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Abstract
We consider the market microstructure of constant function market makers (CFMMs) from

the perspective of passive liquidity providers (LPs). In a Black-Scholes setting, we compare the
CFMM’s performance to that of a rebalancing strategy, which replicates the CFMM’s trades at
market prices. The CFMM systematically underperforms the rebalancing strategy, because it ex-
ecutes all trades at worse-than-market prices. The performance gap between the two strategies,
“loss-versus-rebalancing” (LVR, pronounced “lever”), depends on the volatility of the underly-
ing asset and the marginal liquidity of the CFMM bonding function. Our model’s expressions
for CFMM losses match actual losses from the Uniswap v2 WETH-USDC pair. LVR provides
tradeable insight in both the ex ante and ex post assessment of CFMM LP investment decisions,
and can also inform the design of CFMM protocols.

1. Introduction

In recent years, automated market makers (AMMs) and, more specifically, constant function mar-
ket makers (CFMMs) such as Uniswap [Adams et al., 2020, 2021], have emerged as the dominant
mechanism for decentralized exchange on blockchains. Compared to electronic limit order books
(LOBs), which are the dominant market structure for traditional, centralized exchange-based elec-
tronic markets, CFMMs o�er some advantages. First of all, they are e�cient computationally.
They have minimal storage needs, and matching computations can be done quickly, typically via

�The second author thanks Richard Dewey, Craig Newbold, Guillermo Angeris, Tarun Chitra, and Alex Evans
for helpful conversations on automated market making. We are also grateful to Jun Aoyagi, Eric Budish, Larry
Glosten, Gur Huberman, Mingxuan He, and Thomas Rivera for helpful comments. The second author is an advisor
to fintech companies. The third author is Head of Research at a16z Crypto, a venture capital firm with investments
in automated market making protocols. The first author was supported in part by an unrestricted gift from Gnosis,
Ltd. The third author was supported in part by NSF awards CCF-2006737 and CNS-2212745.
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constant-time closed-form algebraic computations. In an LOB, on the other hand, matching engine
calculations may involve complex data structures and computations that scale with the number of
orders. Thus, CFMMs are uniquely suited to the severely computation- and storage-constrained
environment of the blockchain. Second, LOBs are not well-suited to a “long-tail” of illiquid assets.
This is because they require the participation of active market makers. In contrast, CFMMs mainly
rely on passive liquidity providers (LPs).

The goal of this paper is to understand the returns to providing liquidity in an CFMM, in a
manner which is inspired by the Black and Scholes [1973] model of option pricing. The Black-Scholes
model builds on the insight that options can be replicated by dynamically trading the underlying
stock. From this insight, the model can be used to analyze option returns both qualitatively and
quantitatively. Qualitatively, the Black-Scholes model shows how option returns are related to the
underlying stock’s return, volatility, and other parameters. Quantitatively, the model is realistic
enough that it can be used to price options, by plugging in values for model parameters.

Analogous to the Black-Scholes approach, we aim to construct a model of CFMM LP returns,
which both delivers qualitative insights about the factors that a�ect LP profitability, and is quan-
titatively realistic enough to bring to data. We begin with the idea of replicating the CFMM’s
trades by dynamically trading the underlying asset at market prices; we call this trading scheme
the rebalancing strategy. The CFMM LP position systematically underperforms relative to the
rebalancing strategy; we call the performance gap loss-versus-rebalancing, (or LVR, pronounced
“lever”). The source of underperformance is price slippage: due to the passive nature of CFMM
liquidity provision, whenever risky asset prices move, CFMMs trade at worse-than-market prices.
We derive a simple expression for LVR, which depends only on two parameters: the volatility of
the underlying asset, and the marginal liquidity of the CFMM bonding function. We then use
our model to empirically analyze the Uniswap v2 WETH-USDC pair. Our model quantitatively
performs well in matching LP returns. Our results have implications for measuring the returns to
providing liquidity for CFMMs, as well as for redesigning CFMM to limit LVR and thus decrease
the e�ective trading fees charged to CFMM traders.

We model trading between a risky asset and a numéraire. The two assets can be traded on
a CFMM and a centralized exchange (CEX). We assume the CEX is infinitely deep, so the risky
asset can be traded on the CEX with no price impact. As in the Black-Scholes model, we assume
the risky asset’s price follows a geometric Brownian motion with possibly stochastic volatility. The
CFMM is described by an invariant curve f (x, y) = L; the CFMM is willing to make any trade
such that it stays on this level curve. There are two kinds of traders in the model. Noise traders
trade with the CFMM, contributing fees to CFMM LPs. Arbitrageurs trade with the CFMM and
the CEX to maximize profits. We assume arbitrageurs pay no fees, implying that arbitrageurs
ensure that the CFMM’s price is always equal to the CEX price.

We define the rebalancing strategy as a trading strategy which holds whatever amount of the
risky asset the CFMM holds at any point in time, but adjusts its positions in the risky asset by
trading at CEX prices, rather than CFMM prices. Shorting the rebalancing strategy e�ectively
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delta-hedges the CFMM LP position. We show that, ignoring fees, CFMM LPs always do worse
than the rebalancing strategy. We define loss-versus-rebalancing, or LVR, as the gap between
the rebalancing strategy’s performance, and the CFMM LP’s performance. The intuition for this
underperformance is related to the phenomenon of “sniping” in high-frequency trading settings. In
the model of Budish et al. [2015], a market maker quotes prices to trade a risky asset. Whenever
public information arrives causing the fair price of the risky asset to move, there is a “speed race”
between the quoting market maker to cancel her order, and other traders to “snipe” the market
maker’s stale quotes.

CFMMs can be thought of as quoting market makers who never proactively update their price
quotes; they only ever change prices in response to trades. Thus, whenever CEX prices move,
CFMM quotes become “stale”, giving arbitrageurs opportunities to profit by “sniping” the CFMM,
until the point where CFMM prices are equal to CEX prices. CFMMs thus lose money from
price slippage: every trade which the CFMM makes is executed at slightly worse prices than the
rebalancing strategy, which buys and sells at CEX prices. LVR consists of the aggregate losses
incurred from such price slippage.

Instantaneous LVR depends on only two parameters: the instantaneous variance of asset prices,
and the marginal liquidity available — the slope of the CFMM’s demand function for the risky asset
— at the current price level in the pool. That is, CFMM losses from price slippage are greater when
prices move more, and when the CFMM trades more aggressively in response to price movements.
Asset price volatility is straightforwards to measure, and marginal liquidity can be calculated based
on the formula for a CFMM’s level sets, implying that our model can be used to measure LVR for
any asset pair and CFMM invariant empirically.

The Black-Scholes model also implies that options can be delta-hedged by trading the underlying
stock; a delta-hedged call option is a pure bet on whether the volatility implied by option prices
is greater than realized volatility. Analogously, the concept of LVR can be used the basis of a
trading strategy involving delta-hedging LP positions. A portfolio which holds a long position in
the CFMM LP, and a short position in the rebalancing strategy, is always hedged to first-order
at any point against directional movements in the risky asset’s prices. At any point in time, the
position is thus a bet on whether accrued trading fees are large enough to compensate for LVR
losses due to price slippage; the strategy profits if fees are large relative to the product of price
volatility and marginal liquidity, and loses money otherwise.

We use our model to empirically analyze the Uniswap v2 ETH-USDC trading pair. Unhedged
LPing on ETH-USDC is very risky; however, this is mostly due to the fact that LPs are exposed
to market risk in ETH prices. We show that hedged LPing — taking a long position in the CFMM
LP, and a short position in the rebalancing strategy — is substantially less risky, with a Sharpe
ratio of up to 18.2, depending on the rebalancing frequency. Moreover, our model-predicted LVR is
able to match empirical hedged LP returns fairly well.

Next, we discuss connections between CFMM LP positions and the three classical ways that
volatility can be traded: static (European) options, dynamic trading strategies, and variance swaps
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[Carr and Madan, 2001]. We model the AMM reserves at the static payo� of a pool value function.
This relates to Clark [2020], Fukasawa et al. [2022], and Deng and Zong [2022], who show that
AMM LP payo�s, over any finite time horizon, can be replicated by shorting a bundle of European
options. These option positions, in turn, are equivalent to dynamic trading strategies which sells
(buys) the asset when prices increase (decrease). In our setting, the rebalancing strategy plays
the role of delta-hedging. Finally, an delta-hedged LP position can be thought of as a generalized
variance swap, whose payo� over any given time period is equal to realized variance weighted by
the marginal liquidity of the AMMs.

A common benchmark used by practitioners to measure CFMM LP losses is “impermanent
loss”. Impermanent loss compares the performance of a CFMM LP position to a portfolio which
simply holds the LP’s initial bundle of assets; this di�ers from LVR, which compares LP performance
to the rebalancing strategy. On the one hand, we show that the risk-neutral expectation of LVR
and impermanent loss — and in fact with any other benchmark strategy which trades at market
prices — is the same. On the other hand, LVR is the unique choice of benchmark which eliminates
di�erences attributable to market risk. Mathematically, loss of an AMM LP position relative to
any other benchmark can be thought of as LVR, plus a noise term due to di�erence between the
market risk exposures of the benchmark and the AMM LP.

Our results have implications for AMM design. LVR can be used by CFMM protocol designers
for guidance to set fees. This is because in a competitive market for liquidity provision, there
should be no excess profits for LPs, and hence fees should balance with LVR. For example, since
LVR scales with variance, one might imagine fee mechanisms that also scale with variance. Or,
alternatively, protocols could be constructed that compare LVR versus fee income in a backward
looking window, increasing fees if they are below LVR, and decreasing fees if they are above LVR.
More speculatively, our results suggest a potential approach to redesign CFMMs to reduce or
eliminate LVR: a CFMM which has access to a reliable and high-frequency price oracle could in
principle quote prices arbitrarily close to market prices for the risky asset, thus eliminating losses
from price slippage, and achieving payo�s arbitrarily close to that of the rebalancing strategy.
Relatedly, CFMMs could sell special rights to arbitrage LPs to special wallets, “capturing” expected
LVR and redistributing the profits to AMM LPs.

Related literature. Automated market makers have their origin in the classic literature on pre-
diction markets and market scoring rules; see Pennock and Sami [2007] for a survey of this area.
Constant function market makers, which are characterized by a invariant or bonding function, build
on the utility-based market making framework of Chen and Pennock [2007]. In that framework,
utility indi�erence conditions define a bonding function for binary payo� Arrow-Debreu securities.
More recent interest in CFMMs has been prompted by an entirely new application: its functioning
as a decentralized exchange mechanism, first proposed by Buterin [2016] and Lu and Köppelmann
[2017]. The latter authors first suggested a constant product market maker, this was first analyzed
by Angeris et al. [2019]. Angeris and Chitra [2020] and Angeris et al. [2021a,b] apply tools from
convex analysis (e.g., the pool reserve value function) to study the more general case of constant
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function market makers, we employ some of those tools here. Angeris et al. [2021b] also analyze
arbitrage profits, but do not relate them to the rebalancing strategy or express them in closed-form.
A separate line of work seeks to design specific CFMMs with good properties by identifying good
bonding functions [Port and Tiruviluamala, 2022, Wu and McTighe, 2022, Forgy and Lau, 2021,
Krishnamachari et al., 2021].

Our paper relates to a sizable recent literature on automated market makers. Lehar and Par-
lour [2021] compare liquidity provision in limit order books and AMMs. In their model, as in ours,
liquidity providers make profits from liquidity traders, and lose when risky asset prices move and
arbitrageurs “snipe” stale CFMM quotes. Lehar and Parlour [2021] show theoretically and empiri-
cally that equilibrium pool size is smaller when asset volatility is higher, and characterize a number
of other stylized facts of Uniswap liquidity pools. Capponi and Jia [2021] also show that CFMM
LPs su�er losses when risky asset prices move, analyzing both the “rebalancing” arbitrage we study
in this paper, as well as “reversal” arbitrage from exploiting noise traders. Capponi and Jia [2021]
calculates the optimal convexity of the CFMM invariant, for trading o� losses from arbitrage and
increased price impact from investors.

