
Are You Smarter Than a Random Expert?
The Robust Aggregation of Substitutable Signals

Eric Neyman, Tim Roughgarden

February 24, 2022

Abstract

The problem of aggregating expert forecasts is ubiquitous in fields as wide-ranging as ma-
chine learning, economics, climate science, and national security. Despite this, our theoretical
understanding of this question is fairly shallow. This paper initiates the study of forecast ag-
gregation in a context where experts’ knowledge is chosen adversarially from a broad class of
information structures. While in full generality it is impossible to achieve a nontrivial perfor-
mance guarantee, we show that doing so is possible under a condition on the experts’ information
structure that we call projective substitutes. The projective substitutes condition is a notion of
informational substitutes: that there are diminishing marginal returns to learning the experts’
signals. We show that under the projective substitutes condition, taking the average of the ex-
perts’ forecasts improves substantially upon the strategy of trusting a random expert. We then
consider a more permissive setting, in which the aggregator has access to the prior. We show
that by averaging the experts’ forecasts and then extremizing the average by moving it away
from the prior by a constant factor, the aggregator’s performance guarantee is substantially
better than is possible without knowledge of the prior. Our results give a theoretical grounding
to past empirical research on extremization and help give guidance on the appropriate amount
to extremize.
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1. Introduction

Suppose that you wish to estimate how much the GDP of the United States will grow next year:
perhaps you are making financial decisions and want to know whether to expect a downturn. You
don’t personally know much about the question — just that the historical average rate of GDP
growth has been 3% — but on the internet you find several forecasts made by machine learning
models. One model predicts 3.5% growth next year; another predicts 1.5%; a third predicts a
downturn: -1% growth. How might you take this information into account and turn it into one
number: your best guess, all things considered?

Because of the ubiquity of its applications, forecast aggregation is of critical importance to
many fields: machine learning, operations research, economics, climate science, epidemiology, and
national security, to name a few. Despite this, the theoretical tools we have for understanding this
problem are fairly limited.

What should we ask of a framework for comparing competing aggregation methods? First, for
each fixed setup, it should enable the quantitative assessment of an aggregation method based on its
performance relative to a natural benchmark (analogous to, for example, assessing an online learning
algorithm via its regret with respect to the best fixed action in hindsight). Second, the framework
should be general: rather than evaluating an aggregation method based on its performance under
a particular assumption about the experts’ information sets, it should assess the method based on
its performance over a broad range of possible setups.

We can model each expert as having partial information over the state of the world, and thus
the quantity being estimated (which we denote Y ). The experts’ information sets may overlap in
essentially arbitrary ways, which we formalize using the notion of an information structure.

No aggregation method is simultaneously optimal for every information structure. As such, it
is natural to ask which aggregation method optimizes worst-case performance over a broad class of
information structures. This is the approach we take, because it has the aforementioned advantages:
it assesses aggregation methods based on their performance, but does so broadly rather than under
specific assumptions.

1.1. Our Results

Without any conditions on the experts’ information structure, no aggregation strategy can achieve
a nontrivial performance guarantee.1 In this work, we optimize for worst-case performance over
all information structures that satisfy a condition that we call projective informational substitutes.
Roughly speaking, experts’ signals are informational substitutes if the value of learning an addi-
tional signal has diminishing marginal returns. The projective substitutes condition is a particular
formalization of this concept that builds on an alternative notion (“weak substitutes”) introduced
in [CW16] — a notion that proves inadequate for our purposes.2 Intuitively, substitutable signals
allow for e↵ective aggregation because signal interactions are more predictable, so it is possible to
infer more from forecasts alone without knowing the information structure.

We consider two settings: the prior-free setting and the known prior setting. In the prior-free
setting, an aggregator receives only the experts’ forecasts as input; in the known prior setting, the
aggregator additionally knows the prior, i.e. the overall expected value of Y (3% in our leading

1
For example, consider the “XOR information structure” in which two experts receive independent, random bits,

and Y is their XOR. See Section 2.2 for further discussion.
2
In Section 2.4 we introduce a “secret sharing” information structure that shows that with no further assumptions

beyond the weak substitutes condition, no aggregation strategy achieves a better performance guarantee than the

strategy of choosing a random expert to trust.
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Figure 1: We are interested in the innermost setting, where nontrivial positive results are possible. Intervals given

for each setting indicate positive and negative results, respectively (and are stated as asymptotic approximations for

the innermost setting).

example). In both settings, the expert must then output an aggregate forecast.
One simple strategy is to pick an expert at random and “aggregate” by outputing that expert’s

forecast. In expectation, this aggregate performs at least as well as the prior; and under the weak
substitutes condition of [CW16], the strategy does at least 1/k times as well as someone who knew
every expert’s signal and the information structure, where k is the number of experts.3 That is,
choosing a random expert attains an approximation ratio of 1/k. Unfortunately, we exhibit an
information structure that satisfies weak substitutes but on which no aggregation strategy can
outperform a 1/k-approximation (even in the known prior setting).

However, under our slightly stronger assumption of projective substitutes, it is possible to im-
prove upon this 1/k baseline. Thus, while one can ask about robust aggregation in many di↵erent
settings, the projective substitutes condition appears to be a sweet spot: it allows for a broad array
of possible information structures while still allowing at nontrivial performance guarantees in both
the prior-free and known prior settings. These results are summarized in Figure 1.

In Section 3, we investigate the prior-free setting. In this setting, we show that one can improve
upon the random expert strategy under the projective substitutes condition, and also that our
bound is tight for two experts and close to tight in the general case.

