 independent Monte Carlo samples with two choices
of c, demonstrating that IMH(k) and MTM-IS(k) are nearly
indistinguishable if the proposal does not alignwith the target
well.

4.2 Multivariate Gaussian and Gaussianmixture

We first use multivariate Gaussian distributions as both the
target and proposal to show some practical implications of
our result. Let π = N (0, Id) and T = N ( �μ, σ 2

Id). Then
we find that the importance weight can be expressed as:

w(�x) = π(�x)

p(�x)
= σ d

exp

[
−1

2

(
1 − 1

σ 2

)
‖�x‖2 − 1

σ 2 〈�x, �μ〉 + 1

2σ 2 ‖�μ‖2
]

.

Therefore, w∗ = supw(�x) < ∞ if either σ > 1 with an
arbitrary �μ or σ = 1 with �μ = 0. When σ > 1, the maxi-
mal importance weight w∗ ∼ σ d and thus the mixing time
of IMH τIMH(δ) = 
(w∗ log(1/δ)) scales exponentially
with the dimension d. In the same manner, the mixing time
of MTM-IS also scales exponentially with d, and becomes
worse as σ increases. Figure4 supports that MTM-IS and
consecutive IMH have almost the same mixing rates.

Next, we consider a Gaussian mixture distribution π =
1
3N (0, Id) + 2

3N (�1, Id), where �1 is a d-dimensional vector
filled with all 1’s. Employing T = N (0, σ 2

Id), we have the
importance weight

w(�x) = 1

3
σ d exp

[
−1

2

(
1 − 1

σ 2

)
‖�x‖2

]

+ 2

3
σ d exp

[
−1

2

(
1 − 1

σ 2

)
‖�x‖2 − 1

σ 2 〈�x, �1〉 + d

2σ 2

]
.

It is easy to see that w∗ < ∞ if and only if σ > 1. Figure5
depicts theoretical convergence rates and log mixing times
for varying dimension and proposal standard deviation σ .
Again the mixing times scale exponentially with dimension
d. Unlike the single Gaussian case, however, Fig. 5b shows
that the slope of log mixing times is not a monotone function
of σ .

Figure 6 explores the optimization with σ . Specifically,
Fig. 6a plots the convergence rates against varying σ when
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Fig. 2 Convergence rates for a binomial target with a θ=0.5, and b θ=0.05 (Example 2)

Fig. 3 Convergence rates for a standard normal target (Example 3) with the sampling distribution p(x) being a scaled t-distribution ct10(cx) with
a c = 2, b c = 20

Fig. 4 Convergence rates (left) and log-mixing times (right) for the standardmultivariateGaussian targetπ = N (0, Id )with proposal p = N (0, 4Id )
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Fig. 5 Convergence rates (left) and log mixing times (right) for a multivariate Gaussian mixture target π = 1
3N (0, Id ) + 2

3N (�1, Id ) with proposal
p = N (0, σ 2

Id ). Solid lines: σ = 1.1; dashed lines: σ = 2; dotted lines: σ = 5. MTM-IS and IMH are nearly indistinguishable

d = 2, showing that the optimal choice is σ ≈ 1.594949.
When d grows, the optimal σ remains approximately in the
range of 1.55–1.62. Figure6c indicates that the mixing time
still scales exponentially with d even if σ is optimized.

5 Variants of multiple-try Metropolis

5.1 Partial MTM-IS: an efficient variant

To reflect howMTMhas actually been used inmolecular sim-
ulations (Frenkel et al. 1996), we assume a partition of the
state-space, x = (xa, xb), and the corresponding partition of
the target distribution π(x) ∝ q(xa, xb) = qa(xa)qb(xb|xa),
where qb may not be normalized. We assume that qa(xa)

is much more expensive to evaluate than qb(xb|xa). An
important point to note is that we want to move (xa, xb)

jointly instead of iterating between conditional draws of
xa |xb and xb|xa (for reasons such as the two componentsmay
be tightly coupled). We consider the independent proposal:
p(x) = pa(xa)pb(xb|xa). A Partial MTM-IS algorithm is as
follows:

Remark 1 (PMTM-IS versus MTM-IS) Note that, compared
with the vanilla MTM-IS (Algorithm 2), PMTM-IS needs to
draw extra balancing samples. Since we assume that sam-
pling xb and evaluating it are both very cheap, it is still worth
doing. In this case, there are no standard IMH or MCMC
variants for comparisons.

Typically, one iteration of IMH involves evaluating qa/pa

twice (respectively on xa and ya) and evaluating qb/pb twice
(respectively on xb|xa and yb|ya). In contrast, one iteration of
Algorithm 3 consists of evaluating qa/pa twice (respectively
on xa and ya) and evaluating qb/pb for 2k times (respectively
on xb

j |xa and yb
j |ya with j = 1, . . . , k). When evaluating

Algorithm 3 PMTM-IS: the current state is x = (xa, xb).

1: Draw ya from pa(·); and draw multiple trials yb
1, . . . , y

b
k indepen-

dently from pb(· | ya);
2: Draw i.i.d. “balancing trials” xb

1, . . . , x
b
k−1 from pb(·|xa), and let

xb
k = xb;

3: For j = 1, . . . , k, compute

w j
�= qb(yb

j | ya)qa(ya)

pb(yb
j | ya)pa(ya)

, w′
j = qb(xb

j | xa)qa(xa)

pb(xb
j | xa)pa(xa)

,

and set Wy = ∑k
j=1 w j , Wx = ∑k

j=1 w′
j .

4: Select index J with probability proportional to w j and define y =
(ya, yb

J ).
5: Accept y with probability ρ = min

{
1, Wy/Wx

}
.

qb is significantly computationally more expensive than qa ,
Algorithm 3 nearly matches the computational cost of one-
step IMH. Under certain reasonable regularity conditions,
the following proposition shows that Algorithm 3 provably
converges faster.