A number of papers theoretically and empirically analyze DEX fees, and their e�ects on trade
volume and price e�ciency [Lehar et al., 2022, Hasbrouck et al., 2022]. Barbon and Ranaldo [2021],
Foley et al. [2023], Lehar and Parlour [2021], and Han et al. [2021] empirically compare price impact,
price e�ciency, and net trading fees on centralized and decentralized exchanges. Other papers
analyzing CFMMs include Brolley and Zoican [2023], Aoyagi [2020], Aoyagi and Ito [2021], Park
[2021], and Fang [2022]. Arbitrage profits are a form of miner extractable value (MEV). Qin et al.
[2022] empirically quantifies this and other types of CFMM related MEV, including “sandwich”
attacks. Sandwich attacks are also considered by Zhou et al. [2021] empirically.

Black-Scholes-style options pricing models, like the ones developed in this paper, have been
applied to weighted geometric mean market makers over a finite time horizon by Evans [2020],
who also observes that constant product pool values are a super-martingale because of negative
convexity. Clark [2020] replicates the payo� of a constant product market over a finite time horizon
in terms of a static portfolio of European put and call options. Tassy and White [2020] compute
the growth rate of a constant product market maker with fees. Lambert [2022] considers a number
of related issues. Boueri [2021] considers the profitability of geometric mean market makers under
geometric Brownian motion dynamics, his (re-)definition of “impermanent loss” in that setting is
equivalent to LVR. Contemporaneous with the present work, the “convexity cost” component of
the “predictable loss” of Cartea et al. [2022] is also equivalent to LVR.

We make a number of contributions relative to the literature. Qualitatively, our model highlights
that the losses of CFMM LPs should be thought of as arising from price slippage, due to system-
atically trading at worse-than-market prices, in a manner similar to the “quote-sniping” losses of
market makers in high-frequency trading models [Budish et al., 2015, Biais et al., 2015, Baldauf
and Mollner, 2020, Aquilina et al., 2022]. This insight has implications for redesigning CFMMs to
eliminate these losses. Besides this qualitative contribution, an important feature of our model is
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that it is quantitatively realistic, using continuous time and price spaces instead of the finite-time,
finite-state models used in much of the prior literature. Our model is thus more amenable to fitting
to data in practice; we show that our model matches empirical losses of CFMM LPs well. More-
over, our model highlights a simple trading strategy — delta-hedging the LP position by shorting
the rebalancing strategy — which eliminates the market risk exposure of the CFMM, isolating the
tradeo� between trading fees and sniping losses. Empirically, the delta-hedged LP strategy has
much lower risk than the pure LP strategy.

Outline. The paper proceeds as follows. Section 2 describes our model. Section 3 contains our main
results. Section 4 shows expressions for loss-versus-rebalancing for a number of CFMM invariants
used in practice. Section 5 contains our empirical analysis. Section 6 discusses the relationship
of CFMM LPs to options and other ways to trade volatility. Section 7 discusses the relationship
between LVR and other benchmarks, such as impermanent loss. We discuss practical implications
of our results for AMM design in Section 8, and conclude in Section 9. Proofs and supplementary
results are contained in the appendix.

2. Model

In what follows, we describe the frictionless, continuous-time Black-Scholes setting of our model.

Assets. Fix a filtered probability space
!
�, F , {Ft}tØ0,Q

"
where Q is a risk-neutral or equivalent

martingale measure, satisfying the usual assumptions. Suppose there are two assets,1 a risky asset
x and a numéraire asset y. Without loss of generality, assume that the risk-free rate is zero. There
is an infinitely deep centralized exchange, where the risky asset can be traded with zero fees. The
price on the centralized exchange is observable, and evolves exogenously according to a geometric
Brownian motion that is a continuous Q-martingale, i.e.,

dPt

Pt
= ‡t dBQ

t , ’ t Ø 0,

with a stochastic volatility process2 given by ‡t > 0, and where BQ
t is a Q-Brownian motion.

CFMM pool. The state of a CFMM pool is characterized by the reserves (x, y) œ R2
+, which describe

the current holdings of the pool in terms of the risky asset and the numéraire, respectively. Define
the feasible set of reserves C according to

C , {(x, y) œ R2
+ : f(x, y) = L},

1This assumption is without loss of generality, we describe the multi-dimensional case where there are n Ø 2
assets, none of which need be the numéraire, in Appendix B.3.

2Volatility will be an important input in the analysis that follows. A natural question is how to calibrate volatility
as a model parameter. As in the general application of Black-Scholes style models, for ex ante analysis of a possible
future LP position, an implied volality is the appropriate input. On the other hand, for ex post LP return performance
analysis as in Section 5, a historical or realized volatility is appropriate.
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x1 ≠ x0

y0 ≠ y1

f(x, y) = L

(x0, y0)

(x1, y1)
x

y

(a) Transitions between any two points on the bonding
curve f(x, y) = L are permitted, if an agent contributes
the di�erence into the pool.

f(x, y) = L

slope = ≠P

!
xú(P ), yú(P )

"

x

y

(b) Arbitrageurs ensures that, when the price is P , pool
reserves shift to the point on the bonding curve where
the slope is equal to ≠P .

Figure 1: Illustration of a CFMM.

where f : R2
+ æ R is referred to as the bonding function or invariant, and L œ R is a constant. In

other words, the feasible set is a level set of the bonding function. The pool is defined by a smart
contract which allows an agent to transition the pool reserves from the current state (x0, y0) œ C
to any other point (x1, y1) œ C in the feasible set, so long as the agent contributes the di�erence
(x1 ≠ x0, y1 ≠ y0) into the pool; see Figure 1a.

Example 1. The constant product market maker is defined by the invariant xy = L.

To simplify our analysis, we will also assume that, aside from trading with arriving liquidity
demanding agents, the pool is static otherwise. In particular, we assume that the liquidity providers
do not add (“mint”) or remove (“burn”) reserves over the time scale of our analysis. In other words,
LPs are passive. Further, we ignore the details of the underlying blockchain on which the pool
operates. In particular, we assume away any blockchain transaction fees such as “gas” fees, and
also ignore the discrete-time nature of block updates.

Besides liquidity providers, there are two kinds of agents in the model: arbitrageurs and noise
traders.

Arbitrageurs. There is a population of arbitrageurs, able to frictionlessly trade at the external
market price, continuously monitoring the CFMM pool. When an arbitrageur interacts with the
pool, we assume they maximize their immediate profit by exploiting any deviation from the external
market price. In other words, they transfer the pool to a point in the feasible set C that allows
them to extract maximum value assuming that they unwind their trade at the external market
price P . Geometrically, the presence of arbitrageurs implies that, if the price of the risky asset is
P , pool reserves will move to the point on the curve f (x, y) = L where the slope of the bonding
curve is equal to ≠P , as indicated in Figure 1b.

Noise traders. There is also a population of noise traders. Noise traders trade only in the CFMM
pool, and trade for totally idiosyncratic reasons. There are many reasons in practice why cer-
tain market participants might prefer trading on CFMMs to CEXes: for example, certain market
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participants may not be able or willing to satisfy the know-your-customer requirements imposed
by CEXes, or may not be willing to bear the credit risk associated with custodial centralized ex-
changes. Noise traders’ trades have an initial impact on CFMM pool prices, but these e�ects are
immediately o�set by arbitrageurs, who immediately move the CFMM back to the CEX price P .
Thus, from the LP’s perspective, noise traders simply contribute a flow of fees. Denote by FEET

the cumulative fees paid by noise traders up to time T . For simplicity, we assume fees are paid in
units of the numéraire; this simplifies the analysis, since fees do not a�ect the level curve that the
CFMM trades on.3 In practice, fees are sometimes (e.g., in Uniswap v2 but not in Uniswap v3)
reinvested into the pool reserves; another way to think about this assumption is to assume LPs
immediately withdraw any accrued fees from the CFMM.

When discussing arbitrageurs, we will distinguish between two conceptually di�erent forms
of arbitrage activity. The first, which we call rebalancing arbitrage, is arbitrage of a pool when
mispricing arises due to movements of the CEX price. The second, which we call reversion arbitrage,
is arbitrage following the arrival of noise traders who move DEX prices away from P — this type
of arbitrage is sometimes called “back-running”. Our model allows us to quantify the magnitude of
profits of rebalancing arbitrageurs, but not reversion arbitrageurs.

2.1. Discussion of Assumptions

We assume the CEX is infinitely deep, so trades have no price impact; this is analogous to the
assumption in the Black-Scholes model that trades of the underlying stock have no price impact.
In practice, for liquid trading pairs such as USDC-ETH, this assumption is likely to hold approxi-
mately in practice: a large majority of trade volume in the USD-ETH pair, around 90%, occurs on
centralized exchanges relative to decentralized exchanges, suggesting that market depth on CEXes is
likely higher than on DEXes. For less liquid tokens, which are not traded on centralized exchanges,
this assumption may be less realistic. In this case, our model may still be a useful conceptual
benchmark, analogous to the use of option pricing models to value options with illiquid underlying
assets, such as employee stock options in privately held companies.

A number of other papers, such as Hasbrouck et al. [2022], Barbon and Ranaldo [2021], and
Foley et al. [2023], analyze microfounded models of strategic liquidity provision on AMMs. We
do not take a stance on the behavior of liquidity providers in this paper; instead, we simply take
as given the level set which the CFMM LP is on at any given point in time. We will show that
LVR only depends on price volatility, and the marginal liquidity of the CFMM level set, both of
which are observable objects. Thus, given price volatility, any model of liquidity providers’ strategic
behavior which leads the CFMM LP to reach a given level set implies the same level of LVR. The
cost of not modelling strategic LP behavior is that our framework cannot make sharp predictions
about how the level of CFMM liquidity provision responds to changes in market design. However,
the benefit is that our quantification of CFMM LP losses is robust to di�erent underlying models
of strategic LP behavior.

3The same assumption is made by Lehar and Parlour [2021].
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We assume away many frictions to trading which are present in practice: we assume arbitrageurs
pay no trading fees on CEXes or DEXes, we ignore gas fees, and we ignore the discrete, block-based
nature of trading on blockchain CFMMs. As in Black-Scholes, these approximations allow us to
derive particularly simple expressions for model outcomes. Accounting for fees will imply that the
profits arbitrageurs make will tend to be lower than our expressions. In particular, in practice,
arbitrageurs tend to engage in “gas races”, bidding high gas fees so that block miners have an
incentive to include their arbitrage trades in the blockchain first. These gas races will tend to
redirect some of the profits from CEX-DEX arbitrage towards block miners.4 We will show in our
empirical analysis of Section 5 that our model appears to match the actual delta-hedged returns of
LP positions from the data fairly closely, suggesting that the omission of fees from our model has
a quantitatively small e�ect on estimated LP returns in the examples we analyze. Moreover, we
note that the analysis of arbitrage profits in the presence of fees is the subject of follow-on work
[Milionis et al., 2023], and we defer a more careful discussion of the impact of fees to that work. We
also assume noise trader fees are paid in the numéraire, and we assume away minting and burning
of LP shares for simplicity. However, we relax both these assumptions in the empirical application
in Section 5.

3. Loss-Versus-Rebalancing

We proceed to analyze losses of CFMM LPs in the context of our model.

The pool value function V (P ). Figure 1b shows that the composition of the CFMM’s reserve pool
depends only on the risky asset’s price: at any time t, if the risky asset’s price is Pt, arbitrageurs
will move the pool’s reserves to the point on the f (x, y) curve where the slope is P . The mark-
to-market value of the pool’s reserves at any point in time, Ptxt + yt, is thus also fully determined
by the current price Pt. A convenient way to analyze the monetary value of pool reserves at any
given point in time is to define the the pool value function V : R+ æ R+, as the solution to the
optimization problem:

V (P ) , minimize
(x,y)œR2

+
Px + y

subject to f(x, y) = L.
(1)

The intuition behind (1) is that, at any point in time, arbitrageurs can access any point on the
invariant curve f(x, y) = L; arbitrageur profits are maximized by minimizing the value of the
pool’s reserves. The minimizing choice of x, y is the tangency point illustrated in Figure 1b; V (P )
measures the monetary value of reserves, Px + y, at this minimal point. If we denote by Vt the
value of pool reserves at time t, the presence of arbitrageurs implies that at any point, Vt is equal to
V (Pt). Geometrically, the pool value function implicitly defines a reparameterization of the pool
state from primal coordinates (reserves) to dual coordinates (prices).