• (Theorem 3.1) By taking the average of the experts’ forecasts, it is possible to attain

an approximation ratio of at least (1+
p
3/2)/k�O

�
1/k

2
�
⇡ 1.866/k. In other words,

knowing nothing about an information structure other than the fact that it satisfies the projective
substitutes condition, one can significantly improve upon the 1/k-approximation guarantee of
choosing a random expert.

To prove this result, we use the projective substitutes condition to show that one of two things
must be true: either (a) the experts’ forecasts are (in expectation) fairly di↵erent from each other,
or (b) the forecasts are somewhat accurate, meaning that they improve substantially upon the
prior. In case (a), averaging the experts’ forecasts guarantees substantial improvement upon a
random forecast; in case (b), even though averaging the forecasts does not improve substantially
upon a random forecast, a random forecast already substantially outperforms the prior.

• (Theorem 3.3) There is no aggregation method that attains an approximation ratio

of more than 2/k� 1/k
2
. In fact, we show that our negative result holds for the following

simple class of information structures (which satisfy projective substitutes): each expert receives
a numerical signal �i drawn independently from a normal distribution with some mean µ and

3
We judge the performance of an aggregation strategy based on its improvement over the prior.
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variance 1, and the quantity being forecast is Y :=
P

i �i. (Thus, this negative result holds for
every restriction on information structures that accommodates this class of examples, not only
for projective substitutes.)

For any such information structure, expert i’s forecast is Yi := �i + (k � 1)µ. This means that
Y =

P
i Yi � k(k � 1)µ. Thus, an aggregator who knew the mean µ could predict Y perfectly;

however, in the prior-free setting, the aggregator does not know µ.

We show (in a formal sense) that for this one-parameter family of information structures, the
best strategy is to average the forecasts. Put otherwise, despite the amount of knowledge that
the aggregator has (namely, everything other than µ), the aggregator cannot do better than
reporting the average of the signals. This strategy attains a 2/k�1/k2 approximation guarantee
on these information structures.

• (Theorem 3.6) In the case of k = 2 experts, the positive result given in Theorem 3.1

— which in this case is
3+

p
7

8 ⇡ 0.706 — is tight (i.e. no aggregation method can do

better). We exhibit two information structures that, despite having rather di↵erent optimal
aggregation strategies, the aggregator cannot distinguish between.

In Section 4, we investigate the known prior setting. We prove that it is possible to improve upon
the aforementioned guarantee of the prior-free setting by extremizing the average of the experts’
beliefs, i.e. moving it away from the prior. Previous work on forecasting has demonstrated an
empirical case for extremization [Sat+14] [Bar+14] [SU15]. However, there is comparatively little
work grounding extremization from a theoretical standpoint. This work shows that in our robust
aggregation setup, the aggregator benefits from extremizing the average. Additionally, our results
suggest a particular amount by which to extremize. Specifically, we show that:

• (Theorem 4.1) By extremizing the average of the experts’ forecasts by a particular

constant factor that depends on k,
4
it is possible to attain an approximation ratio

of at least (3
p
3/2)/k�O(1/k2) ⇡ 2.598/k. The key approach is to introduce a new degree

of freedom — the extremization factor — to optimize over. Setting this factor equal to 1 returns
the optimization problem solved in the proof of Theorem 3.1, but allowing the factor to take on
arbitrary values allows us to substantially improve the bound.

• (Theorem 4.2) It is not possible to attain an approximation ratio of more than

4k/(k+ 1)2 using the above approach of averaging and extremizing by a constant

factor. This result holds even in the case when each expert receives a signal from the standard
Gaussian distribution, and all that is unknown is whether the signals are fully correlated or fully
independent. In the first case, it is optimal not to extremize; in the second, it is optimal to
extremize a lot. We prove that no fixed extremization constant attains a better approximation
guarantee than stated on both information structures.

• (Theorem 4.3) In the case of k = 2 experts, the positive result given in Theorem 4.1

— which in this case is
7
p
7�17
2 ⇡ 0.760 — is tight (i.e. no aggregation method can

do better). As with Theorem 3.6, the idea is to exhibit two information structures that are
indistinguishable to the expert but have substantially di↵erent optimal aggregation strategies.

While we have stated some of our results as asymptotic approximations in k for convenience,
these asymptotics are not our focus. Instead, our goal is to understand whichmethods of aggregation

4
This factor approaches

p
3 as k approaches infinity.

3



Weak subs. Proj. subs. (prior-free) Proj. subs. (known prior)
k Pos. & neg. Averaging (positive) Negative Extremizing (positive)
2 0.500 0.706 0.706 0.760
3 0.333 0.520 0.556 0.596
4 0.250 0.409 0.438 0.488
5 0.200 0.336 0.360 0.412
6 0.167 0.285 0.306 0.356
7 0.143 0.248 0.265 0.314

Figure 2: For k = 2 . . . 7: the approximation ratio guaranteed by choosing a random expert, which is the best one

can do under weak substitutes, followed by some of our positive and negative results under the projective substitutes

condition.

work well in which settings. When is the tried and true method of averaging forecasts about optimal,
and when is it possible to attain a substantial improvement? Figure 2 summarizes our findings for
k = 2 . . . 7 (which are plausible values for many of the applications that motivate this work). The
high-level takeaways are:

• Under the projective substitutes condition, it is possible to improve substantially upon se-
lecting a random expert simply by averaging the experts’ forecasts.

• When only the forecasts are known, no technique can substantially improve upon averaging.