Proposition 1 Letx = (xa, xb), andπ(x) = πa(xa)πb(xb|xa) ∝
qa(xa)qb

(xb|xa), where πa and πb are normalized marginal and
conditional distributions. Under the following regularity
conditions with proposal p (all parts normalized):

ess sup
xa ,xb

π(xa, xb)

p(xa, xb)
= w∗ < ∞, (16)

IMH converges with rate 1 − 1/w∗. In contrast, the partial
MTM-IS (Algorithm 3) has a convergence rate no slower than
1 − 1/w∗.
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Fig. 6 Multidimensional mixture Gaussian: π = 1
3N (0, Id ) + 2

3N (�1, Id ) and T = N (0, σ 2
Id ). a Convergence rates against σ with varying

1.1 ≤ σ ≤ 6 when d=2; b and c Plot respectively the convergence rates and log mixing times against the varying dimensions under the optimized
σ

Proof Noting that ess supx
π(xa ,xb)

p(xa ,xb)
= w∗, we obtain the con-

vergence rate of IMH as 1 − 1/w∗ by Theorem 3. As for
Algorithm 3, we decompose the transition kernel as

A((xa, xb), (ya, yb))

= kP
[{

(ya gets proposed) ∩ (yb
k = yb)

∩(J = k) ∩ (joint (ya, yb) gets accepted)
}]

= k
∫
X b

. . .

∫
X b︸ ︷︷ ︸

k−1

∫
X b

. . .

∫
X b︸ ︷︷ ︸

k−1

pa(ya)pb(yb|ya)wk∑k
j=1 w j

min

{
1,

∑k
j=1 w j∑k
j=1 w′

j

}

k−1∏
j=1

pb(yb
j |ya)pb(xb

j |xa)dyb
jdx

b
j .

Suppose the normalizing constant of q(xa, xb) is C , i.e.,
π(xa, xb) = q(xa, xb)/C . Then,

pa(ya)pb(yb|ya)wk∑k
j=1 w j

min

{
1,

∑k
j=1 w j∑k
j=1 w′

j

}

= q(ya, yb)

max
{∑k

j=1 w j ,
∑k

j=1 w′
j

}
= q(ya, yb)/C

max

{∑k
j=1

q(ya ,yb
j )/C

p(ya ,yb
j )

,
∑k

j=1
q(xa ,xb

j )/C

p(xa ,xb
j )

}

= π(ya, yb)

max

{∑k
j=1

π(ya ,yb
j )

p(ya ,yb
j )

,
∑k

j=1
π(xa ,xb

j )

p(xa ,xb
j )

} ,

in which yb
k = yb and xb

k = xb. Therefore, it gives rise to

A((xa, xb), (ya, yb))

= kπ(ya, yb)

∫
X b

. . .

∫
X b︸ ︷︷ ︸

k−1

∫
X b

. . .

∫
X b︸ ︷︷ ︸

k−1∏k−1
j=1 pb(yb

j |ya)pb(xb
j |xa)dyb

jdx
b
j

max
{
W (ya; yb

1:k−1, y
b), W (xa; xb

1:k−1, x
b)
} ,

where W (xa; xb
1:k) �

∑k
j=1

πb(xa ,xb
j )

pb(xa ,xb
j )
for any xa ∈ X a, xb

1:k
= (xb

1, . . . , x
b
k ) ∈ (X b)k . By definition, we find

W (xa; xb
1:k) =

k∑
j=1

πb(xa, xb
j )

pb(xa, xb
j )

≤ kw∗.

The following inequality immediately follows:

A((xa, xb), (ya, yb)) ≥ π(ya, yb)

w∗ . (17)

Surprisingly, (3) leads to a mixture decomposition like (17)
and thus is sufficient to construct the upper bound in Theo-
rem 3 by the coupling argument and Lemma 1. Therefore, the
convergence rate of Algorithm 3 is no larger than 1− 1/w∗.
However, the arguments for establishing matching lower
bounds cannot directly apply due to the extra balancing tri-
als xb

j , 1 ≤ j ≤ k − 1. So the exact convergence rate of
Algorithm 3 remains unknown. �
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5.2 Correlatedmultiple trials

Compared with the original MTM, the partial MTM-IS
differs in that its multiple trials (ya, yb

1), . . . , (y
a, yb

k ) are
correlated due to the state space partitioning. As also demon-
strated by Craiu and Lemieux (2007), we believe that
generating correlated multiple trials is a key in designing
efficient MTM algorithms. Although rigorous theoretical
analysis for a general correlated MTM design is beyond our
reach, we present some theoretical results for two special
cases for finite state spaces, which may also be generaliza-
tion to continuous state-spaces. Implications derived from
the analysis apply more generally: good correlated multiple-
tries can be obtained with the aid of a deterministic step.

5.2.1 Stratified sampling

Suppose X is a finite state space. We partition it into a few
subgroups, X1, . . . ,XB so that Xi ∩ X j = ∅, ∀i �= j and
∪ jX j = X . We begin with a block wise IMH step by sam-
pling from {X1, . . . ,XB} with weight p(X j ) and accept it
with w(X j ) = π(X j )/p(X j ) afterwards. Then, we draw y
within the sampled block with probability proportional to
π(y). It is easy to see that the chain become stationary once
it converges at the subgroup level. Thus, the convergence rate
of this algorithm is

rB = 1 − w(X ∗)−1
,

where X ∗ = argmax j w(X j ). This is not generally bet-
ter than the IMH(k), which has a convergence rate of
(1 − 1/w∗)k > 1 − k/w∗. But if the weights w’s are very
uneven and we can partition the states so that the weights
w(X j )’s are more balanced, then the stratified IMH can
improve upon IMH(k) significantly. We also note that the
computation cost of this block-based MTM-IS(k) algorithm
is no worse than IMH(2) (the first step of block sampling
is no worse than 1-step IMH; and so is the second step of
sampling within a block), much better than IMH(k) when k
is large.

Example 4 (Example 1 continued) Let X = {1, . . . , N }, and
suppose that the target π(x) ∝ x and p(x) ∝ 1. Then, the
original weights are w(x) ∝ x and w∗ = 2N

1+N ≈ 2. Let k =
2, then IMH(2) has a rate of (1 − 1/w∗)2 ≈ 0.25, which is
quite good.Assume that N is an evennumber andwepartition
the space as X j = { j, N − j + 1} for j = 1, . . . , N/2.
Thenw(X j ) ∝ 1, and the resultingMTM-IS(2) converges in
one step. More generally, for an arbitrary distribution π(x)

and the uniform proposal p(x) = (2N )−1, we have w∗ =
π(x∗) with x∗ = argmaxx π(x). Thus, if we can partition
the state space so that π(X j ) are approximately equal for
j = 1, . . . , B, the algorithm can be much improved.

5.2.2 Sampling without replacement

Another obviousway of introducing correlations formultiple
proposals is to do sampling without replacement. Let X =
{1, . . . , N }. To simplify the discussion, we here focus on the
simple random sampling without replacement (SRSWOR,
i.e., p(y) ∝ 1), although it is possible to extend the method
to do sampling without replace with unequal probabilities
using one of the schemes in Chen et al. (1994). The algorithm
is as follows.