4CEX-DEX arbitrage is one form of “miner extractable value”, or MEV, a set of circumstances in which miners’
ability to determine the ordering of transactions allows them to extract monetary value; Daian et al. [2020] discusses
MEV in detail.
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We assume that the pool value function satisfies:

Assumption 1. 1. An optimal solution
!
xú(P ), yú(P )

"
to the pool value optimization (1) exists

for every P Ø 0.

2. The pool value function V (·) is everywhere twice continuously di�erentiable.

3. For all t Ø 0,
EQ

5⁄ t

0
xú(Ps)2‡2

sP 2
s ds

6
< Œ.

Parts 1–2 are easily verified for many CFMMs, see Section 4 for examples. Part 3 is a square-
integrability condition that will be used in Section 3. Parts 1–2 are a su�cient condition for the
following:

Lemma 1. For all prices P Ø 0, the pool value function satifies:

1. V (P ) Ø 0.

2. V Õ(P ) = xú(P ) Ø 0.

3. V ÕÕ(P ) = xúÕ(P ) Æ 0.

Proof. The first part follows from the fact that C µ R2
+ and P Ø 0. The second part is the envelope

theorem or Danskin’s theorem [Bertsekas, 1971]. The third part follows from the concavity of V (·),
as a pointwise minimum of a collection of a�ne functions. ⌅

Part 2 of Lemma 1 establishes that the slope of the pool value function is equal to the reserves in
the risky asset. Part 3 establishes that the pool value function is concave. Note that this concavity
does not depend on the nature of the feasible set C or the bonding function f(·). This part also
establishes that the second derivative of the pool value function is the marginal liquidity available
at the price level.

Note also that the optimization problem in (1) is isomorphic to the expenditure minimization
problem from classical demand theory: under price P , a consumer minimizes total expenditures
Px + y, subject to staying on the indi�erence curve f(x, y) = L. The solution to this problem is
to choose the point where the level curve of f (x, y) is tangent to the budget set. The envelope
theorem thus gives that the first derivative of the expenditure function is the Hicksian demand
function, which is isomorphic to xú(P ), and the second derivative of the expenditure function is
the slope of Hicksian demand.

The pool value function allows us to write the profit and loss of an CFMM, from time 0 to time
t, as:

LP P&Lt = Vt ≠ V0 + FEEt. (2)

In words, LP P&Lt is the monetary value of the pool reserves at time t, minus the value at time 0,
plus the cumulative fees collected until time t.
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Rebalancing strategy Rt. The key idea of our paper is to decompose the change in pool value
Vt ≠ V0 into the sum of the returns on a particular trading strategy, which we call the rebalancing
strategy, and a residual term. Informally, the rebalancing strategy aims to hold exactly the same
amount of the risky asset as the CFMM at any point in time. Whenever prices move in a way
which causes the CFMM to buy or sell the underlying strategy, the rebalancing strategy makes
exactly the same buys and sells; however, the rebalancing strategy executes these trades at CEX
prices, rather than CFMM prices. An alternative way to think of the rebalancing strategy is that it
aims to replicate the exposure of the CFMM to the risky asset at any point in time. Thus, taking
a long position in the CFMM LP, and a short position in the rebalancing strategy, delta hedges the
LP position, neutralizing first-order exposure to shifts in the risky asset’s price.

We first define general trading strategies. A trading strategy is a process (xt, yt) defining
holdings in the risky asset and numéraire at each time t. For a trading strategy to be admissible,
we require that it be adapted, predictable, and satisfy

EQ
5⁄ t

0
x2

s‡2
sP 2

s ds
6

< Œ, ’ t Ø 0. (3)

We further restrict admissible trading strategies to be self-financing, i.e., to satisfy

xtPt + yt ≠ (x0P0 + y0)
¸ ˚˙ ˝

P&Lt

=
⁄ t

0
xs dPs, ’ t Ø 0. (4)

Equation (4) states that the change in the profit of the strategy in a small period of time is equal
to the holdings of the risky asset, xs, times the change in price, dPs. The total P&L of the strategy
is just the integral of these instantaneous changes. Intuitively, a self-financing strategy executes all
rebalancing trades at market prices; hence, trades do not a�ect the profit of the strategy, and no
money needs to be injected into the trading strategy. In the special case where Pt is a martingale,
so the expected profit from holding the risky asset is zero, any self-financing strategy makes zero
profits in expectation, since any strategy which dynamically trades a asset with zero expected
returns also has zero expected returns.5

The self-financing condition implies that, if we specify y0, the initial amount of the numéraire,
and {xt}tØ0 the amount of the risky asset that is held in any possible future history, the future path
of the numéraire {yt} is implicitly determined through (4). The P&L of the resulting self-financing
strategy can be directly expressed in terms of {xt}, via the right side of (4). Intuitively, the RHS
of (4) is the integrated form of the envelope formula: if the trading strategy holds a position xt in
the risky asset, the change in profits in an instant dt is xtdPt, the amount of the risky asset held
times the change in price. Note that, since Pt is a Q-martingale, the P&L process given by (4) is
also Q-martingale, and by (3) it is square-integrable.

5In the general case, the risky asset may have positive expected returns due to risk premia; self-financing strategies
may thus have positive expected profits, proportional to how much portfolio weight they put on the risky asset.
However, the positive expected returns of the strategy derive only from the risk premia on the underlying asset: if
the strategy is delta-hedged, it makes zero expected profits.
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We then define the rebalancing strategy to be the self-financing trading that starts initially
holding

!
xú(P0), yú(P0)

"
(the same position as the CFMM), and continuously and frictionlessly

rebalances to maintain a position in the risky asset given by xt , xú(Pt). Let Rt denote the
monetary value of the rebalancing strategy at time t; that is, if the rebalancing strategy holds xt, yt

at time t, Rt is Ptxt + yt. Applying the self-financing condition (4) the rebalancing portfolio has
value:

Rt = V0 +
⁄ t

0
xú(Ps) dPs, ’ t Ø 0. (5)

Because of Assumption 1 Part 3, the rebalancing strategy is admissible and Rt is a square-integrable
Q-martingale. In particular, being a self-financing strategy, the rebalancing strategy breaks even
in expectation under the risk-neutral measure Q; it only makes expected returns to the extent that
the underlying risky asset has nonzero risk premia.

As a matter of accounting, we then express the change in pool value from time 0 to time
t as the sum of the rebalancing strategy’s profits, and a residual term which we will define as
loss-versus-rebalancing:

Vt ≠ V0 = V0 + LVRt

LVRt , Rt ≠ Vt (6)

LVRt can also be thought of as the losses from a delta-hedged LP position, ignoring fees. In other
words, a strategy which takes a long position in the CFMM LP position, and a short position in the
rebalancing strategy, pays Vt ≠ Rt at time t, disregarding any fees collected. The core contribution
of our paper is the characterization of LVRt in the following theorem.

Theorem 1. Loss-versus-rebalancing takes the form:

LVRt =
⁄ t

0
¸(‡s, Ps) ds, ’ t Ø 0, (7)

where we define, for P Ø 0, the instantaneous LVR by:

¸(‡, P ) , ‡2P 2

2
--xúÕ (P )

-- Ø 0. (8)

¸(‡, P ) is always positive, so LVR is a non-negative, non-decreasing, and predictable process. More-
over, the cumulative profits of rebalancing arbitrageurs up to time t is equal to LVRt.

A rigorous proof that LVR is equal to (12), and that rebalancing arbitrage profits are equal to
LVR, is contained in Appendix A. Here, we present an intuitive derivation, based on Figure 2. The
core intuition is that the CFMM systematically loses money relative to the rebalancing strategy
due to price slippage: every trade made by the CFMM is made at slightly worse prices than the
rebalancing strategy.

Suppose the market price changes from Pt to Pt+dPt. Arbitrageurs thus trade with the CFMM,
moving from point A to point B on the CFMM invariant curve. Let dxt denote the amount of the
risky asset sold, indicated by the green horizontal line. When the price moves from Pt to Pt + dPt,
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A

B

Bú

Pt

Pt + dPt dxt

Figure 2: LVR and a stylized depiction of CFMM LP price slippage. Suppose prices begin at Pt, the
slope of the red line; the CFMM reserves then begin at point A. If prices increase to Pt + dPt, the slope
of the brown line, the CFMM trades to point B. The rebalancing strategy trades instead at the price
Pt + dPt, to point Bú. LVR is the vertical gap between B and Bú.
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the rebalancing strategy sells exactly the same amount, dxt, of the risky asset as the CFMM does.
However, the rebalancing strategy trades at the CEX price, Pt + dPt; it trades along the the brown
line of slope Pt + dPt passing through A, reaching point Bú, which is higher than point B. Thus,
after prices move, the LP position and the rebalancing strategy hold the same amount of the risky
asset, but the rebalancing strategy holds more cash. The gap is equal to the height of the line
connecting B and Bú.

To calculate the height of the B ≠Bú line, note that the rebalancing strategy trades at the slope
of the brown line, which is Pt + dPt. The CFMM trades at the slope of the purple line — that is,
the secant line connecting points A and B. Since the tangency lines at points A and B have slopes
Pt and Pt + dPt respectively, the secant line has slope Pt + dPt

2 . Thus, the B ≠ Bú line has height:

dxt

3
(Pt + dPt) ≠

3
Pt + dPt

2

44
= dxt dPt

2 . (9)

This is thus the loss of the CFMM, relative to the rebalancing strategy. This is also exactly the
profit extracted by arbitrageurs when prices move: arbitrageurs purchase quantity dx from the
CFMM at price p + dp

2 , and selling to the CEX at price Pt + dPt, thus earning a profit of dxtdPt
2 .

Next, we write the amount traded dxt as a function of dPt:

dxt =
----
dxú(P )

dP

---- dPt =
--xúÕ (Pt)

-- dPt, (10)

where x (Pt) is the demand function of the CFMM. |xúÕ (Pt) | can be thought of as the marginal
liquidity provided by the CFMM: how much of the risky asset it trades when prices move a small
amount.

Expression (9) then becomes:

dxt dPt

2 =
--xúÕ (Pt)

-- (dPt)2

2 . (11)

Now, for a geometric Brownian motion, in a small amount of time dt, the quadratic variation (dPt)2

is equal to ‡2
t P 2

t , that is, the instantaneous variance ‡2
t multiplied by the square of the price. Hence,

plugging in to (11), in any instant of time dt, the CFMM LP position loses:

--xúÕ (Pt)
-- ‡2

t P 2
t

2 . (12)

This is (8) of Theorem 1.
Figure 2 thus illustrates that LVR — that is, the losses CFMMs incur relative to the rebalancing

strategy — arises entirely from price slippage. The fact that CFMMs rebalance, selling when prices
rise and buying when prices fall, is not in itself the source of losses. The rebalancing strategy
makes exactly the same trades of the risky asset as the CFMM LP position, but does not lose
money because it executes all trades at CEX prices. For that matter, any trading strategy which
executes all trades at CEX prices exactly breaks even under the risk-neutral measure. LVR arises
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from the fact that CFMMs execute all trades at worse-than-market prices.
Price slippage is intrinsic to the design of CFMMs. CFMMs are fully passive liquidity providers,

making markets for risky assets without access to external price feeds from centralized exchanges.
CFMMs rely on arbitrage to “inform” them about current market prices: whenever CEX prices
move, the CFMM’s quotes become “stale”, o�ering to trade some quantity of the risky asset at
better-than-market prices. Arbitrageurs trade the CFMM against the CEX until the CFMM’s price
is equal to the CEX price, and these profitable trades are exhausted. In other words, the slippage
built into CFMM design is what gives arbitrageurs the incentive to align CFMM prices with CEX
prices.

Our work is thus related to models of “quote sniping” in high-frequency trading. Budish et al.
[2015] analyzes a model in which, whenever prices move, bid-ask quotes become “stale”, creating
a speed race between the quoting market maker to update her quotes, and arbitrageurs to “snipe”
the stale quote. In these models, purely public information creates “informed-trader” risk, because
arbitrageurs occasionally win speed races and are able to act on public information before the
quoting market maker can. In relation to these models, CFMMs can be thought of like quoting
market makers that, by design, never update prices proactively. An CFMM only ever increases its
quoted price when it receives orders to buy the risky asset; in other words, CFMMs’ price quotes
only ever move when they are sniped. Thus, any movement in CEX prices causes CFMM quotes
to become stale, creating a speed race to snipe the CFMM. CFMMs always lose these races, and
loss-versus-rebalancing consists of the cumulative losses LPs su�er from getting “sniped” to trade
at worse-than-market prices.