• But when the prior is known, extremizing appropriately is substantially better than averaging,
and in fact better than any possible aggregation strategy that does not use the prior.

1.2. Related Work

Axiomatic and Bayesian approaches Prior work on forecast aggregation tends to come in two
flavors: axiomatic and Bayesian. The axiomatic approach to forecast aggregation seeks to define
desirable properties of aggregation methods, and asks which methods satisfy these properties. For
example, [AW80] show that linear pooling (i.e. averaging) is the only aggregation method that
satisfies both the unanimity preservation and eventwise independence axioms. Other work on the
axiomatic approach includes [Gen84] and [DL14].

One drawback of the axiomatic approach is that aggregation methods preferred by these ap-
proaches rarely work as characterizations of how one ought to aggregate predictions under specific
(natural) information structures. By contrast, the Bayesian approach seeks to create models of ex-
perts’ information and analyzes the correct way for a Bayesian aggregator to take the information
into account. Prior work on aggregation with a Bayesian flavor includes [Win81], [MZ93], [Sat+14],
[FCK15], and [Lic+17].

However, most prior work on Bayesian aggregation takes a parametric view of aggregation:
experts are modeled as Bayesians whose signals are drawn from a particular distribution with one
or more parameters, and an aggregation method is chosen to optimize an objective function within
the model. For example, [Lic+17] considers a model in which experts have some shared information
and additionally receive private samples that are independent and identically distributed according
to an exponential family. While this is a natural model, it rests on specific assumptions about the
information structure, and results in this model may not generalize well.

4



Robust aggregation Our model can be thought of as a hybrid of the axiomatic and Bayesian
approaches, blending what we believe to be the most appealing parts of each. We draw from
the Bayesian approach in using information structures as a formalism for the experts’ knowledge,
whereas the goal of producing a single role that satisfies some global property (in our case, worst-
case optimality) is reminiscent of the axiomatic approach. Our model is non-parametric: rather
than assuming a parameterized family of distributions, we seek to optimize our aggregation method
against a broad class of information structures.

Our work is most similar to [ABS18], which likewise seeks to optimize an aggregation method
against an adversarially selected information structure. However, the class of information structures
that we consider is broader: while they consider the case of two Blackwell-ordered experts (i.e. two
experts, an unknown one of whom knows strictly more than the other) and two conditionally
independent experts, we consider an arbitrary number of experts from any information structure
that satisfies the projective substitutes condition. [LR20] have a similar model, but are also quite
restrictive in terms of the information structures they consider. [OIL21] uses a similar model, but
more distantly related: they consider arbitrary decision problems but restrict the aggregator to a
finite number of decisions (just two decisions for many of their results) — in our setting this would
mean forcing the aggregator to choose among finitely many output choices.

Another important di↵erence is that most of the previously mentioned work specifically con-
siders the aggregation of probabilistic forecasts, whereas we are interested in aggregating expected
value forecasts for arbitrary real-valued quantities.

Extremization Past empirical work has demonstrated that extremizing the average of the ex-
perts’ forecasts often improves the aggregate forecast [Sat+14] [Bar+14] [SU15]. [Bar+14] explains
this by noting that any individual forecaster should incorporate the fact that they may be missing
useful information available to other forecasters, and that simply averaging forecasts would fail
to incorporate the full wisdom of the crowd. Studying aggregation in the context of information
structures as well, [SU15] notes that the forecast average lacks resolution, meaning that its variance
is provably too low. However, the authors note that the information structure framework is in full
generality “too abstract to be applied in practice” and instead optimize their extremization factor
for multivariate Gaussian distributions. On the other hand, our approach of robust aggregation is
able not only to provide a theoretical justification for extremization, but also to suggest a particular
factor of extremization (Theorem 4.1), thus giving rigorous backing to what had previously been
justified either by empirical heuristics or by optimization over a quite narrow class of information
structures.

Informational substitutes In this work we explore notions of informational substitutes and
their relation to forecast aggregation. The concept of informational substitutes was introduced in
[BHVK13] and refined by [CW16].5 We build on [CW16] by introducing our own notion of substi-
tutes, projective substitutes. Contemporaneous work [FNW21] explores informational substitutes,
though in the context of experts exchanging information to reach agreement.

5
We recommend the ArXiv version of [CW16] for the most up-to-date introduction to informational substitutes.
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2. Preliminaries

2.1. Information Structures

We consider a set ⌦ of possible states of the world, with a probability distribution P over these
states. Additionally there are k experts labeled 1 . . . k. Each expert i learns the value of a random
variable �i : ⌦ ! Si; we call �i expert i’s signal and Si their signal set. We let S := S1 ⇥ · · ·⇥ Sk

denote the space of signal tuples. An expert’s signal can be thought of as partial information about
the true state of the world ! 2 ⌦. Additionally, we consider a random variable Y : ⌦ ! R with
E
⇥
Y

2
⇤
< 1 whose value we wish to estimate. We use the term information structure to refer to

the tuple I := (⌦,P, S, Y ).
In the case that Y is determined by the experts’ signals (i.e. for every profile of signals there is

only one possible value of Y ), we may summarize I with two tables, one showing Y as a function of
(�1, . . . ,�k) and the other showing P [(�1, . . . ,�k)]. For example, consider the following information
structure.