Algorithm 4 MTM-SRSWOR(k): Suppose that the current
state is at x .
1: Draw S = (y1, . . . , yk) ⊂ (X\{x}) jointly via SRSWOR.
2: Select index J with probability proportional to w(y j ) = (N −

1)π(y j ) and define y = yJ .

3: Accept y with the ratio ρ = min
{
1,

w(y,x)+∑i �=J w(yi ,x)

w(x,y)+∑i �=J wi (yi ,y)

}
=

min
{
1,

π(y)+∑ j �=J π(y j )

π(x)+∑ j �=J π(y j )

}
.

The actual transition probability from x to y �= x for this
scheme is

A(x, y) =
∑

S(k−1)
y

1(N−1
k

)π(y)

min

[
1

π(y) +∑
i<k π(yi )

,
1

π(x) +∑
i<k π(yi )

]
,

(18)

where S(k−1)
y ⊂ X \{x, y}, |S(k−1)

y | = k − 1, and y j ∈
S(k−1)

y ,∀ j < k. Doing an exact eigenvalue decomposition
of matrix A would have brought us a tight bound on the
convergence rate. But A does not possess a nice low-rank
property as that for the IMH sampler or the MTM-IS.

For S ⊂ X , we define π(S) = ∑
x∈X π(x), S∗ =

argmax{S: |S|=k} π(S), and x∗ = argmaxx π(x). We find the
following inequality to hold:

A(x, y) ≥ kπ(y)

(N − 1)π(S∗)
, x �= y.

During each iteration, the chain stays at the current state if
and only if the new proposal is rejected since in our con-
struction of Algorithm 4, the proposal set is not allowed to
contain the current state. We observe that ρ ≡ 1 whenever
x = x∗ � argminx π(x), leading to A(x∗, x∗) = 0. This
fact prevents us from using the previous coupling arguments
directly. However, as we specify to some circumstances, we
could still obtain satisfactory results.
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Example 5 Choosing k = 2 and X = {1, . . . , N },we set

π1 = 1 − p, π2 = · · · = πN = p

N − 1
, (19)

where 0 ≤ p ≤ (N − 1)/N , which guarantees that x∗ = 1
and {2, . . . , N } ∈ argminx π(x). As a result, we know that
A(2, 2) = · · · = A(N , N ) = 0. Furthermore, matrix A can
be completely determined by the following four quantities:

a1 = A(1, 2) = 2π2

(N − 1)(π1 + π2)
,

a2 = A(1, 1) = π1 − π2

π1 + π2
,

a3 = A(2, 1) = 2π1

(N − 1)(π1 + π2)
,

a4 = A(2, 3) = (N − 3)

(N − 1)(N − 2)

+ 2π2

(N − 1)(N − 2)(π1 + π2)
.

We can then write out A as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a2 a1 a1 a1 . . . a1
a3 0 a4 a4 . . . a4
a3 a4 0 a4 . . . a4
a3 a4 a4 0 . . . a4
. . . . . .

a3 a4 a4 a4 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (20)

Now this matrix admits a useful low-rank decoupling: A =
G +epT , where e = [1, . . . , 1]T , p = [a3, a4, . . . , a4]T and

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

a2 − a3 a1 − a4 a1 − a4 a1 − a4 . . . a1 − a4
0 −a4 0 0 . . . 0
0 0 −a4 0 . . . 0
0 0 0 −a4 . . . 0
. . . . . .

0 0 0 0 . . . −a4

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(21)

Note that e is a common right eigenvector for both A and
A−G, corresponding to the largest eigenvalue 1. Since A−G
is of rank 1, the remaining eigenvalues of A and G have
to be the same. Hence the eigenvalues for A are 1, a2 −
a3,−a4, . . . ,−a4. This decoupling trick has also been used
in Liu (1996) for the IMH algorithm. Given the convergence
rate (1 − 1/(Nπ1))

2 of IMH(2), it suffices to show

| a2−a3 |≤ (1 − 1/(Nπ1))
2 , a4 ≤ (1 − 1/(Nπ1))

2 , (22)

to prove that MTM-SRSWOR(2) is faster than IMH(2).

Clearly, this holds true for p = N − 1

2N
, which leads to

π1 = 1/2 + 1/(2N ), π2 = 1/(2N ). In this case,

a2 − a3 = 1 − 4N

(N + 2)(N − 1)
< 1 − 4

N + 1

<

(
1 − 2

N + 1

)2

=
(
1 − 1

Nπ1

)2

,

a4 = (N − 3)

(N − 1)(N − 2)
+ 2

(N − 1)(N − 2)(N + 2)

<

(
1 − 1

Nπ1

)2

.

We note that designing a suitable parallel construction
to do SRSWOR can speed up the algorithm considerably.
Furthermore, when proposing multiple trials, we may also
choose not to exclude x from the proposal set. In this case, we
need to modify Algorithm 4 slightly to become Algorithm 5.

Algorithm 5MTM-SRSWOR-II(k): the current state is x .
1: Draw a subset S ⊂ X of size k at random, denoted as S =

(y1, . . . , yk).
2: Select index J with probability proportional to w(y j ) = Nπ(y j )

and define y = yJ .

3: If x /∈ S, accept y with probability ρ = min
{
1,

w(y)+∑ j �=J w(y j )

w(x)+∑ j �=J w(y j )

}
.

If x ∈ S, accept y with probability 1.

5.3 Independent non-identical proposals

Besides introducing correlations between multiple trials,
Craiu and Lemieux (2007) also suggests to use different
proposals for generating multiple trials in each MTM iter-
ation and provides some supportive empirical evidences.
Here we consider a special case of MTM-IS(k) in which
the multiple trials are generated from different proposals,
i.e., y j ∼ p j (·) independently for j = 1, . . . , k. In this
case, we also do not have to draw balancing trials. Defin-
ing w j (x) := π(x)/p j (x), we summarize the procedure in
Algorithm 6.

Algorithm 6 MTM with independent non-identical propos-
als with current state x .
1: Draw multiple trials y j ∼ p j (y j ), j = 1, . . . , k independently.

Then compute w j (y j ) = π(y j )/p j (y j ).
2: Select index J with probability proportional tow j (y j , x) and define

y = yJ .

3: Accept y with the ratio ρ = min

{
1,

wJ (y) +∑
i �=J wi (yi )

wJ (x) +∑
i �=J wi (yi )

}
.