Comparative statics. Theorem 1 states that the magnitude of slippage losses only depends on two
parameters of the model: instantaneous volatility, ‡t; and the marginal liquidity of the CFMM
bonding function |xúÕ (Pt) |. Intuitively, CFMMs lose money from trading at worse-than-market
prices; they lose more when volatility ‡t is high and prices move more, and they lose more when
marginal liquidity, |xúÕ (Pt) |, is high, and the CFMM trades larger quantities when prices move. In
Appendix A.2, we derive an expression for |xúÕ (P ) | in terms of the CFMM bonding function f(·),
and show that |xúÕ (P ) | is related to the curvature of the level sets of f(·): CFMMs with “flatter”
bonding curves have higher marginal liquidity.6

The idea that the losses of CFMM LP positions are related to volatility and curvature are not
new to the finance literature [Aoyagi, 2020, Aoyagi and Ito, 2021, Lehar and Parlour, 2021, Capponi
and Jia, 2021, O’Neill, 2022]. Our contribution is to build a model which, like the Black-Scholes
model for option prices, both delivers qualitative comparative statics, and is also quantitatively
realistic enough to be used to measure CFMM losses in practice.

Volatility versus informed trading. Our results are reminiscent of classic results in market mi-
crostructure, which state that market makers charge fees to make up for losses from adverse se-

6An interesting implication of these results for the design of CFMM invariants is that, in our model, under our
assumptions, the only feature of CFMMs which matters for losses is the curvature of the CFMM bonding function,
which determines xúÕ (P ). Any two CFMM invariants for an asset pair which have the same local convexity at any
given price have the same LVR.
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lection. However, the literature on AMMs have analyzed two slightly di�erent narratives for the
source of the adverse selection CFMM LPs face. The first, reminiscent of microstructure models
such as Glosten and Milgrom [1985], is that LPs lose money when traders with knowledge of fu-
ture market prices trade with the CFMM, creating “wrong-way” risk. This channel is often called
“informed trading”. The second, which we focus on in this paper, is that LPs lose money when
traders with knowledge of current market prices on the CEX snipe the CFMM LP. We will refer
to this channel as “volatility” or “slippage”.

In our model, the losses of CFMM LPs arise entirely from the latter “slippage” e�ect. Slippage
is straightforwards to quantify, because it depends on easily measurable objects: the volatility
of CEX price movements, and the CFMM’s marginal utility. A number of recent papers in the
finance literature have pointed out qualitatively that CFMM losses are linked to the volatility of
the underlying asset; our contribution relative to these papers is to is to show that this relationship
can be quantified, under exactly the canonical Black-Scholes model of risky asset prices.7 Informed
trading is more di�cult to quantify in practice, since it requires estimating the extent to which
order flow tends to be informative about future price movements. In the context of our model,
since we assumed the CEX is infinitely deep, informed traders would only trade on the CEX, since
they have lower price impact. Thus, in our model, informed trading does not directly contribute
to adverse selection losses to CFMM LPs.

Decomposing LP P&L. Next, we plug the LVR expression into (2), to decompose the P&L of the
LP position into three components,

LP P&Lt = FEEt¸ ˚˙ ˝
accumulated fees

+ Vt ≠ V0¸ ˚˙ ˝
change in pool
reserve value

=
⁄ t

0
xú(Ps) dPs

¸ ˚˙ ˝
market risk

+ FEEt ≠ LVRt¸ ˚˙ ˝
fees minus LVR

(13)

The right side of expression (13) decomposes the profit of an CFMM LP position, from time 0 to
time t, into three components. The first is “market risk”, which from (5) is exactly the P&L of the
rebalancing strategy. The CFMM is long the risky asset; hence, at any given point in time, it accrues
gains and losses when the risky asset’s price fluctuates. However, market risk contributes nothing
to the CFMM’s profits under the risk-neutral measure; equivalently, the market risk component of
the CFMM’s profits can be costlessly hedged, simply by shorting however much of the underlying
asset the CFMM holds at any point in time, as the rebalancing strategy does. Besides market risk,
CFMM LP positions attain positive returns from the strictly increasing process FEEt, and negative
returns from the strictly decreasing process ≠LVRt.

The Black-Scholes framework for classic options indicates that the directional risk exposure
of options can be hedged, simply by taking positions in the underlying asset. Option market
makers use this principle in practice, delta-hedging the directional risk of their options portfolios,
and profiting from collecting bid-ask spreads and betting on di�erences between realized volatility

7Outside of the finance literature, some earlier papers in the crypto literature have derived related quantification
results, such as Angeris et al. [2020]. Our contribution relative to this literature is to construct a clean “rebalancing
strategy” benchmark, and to link these results to ideas about adverse selection in market making.
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and the volatility implied by option prices. Analogous to this, the decomposition in (13) also
corresponds to a tradable strategy: one can delta-hedge CFMM LP positions, simply by combining
a long position in the CFMM LP with a short position in the rebalancing strategy. The time-t
payo� of the long-LP, short-rebalancing-strategy position is:

delta-hedged LP P&Lt = LP P&Lt ≠ Rt = FEEt ≠ LVRt¸ ˚˙ ˝
fees minus LVR

. (14)

Intuitively, the delta-hedged LP position is always short as much ETH in the rebalancing strategy
as it is long in the LP position, and is thus insulated against directional movements in ETH prices.
This is thus a pure bet on whether fees are large enough to o�set losses from slippage.8 Using the
expression for LVR from Theorem 1, the delta-hedged CFMM LP position is thus a�ected by three
components: the magnitude of trading fees, the volatility of the underlying asset, and the marginal
liquidity of the CFMM LP curve.

4. Examples

In this section, we calculate LVR for a number of specific CFMM examples.

Example 2 (Weighted Geometric Mean Market Maker / Balancer). Consider the bonding function
f(x, y) , x◊y1≠◊, for ◊ œ (0, 1). Solving the pool value optimization (1) allows us to obtain the
closed-form optimal solutions

xú(P ) = L
3

◊

1 ≠ ◊

1
P

41≠◊

, yú(P ) = L
31 ≠ ◊

◊
P

4◊

.

Then,
V (P ) = L

◊◊(1 ≠ ◊)1≠◊
P ◊, V ÕÕ(P ) = ≠L◊1≠◊(1 ≠ ◊)◊ 1

P 2≠◊
,

and
¸(‡, P ) = ‡2

2 ◊(1 ≠ ◊)V (P ).

The weighted geometric mean market maker generalizes the constant product market maker.
For these market makers, the instantaneous LVR normalized per dollar of pool reserves is constant,
i.e.,

¸(‡, P )
V (P ) = ‡2

2 ◊(1 ≠ ◊). (15)

In fact, with a minor caveat, weighted geometric market makers are the only CFMMs for which this
is true. We discuss this in Appendix B.2. Finally, observe that LVR is maximized when ◊ = 1/2,

8Note, in addition, that delta-hedging an CFMM is in fact simpler than delta-hedging an option. Options cannot
be delta-hedged in a model-free way: in the Black-Scholes framework, for example, the delta of an option depends on
volatility. In contrast, CFMMs can be delta-hedged in a fully model-free way, since the rebalancing strategy simply
shorts as much ETH as the LP position holds at any point in time.
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and goes to zero as ◊ æ {0, 1}.9

Example 3 (Constant Product Market Maker / Uniswap v2). Taking ◊ = 1/2 in Example 2, we have
that

V (P ) = 2L
Ô

P , ¸(‡, P ) = L‡2

4
Ô

P ,
¸(‡, P )
V (P ) = ‡2

8 . (16)

This example shows that the constant product market maker admits particularly simple expres-
sions for LVR: ¸(‡, P )/V (P ), the loss per unit time as a fraction of mark-to-market pool value, is
simply 1/8 times the instantaneous variance. This formula is straightforward to apply empirically:
for example, if the ETH-USDC volatility is ‡ = 5% (daily), this formula implies that the ETH-USD
LP pool loses approximately ‡2/8 = 3.125 (bp) in pool value to LVR daily.

Example 4 (Uniswap v3 Range Order). For prices in the liquidity range [Pa, Pb], consider the bonding
function of Adams et al. [2021],

f(x, y) ,
1
x + L/


Pb

21/2 1
y + L


Pa

21/2
.

Solving the pool value optimization (1),

xú(P ) = L
3 1Ô

P
≠ 1Ô

Pb

4
, yú(P ) = L

1Ô
P ≠


Pa

2
.

Then, for P œ (Pa, Pb),

V (P ) = L
1
2
Ô

P ≠ P/


Pb ≠


Pa

2
, V ÕÕ(P ) = ≠ L

2P 3/2 ,

so that
¸(‡, P ) = L‡2

4
Ô

P .

Observe that the instantaneous LVR is the same in Example 3. However, the pool value V (P )
is lower. Indeed V (P ) æ 0 if Pa ø P and Pb ¿ P , so

lim
PaæP
PbæP

¸(‡, P )
V (P ) = +Œ,

i.e., the instantaneous LVR per dollar of pool reserves can be arbitrarily high in this case, if the liq-
uidity range is su�ciently narrow. This is consistent with the idea that range orders “concentrate”
liquidity.

Example 5 (Linear Market Maker / Limit Order). For K > 0, consider the linear bonding function
9See also Proposition 1 of Evans [2020], evaluating a weighted geometric mean market maker over a finite horizon

using risk-neutral pricing.
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f(x, y) , Kx + y. Solving the pool value optimization (1),

xú(P ) =

Y
]

[
L/K if P < K,

0 if P Ø K,
yú(P ) =

Y
]

[
0 if P < K,

L if P Ø K.

Hence, this pool can be viewed as similar to a resting limit order10 that is, depending on the relative
value of the price Pt versus limit price K, either an order to buy (if Pt Ø K) or an order to sell (if
Pt < K) up to L/K units of the risky asset at price K. In this case,

V (P ) = L min {P/K, 1} .

Observe that V (·) does not satisfy the smoothness requirement of Assumption 1 Part 2: the first
derivative is discontinuous at the limit price P = K. Thus, the characterization of Theorem 1 does
not apply.11

5. Empirical Analysis

Next, we bring our model to data to evaluate whether LVR matches the returns of LP positions in
practice. Repeating (14), we have

LP P&Lt ≠
⁄ t

0
xú(Ps) dPs

¸ ˚˙ ˝
delta-hedged LP P&L

= FEEt ≠ LVRt¸ ˚˙ ˝
fees minus LVR

. (17)

The left side of (17) can be thought of as the P&L from a delta-hedged LP position: the P&L of the
LP position, minus that of the rebalancing strategy. This quantity can be estimated empirically
under very weak assumptions. The profits of the rebalancing strategy are simply the returns on a
portfolio which holds just as much of the risky asset as the LP position holds at any point in time,
adjusting holdings always at market prices. The P&L of an LP position over any period of time
can be calculated simply as the mark-to-market value of pool reserves, at CEX prices at the start
and end of the time period, accounting for mints, burns, swaps, and trading fees.12

10While the linear market maker is statically identical to a resting limit order, observe that they are dynamically
di�erent. In particular, once the price level K is crossed, in a traditional LOB, the limit order is filled and removed
from the order book. With a linear market maker, the order remains in the pool at the same price and quantity, but
with opposite direction.

11Note that the pool value function remains concave and the pool value process is a super-martingale. Hence, from
the Doob-Meyer decomposition, a non-negative monotonic running cost process exists. However, this process is not
described by (7)–(8). Instead, it can be constructed using the concept of “local time” and the Itô-Tanaka-Meyer
formula, but we will not pursue such a generalization here [see, e.g., Carr and Jarrow, 1990].