8
<

:Y =
�2 = 0 �2 = 1

�1 = 0 0 1
�1 = 1 1 0

P =
�2 = 0 �2 = 1

�1 = 0 1/4 1/4
�1 = 1 1/4 1/4

9
=

;

We refer to this as the XOR information structure, because it describes the following situation:
two experts receive independent, uniformly random bits, and Y is the XOR of these bits.6

Consider a subset of experts A ✓ [k]. We define YA := E [Y | �i : i 2 A]. That is, YA is the
random variable whose value is the expectation of Y given the signals of the experts in A. If
A = {i}, we write Yi in place of Y{i}. With the XOR information structure, Y1 is a random variable

whose value is always 1
2 (since E [Y | �1 = 0] = E [Y | �1 = 1] = 1

2). On the other hand, Y{1,2} has
value 0 when (�1,�2) is either (0, 0) or (1, 1), and 1 otherwise. The random variable Y; is simply
E [Y ], i.e. the unconditional expected value of Y . Y; can be thought of as the prior on Y .

2.2. Improving on the Prior

In this work, we will be taking the perspective of an aggregator who receives estimates of Y from
each expert. The aggregator then produces an estimate X of Y which is as accurate as possible.
In particular, we care about the robust estimation of Y : a single estimate that is simultaneously as
accurate as possible across all possible information structures (satisfying the projective substitutes
condition, which we discuss below).

We assess an aggregator’s performance by the squared distance between their estimate X and
the true value Y . That is, the aggregator wishes to minimize E

⇥
(Y �X)2

⇤
. We define the function

v(X) as follows to reflect the quality of X as an estimate of Y .

Definition 2.1. Given an information structure I = (⌦,P, S, Y ) and a random variable X, we
define

v(X) := E
⇥
(Y � E [Y ])2

⇤
� E

⇥
(Y �X)2

⇤
.

Thus, v(·) is the improvement in loss provided by X over an uninformed estimate. For example,
v(Y;) = 0 and v(Y ) = E

⇥
(Y � E [Y ])2

⇤
is the variance of Y . We cannot possibly hope for any X

such that v(X) > Y[k], since Y[k] is the estimate produced by knowing all information that exists.
This motivates comparing v(X) against the benchmark v(Y[k]).

6
Note that when we write �1 = 0, 0 is merely a label for a particular signal value in S1; we could have labeled

expert 1’s signals a and b instead. Our choice of labels reflects the intuition of the XOR structure describing Y .
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However, the aggregator does not know the underlying information structure — only the experts’
estimates. Specifically, we will consider two settings:

(1) The prior-free setting : the aggregator’s estimate is only based on the experts’ estimates. That
is, X is a function of Y1, . . . , Yk.

(2) The known prior setting : the aggregator knows the experts’ estimates and the prior. That
is, X is a function of Y1, . . . , Yk and E [Y ].

That is, X is a function of k real numbers (or k+ 1, in the known prior setting); we call this func-
tion the aggregator’s aggregation strategy. The aggregator’s goal is to come up with an aggregation
strategy that performs well across information structures (we formalize this below).

In the known prior setting, the aggregator can report X = E [Y ]; then v(X) = 0 (we call this
the trivial aggregation strategy). In both settings it is possible to do at least as well by reporting e.g.
X = Y1. On the other hand, without any conditions on the information structure, it is not always
possible to do better: in the XOR information structure (above), the aggregator is guaranteed to
receive Y1 = Y2 = 1

2 , and it is impossible for the aggregator to improve upon simply reporting the
prior of 1

2 .

2.3. Informational Complements and Substitutes

Intuitively, in the XOR information structure, the aggregator is impeded by the fact that the
experts’ signals are informational complements: each signal (and the estimate it produces) is not
valuable by itself, but the two signals are valuable when taken together.

The opposite of informational complements is informational substitutes. [CW16] discuss a
few di↵erent notions of substitutes, of which the most relevant one for us is weak informational
substitutes. This notion is a property of v(·) as a set function on the subsets of [k]. The function is
guaranteed to be monotone — that is, v(YA)  v(YB) for A ✓ B — whereas the weak substitutes
condition additionally requires submodularity.7

Definition 2.2 ([CW16]). We say that I = (⌦,P, S, Y ) for k experts satisfies weak informational
substitutes if for all A ✓ B ✓ [k] and i 2 [k], we have

v(YA[{i})� v(YA) � v(YB[{i})� v(YB). (1)

That is, I satisfies weak substitutes if the marginal improvement in the ability to estimate Y

from learning a signal i is a decreasing function of the subset of signals already known. The XOR
information structure does not satisfy weak substitutes: we have v(;) = v(Y1) = v(Y2) = 0 and
v(Y[2]) =

1
4 , so the marginal value of learning �2 is higher if �1 is already known.

By contrast, consider the information structure in which Alice and Bob are given the same
input bit b, and Y = b. In this case, the marginal value of Bob’s signal is zero if Alice’s signal is
already known, so this information structure satisfies weak substitutes.

2.4. Random Expert Strategy Under Weak Substitutes

It is not surprising that with no knowledge of the information structure, it is impossible to outper-
form the trivial strategy. Perhaps it would be possible to do better with only a coarse constraint

7
The authors define informational substitutes with respect to an arbitrary value function; in our case, the value

function is the function v.
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on the information structure. It is not a priori obvious that this should be possible. However, if
I satisfies weak substitutes, then it is possible to outperform the trivial strategy by reporting a
random expert’s belief:

Proposition 2.3. Suppose that I = (⌦,P, S, Y ) satisfies weak substitutes, and let X be equal to Yi

for a uniformly random i 2 [k] (we call this the random expert strategy). Then v(X) � 1
kv(Y[k]).