To demonstrate the effect of the multiple-try design
employed in Algorithm 6, it should be compared with a
sequential k-step IMH sampler. During one iteration, this
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sampler runs an interior loop of length k, within which the j-
th step proposes an independent proposal from p j and then
accepts/rejects it based on the MH rule as in the ordinary
IMH sampler. This sequential IMH sampler has the same
computational cost as Algorithm 6. The following theorem
provides tight upper bounds for the convergence rates of the
two algorithms, and its proof is deferred to appendixes.

Theorem 5 Suppose target π is absolutely continuous with
respect to every proposal p j . Algorithm 6 and its corre-
sponding sequential IMH sampler are geometrically conver-
gent, with their corresponding respective convergent rates

upper bounded by 1−∑k
j=1 Ep

[
1

w∗
j +
∑

1≤i≤k,i �= j wi (Xi )

]
and

∏k
j=1

(
1 − 1

w∗
j

)
, respectively, where w∗

j := supx∈X w j (x).

Furthermore, the following inequality holds,

1−
k∑

j=1

Ep

[
1

w∗
j +∑

1≤i≤k,i �= j wi (Xi )

]
≥

k∏
i=1

(
1 − 1

w∗
i

)
,

(23)

implying that the upper bound for Algorithm 6 is worse than
that for the corresponding sequential IMH.

Remark 2 (Tightness of the lower bounds) Suppose ∃ x∗ such
that

w j (x∗) = w∗
j := sup

x∈X
w j (x) = sup

x∈X
π(x)/p j (x) < ∞, for all j,

(24)

i.e., different proposals have their importance weight func-
tions w j to attain their respective supremums at a same
point x∗. Then, the convergence rates for both aforemen-
tioned algorithms attain their respective upper bounds.When
p1 = · · · = pk , condition (24) automatically holds, recov-
ering the convergence rate result of Theorem 3. However,
when there is no such a x∗ as required by (24), the quanti-
ties claimed in Theorem 5 are only upper bounds. It remains
unknown under what other conditions one algorithm can be
provably better than the other. Our empirical study shows that
their computational efficiencies are almost indistinguishable
when the target distribution is “hard” relative to the propos-
als.

Example 6 We conducted a few simulations to examine con-
vergence behaviors of Algorithm 6 and the corresponding
sequential IMH sampler at the same computational cost.

As shown in Fig. 7, we considered target densities of the
form of a mixture of two standard distributions with vari-
ous dimensions. Top plots in Fig. 7 correspond to Gaussian
mixture targets, π = 1

2N (0, Id) + 1
2N (3, Id), with d=3, 4,

and 5, respectively. Two different proposal distributions are

employed: p1 = N (0, Id) and p2 = N (0, 9Id). During one
iteration of the MTM-IS(k) algorithm, k/2 trials are inde-
pendently drawn from of p1, and another k/2 trials from
p2. The bottom plots correspond to t-mixture distributions,
π = 1

2 t3(0) + 1
2 t3(4), for d=1, 2, and 3. Two different pro-

posal distributions are: p1 = t3(0) and p2 = t5(0), and the
same implementation of MTM-IS(k) as the previous case is
employed. These plots show that Algorithm 6 and its corre-
sponding sequential IMH sampler differ very little in their
convergence rates although theoreticallywe cannot claimone
is necessarily better than the otherwithout condition (24). All
simulations are based on 106 iterations on an Apple M2 chip
with 16GB memory, each taking a few minutes.

5.4 A general framework

Inspired by the variants ofMTM just discussed, we propose a
general framework to combine these variants in Algorithm 7.
With π(·) as the target distribution on X , we let p(x, y)
denote the proposal transition function for multiple corre-
lated proposals, where x ∈ X and y = (y1, . . . , yk) ∈ X k .
We further write the j-th marginal of p(x, y) as p j (x, y j ) =∫

p(x, y)dy(− j), and define the j th lab:ssk08 as

w j (y | x) = π(y)

p j (x, y)
λ j (x, y), (25)

for j = 1, . . . , k, where λ j is a symmetric function. Assum-
ing the current state is x , the updating rule is summarized in
Algorithm 7.

Algorithm 7 Generalized MTM. Suppose current state is at
x .
1: Draw multiple trials y1, . . . , yk jointly from p(x, y). Then compute

w j (y j | x) by (25) for j = 1, . . . , k.
2: Select index J with probability proportional tow j (y j , x) and define

y = yJ .
3: Draw x∗

1 , x∗
2 , . . . , x∗

J−1, x∗
J+1, . . . , x∗

k from the conditional distribu-
tion of p(y, x∗) conditioned on J -th variable as x . And set x∗

J = x .
4: Accept y with the ratio ρ =

min

{
1,

wJ (y | x) +∑
i �=J wi (yi | x)

wJ (x | y) +∑
i �=J wi (x∗

i | y)

}
.

If we require p(x, y) to have the samemarginals for differ-
ent y j ’s, the algorithm reduces to that of Craiu and Lemieux
(2007); if we require p(x; y) to be independent among the
y j ’s, it reduces to that of Casarin et al. (2013). Note that the
balancing proposals are drawn to facilitate the computation
of ρ, and this guarantees the detailed balance of the MTM
design. The following result is expected and its detailed proof
is deferred to the Appendix.

Theorem 6 The generalized MTM transition rule (Algo-
rithm 7) satisfies the detailed balance condition and hence
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Fig. 7 Top: Auto-correlation plots for the Gaussian mixture targets in
Example 6 From left to right: dimension d= 3, 4, 5, respectively. Bot-
tom:Auto-correlation plot for the t-mixture targets in Example 6 From

left to right: dimension d = 1, 2, 3, respectively. Solid lines: k = 2;
dashed lines: k = 6; dotted lines: k = 10

induces a reversible Markov chain with π as its invariant
distribution.

Defining x∗( j) � (x∗
1 , . . . , x∗

j−1, x, x∗
j+1, x∗

k ), one can
determine the transition density of the generalized MTM
framework via the same spirit employed in the proof of The-
orem 1:

A(x, y) = π(y)

k∑
j=1

[
p j (x, y)p j (y, x)λ j (x, y)×

∫
u j (x∗( j), y)p(x, y(− j) | y j = y)

p(y, x∗
(− j) | x∗

j = x)
∏
i �= j

dyidx∗
i

]
,

where we write

u j (x, y) � min

⎧⎨
⎩
(

k∑
i=1

wi (yi | x j )

)−1

,

(
k∑

i=1

wi (xi | y j )

)−1
⎫⎬
⎭

for any x = (x1, . . . , xk) and y = (y1, . . . , yk). A detailed
derivation of this formula can be found in the proof of The-
orem 6.