12Note that delta-hedging an LP position does not incur any flow gas costs, since simply holding an LP position in
a CFMM, without doing any minting or burning, does not require spending any gas. Thus, compared to executing
this trading strategy in practice over a fixed time period, the only fees that the left side of (17) does not account
for are the transaction fees from executing the rebalancing strategy on a CEX; any financing costs for maintaining a
short position on a CEX; and two one-time gas costs, for minting an LP position at the start of the period and then
burning it at the end of the period.
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The right side of (17) can be thought of as our model’s prediction for the delta-hedged P&L, i.e.,
left side of (17). The first term on the right side corresponds to trading fees, which are observable.
The second term is LVR, which we can measure as a function of realized volatility using expressions
(7) and (8) of Theorem 1. In this way, the degree to which the right side of (17) is close to the left
side measures the e�ectiveness of LVR in quantifying LP returns.

We bring the model to data using the WETH-USDC trading pair13 on Uniswap v2 for the period
from August 1, 2021 to July 31, 2022. Details of the data sources we use, and how we measure
various quantities, are described in Appendix C. Essentially, to measure the left side of (17), we
measure the P&L of an LP position simply as the mark-to-market value of pool reserves, periodically
valuing “mints” and “burns” — that is, tokens withdrawn or deposited from the LP position — at
market prices. We measure the profits of the rebalancing strategy simply by rebalancing to match
the CFMM LP holdings at a number of di�erent discrete time frequencies. For example, suppose we
rebalance each minute, and suppose we observe that the CFMM LP position holds 10,000 ETH at
12:01am on January 1st, 2022. The rebalancing strategy then holds 10,000 ETH at 12:01am, so the
P&L of the rebalancing strategy from 12:01am to 12:02am is simply 10, 000 (P12:02am ≠ P12:01am),
the amount of ETH held times the change in ETH prices over the next minute. In general, if the
rebalancing strategy holds xRB

t of the risky asset at time t until time t + �t, then �RB P&Lt, the
rebalancing strategy’s net profit from period t to t + �t, is:

�RB P&Lt = xRB
t (Pt+�t ≠ Pt) . (18)

Expression (18) is the discrete-time analog of the envelope formula expression, (5), for the returns
on any strategy which trades at market prices. Note that �RB P&Lt is not directly a�ected by
rebalancing trades – changes in xRB

t over time – because these rebalancing trades are made at fair
market prices on the CEX, and we assumed CEX trades have no price impact. We calculate total
profits of the rebalancing strategy over any time period by summing the increments (18) over time.
As we will show below, our results are relatively insensitive to the rebalancing horizon chosen.

To measure the right side of (17), we observe FEEt, fees paid into the LP pool over any given
time period. For LVRt, since Uniswap v2 is a constant-product CFMM, percentage LVR has the
particularly simple expression in (16) of Example 3,

LVRt =
⁄ t

0

‡2
s

8 ◊ V (Ps) ds. (19)

We measure LVR in each period simply by plugging in realized volatility and pool value to a version
of equation (19) that is discretized over time.

Note that, empirically, we measure the total fees paid by all kinds of traders. This di�ers slightly
from our model, where we assume arbitrage traders pay no fees. Practically, since fees are simply
an increasing process which potentially compensates for LVR, whether fees arise from noise trade or

13“WETH”, or “wrapped ETH” is a variation of ETH that is compliant with the ERC-20 token standard. For our
purposes, we will view ETH and WETH as equivalent.
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Figure 3: Daily realized volatility for the ETH-USDC pair, computed from Binance minutely closing
prices, sampled at 60 minute intervals.

arbitrage trade does not substantially impact the returns on LP positions. If we assumed arbitrage
traders paid trading fees in the model, this would decrease the amount of arbitrage: instead of
prices on the CFMM moving immediately to match CEX prices at all times, prices would have
to move more than fees in order for arbitrage trade to have nonnegative payo�s. The analysis of
arbitrage profits in the presence of fees is the subject of follow-on work [Milionis et al., 2023].

5.1. Empirical Results

The daily realized volatility estimates are illustrated in Figure 3. Here, it is clear that, not only is
the volatility of this asset pair high, but the volatility in turn is also highly volatile, varying by a
factor of five over the observation interval.

In Figure 4, we see the daily average aggregate value for this pool over the time period. The
average pool value was $209 million, and the pool value ranged between $90 million and $310
million.

Next, we show why it is important to account for the profits of the rebalancing strategy in
analyzing LP returns. The pool_pnl series in Figure 5a shows the raw aggregate LP P&Lt (i.e.,
without delta-hedging by subtracting the rebalancing strategy). The pool P&L fluctuates wildly,
and ultimately loses money. In particular, as shown in Table 1, the pool has an overall annualized
return of ≠6.2%, and a Sharpe ratio of ≠0.1.

However, these returns are largely driven by market risk: at any point in time, the pool
maintains half of its value in ETH, and ETH prices varied significantly over this interval. The
hedged_pnl series in Figure 5 illustrate hedged P&L, that is, LP P&Lt minus the profits of the
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Figure 4: The daily average pool value of the Uniswap v2 WETH-USDC pair.

return (%, annual) Sharpe ratio (annual)
pool_pnl -6.2 -0.1
hedged_pnl_1D 5.0 1.8
hedged_pnl_4H 8.2 5.5
hedged_pnl_1H 9.7 10.8
hedged_pnl_5min 8.4 18.2
fees_minus_lvr_pnl 8.2 17.0

Table 1: Overall return statistics for the cumulative P&L series of Figure 5.

rebalancing strategy, which is the left side of (17). This hedges directional exposure to ETH prices
to first-order, and is just a bet on whether fees are greater than LVR. Visually, these lines are
substantially less volatile than the raw LP P&Lt. This is quantified in Table 1, where we see that
a delta-hedged LP position can achieve very high Sharpe ratios, and that, in general, Sharpe ratios
increase with more frequent rebalancing. Moreover, the delta-hedged LP position actually makes
positive returns.14

Accuracy of the model. In Figure 6, we analyze the accuracy of our model, that is, the di�erence
between the left and right sides of (17), for various choices of frequency of rebalancing. This
analyzes how well our model is able to predict delta-hedged LP returns in the data. Fees minus
LVR in our model tracks the pattern of hedged LP P&L: di�erences between the two seem to be
stationary over the observed interval. Moreover, as the frequency of rebalancing increases, the
di�erences are smaller in magnitude. This is consistent with LVR as being a continuous rebalancing

14Note that these returns assume no trading or financing costs for the rebalancing strategy.
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(a) Including the aggregate pool P&L series.

(b) Excluding the aggregate pool P&L series.

Figure 5: Cumulative pool P&L, delta-hedged P&L, and predicted P&L from our expressions for LVR, for
the Uniswap v2 WETH-USDC trading pair. In the first panel, the pool_pnl series shows the raw P&L
of the LP position. In both panels, the various hedged_pnl series show delta-hedged LP P&L, that is,
the P&L from a long position in the pool, and a short position in the rebalancing strategy, rebalanced at
various frequencies (daily, every four hours, every hour, every five minutes). The fees_minus_lvr_pnl
series shows fees minus LVR, this is the delta-hedged P&L predicted by our theory. The data source for
prices is Binance, and LP P&L is calculated using data on Uniswap trades, mints, and burns from the
Ethereum blockchain. Details of how we calculate these quantities are in Appendix C.
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Figure 6: Cumulative di�erences between the delta-hedged P&L (various hedged_pnl series of Figure 5)
and predicted P&L from our model (fees_minus_lvr_pnl series of Figure 5).

approximation.

6. Option Pricing

We have shown that CFMM LPs behave like a bet on volatility, in the sense that LVR is large when
volatility is high. In this section, we briefly discuss the relationship of CFMM LPs to three classical
and inter-related ways that volatility can be traded [Carr and Madan, 2001]: static (European)
options positions, dynamic trading strategies, and variance swaps. In Appendix B.1, we also
demonstrate the equivalences between CFMM LP positions and these concepts in a simple two-
step binomial tree model.

6.1. Static Options Positions

Our results are related to Clark [2020], Fukasawa et al. [2022], and Deng and Zong [2022], who show
that, over any finite time horizon, an AMM LP position’s payo�, ignoring fees, can be replicated by
shorting a bundle of European options. Technically, this follows from the facts that the CFMM’s
asset position and value are both path-independent: if the price is PT at time T , the CFMM
holds xú(PT ) of the risky asset and has pool value VT = V (PT ) corresponding to the final “payo�
function” V (·), regardless of the path that prices took to reach PT . More intuitively, at any time
T , the CFMM simply o�ers a menu of quantities of the asset to buy or sell at any given price,
identically to a portfolio of European options. Ignoring fees, the CFMM exactly breaks even if prices
do not move, PT = P0, and loses money otherwise; hence, the CFMM LP position is essentially
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equivalent to giving away a bundle of European options. This intuition is consistent with the fact
that the V (·) is a concave function (cf. Lemma 1).

Expected LVR until period T can be thought of as the value of the European options given away.
This analogy gives another intuition for the comparative statics of expected LVR. European options
are worth more when volatility is higher, so LVR is increasing in the volatility of the underlying
asset. When the marginal liquidity of the AMM bonding curve is greater, the replicating portfolio
of European options is larger: AMMs that trade more aggressively essentially give away more
European options, also increasing LVR.

As previous papers have discussed, the European option replication result also implies that,
over any finite time horizon, the exposure of the AMM LP position to underlying prices can be
totally hedged, by taking a long position in the replicating bundle of European options. This trade
— a long position in the AMM LP, plus a short position in the replicating bundle of European
options — is essentially a trading fee swap, betting on whether accrued trading fees from time 0
to T are greater than European option premia of the replicating portfolio at time 0. The trader
enters an LP position, and pays a premium for buying the replicating bundle of European options
upfront. The AMM LP position then loses no money from price movements; the total position
profits if the accrued trading fees until time T are greater than the European option premia paid
upfront, and loses otherwise.

6.2. Dynamic Trading Strategies

Classic options theory implies that static option positions are equivalent to dynamically trading
the underlying asset in a certain way. The static option position is a combination of short straddles
and strangles, selling out-of-money calls and puts. This position is equivalent to a dynamic trading
strategy which sells the asset when prices increase, and buys when prices increase. This is exactly
what the AMM LP position does: observe that, from Lemma 1 Part 3, xú(·) is non-increasing. If
prices decrease slightly from P0 to Pt < P0, the rebalancing strategy responds by buying the risky
asset. The rebalancing strategy thus makes a profit, relative to simply holding the initial position
xú (P0), if prices increase back to P0, and makes a loss if prices decrease further from Pt. This
argument holds symmetrically for price decreases, implying that the rebalancing strategy makes
losses if prices diverge from P0, and profits when prices make small movements away from P0 and
back. In the special case where the risky asset’s price is a random walk, the rebalancing strategy
thus breaks even on on average. In contrast, when prices move away from P0 and back, the CFMM
reverts to the initial value V (P0), exactly breaking even: there is no profit from price convergence,
to o�set the losses the CFMM makes when prices diverge from P0.

6.3. Variance Swaps

Finally, as discussed by Fukasawa et al. [2022], variance can be traded directly by trading swaps on
realized variance. The VIX is such a contract, operating on a fixed finite time horizon. Applying
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Lemma 1 Part 3, the instantaneous LVR of (8) can be re-written as

¸(‡, P ) = 1
2 ◊ (‡P )2 ◊ |xúÕ(P )|.

Here, the first component, (‡P )2, is the instantaneous variance or quadratic variation of the price,
i.e., for small �t, Var[Pt+�t|Pt = P ] ¥ (‡P )2 �t. Recalling that xú(P ) is the total quantity of
risky asset held by the pool if the price is P , the second component, |xúÕ(P )| corresponds to the
marginal liquidity available from the pool at price level P . Now, integrating over time, we have
that

LVRt = 1
2

⁄ t

0
(‡sPs)2 ◊ |xúÕ(Ps)| ds = 1

2

⁄ t

0
|xúÕ(Ps)| d[P ]s, ’ t Ø 0.

This expression is the payo� of the floating leg of a continuously sampled generalized variance swap
[Carr and Lee, 2009, see, e.g.,], specifically a price variance swap that is weighted by marginal
liquidity.