Proof. For j 2 [k], plug A = ;, B = [j � 1], i = j into Equation 1. Adding these k inequalities (and
recalling that v(;) = 0), we find that

Pk
j=1 v(Yj) � v(Y[k]). Therefore, for X as in the proposition

statement, we have

v(X) =
1

k

kX

i=1

v(Yi) �
1

k
v(Y[k]),

as desired.

Put otherwise, the random expert strategy attains an approximation ratio of 1/k.

Definition 2.4. Given an information structure I = (⌦,P, S, Y ) with k experts, the approximation
ratio of a random variable Z is given by the quantity v(Z)/v

�
Y[k]

�
.

Unfortunately, the following result (whose proof Appendix A) shows that with no further as-
sumptions, it is not possible to attain an approximation ratio larger than 1/k:

Proposition 2.5. For every k, there is an information structure that satisfies the weak substitutes
condition, such that in both the prior-free and known prior settings, no aggregation strategy attains
an approximation ratio greater than 1/k on the information structure.

The key idea is to use Shamir secret sharing [Sha79] to create an (k, r)-threshold scheme for a
uniformly random r 2 [k]. Then v(·) is additive (and thus submodular) on the subsets of [k], but
an aggregator who only knows the experts’ reports will only be able to recover the secret if r = 1.

Proof. Let p > k be a prime. Consider the following information structure (the secret sharing
information structure).

• An integer r 2 [k] is selected uniformly at random and announced.

• A random (r� 1)-th degree polynomial P (x) = a0 + a1x+ · · ·+ ar�1x
r�1 over Fp is selected,

with coe�cients chosen uniformly at random from Fp, except that a0 is either �1 or 1 (also
uniformly). For each i 2 [k], expert i is told P (i).

• The quantity Y is equal to 1 if a0 = 1 and �1 if a0 = �1.

Note that for a fixed choice of r, we have YA = 0 if |A| < r and YA = ±1 if |A| � r. Therefore,

for any A we have that YA = ±1 with probability |A|
k and 0 otherwise. Therefore, we have that

v(YA) =
|A|
k , so v(·) is additive (and thus submodular). Thus, this information structure satisfies

weak substitutes.
On the other hand, note that with probability k�1

k , all experts report 0 to the aggregator,
in which case the aggregator cannot do better in expectation than also reporting 0. Thus, it is
impossible for the aggregator to report an estimate X with v(X) >

1
k , and so an approximation

ratio larger than 1
k is not attainable.

8



The secret sharing information structure is a lottery over k di↵erent information structures,
for each of which v(·) is a threshold function: any r � 1 experts know nothing (v(A) = 0 if
|A| < r), while any r experts know everything (v(A) = 1 if |A| � r). Except for r = 1, these
information structures have experts that should be intuitively regarded as complementary. Indeed,
these structures generalize the XOR information structure (which is the case of k = r = 2).
This suggests that properties of v(·) as a set function on [k] are insu�cient to capture what we
intuitively mean by substitutable signals. This motivates us to seek a natural but stronger notion
of informational substitutes — one that is well-motivated and not too restrictive, but which rules
out information structures such as this one and allows an aggregator to outperform the guarantee
of the random expert strategy.

2.5. Projective Substitutes

The following fact (which we prove in Appendix A) helps to motivate the notion that we will
introduce.

Proposition 2.6. The weak substitutes condition may be rewritten as: for any i and A ✓ B, we
have

E
⇥
(YB � YA)

2
⇤
� E

⇥
(YB[{i} � YA[{i})

2
⇤
.

Intuitively, this interpretation of substitutes says: For any expert i, a set A of experts

becomes better at predicting the belief of a superset of experts B if i’s signal is

announced. Here, the belief of a set T of experts refers to the expected value of Y conditioned
on the experts’ signals, i.e. YT .

This matches the intuition of substitutes as diminishing marginal returns: if signal i becomes
known, the “information gap” between A and B decreases.

A more general notion of substitutes would require this to hold even when B is not a supserset
of A. That is: for all i, A,B, the A[ {i} can predict the belief of B [ {i} better than A can predict
the belief of B. This captures the spirit of diminishing marginal returns in a somewhat broader
context.

Let us formalize the notion of A’s prediction of B’s belief. By this we mean the expected value
of YB given the signal outcomes of the experts in A, i.e. E [YB | {�i : i 2 A}].

Definition 2.7. Given an information structure I = (⌦,P, S, Y ) for k experts and subsets A,B ✓
[k], A’s prediction of B’s belief is defined as the expected value of YB given the signal outcomes of
the experts in A, i.e.

YB!A := E [YB | {�i : i 2 A}] .

We now state our substitutes definition, which strengthens the weak substitutes condition.

Definition 2.8. An information structure I = (⌦,P, S, Y ) for k experts satisfies projective sub-
stitutes if for all A,B ✓ [k] and i 2 [k], we have

E
⇥
(YB � YB!A)

2
⇤
� E

⇥
(YB[{i} � YB[{i}!A[{i})

2
⇤
. (2)

The secret sharing information structure does not satisfy projective substitutes: take A,B, i

with |B| � |A| and i 2 A \ B. On the other hand, the example below does satisfy projective
substitutes.
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Example 2.9. Consider the following information structure.