As demonstrated in Algorithms 4, 5 and 6, we find that
sometimes we do not need to draw balancing trials for MTM
to retain the detailed balance. A natural question then arises:
can we find a general condition under which which MTM
can avoid the drawing of balancing trials? The following
theorem provides a sufficient condition that covers all the
cases we discussed.

Theorem 7 If, for any pair (x, y) and ∀ j , the joint proposal
distribution satisfies

p(x, y(− j) | y j = y) = p(y, y(− j) | y j = x), (26)

we can maintain the detailed balance by setting x∗
j � y j for

j �= J in Algorithm 7.

Remark 3 (Correlated multiple trials) As demonstrated in
Sects. 5.1 and 5.2, letting the proposed multiple trials be cor-
related (especially negatively) can be helpful in improving
the chain’s convergence. A useful strategy is to use multiple
trials as stepping stones to move from one mode of the dis-
tribution to another, similar in spirit to Hamiltonian/hybrid
Monte Carlo (Qin and Liu 2001; Liu 2008) and the griddy
Gibbs MTM (Liu et al. 2000). Indeed, it was shown empir-
ically in Qin and Liu (2001) that applying MTM–HMC
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trajectories may further improve the sampling efficiency.
However, an in-depth theoretical analysis as carried out here
is much more challenging due to the semi-deterministic
nature of aforementioned algorithms.

Remark 4 (Employing multiple distributions in MTM) Intu-
itively, one may hope that using different distributions for
each trial could help us explore the state space better. Our
results in Sect. 5.3, however, demonstrate that it is still not
very useful under the IMH framework if the multiple tri-
als are independent. It may be helpful for the partial MTM
framework discussed in Sect. 5.1.

6 Concluding remarks

Wehave presented a complete eigen-decomposition and con-
vergence rate analysis for the MTM-IS, and compared it
with the “thinned” IMH sampler (of the same computational
cost). With the exact form of eigenvalues of theMTM-IS, we
proved rigorously that the sampler is not as efficient as the
simpler “thinned” IMH approach. To the best of our knowl-
edge, this is the first exact rate result known for a MTM
type algorithm, although the result’s implication is less than
encouraging. A good news is that, in a more realistic setting
of MTM applications as explained in Sect. 5.1, we can show
that MTM improves upon the standard IMH and does not
have a suitable competitor.

In a quest for finding advantagesMTMmay offer, we con-
sider a slightly modified framework that encompasses a few
variants of MTM published in the literature. We found that
even under the IMH framework, it is possible to construct a
MTM algorithm, using either stratified sampling or partial
sampling, or sampling without replacement, to gain effi-
ciency.A key to such efficiency gain is to allowmultiple trials
to be eithermore dispersed than independent ones (Sect. 5) or
applied only to certain “low-cost” parts (Sect. 5.1). Detailed
theoretical understanding and guiding principles, however,
are still lacking and awaiting further endeavors.

Acknowledgements We thank the National Science Foundation of the
United States (DMS-1903139 andDMS-2015411) for partially support-
ing the research. Part or of work was done when Yang was a student in
the School of Gifted Young, University of Science and Technology of
China.

Declarations

Conflict of interest The authors have no competing interests that are
directly or indirectly related to the work submitted for publication.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Detailed proofs

Proof of Theorem 2 Before proving the theorem, we first
define the following additional notations and concepts. Let
A(·, ·) denote the Markov transition kernel implied by our
algorithm. The operator K associated with the resulting
Markov chain is defined as follows: for anymeasurable func-
tion f defined on X , operator K maps f to another function
defined on X :

K f (x) =
∫
X

f (y)A(x, dy).

We require that function f ∈ L2(π). It is easy to see that
K f ∈ L2(π) as well, meaning that K defines a linear
bounded operator on the Hilbert space L2(π) with oper-
ator norm 1. For any set S ⊂ X , we shall also denote
χS : X → {0, 1} as the indicator function which equals
1 if and only if on S. Intuitively, K is just a conditional
expectation operator. Note that the constant function 1 is
automatically an eigenfunction of eigenvalue 1.We are inter-
ested in finding the spectral gap, i.e., the difference between
1 and the second largest eigenvalue. We thus focus on the
restricted operator K0 defined on the orthogonal complement
of the constant function:

L2
0(π) =

{
f ∈ L2(π) :

∫
X

f (x)dx = 0

}
.

Given Theorem 1, we divide the operator K0 into two
parts: ∀ f ∈ L2

0(π),

K0 f (x) = R(x) f (x)

+
∫
X
min [H [w(x)], H [w(y)]] f (y)π(y)dy

=: MR f (x) + U f (x).

Before presenting the formal proof, we remark that this
decomposition has the same nature as that in Section 2.1
of Liu (1996), in which the multiplication operator MR is
a low-rank component and the integral-like operator U that
resembles the upper triangular matrix in the discrete case.
This proof is analogous to that in Atchadé and Perron (2007).
The formal proof is divided into the following steps.
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Step 1. We first show that operator U is compact. Under the
following condition,

∫
X

∫
X
min {H [w(x)], H [w(y)]}2 π(x)π(y)dxdy < ∞,

operator U is Hilbert-Schmidt, and therefore compact.
Hence, by Weyl’s perturbation theorem, we have

σess(K0) = σess(MR) ⊂ ess-ran(R).

Step 2. Given this, combined with the decomposition

σ(K0) = σess(K0) ∪ σd(K0),

we know that it suffices to prove that σd(K0) ⊂ ess-ran(R),
i.e. all eigenvalues of K0 are in the essential range of R.
To proceed, we assume that there exists f0 ∈ L2

0(π) and
λ /∈ ess-ran(R), but K0 f0 = λ f0.

Direct computations yield that for any f ∈ L2
0(π)

U f (x) =
∫

min {H [w(x)], H [w(y)]} f (y)π(y)dy

=
∫

{y:w(y)≥w(x)}
H [w(y)] f (y)π(y)dy

+
∫

{y:w(y)<w(x)}
H [w(x)] f (y)π(y)dy

=
∫

{y:w(y)≥w(x)}
{H [w(y)] − H [w(x)]} f (y)π(y)dy.