7. Other Benchmarks and “Impermanent Loss”

In this section, we consider the possibility of alternative benchmarks aside from the rebalancing
strategy. We first define a broad class of benchmark strategies: the only restrictions we impose on
these strategies are that they begin holding the same position in the risky asset as the CFMM, and
that they adjust holdings at CEX prices. Specifically, we define a benchmark as a self-financing
trading strategy, described by a position x̄t in the risky asset. We assume that initial holdings
match the pool, i.e., (x̄0, ȳ0) , !

xú(P0), yú(P0)
"
. We assume that x̄t satisfies the square-integrability

condition (3), so that the resulting trading strategy is admissible. Denote the value of that strategy
by R̄t, so that

R̄t = V0 +
⁄ t

0
x̄s dPs, ’ t Ø 0.

For any such benchmark, we can thus define the loss-versus-benchmark according to LVBt , R̄t≠Vt.
One benchmark of particular interest is a strategy that simply holds the initial position, i.e.,

xHODL
t , xú(P0), with value

RHODL
t = V0 +

⁄ t

0
xú(P0) dPs = V0 + xú(P0) (Pt ≠ P0) , ’ t Ø 0.

Loss versus the HODL benchmark is often discussed among practitioners as “impermanent loss” or
“divergence loss” [e.g., Engel and Herlihy, 2021]. Motivated by the aforementioned analysis, in our
view this is more accurately described as “loss-versus-holding”: LVHT , RHODL

t ≠Vt. The following
result characterizes the loss process LVBt as a function of the underlying benchmark strategy x̄t.
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Corollary 1. For all t Ø 0,

LVBt = LVRt +
⁄ t

0
[x̄s ≠ xú(Ps)] dPs

¸ ˚˙ ˝
,�(x̄)t

.
(20)

The loss process has quadratic variation

[LVB]t = [�(x̄)]t =
⁄ t

0
[x̄s ≠ xú(Ps)]2 ‡2

sP 2
s ds Ø [LVR]t = 0. (21)

Therefore, among all benchmark strategies, the rebalancing strategy uniquely defines a loss process
with minimal (zero) quadratic variation.

Proof. The first part is an immediate corollary of Theorem 1 and (5). The second part follows
from the Itô isometry. ⌅

There are two ways to interpret Corollary 1. On the one hand, in (20), the expected value
of �(x̄)t is always 0 under the risk-neutral measure. Thus, the risk-neutral expectation of LVB is
the same for any choice of benchmark, including LVR and the HODL benchmark. This is because
CFMM LP losses arise from trading at o�-market prices: any benchmark which trades at market
prices, in expectation, does equally well under the risk-neutral measure, and thus the gap between
any market benchmark and LVR is equal in expectation. In this sense, the expected losses of CFMM
LPs appear invariant to the particular choice of market-based benchmark.

On the other hand, LVR is the unique choice of benchmark which eliminates di�erences in
performance between the CFMM and the benchmark strategy due to market risk, and isolating
losses due to price slippage. All benchmarks outperform the CFMM LP position by the same
amount in expectation; however, on any given price path Pt, any given benchmark may over- or
under-perform to the CFMM LP position, because the benchmark may adopt di�erent holding
strategies for the risky asset from the CFMM. As an example, we showed in Section 5 that the
CFMM LP position underperforms a benchmark which sells all ETH and holds x̄t = 0 throughout,
because of the fact that the CFMM LP holds a larger ETH position and ETH prices dropped
over the time horizon we analyze, implying the misleading conclusion that the CFMM LP position
underperformed a market-based benchmark.

The LVR benchmark is useful because the rebalancing strategy exactly matches the risky asset
holdings of the CFMM, removing di�erences in market risk exposure and isolates losses due to
slippage. Theorem 1 showed that LVR is a strictly increasing process: it is always positive, regardless
of the path prices take. Expression (21) thus shows that the rebalancing strategy is the unique choice
of benchmark which minimizes the quadratic variation of the loss process: that is, any other choice
of benchmark can be thought of as LVR, plus a noise term which has mean 0 under risk-neutral
measure, caused by di�erences in market risk exposures. Thus, in our view, benchmarks other
than the rebalancing strategy confound two concepts: LVR, which captures losses of the CFMM
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LP position due to trading at o�-market prices, and �(x̄), which captures di�erences between the
risky asset holdings of the CFMM and the benchmark.

A common argument in the industry discourse for the benchmark of “impermanent loss” states
that, as long as prices revert to their initial values, AMM holdings will also revert to their initial
state, resulting in zero losses. We analyze this argument in Appendix B.1. In a slight departure
from our baseline model, we assume prices evolve according to a two-step binomial tree. In the
first step of the tree, the risky asset’s price either increases or decreases; in the second step, prices
can either revert to their initial level, or diverge further. The basic trading strategy of an CFMM
is to sell the risky asset when its price increases, and buy when its price decreases. Trading in this
manner is a bet on mean reversion: when implemented trading at CEX prices, as the rebalancing
strategy does, the strategy profits if prices mean-revert, and loses if prices diverge further, thus
breaking even on average. The CFMM executes the same trades as the rebalancing strategy, but
attains worse prices on each trade. Thus, the CFMM exactly breaks even if prices mean-revert, and
loses more money than the rebalancing strategy if prices diverge, thus losing money on average.
This example illustrates that, for an CFMM to perform well, it is not su�cient to break even
when prices revert; a trading strategy which sells into price rises and buys into price decreases
must actually make strictly positive profits when prices revert, in order to compensate for the
losses it makes when prices diverge. An CFMM’s performance should thus be benchmarked to the
rebalancing strategy — making the same trades at CEX prices — rather than the intuitive but
misleading benchmark that the CFMM should break even upon price reversion.

8. Discussion and Implications

Besides their positive value for understanding and quantifying the losses from AMM LPing, our
results also suggest ways that these losses could be reduced or eliminated. We have shown that
LVR changes based on market conditions: LVR is greater when volatility is high. This suggests
the utilization of dynamic trading fee rules: trading fees could be adjusted based on volatility or
variance. These adjustments could in principle be based on the recent past (e.g., historical realized
volatility or realized LVR), or on future predictions (e.g., options-implied volatility).

We showed that CFMM LPs lose money from price slippage: when CEX prices move, CFMM
quotes become “stale” and are vulnerable to sniping by rebalancing arbitrageurs. It is in principle
possible to eliminate this slippage: if an AMM had access to a high-frequency oracle for the CEX
price Pt, the AMM could in principle quote prices arbitrarily close to Pt, up to the desired asset
position xú (Pt). Quoting prices this way would reduce arbitrageurs’ profits, allowing the AMM to
achieve a payo� arbitrarily close to that of the rebalancing strategy. This design has a number of
risks — it relies heavily on the accuracy of the oracle for Pt, and leaves open the potential for oracle
manipulation — but in principle an oracle-based AMM could substantially reduce or eliminate LVR.

A related AMM design, proposed by Jump Crypto, revolves around selling the right to arbitrage
the pool to certain special wallets, and redistributing profits to AMM LPs. Suppose a particular
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crypto wallet address, which we call the “authorized participant” or AP, had the unique right to
trade with the AMM paying zero fees. The AP would then have a large advantage in arbitrage
trading, since the AP could profitably trade against arbitrarily small price movements, whereas
prices would have to move at least as much as the AMM’s percentage trading fees for non-AP
wallets to profit from arbitrage trade. The AP would thus be able to capture essentially the
entirety of fees from arbitrage trade.

An AMM protocol aiming to reduce LVR could thus run an AP wallet itself, doing CEX-DEX
arbitrage, and redistributing arbitrage profits to LPs. Alternatively, AMM protocols could simply
run periodic auctions — over longer periods, such as weeks or months — in which wallets can bid for
the right to be authorized participants for some period of time. In principle, potential arbitrageurs
should bid the ex-ante expectation of arbitrage profits, which includes, LVR; the protocol can then
redistribute these profits to LPs.15 Both these methods capture either LVR of its expectation, and
redistribute the profits to pool LPs. We believe that these are interesting directions for future
AMM design research.

9. Conclusion

In this paper, we constructed a model of AMM LP profits. We defined the losses su�ered by LPs as
“loss-versus-rebalancing”, or LVR; this is the gap between the profits of an AMM LP position, and
the returns from a trading strategy which perfectly mimics the AMM’s position in the risky asset,
but performs all trades at market prices. LVR arises from the fact that AMMs always trade at
o�-market prices, leaving money to arbitrageurs trading the AMM against a CEX. LVR is greater
when prices are more volatile, and when the AMM’s “marginal liquidity” is greater, that is, it
trades more aggressively in response to price movements. A delta-hedged AMM LP position — a
position which is long the LP position, and short the rebalancing strategy — is profitable if the
AMM collects more in fees than it loses in LVR. The model is quantitatively realistic enough to be
brought to data; we show that our expressions for LVR predict AMM LP losses fairly accurately
in practice. Our results have implications for how to redesign AMMs to reduce or eliminate LVR,
which could lower the e�ective trading fees paid by market participants relying on AMMs for token
pair liquidity.
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A. Proofs

A.1. Proof of Theorem 1

First, we show that we show that LVRt is equal to expression (7). The smoothness condition of
Assumption 1 Part 2 allows us to apply Itô’s lemma to V (·) to obtain

dVt = V Õ(Pt) dPt + 1
2V ÕÕ(Pt) (dPt)2

= V Õ(Pt) dPt + 1
2V ÕÕ(Pt) ‡2P 2

t dt

= xú(Pt) dPt + 1
2V ÕÕ(Pt) ‡2P 2

t dt,

(22)

where the last step follows from Lemma 1 Part 2. Comparing with (5), we obtain (7). Finally, the
fact that ¸(‡, P ) Ø 0 follows from Lemma 1 Part 3.

Next, we show that the cumulative profits of rebalancing arbitrageurs is equal to LVRt. We start
with a discrete approximation to the arbitrage profit, indexed by N Ø 1. Suppose arbitrageurs
arrive sequentially, so that the ith arbitrageur arrives at time ·i, for 1 Æ i Æ N . For convenience,
set ·0 , 0 and ·N+1 , T . For each 1 Æ i Æ N , at time ·i, the ith arbitrageur observes the price P·i ,
rebalances the pool from

!
xú(P·i≠1), yú(P·i≠1)

"
to

!
xú(P·i), yú(P·i)

"
. In other words, the arbitrageur

purchases xú(P·i≠1) ≠ xú(P·i) units of the risky asset from the CFMM at average price :

P CFMM
i , ≠

yú(P·i) ≠ yú(P·i≠1)
xú(P·i) ≠ xú(P·i≠1) .
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The arbitrageur can then sell these units on the external market at price P·i and earn profits (in
the numéraire) from the di�erence in price according to

1
P·i ≠ P CFMM

i

2 Ë
xú(P·i≠1) ≠ xú(P·i)

È
= P·i

Ë
xú(P·i≠1) ≠ xú(P·i)

È
+

Ë
yú(P·i≠1) ≠ yú(P·i)

È
.

Denote by ARB(N)
T the aggregate arbitrage profits. Summing over 1 Æ i Æ N , telescoping the sum,

and applying summation-by-parts yields

ARB(N)
T ,

Nÿ

i=1

;
P·i

Ë
xú(P·i≠1) ≠ xú(P·i)

È
+

Ë
yú(P·i≠1) ≠ yú(P·i)

È<

=
Nÿ

i=1
P·i

Ë
xú(P·i≠1) ≠ xú(P·i)

È
+ yú(P0) ≠ yú(P·N )

= P0xú(P0) + yú(P0) +
Nÿ

i=0
xú(P·i)

Ë
P·i+1 ≠ P·i

È
≠ PT xú(P·N ) ≠ yú(P·N ).

Observe that the sum in the final expression is the discrete approximation of an Itô integral.
Assume that the time partition mesh over [0, T ] shrinks to zero as N æ Œ. Taking the limit
as N æ Œ and passing to continuous time, the sum converges to an Itô integral, which is well-
defined under Assumption 1 Part 3. Further, ·N æ T , so that P·N æ PT , and xú(P·N ) æ xú(PT ),
yú(P·N ) æ yú(PT ). Thus, it holds that

ARBT , lim
NæŒ

ARB(N)
T = V (P0) +

⁄ T

0
xú(Pt) dPt ≠ V (PT ).

Hence, the cumulative profits of rebalancing arbitrageurs from time 0 to time T are equal to LVR,
defined in (6).

A.2. LVR, Marginal Liquidity, and Bonding Function Curvature

The following proposition expresses the marginal liquidity of a CFMM, xÕ (P ), in terms of derivatives
of the CFMM bonding function f .