8
<

:Y =
�2 = 1 �2 = 2

�1 = 1 0 1
�1 = 2 1 2

P =
�2 = 1 �2 = 2

�1 = 1 0.3 0.2
�1 = 2 0.2 0.3

9
=

;

Let A = {1} and B = {2}. It is not di�cult to compute that

YB =
�2 = 1 �2 = 2

�1 = 1 0.4 1.6
�1 = 2 0.4 1.6

YB!A =
�2 = 1 �2 = 2

�1 = 1 0.88 0.88
�1 = 2 1.12 1.12

For example, in the (�1,�2) = (1, 1) case we have that YB = 0.3·0+0.2·1
0.3+0.2 = 0.4. YB is then used to

compute YB!A: for example, in the (�1,�2) = (1, 1) case we have that YB!A = 0.3·0.4+0.2·1.6
0.3+0.2 = 0.88,

as this is the expected value of YB conditioned on �1 = 1.
It can be computed that E

⇥
(YB � YB!A)2

⇤
= 0.3456, whereas E

⇥
(YB[{1} � YB[{1}!A[{1})

2
⇤
=

E
⇥
(Y � YA)2

⇤
= 0.24, so Equation 2 is satisfied for A = {1}, B = {2}, i = 1. It can be verified

that Equation 2 is in fact satisfied for all A,B, i, so this information structure satisfies projective
substitutes.

The projective substitutes definition can be interpreted as describing the class of information
structures in which full information revelation is a dominant strategy. Specifically, consider a central
party (call them the elicitor) who knows the information structure but does not know the experts’
signals. Experts are truthful, but may be strategic: they will not lie about their signal, but may
decide not to reveal it. The elicitor wishes to structure incentives that will encourage each expert
to reveal their signal. The elicitor puts experts on teams (but does not immediately announce the
teams). Then:

1. Each expert either reveals their signal to the elicitor, or does not.

2. The elicitor announces which experts revealed their signals and announces the teams.

3. Each team makes a prediction about the elicitor’s posterior belief (after learning the signals of
all experts who decided to reveal) and is scored using a quadratic scoring rule (i.e. penalized
by the squared distance between their prediction of the elicitor’s belief and the elicitor’s actual
belief).8

This mechanism incentivizes experts to reveal their signals if and only if the information struc-
ture satisfies projective substitutes. Formally:

Proposition 2.10. An information structure satisfies projective substitutes if and only if in the
above mechanism, revealing one’s signal is a dominant strategy for every expert, regardless of who
is on their team.

Proof. First suppose that the information structure satisfies projective substitutes. Consider any
expert i, let A be i’s team, and let B be the set of all other experts who reveal their signals. If i does
not reveal their signal, then the elicitor’s belief will be YB and A’s prediction of the elicitor’s belief
will be YB!A. If i reveals their signal, then the elicitor’s belief will be YB[{i} and A’s prediction

8
Why not elicit Y directly? Eliciting each team’s best guess about the elicitor’s belief is particularly compelling

in situations in which the true value of Y will never be known, or will be learned in the far future. Under these

circumstances, the elicitor’s belief serves as an approximation for Y given the available information.
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of the elicitor’s belief will be YB[{i}!A = YB[{i}!A[{i}. Therefore, by the projective substitutes,
condition, A’s expected prediction error is smaller if i reveals their signal to the expert.

Conversely, suppose that the information structure does not satisfy projective substitutes. Then
there are sets A,B ✓ [k] and i 2 A (see Remark 2.11 (ii)) such that

E
⇥
(YB � YB!A)

2
⇤
< E

⇥
(YB[{i} � YB[{i}!A[{i})

2
⇤
.

Consider expert i, suppose their team is A, and suppose that the set of experts excluding i who
reveal their signal is B. Then i is incentivized not to reveal their signal to the elicitor, as revealing
their signal will increase A’s expected prediction error.

Remark 2.11 (Facts about projective substitutes).

(i) The weak substitutes condition is equivalent to Equation 2 holding for all A ✓ B, so the
projective substitutes condition is stronger. In fact it is strictly stronger, as it excludes the
secret sharing information structure.

(ii) There are several equivalent formulations of projective substitutes. One definition replaces
{i} with an arbitrary set X. Another modifies the definition by only requiring Equation 2 to
hold if i 2 A.9

(iii) The notation YB!A comes from the fact that, by Theorem 2.13, YB!A is the projection of YB
onto the sigma algebra generated by the signals of the experts in A. As a consequence of this
alternative formulation, YB!A is the closest random variable (by expected squared distance)
to YB among all random variables that depend only on the values (�i)i2A.

In Sections 3 and 4, we explore how the projective substitutes condition allows us to improve
upon the 1/k-approximation guarantee attainable under the weak substitutes condition.

2.6. The Pythagorean Theorem

Finally, we will find the following fact to be useful throughout our work.

Proposition 2.12 (Pythagorean theorem). Let A be a random variable, B = E [A | F ] where F
is a sigma-algebra, and C be a random variable defined on F . Then

E
⇥
(A� C)2

⇤
= E

⇥
(A�B)2

⇤
+ E

⇥
(B � C)2

⇤
.

Informally, B is the expected value of A conditional on some partial information, and C is a
random variable whose value only depends on this information. We defer the proof to Appendix A.

We call Proposition 2.12 the “Pythagorean theorem” because it is precisely the Pythagorean
theorem in the Hilbert space described by the following seminal theorem from probability theory.

Theorem 2.13 ([Šid57]). For a given probability space (⌦,F ,P), consider the Hilbert space L2 of
square-integrable random variables with the inner product hX,Y i := E [XY ]. For a given sub-sigma-
algebra F 0 of the probability space, the map X 7! E [X | F 0] is same as the orthogonal projection
map of L2 onto the subspace of F 0-measurable square-integrable random variables.

The Pythagorean theorem lets us rewrite the approximation ratio in a more convenient form.
(See Appendix A for the proof.)