Since we assume that λ /∈ ess-ran(R), we have κ =
ess inf (| R(x) − λ |) > 0. We can rearrange equation
K0 f0 = λ f0 to arrive at

∫
{y:w(y)≥w(x)}

H [w(x)] − H [w(y)]
R(x) − λ

f0(y)π(y)dy = f0(x),

(A1)

which can be simplified as N f0 = f0 with N being an oper-
ator well-defined on L2(π) (rather than L2

0(π) in which K0

is defined). Then, we aim to derive a contradiction about the
spectral radius radii(G) � sup{| λ |: λ ∈ σ(G)} for some
linear operator G on L2(π) induced by N .
Step 3. Since f0 is not identically vanishing, we can find
u < w∗ so that f0 is not null on {x ∈ X : u < w(x) ≤ w∗}.
For any partition In = (u = un ≤ un−1 ≤ . . . ≤ u0 = w∗),
we denote Di = {x ∈ X : ui < w(x) ≤ ui−1} and L2

i (π) =
{h ∈ L2

0(π) : h(x) = 0,∀x /∈ Di } for i = 1, . . . , n. Then
L2

i (π) is a closed subspace of L2
0(π), thus a Hilbert space.

Moreover, we introduce MDi as the restriction operator onto
Di on L2(π), by letting MDi g(x) = χDi (x)g(x) for any
g ∈ L2(π).

We know that

MD1 N f0(x) =
∫

{y:w(y)≥w(x)}
H [w(x)] − H [w(y)]

R(x) − λ

f0(y)χD1(x)π(y)dy

=
∫

{y:w(y)≥w(x)}
H [w(x)] − H [w(y)]

R(x) − λ

χD1(y) f0(y)χD1(x)π(y)dy

= MD1 N MD1 f0,

where the second inequality follows from the fact that y /∈ D1

andw(y) ≥ w(x)would together imply that x /∈ D1. Obtain-
ing from N f0 = f0 and M2

D1
= MD1 , we then have f0,D1 �

MD1 f0 = MD1 N f0 = MD1 N MD1 f0 = MD1 N MD1 f0,D1 .
In the same manner, we have

MDi N f0(x)

=
∫

{y:w(y)≥w(x)}
H [w(x)] − H [w(y)]

R(x) − λ
f0(y)χDi (x)π(y)dy

=
i−1∑
k=1

∫
{y∈Dk }

H [w(x)] − H [w(y)]
R(x) − λ

f0(y)χDi (x)π(y)dy

+
∫

{y:ui−1>w(y)≥w(x)}
H [w(x)] − H [w(y)]

R(x) − λ

f0(y)χDi (x)π(y)dy

= MDi hi (x) +
∫

{y:ui−1>w(y)≥w(x)}
H [w(x)] − H [w(y)]

R(x) − λ
χDi (y) f0(y)χDi (x)π(y)dy

= MDi hi (x) + MDi N MDi f0,Di ,

where f0,Di � MDi f0 and

hi (x) =
i−1∑
k=1

∫
{y∈Dk }

H [w(x)] − H [w(y)]
R(x) − λ

f0(y)π(y)dy.

(A2)

Rearranging these formulae, we know that

MD1 N MD1 f0,D1 = f0,D1 , (A3)

MD2 N MD2 f0,D2 = f0,D2 − MD2h2, (A4)

. . .

MDn N MDn f0,Dn = f0,Dn − MDn hn . (A5)

We claim that (A3) implies that radii(MDi N MDi ) ≥ 1
holds true for at least one index i ∈ {1, . . . , n}. Assum-
ing the converse is true, then MD1 N MD1 f0,D1 = f0,D1

implies that f0,D1 = 0 (since 1 cannot be an eigenvalue
of MD1 N MD1 ). Consequently, h2 = 0 follows automati-
cally from its definition (A2), and MD2 N MD2 f0,D2 = f0,D2
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implies that f0,D2 = 0. This argument can be carried
out recursively until n, indicating that f0 has to vanish on
{x ∈ X : u < w(x) ≤ w̄}, resulting in a contradiction!
Step 4. Finally, we show that for sufficiently small incre-
ments, we can make

radii(MDi N MDi ) < 1, ∀i .

First, the mapping

H : v ∈ R+ �→ k
∫
X

. . .

∫
X︸ ︷︷ ︸

k−1

1

v +∑k−1
j=1 w(y j )

k−1∏
j=1

p(x)dx

is continuous, at least on [u, w̄].
Second, ∀g ∈ L2

i (π) with ‖g‖ = 1, by the Cauchy-
Schwarz inequality we have

‖MDi N MDi g‖2

=
∫

{y∈Di }

{∫
{y:w(y)≥w(x)}

H [w(x)] − H [w(y)]
R(x) − λ

g(y)χDi (x)π(y)dy

}2
π(x)dx

≤
(
max[ui ,ui−1] H − min[ui ,ui−1] H

κ

)2 ∫
{y∈Di }

g2(y)π(y)dy

≤
(
max[ui ,ui−1] H − min[ui ,ui−1] H

κ

)2

=
(
osc[ui ,ui−1] H

κ

)2

,

where osc[ui ,ui−1]H � max[ui ,ui−1] H − min[ui ,ui−1] H
denotes the oscillation of H within [ui , ui−1]. There-
fore, ‖MDi N MDi ‖ ≤ osc[ui ,ui−1]H/κ . At last, if we
choose the partition to be sufficiently small, we would have
radii(MDi N MDi ) < 1 for all i . We then derive a final contra-
diction to assert that σd(K0) ⊂ ess-ran(R), ending the proof.

�

Proof of Theorem 4 In this proof, every random variable X
is taken independently from p. This inequality is proved by
induction. First, for k = 1, the inequality reduces to equality
due to a previous result of Liu (1996) andAtchadé and Perron
(2007). For k = 2, we see that

1 − E

[
2

w∗ + w(X)

]
−
(
1 − 1

w∗

)2

= 1

w∗E
[

2w(X)

w∗ + w(X)
− 1

w∗

]
≥ 1

w∗E
[
2w(X)

2w∗ − 1

w∗

]
= 0.

For k ≥ 3, we will prove the following recursive inequality,
which leads to the conclusion of the theorem:

1 − E

[
k

w∗ +∑k−1
i=1 w(Xi )

]
≥
(
1 − 1

w∗

)
(
1 − E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

])
. (A6)

We prove by simply computing the difference between the
two sides:

1 − E

[
k

w∗ +∑k−1
i=1 w(Xi )

]
−
(
1 − 1

w∗

)
(
1 − E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

])

= E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

]
+ 1

w∗ − E

[
k

w∗ +∑k−1
i=1 w(Xi )

]

− E

[
k − 1

w∗[w∗ +∑k−2
i=1 w(Xi )]

]

= (k − 1)

(
E

[
1

w∗ +∑k−2
i=1 w(Xi )

]
− E

[
1

w∗ +∑k−1
i=1 w(Xi )

])
︸ ︷︷ ︸

(i)

+ 1

w∗ − E

[
1

w∗ +∑k−1
i=1 w(Xi )

]
− E

[
k − 1

w∗[w∗ +∑k−2
i=1 w(Xi )]

]
︸ ︷︷ ︸

(i i)

.