Proposition 1. If the CFMM bonding function f (x, y) is twice continuously di�erentiable, the
marginal liquidity at price P is:

dx

dP
=

ˆf
ˆy1

ˆ2f
ˆx2 + P 2 ˆ2f

ˆy2 ≠ 2P ˆ2f
ˆxˆy

2 (23)

Qualitatively, Proposition 1 implies that marginal liquidity, xÕ (P ), is related to the curvature
of the CFMM invariant curves. The denominator of (33) is equal to P 2 times the negative of the
determinant of the bordered Hessian of f . f is strictly quasiconcave — that is, the upper level
sets of f are convex — if and only if this determinant is positive; moreover, the magnitude of the
determinant is related to the curvature of the level curves of f [Simon et al., 1994, p. 542]. Thus,

33



CFMM invariants with “flatter”, more linear level curves will have greater marginal liquidity dx
dP ,

and also greater LVR.
Proposition 1 is also useful because, for any CFMM invariant, expression (23) can be used to

calculate dx
dP , and thus compute LVR in practice.

A.2.1. Proof of Proposition 1

The Lagrangian of the pool expenditure minimization problem, (1), is:

� = Px + y + ⁄ [f (x, y) ≠ L]

The optimal solution is characterized by the FOCs:

ˆ�
ˆx

: P + ⁄
ˆf

ˆx
= 0 (24)

ˆ�
ˆy

: 1 + ⁄
ˆf

ˆy
= 0 (25)

ˆ�
ˆ⁄

: f (x, y) ≠ L = 0 (26)

Now, we will take dx
dP by applying the implicit function theorem to this system of first-order con-

ditions. The derivatives of the FOCs are:

ˆ

ˆP

ˆ�
ˆx

: 1

ˆ

ˆP

ˆ�
ˆy

: 0

ˆ

ˆP

ˆ�
ˆ⁄

: 0

ˆ

ˆx

ˆ�
ˆx

: ⁄
ˆ2f

ˆx2

ˆ

ˆx

ˆ�
ˆy

: ⁄
ˆ2f

ˆxˆy

ˆ

ˆx

ˆ�
ˆ⁄

: ˆf

ˆx

ˆ

ˆy

ˆ�
ˆx

: ⁄
ˆ2f

ˆxˆy

ˆ

ˆy

ˆ�
ˆy

: ⁄
ˆ2f

ˆy2

ˆ

ˆy

ˆ�
ˆ⁄

: ˆf

ˆy
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ˆ

ˆ⁄

ˆ�
ˆx

: ≠ˆf

ˆx

ˆ

ˆ⁄

ˆ�
ˆy

: ≠ˆf

ˆy

ˆ

ˆ⁄

ˆ�
ˆ⁄

: 0

Hence, we wish to solve the following system of equations for dx
dP :

ˆ

ˆP

ˆ�
ˆx

+ ˆ

ˆx

ˆ�
ˆx

dx

dP
+ ˆ

ˆy

ˆ�
ˆx

dy

dP
+ ˆ

ˆ⁄

ˆ�
ˆx

d⁄

dP
= 0

ˆ

ˆP

ˆ�
ˆy

+ ˆ

ˆx

ˆ�
ˆy

dx

dP
+ ˆ

ˆy

ˆ�
ˆy

dy

dP
+ ˆ

ˆ⁄

ˆ�
ˆy

d⁄

dP
= 0

ˆ

ˆP

ˆ�
ˆ⁄

+ ˆ

ˆx

ˆ�
ˆ⁄

dx

dP
+ ˆ

ˆy

ˆ�
ˆ⁄

dy

dP
+ ˆ

ˆ⁄

ˆ�
ˆ⁄

d⁄

dP
= 0

Substituting, we have:

1 + ⁄
ˆ2f

ˆx2
dx

dP
+ ⁄

ˆ2f

ˆxˆy

dy

dP
≠ ˆf

ˆx

d⁄

dP
= 0 (27)

0 + ⁄
ˆ2f

ˆxˆy

dx

dP
+ ⁄

ˆ2f

ˆy2
dy

dP
≠ ˆf

ˆy

d⁄

dP
= 0 (28)

ˆf

ˆx

dx

dP
+ ˆf

ˆy

dy

dP
= 0 (29)

Now, applying (24) and (25), we have:
ˆf

ˆx
= P

ˆf

ˆy
(30)

Thus, we can simplify (29) to:
dy

dP
= ≠P

dx

dP

Substituting into (27) and (28), we have:

1 + ⁄
ˆ2f

ˆx2
dx

dP
+ ⁄

ˆ2f

ˆxˆy

3
≠P

dx

dP

4
≠ ˆf

ˆx

d⁄

dP
= 0

0 + ⁄
ˆ2f

ˆxˆy

dx

dP
+ ⁄

ˆ2f

ˆy2

3
≠P

dx

dP

4
≠ ˆf

ˆy

d⁄

dP
= 0

Rearranging, A
ˆ2f

ˆx2 ≠ P
ˆ2f

ˆxˆy

B

⁄
dx

dP
= ˆf

ˆx

d⁄

dP
≠ 1 (31)

A
ˆ2f

ˆxˆy
≠ P

ˆ2f

ˆy2

B

⁄
dx

dP
= ˆf

ˆy

d⁄

dP
(32)

35



Now, multiply (32) by P , applying (30), and subtract (31), to get:
A

ˆ2f

ˆx2 + P 2 ˆ2f

ˆy2 ≠ 2P
ˆ2f

ˆxˆy

B

⁄
dx

dp
= ≠1

Now,
dx

dP
= ≠1

⁄
1

ˆ2f
ˆx2 + P 2 ˆ2f

ˆy2 ≠ 2P ˆ2f
ˆxˆy

2

Now, to solve for ⁄, we simply use (25). Hence, we have:

dx

dP
=

ˆf
ˆy1

ˆ2f
ˆx2 + P 2 ˆ2f

ˆy2 ≠ 2P ˆ2f
ˆxˆy

2 (33)

This is (23), and thus we have proven Proposition 1.

B. Other Results

B.1. LVR and Impermanent Loss in a Two-Step Binomial Tree

In this appendix, we consider the performance of the CFMM and the rebalancing strategy, as well
as the simple buy-and-hold benchmark, on a two-step binomial tree. This discrete-time model is a
departure from our baseline model, but usefully illustrates the intuitions behind how the rebalancing
strategy behaves relative to the buy-and-hold strategy, why the CFMM strategy under-performs
the rebalancing strategy, and why the benchmark behind the “impermanent loss” concept — that
the CFMM should not lose money if prices revert to their original state — is inappropriate.

The binomial tree is a two-period discrete-time model, where prices can either go up or down
in each time period. The tree is depicted in Panel A of Figure 7. The price begins at P0 = 1. In
the first step of the tree, the price can then increase to P U

1 = 1.4, or decrease to P D
1 = 0.6. In

the second step, from P U
1 , the price can increase to P UU

2 = 1.8, or decrease to the original level
P UD

1 = 1. From P D
1 , the price can increase to the original level P DU

2 = 1, or decrease further
to P DD

2 = 0.4. Note that the tree is set up so that, assuming 0 interest rates, the risk-neutral
probabilities of up and down movements are all 0.5 — in other words, prices are martingales if the
probabilities of up and down movements are equal, so no strategy trading at market prices should
be able to make or lose money in expectation.

We then calculate the asset positions and profits of three strategies in each tree state: the buy-
and-hold strategy, which simply holds the initial endowment (x0, y0) = 1, 1 forever; the CFMM; and
the rebalancing strategy. To calculate these quantities, for the CFMM, we simply compute what
(xt, yt) is as a function of the tree price and the initial state (x0, y0). For the rebalancing strategy,
in each tree state, if the CFMM trades from (xt, yt) to (xt+1, yt+1), we assume the rebalancing
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strategy trades to xt+1 at the price Pt+1; hence, the rebalancing strategy’s cash position is:

yt+1 = yt ≠ Pt (xt+1 ≠ xt)

The results are shown in Figure 7. Panel B considers the profits of the buy-and-hold strategy, which
simply holds the initial endowment (x0, y0) = 1, 1 forever. This strategy is exposed to market risk,
making mark-to-market profits if prices rise and losing if prices fall.

Panel C shows the performance of the rebalancing strategy. Since this strategy trades at market
prices, it does not make or lose money in expectation under the risk-neutral measure. In period 1,
the rebalancing strategy has exactly the same profits as the buy-and-hold strategy in each state.
However, the rebalancing strategy sells the risky asset when prices increase to P U

1 = 1.4. This is
essentially a bet that prices will decrease; indeed, if prices decrease to P UD

2 = 1, the rebalancing
strategy makes 2.062 in profits, which is slightly higher than the buy-and-hold’s profit of 2.000.
Conversely, if prices increase further to P UU

2 = 1.8, the rebalancing strategy makes 2.738, slightly
lower than the buy-and-hold strategy’s return of 2.800. On average, the rebalancing strategy makes
2.400 conditional on reaching P U

1 , like the buy-and-hold strategy, or any other strategy trading at
market prices.

Analogously, if prices first decrease to P D
1 = 0.6, the rebalancing strategy buys the risky asset;

it profits relative to buy-and-hold when prices increase to P DU
2 = 1, and loses if prices decrease

further to P DD
2 = 0.2. This example shows that the rebalancing strategy is essentially a bet on price

convergence. The rebalancing strategy sells into price increases and buys into price decreases; this
pays o� if prices mean-revert, and loses money if prices diverge further. However, the rebalancing
strategy does not make or lose money on average.

The performance of the CFMM is shown in Panel D. The CFMM makes the same trades as
the rebalancing strategy; thus, xt is the same in each tree state in panels C and D. However,
the CFMM always trades at worse-than-market prices; as a result, yt is higher state-by-state on
the rebalancing strategy compared to the CFMM. A natural definition of loss-versus-rebalancing
in discrete time would be the gap between the CFMM’s yt-position, and the rebalancing strategy’s
yt-position, in each state.

Note that the CFMM strategy has the elegant feature that, if prices revert to 1 — as in states
P UD

2 and P DU
2 — the CFMM always holds exactly the same position as the buy-and-hold strategy.

This is the basis of the colloquially popular idea that CFMM losses are “impermanent”. However,
the CFMM loses money in expectation: the average profit of the CFMM, across states, is lower than
the buy-and-hold strategy in both periods 1 and 2. Essentially, the CFMM bets on convergence,
like the rebalancing strategy, but does so in a very ine�cient way. The CFMM exactly breaks even
if prices revert to their initial state, and loses money — even relative to the rebalancing strategy
— if prices diverge. The CFMM strategy thus cannot break even without fees, because there is no
state of the world where the CFMM strategy makes positive amounts. Using the options analogy,
an CFMM LP position is a dynamic trading strategy which performs like giving away a straddle
without collecting premia: the position loses money whenever prices move, and exactly breaks even
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when prices end where they started.
This example also shows that the gap between the simple CFMM strategy and the buy-and-

hold strategy can be decomposed into two distinct components: the performance of the rebalancing
strategy relative to buy-and-hold, and the performance of the CFMM relative to the rebalancing
strategy. The gap between the rebalancing strategy and buy-and-hold is a bet on convergence: the
rebalancing strategy makes money if prices converge, and loses if prices diverge. The gap between
the CFMM and the rebalancing strategy, which is the discrete-time version of LVR, is a systematic
loss from slippage which accrues whenever prices move.

Relationships to option strategies. The binomial tree example also helps illustrate the analogy
between CFMM LP payo�s and European options The time-2 di�erence between the payo�s of
the rebalancing strategy and the buy-and-hold strategy is positive when prices mean-revert, and
negative when prices diverge. Hence, payo�s are similar to those of a short European straddle
or strangle position, which involves selling calls and puts which expire after two periods. The
positive payo� when prices revert can be thought of as the option premia collected from selling
the straddle, and the negative payo�s when prices diverge can be thought of as the payouts to
the option buyer, which are made if either the call or the put sold expire in-the-money. The
CFMM LP position has a similar pattern of payo�s, but makes 0 profits if prices end where they
started. An CFMM LP position, ignoring fees, can thus be thought of like giving away a straddle
position, without collecting any upfront option premia. Viewed this way, the equivalence between
the rebalancing strategy and the static European strangle on the binomial tree reflects the classic
idea that static option positions can be replicated by dynamically trading the underlying asset; in
this case, European straddles and strangles are replicated by a strategy which sells the risky asset
when prices increase and buys when prices decrease.