9
To see that this is equivalent, for any A, i with i 62 A define A0

:= A [ {i}. Then Equation 2 for A0, B, i has the

same right-hand side but a smaller or equal left-hand side, and is thus more di�cult to satisfy.
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Corollary 2.14. The approximation ratio of a random variable Z that depends only on �1, . . . ,�k

is equal to

1�
E
⇥
(Y[k] � Z)2

⇤

E
⇥
(Y[k] � E [Y ])2

⇤ .

3. The Prior-Free Setting

We begin our investigation in the prior-free setting and ask: what is the largest approximation
ratio that can be guaranteed under the projective substitutes condition? In this section we give a
positive result and a negative result. The positive result is that averaging the experts’ reports

attains an approximation ratio of at least (1+
p
3/2)/k�O(1/k2) ⇡ 1.866/k. The negative

result is that for all k, no aggregation method attains an approximation ratio of more

than 2/k� 1/k
2. Thus, projective substitutes enables a significant improvement over the 1/k-

approximation guarantee of the random expert strategy, but no more than by a factor of two.

3.1. Positive Result for the Prior-Free Setting

Theorem 3.1. Let I = (⌦,P, S, Y ) be an information structure for k experts that satisfies projective
substitutes, and let X = 1

k

Pk
i=1 Yi. Then X attains an approximation ratio of at least

2

k
� k � 1

2k(2k � 1 +
p
3k2 � 3k + 1)

� 1

k2
�
 
1 +

p
3

2

!
· 1
k
�O

✓
1

k2

◆
.

Proof. Let X = 1
k

Pk
i=1 Yi. By Corollary 2.14, showing that X achieves an approximation ratio of

↵ is equivalent to showing that

E
⇥
(Y[k] �X)2

⇤
 (1� ↵)E

⇥
(Y[k] � E [Y ])2

⇤
. (3)

The first step in our proof uses the following fact: for any numbers y1, . . . , yk and y, we have

✓
y � y1 + · · ·+ yk

k

◆2

=
1

k

kX

i=1

(y � yi)
2 � 1

k2

X

1i<jk

(yi � yj)
2
.

This equality follows from rearranging terms, and applying it in expectation for y = Y[k] and yi = Yi

gives us the following equality.

E
⇥
(Y[k] �X)2

⇤
=

1

k

kX

i=1

E
⇥
(Y[k] � Yi)

2
⇤
� 1

k2

X

1i<jk

E
⇥
(Yi � Yj)

2
⇤
. (4)

The left-hand side here is the same as in Equation 3; meanwhile, the right-hand side has a term
representing the average error of a random expert and another term representing the average
expected distance between the experts’ forecasts. The following lemma allows us to get a handle
on this last term.

Lemma 3.2. For all i, j, and for all a, b � 0 such that b � (2a�1)2

4a , we have

E
⇥
(Yi � Yj)

2
⇤
� a

�
E
⇥
(Y{i,j} � Yi)

2
⇤
+ E

⇥
(Y{i,j} � Yj)

2
⇤�
�b
�
E
⇥
(Yi � E [Y ])2

⇤
+ E

⇥
(Yj � E [Y ])2

⇤�
.

(5)

12



The proof of Lemma 3.2 relies on the projective substitutes assumption. The lemma lets us
flexibly lower bound the expected distance between Yi and Yj in terms of the average expected
distance from Y{i,j} to Yi and Yj . Intuitively, the projective substitutes condition guarantees such
a bound because expert i must be able to forecast Y{i,j} better than they can forecast Yj . For now
we assume the truth of Lemma 3.2 and return to the proof of Theorem 3.1. We note that we may
rewrite

E
⇥
(Yi � E [Y ])2

⇤
= E

⇥
(Y[k] � E [Y ])2

⇤
� E

⇥
(Y[k] � Yi)

2
⇤
, (6)

by the Pythagorean theorem. Additionally, we note that by weak substitutes (which follows from
projective substitutes), for all i we have

X

j 6=i

E
⇥
(Y{i,j} � Yi)

2
⇤
� E

⇥
(Y[k] � Yi)

2
⇤
. (7)

To see this, consider for example i = 1. By weak substitutes, E
⇥
(Y{1,j} � Y1)2

⇤
� E

⇥
(Y[j] � Y[j�1])

2
⇤
,

so the left-hand side of Equation 7 is greater than or equal to
P

j>1 E
⇥
(Y[j] � Y[j�1])

2
⇤
, which (by

k� 2 applications of the Pythagorean theorem) is equal to E
⇥
(Y[k] � Y1)2

⇤
. Now, combining Equa-

tions 4, 5, 6, and 7 gives us that

E
⇥
(Y[k] �X)2

⇤
 b(k � 1)

k
E
⇥
(Y[k] � E [Y ])2

⇤
+

✓
1

k
� a

k2
� b(k � 1)

k2

◆ kX

i=1

E
⇥
(Y[k] � Yi)

2
⇤
. (8)

for any a, b satisfying Lemma 3.2. Now, note that by weak substitutes we have

kX

i=1

E
⇥
(Y[k] � Yi)

2
⇤
= kE

⇥
(Y[k] � E [Y ])2

⇤
�

kX

i=1

E
⇥
(Yi � E [Y ])2

⇤
 (k� 1)E

⇥
(Y[k] � E [Y ])2

⇤
, (9)

where the first step uses the Pythagorean theorem and the second step follows from Proposition 2.3.
Therefore, if 1

k � a
k2 � b(k�1)

k2 � 0, we may write Equation 8 as

E
⇥
(Y[k] �X)2

⇤
 k � 1

k

✓
1� a� b

k

◆
E
⇥
(Y[k] � E [Y ])2

⇤
.