We note that (i) can be modified as

(i) = (k − 1)

(
E

[
1

w∗ +∑k−2
i=1 w(Xi )

]
− E

[
1

w∗ +∑k−1
i=1 w(Xi )

])

=
k−1∑
j=1

(
E

[
1

w∗ +∑
1≤i≤k−1,i �= j w(Xi )

]

−E

[
1

w∗ +∑k−1
i=1 w(Xi )

])

=
k−1∑
j=1

E

{
w(X j )

[w∗ +∑
1≤i≤k−1,i �= j w(Xi )][w∗ +∑k−1

i=1 w(Xi )]

}
.

For (i i), we have

(i i) = E

{ ∑k−1
j=1 w(X j )

w∗[w∗ +∑k−1
i=1 w(Xi )]

}

− E

[
k − 1

w∗[w∗ +∑k−2
i=1 w(Xi )]

]

=
k−1∑
j=1

E

{
w(X j )

w∗[w∗ +∑k−1
i=1 w(Xi )]

}

−
k−1∑
j=1

E

{
w(X j )

w∗[w∗ +∑
1≤i≤k−1,i �= j w(Xi )]

}

= −
k−1∑
j=1

E

{
w(X j )

2

w∗[w∗ +∑k−1
i=1 w(Xi )][w∗ +∑

1≤i≤k−1,i �= j w(Xi )]

}
.

In conclusion, we have

1 − E

[
k

w∗ +∑k−1
i=1 w(Xi )

]
−
(
1 − 1

w∗

)
(
1 − E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

])
= (i) + (i i)
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=
k−1∑
j=1

E

{
w(X j )[w∗ − w(X j )]

w∗[w∗ +∑k−1
i=1 w(Xi )][w∗ +∑

1≤i≤k−1,i �= j w(Xi )]

}
≥ 0.

Consequently, suppose the inequality (15) holds for k − 1,
i.e.,

1 − E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

]
≥
(
1 − 1

w∗

)k−1

,

from (A6) it immediately follows

1 − E

[
k

w∗ +∑k−1
i=1 w(Xi )

]
≥
(
1 − 1

w∗

)
(
1 − E

[
k − 1

w∗ +∑k−2
i=1 w(Xi )

])
≥
(
1 − 1

w∗

)k

By induction, the final result (15) holds for arbitrary k ≥ 1.
�


Proof of Theorem 5 Part 1 derives the convergence rate of
Algorithm 6. Part 2 derives the convergence rate of the corre-
sponding sequential IMH sampler. Part 3 finishes by deriving
the inequality (23) via induction.
Part 1.Via straight forward computation, the transition prob-
ability of Algorithm 6 has the following formula (x �= y)

A(x, y) =
k∑

j=1

∫
. . .

∫
︸ ︷︷ ︸

k−1

w j (y)p j (y)
∏

i �= j pi (yi )dyi

max{w j (y) +∑
i �= j wi (yi ), w j (x) +∑

i �= j wi (yi )}

= π(y)

k∑
j=1

∫
. . .

∫
︸ ︷︷ ︸

k−1

∏
i �= j pi (yi )dyi

max{w j (y), w j (x)} +∑
i �= j wi (yi )

.

Plug max{w j (y), w j (x)} ≤ w∗
j into this formula to get

A(x, y) ≥ π(y)Ep

⎡
⎣ k∑

j=1

1

w∗
j +∑

1≤i≤k,i �= j wi (Xi )

⎤
⎦ ,

where Xi is taken independently from pi (·). Actually this
inequality is sufficient to derive a decomposition of A(x, ·)
as in (6).As shown in the proof ofTheorem3,weupper bound

the convergence rate by 1−∑k
j=1 E

[
1

w∗
j +
∑k

i=1,i �= j wi (Xi )

]
via

coupling argument, Lemma 1.

Specifically, when there exists x∗ such that w j (x∗) = w∗
j

for all j = 1, . . . , k, we find for any y �= x∗,

A(x∗, y) = π(y)Ep

⎡
⎣ k∑

j=1

1

w∗
j +∑

1≤i≤k,i �= j wi (Xi )

⎤
⎦ .

Consequently, the rejection probability at x∗ is

R(x∗) = 1 − Ep

⎡
⎣ k∑

j=1

1

w∗
j +∑

1≤i≤k,i �= j wi (Xi )

⎤
⎦ .

Then we lower bound the convergence rate via Lemma 2.
Part 2. Turn to the corresponding sequential IMH sampler.
For simplicity, we utilize the concept of L2 operators intro-
duced in Sect. 2 to derive upper bounds.Within one iteration,
the sampler runs an interior loop of length k, with each step
as a vanilla IMH step using proposal pi . The transition prob-
ability of a vanilla IMH step is

A(i)(x, y) = 1

max{wi (x), wi (y)}π(y)

+
(
1 −

∫
X

1

max{wi (x), wi (y)}π(y)dy

)
δx (y).

Denote K (i) as the operator defined in L2(π) by K (i) f (x) =∫
f (y)A(i)(x, y)dy, and denote K (i)

0 as the restriction of
K (i) onto L2

0(π), the orthogonal complement of the constant

function of L2(π). Theorem 2 implies ‖K (i)
0 ‖ ≤ 1 − 1/w∗

i .
Denote the whole transition probability of one iteration as Ā
and associated operators as K̄ and K̄0. Consequently,

‖K̄0‖2 = ‖K̄ (k)
0 · · · K̄ (1)

0 ‖2 ≤
k∏

i=1

(1 − 1/w∗
i ).

Let pn(x) = Ān(p0, x) denote the distribution of the n-th
state of the Markov chain after n steps from initialization p0.
Liu et al. (1995) establishes

‖pn − π‖T V ≤ 2dχ (π, pn) ≤ 2‖K̄ n
0 ‖2dχ (π, p0).

Furthermore, we obtain an upper bound on the convergence
rate defined in (13): r ≤ ‖K̄0‖0 = ∏k

i=1(1 − 1/w∗
i ).