B.2. Weighted Geometric Mean Market Makers

Weighted geometric mean market makers have the special property that the instantaneous LVR per
dollar of pool value, i.e., ¸(‡, P )/V (P ), is a constant. The following theorem establishes that these
are essentially the only CFMMs for which this is true:

Theorem 2. Suppose a CFMM satisfies

¸(‡, P )
V (P ) = c(‡), ’ P Ø 0. (34)

Then, we have
V (P ) = L1P ◊(‡) + L2P 1≠◊(‡), (35)

for free constants L1, L2 Ø 0, where

◊(‡) , 1 ≠


1 ≠ 8c(‡)/‡2

2 Æ 1
2 .
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Panel A: Binomial Tree

P0 = 1.0

P U
1 = 1.4

P UU
2 = 1.8

P UD
2 = 1.0

P D
1 = 0.6

P DU
2 = 1.0

P DD
2 = 0.2

Panel B: Buy and Hold Strategy

�t = 2.000
(xt, yt) = (1.000, 1.000)

�t = 2.400
(xt, yt) = (1.000, 1.000)

�t = 2.800
(xt, yt) = (1.000, 1.000)

�t = 2.000
(xt, yt) = (1.000, 1.000)

�t = 1.600
(xt, yt) = (1.000, 1.000)

�t = 2.000
(xt, yt) = (1.000, 1.000)

�t = 1.200
(xt, yt) = (1.000, 1.000)

Panel C: Rebalancing Strategy

�t = 2.000
(xt, yt) = (1.00, 1.00)

�t = 2.400
(xt, yt) = (0.845, 1.217)

�t = 2.738
(xt, yt) = (0.756, 1.378)

�t = 2.062
(xt, yt) = (1.014, 1.048)

�t = 1.600
(xt, yt) = (1.291, 0.825)

�t = 2.116
(xt, yt) = (1.032, 1.084)

�t = 1.084
(xt, yt) = (2.308, 0.622)

Panel D: CFMM LP

�t = 2.000
(xt, yt) = (1, 1)

�t = 2.366
(xt, yt) = (0.845, 1.183)

�t = 2.683
(xt, yt) = (0.745, 1.341)

�t = 2.000
(xt, yt) = (1.00, 1.00)

�t = 1.549
(xt, yt) = (1.291, 0.775)

�t = 2.000
(xt, yt) = (1.00, 1.00)

�t = 0.894
(xt, yt) = (2.236, 0.447)

Figure 7: The performance of buy-and-hold, a constant-product CFMM, and the rebalancing strategy,
on a two-step binomial tree. Panel A depicts the binomial tree. The performance of the buy-and-hold
strategy is shown in Panel B; the rebalancing strategy is shown in panel C, and the constant product
CFMM is shown in panel D. In each panel, xt, yt are the holdings of the strategy, and �t is the pool
value, yt + Ptxt.
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Comparing with Example 2, observe that (35) states that is the pool can only be the “sum” of
◊ and 1 ≠ ◊ weighted geometric mean market makers. The two degrees of freedom are intuitive,
since ◊ and 1 ≠ ◊ are exchangeable in (15).

Proof of Theorem 2. We construct the following ODE from the (34) along with (8),

P 2V ÕÕ(P ) + c̄V (P ) = 0,

with constant c̄ , 2c/‡2. Make the substitution P = ez, to arrive at the equivalent ODE,

V ÕÕ(z) ≠ V Õ(z) + c̄V (z) = 0,

which when solved, along with the known limit condition from (1) that V (z) æ 0 as z æ ≠Œ, by
the usual method of linear ODEs results in the generic solution,

V (P ) = L1P
1≠

Ô
1≠4c̄
2 + L2P

1+
Ô

1≠4c̄
2 = L1P ◊ + L2P 1≠◊.

Note that the above calculation is allowed because the quantity under the root is necessarily non-
negative, as if it were not, then V (P ) would not be everywhere concave, which must be the case
by Lemma 1. ⌅

B.3. Multi-Dimensional Generalization

In this section, we describe the multi-dimensional generalization of our results. Specifically, denote
by vectors x œ Rn

+ the reserves in n Ø 2 assets (none of which need be the numéraire), and Pt œ Rn
+

a vector of prices (in terms of the numéraire). We assume that the price vector evolves according
to geometric Brownian motion, i.e.,

dPt = diag(Pt)�1/2
t dBQ

t , ’ t Ø 0,

with covariance matrix of returns �t œ Rn◊n, �t ≤ 0, and where BQ
t is a standard Q-Brownian

motion on Rn.
Given a bonding function f : Rn

+ æ R, define the pool value function V : Rn
+ æ R+ according

to
V (P ) , minimize

xœRn
+

P €x

subject to f(x) = L.

Analogous to Assumption 1, we will assume that an optimal solution xú(P ) exists for all P œ Rn
+,

that V (·) is twice continuously di�erentiable, and a suitable square-integrability condition on xú(·).
Analogous to Lemma 1, we have

Lemma 2. For all prices P œ Rn
+, the pool value function satisfies:

(i) V (P ) Ø 0.
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(ii) ÒV (P ) = xú(P ) Ø 0.

(iii) Ò2V (P ) = Òxú(P ) ∞ 0.

Define the rebalancing strategy by xt = xú(Pt), with value

Rt = V0 +
⁄ t

0
xú(Ps)€dPs, ’ t Ø 0.

Then, we have the following multi-dimensional analog of Theorem 1:

Theorem 3. Loss-versus-rebalancing takes the form

LVRt =
⁄ t

0
¸(�s, Ps) ds, ’ t Ø 0,

where we define, for P Ø 0, the instantaneous LVR

¸(�, P ) , ≠1
2 tr [diag(P )� diag(P ) Òxú(P )] Ø 0,

where we have applied Lemma 2. In the case where � = ‡2I, i.e., i.i.d. assets, we have that

¸(�, P ) = ≠‡2

2 tr
Ë
diag(P )2 Òxú(P )

È
= ≠‡2

2

nÿ

i=1
P 2

i
ˆ

ˆPi
xú(P ) Ø 0.

In particular, LVR is a non-negative, non-decreasing, and predictable process.

Proof. Applying Itô’s lemma to Vt = V (P ),

dVt = ÒV (Pt)€ dPt + 1
2(dPt)€Ò2V (Pt) dPt

= xú(Pt)€ dPt + 1
2 tr

Ë
�1/2

t diag(P )Ò2V (Pt) diag(P )�1/2
t

È
dt

= dRt ≠ ¸(�t, Pt) dt.

The rest of the result follows as in the proof of Theorem 1. ⌅

C. Data and Measurement

C.1. Data

Prices. We download minute-level USDC-ETH prices from the Binance API. We use close prices
at the end of each minute for Pt.

Uniswap. We download data on the Uniswap v2 WETH-USDC pool from Dune Analytics, a data
provider which aggregates data from the Ethereum blockchain into SQL databases. The queries
we use to extract this data are included in Appendix C.2.

Mints and burns. In each minute, we observe the gross amounts of each asset in which are
withdrawn through “burns”, and deposited through “mints”. Let (xmint

t , ymint
t ) and (xburn

t , yburn
t )
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be the total amounts of each asset x and y which are minted and burned respectively, between time
t ≠ 1 and time t. We will value minted and burned assets at the time-t closing price Pt. Thus, the
monetary value of mints and burns respectively are:

�mint
t , ymint

t + Ptx
mint
t , �burn

t , yburn
t + Ptx

burn
t .

Let (xt, yt) be the total asset holdings of the pool at time t. As in the model, define the pool value
at time t by

Vt , yt + Ptxt.

We can calculate �LP P&Lt, the change in P&L of the pool, from period t ≠ 1 to t, as

�LP P&Lt , Vt + �burn
t ≠ �mint

t ≠ Vt≠1. (36)

In words, this is the value of pool reserves at time t valued at price Pt, plus burned assets and minus
minted assets valued at Pt, minus the value of pool reserves at time t ≠ 1 valued at Pt≠1. Note
that, in contrast to our simplifying assumption in the model that fees are paid in the numéraire, in
practice in Uniswap v2 fees are paid directly into the pool reserves; hence, the pool P&L includes
transaction fees paid into the pool.

Rebalancing strategy. We rebalance the pool at di�erent time frequencies. For each rebalancing
frequency, we compute the returns of a strategy which at any point in time holds as much ETH as
the pool holds at the start of the period. For example, if the rebalancing frequency is daily, we set
xRB

t at any minute t equal to the LP pool reserves at the start of the day containing the minute t.
We then calculate the returns on the rebalancing strategy using expression (18), that is:

�RB P&Lt = xRB
t (Pt+1 ≠ Pt) . (37)

Fees. In each minute, we compute the gross amount of each asset in the pair bought and sold. The
Uniswap v2 pool has a fixed fee rate of 30bps on the contributed asset; we thus calculate fees in
each asset by multiplying the gross amount contributed of each asset by 0.003. Call these fees xfee

t

and yfee
t in period t. We value fees at the period t price; thus, the monetary value of fees in period

t, which we will call �FEEt, is:
�FEEt , yfee

t + Ptx
fee
t . (38)

LVR. We compute a realized daily volatility using USDC-ETH prices from the Binance API sampled
at 60 minute intervals. Let �LVRt be the increment of LVR in period t. As in Example 3, we then
calculate �LVRt simply as

�LVRt ,
‡̂2

t

8 ◊ Vt ◊ �t, (39)

where ‡̂t denotes the realized daily volatilty estimate for the day containing period t, and �t =
1/(24 ◊ 60) corresponds to a one minute period. This is a discrete approximation of (19).
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Adding everything up. We then calculate the cumulative returns, the left side of (17), as:

LP P&Lt ≠
⁄ t

0
xú(Ps) dPs ,

Tÿ

t=1
(�P&Lt ≠ �RB P&Lt) ,

using the definitions of �LP P&Lt and �RB P&Lt in (36) and (37) respectively. Note that di�erent
rebalancing frequencies give slightly di�erent values of for �RB P&Lt. We calculate the right side
of (17) as:

FEEt ≠ LVRt ,
Tÿ

t=1
(�FEEt ≠ �LVRt) ,

using the definitions of �FEEt and �LVRt in (38) and (39) respectively.

C.2. Dune SQL Queries

This appendix contains the SQL queries we use on Dune to extract Uniswap v2 WETH-USDC
data.

Mints.

SELECT to_char(evt_block_time, ’YYYY-MM-DD"T"HH24:MI:SSOF’) AS ts, *
FROM uniswap_v2."Pair_evt_Mint"
WHERE contract_address = ’\xb4e16d0168e52d35cacd2c6185b44281ec28c9dc’
ORDER BY evt_block_number, evt_index ASC

Burns.

SELECT to_char(evt_block_time, ’YYYY-MM-DD"T"HH24:MI:SSOF’) AS ts, *
FROM uniswap_v2."Pair_evt_Burn"
WHERE contract_address = ’\xb4e16d0168e52d35cacd2c6185b44281ec28c9dc’
ORDER BY evt_block_number, evt_index ASC

Trades.

SELECT
date_trunc(’minute’, evt_block_time) AS minute,
SUM("amount0In") as "amount0In",
SUM("amount1In") as "amount1In",
SUM("amount0Out") as "amount0Out",
SUM("amount1Out") as "amount1Out"
FROM uniswap_v2."Pair_evt_Swap"
WHERE contract_address = ’\xb4e16d0168e52d35cacd2c6185b44281ec28c9dc’
GROUP BY 1
ORDER BY 1 ASC
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Pool reserves.

SELECT
minute,
latest_reserves[3] AS reserve0,
latest_reserves[4] AS reserve1
FROM
(SELECT date_trunc(’minute’, evt_block_time) AS minute,

(SELECT MAX(ARRAY[evt_block_number, evt_index, reserve0, reserve1]))
AS latest_reserves

FROM uniswap_v2."Pair_evt_Sync"
WHERE contract_address = ’\xb4e16d0168e52d35cacd2c6185b44281ec28c9dc’
GROUP BY 1) AS day_reserves

ORDER BY 1 ASC
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