For amatching lower bound, we consider the special point
x∗ ∈ X such that for all i ,

A(i)(x∗, y) = 1

w∗
i
π(y) +

(
1 − 1

w∗
i

)
δx∗(y).
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Going through the full interior loop within one iteration, the
whole rejection probability is at least

R(x∗) ≥
k∏

i=1

(
1 − 1

w∗
i

)
.

By Lemma 2, a matching lower bound thus obtained.
Part 3. We then establish (23). For k = 2,

1 − E

[
1

w∗
1 + w2(X2)

]
− E

[
1

w1(X1) + w∗
2

]

−
(
1 − 1

w∗
1

)(
1 − 1

w∗
2

)

= E

[
w1(X1)

w∗
2(w1(X1) + w∗

2)

]

+ E

[
w2(X2)

w∗
1(w

∗
1 + w2(X2))

]
− 1

w∗
1w

∗
2

≥ 1

w∗
1(w

∗
1 + w∗

2)
+ 1

w∗
2(w

∗
1 + w∗

2)
− 1

w∗
1w

∗
2

= 0.

For larger k > 2, we have, for an arbitrary fixed l ∈
{1, . . . , k},

1 −
k∑

j=1

E

[
1

w∗
j +∑k

i=1,i �= j wi (Xi )

]

−
(
1 − 1

w∗
l

)⎧⎨
⎩1 −

k∑
j=1, j �=l

E

[
1

w∗
j +∑k

i=1,i �= j,i �=l wi (Xi )

]⎫⎬
⎭

=
k∑

j=1, j �=l

E

[
w j (X j )

w∗
l [w∗

l +∑k
i=1,i �=l wi (Xi )]

]

−
k∑

j=1, j �=l

E

[
1

w∗
l [w∗

j +∑k
i=1,i �= j,i �=l wi (Xi )]

]

+
k∑

j=1, j �=l

E

[
wl(Xl)

[w∗
j +∑k

i=1,i �= j wi (Xi )][w∗
j +∑k

i=1,i �= j,i �=l wi (Xi )]

]

≥
k∑

j=1, j �=l

E

[
1

w∗
l (w∗

l + w∗
j + B jl)

+ 1

(w∗
l + w∗

j + B jl)(w
∗
j + B jl)

− 1

w∗
l (w∗

j + B jl)

]
= 0, (A7)

where we denote B jl = ∑k
i=1,i �= j,i �=l wi (Xi ) for simplicity.

The last inequality is mainly due to

w∗
l +

k∑
i=1,i �=l

wi (Xi ) ≤ w∗
l + w∗

j +
k∑

i=1,i �=l,i �= j

wi (Xi ) = w∗
l + w∗

j + B jl

applied in the denominators of the two positive terms. The
last step of induction is the same as the proof of Theorem 4.
Suppose the result holds for k − 1, i.e.,

1 −
k−1∑
j=1

Ep

[
1

w∗
j +∑

1≤i≤k−1,i �= j wi (Xi )

]
≥

k−1∏
i=1

(
1 − 1

w∗
i

)
,

it immediately follows from (A7) with l = k that

1 −
k∑

j=1

Ep

[
1

w∗
j +∑

1≤i≤k−1,i �= j wi (Xi )

]

≥
⎛
⎝1 −

k−1∑
j=1

Ep

[
1

w∗
j +∑

1≤i≤k−1,i �= j wi (Xi )

]⎞⎠
(
1 − 1

w∗
k

)

≥
k∏

i=1

(
1 − 1

w∗
i

)
.

The proofs of Theorem 4 and Theorem 5 are essentially
the same, both utilizing induction to recursively handle a
general integer k. �

Proof of Theorem 6 To make our notations more explicit, we
assume that every distribution mentioned here has a density
with respect to the Lebesgue measure. Denote A(x, y) as the
actual transition density, we compute directly that

π(x)A(x, y)

= π(x)

k∑
j=1

P(y j = y, J = j, yJ gets accepted)

= π(x)

k∑
j=1

∫
p(x, y j )

w j (y, x)

w j (y, x) +∑
i �= j wi (yi , x)

ρ p(y, x∗− j | x)
∏
i �= j

dyidx∗
i ,

where we write x∗
(− j) = (x∗

1 , x∗
2 , . . . , x∗

j−1, x∗
j+1, . . . , x∗

k ) ∈
X k−1 and y( j) = (y1, . . . , y j−1, y, y j+1, . . . , yk) ∈ X k .
Plugging in the definition of ρ, we use the notations
x∗( j) � (x∗

1 , . . . , x∗
j−1, x, x∗

j+1, x∗
k ) and u j (x, y) � min
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{
1∑k

i=1 wi (yi ,x j )
, 1∑k

i=1 wi (xi ,y j )

}
to get

π(x)A(x, y)

= π(x)

k∑
j=1

∫
p(x, y( j))

w j (y, x)

w j (y, x) +∑
i �= j wi (yi , x)

min

{
1,

w j (y, x) +∑
i �= j wi (yi , x)

w j (x, y) +∑
i �= j wi (x∗

i , y)

}

p(y, x∗
(− j) | x)

∏
i �= j

dyidx∗
i

=
k∑

j=1

π(x)w j (y, x)p j (x, y)

∫
u j (x∗( j), y)

p(x, y(− j) | y j = y)p(y, x∗
(− j) | x j = x)

∏
i �= j

dyidx∗
i .

In the above formula, we use the identity

p(x, y( j)) = p j (x, y) × p(x, y(− j) | y j = y).

At last, note that π(x)w j (y, x)p j (x, y) = π(x)π(y)

p j (x, y)p j (y, x)λ j (x, y) is symmetric by our constructions,
which implies that π(x)A(x, y) is symmetric in x and y,
proving the detailed balance condition. �


Proof of Theorem 7 If we simply set x∗
j := y j for any j �= J

in Algorithm 7, the conditional probability becomes

π(x)A(x, y)

= π(x)

k∑
j=1

[ ∫
p(x, y( j))w j (y, x)

min

[
1

w j (y, x) +∑
i �= j wi (yi , x)

,

1

w j (x, y) +∑
i �= j wi (yi , y)

]∏
i �= j

dyi

]

=
k∑

j=1

[ ∫
π(x)p j (x, y)w j (y, x)p(x, y(− j) | y j = y)

min

[
1

w j (y, x) +∑
i �= j wi (yi , x)

,

1

w j (x, y) +∑
i �= j wi (yi , y)

]∏
i �= j

dyi

]
.

Since π(x)w j (y, x)p j (x, y) is symmetric for x and y, the
theorem follows easily from condition (16) in the main text.

�
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