To make this inequality as tight as possible, we wish to make a � b as large as possible; our

constraints are that b � (2a�1)2

4a and 1
k � a

k2 � b(k�1)
k2 � 0. The optimal values are

a =
2k � 1 +

p
3k2 � 3k + 1

2k
and b =

(2a� 1)2

4a
.

This gives us

↵ = 1� k � 1)

k

✓
1� a� b

k

◆
=

2

k
� k � 1

2k(2k � 1 +
p
3k2 � 3k + 1)

� 1

k2
,

as desired.

Proof of Lemma 3.2. Recall from Theorem 2.13 that random variables can be thought of as points
in a Hilbert space. Let Ti be the projection of Yj onto the space of all a�ne combinations of Yi and
Y;, i.e. {�Yi + (1 � �)Y; : � 2 R}. (Recall that Y; is the random variable that is always equal to
E [Y ].) Define Ti analogously. Note that E

⇥
(Yj � Yj!i)2

⇤
 E

⇥
(Yj � Tj)2

⇤
, since Yj!i is the closest
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point to Yj of the subspace of random variables that depend only on �i, and the aforementioned
a�ne space is a subset of that subspace. Additionally, by projective substitutes (with A = {i}, B =
{j}, i = i in Definition 2.8), we have that E

⇥
(Y{i,j} � Yi)2

⇤
 E

⇥
(Yj � Yj!i)2

⇤
. Therefore, we have

that E
⇥
(Y{i,j} � Yi)2

⇤
 E

⇥
(Yj � Tj)2

⇤
, and similarly that E

⇥
(Y{i,j} � Yj)2

⇤
 E

⇥
(Yi � Ti)2

⇤
. It

therefore su�ces to show that

E
⇥
(Yi � Yj)

2
⇤
� a

�
E
⇥
(Yi � Ti)

2
⇤
+ E

⇥
(Yj � Tj)

2
⇤�

� b
�
E
⇥
(Yi � Y;)

2
⇤
+ E

⇥
(Yj � Y;)

2
⇤�

. (10)

By the Pythagorean theorem,10 we know the following four facts.

E
⇥
(Yi � Yj)

2
⇤
= E

⇥
(Yi � Ti)

2
⇤
+ E

⇥
(Yj � Ti)

2
⇤
; E

⇥
(Yi � Yj)

2
⇤
= E

⇥
(Yj � Tj)

2
⇤
+ E

⇥
(Yi � Tj)

2
⇤

E
⇥
(Yi � Y;)

2
⇤
= E

⇥
(Yi � Ti)

2
⇤
+ E

⇥
(Ti � Y;)

2
⇤
; E

⇥
(Yj � Y;)

2
⇤
= E

⇥
(Yj � Tj)

2
⇤
+ E

⇥
(Tj � Y;)

2
⇤

These let us rewrite Equation 10 as such:

1

2

�
E
⇥
(Yj � Ti)

2
⇤
+ E

⇥
(Yi � Tj)

2
⇤�

+

✓
a� 1

2

◆�
E
⇥
(Ti � Y;)

2
⇤
+ E

⇥
(Tj � Y;)

2
⇤�

�
✓
a� b� 1

2

◆�
E
⇥
(Yi � Y;)

2
⇤
+ E

⇥
(Yj � Y;)

2
⇤�

. (11)

We wish to show that this inequality holds so long as b � (2a�1)2

4a . To do so, we note the following
fact: for any random variables Q,R and non-negative reals c1, c2, we have that

c1E
⇥
Q

2
⇤
+ c2E

⇥
R

2
⇤
� c1c2

c1 + c2
E
⇥
(Q+R)2

⇤
.

This follows (after multiplying through by c1 + c2 and cancelling terms) from the fact that for
all q, r we have (c1q)2 + (c2r)2 � 2(c1q)(c2r). Now, we apply this identity to Q := Yj � Ti and
R := Ti � Y;, with c1 =

1
2 and c2 = a� 1

2 , and also to Q := Yi � Tj and R := Tj � Y;. This tells us
that

1

2

�
E
⇥
(Yj � Ti)

2
⇤
+ E

⇥
(Yi � Tj)

2
⇤�

+

✓
a� 1

2

◆�
E
⇥
(Ti � Y;)

2
⇤
+ E

⇥
(Tj � Y;)

2
⇤�

� 2a� 1

4a

�
E
⇥
(Yi � Y;)

2
⇤
+ E

⇥
(Yj � Y;)

2
⇤�

.

Therefore, Equation 11 holds so long as 2a�1
4a � a� b� 1

2 , which is equivalent to b � (2a�1)2

4a .

3.2. Negative Results for the Prior-Free Setting

Theorem 3.3. Fix any k � 1. For every µ 2 R, let Iµ be the information structure defined as

follows: each expert i receives an independent signal �i ⇠ N(µ, 1), and Y :=
Pk

i=1 �i. Then

(i) Iµ satisfies projective substitutes for all µ.

(ii) No aggregation strategy achieves an approximation ratio of more than 2
k � 1

k2 on every Iµ.

We note that there may be stronger substitutes conditions (or other conditions) that the infor-
mation structures Iµ satisfy. The negative result of theorem 3.3 carries over to any such setting.

10
While in most cases by “Pythagorean theorem” we mean Proposition 2.12, in this case we are referring to the

fact that for orthogonal vectors x and y, we have kxk2+kyk2 = kx+ yk2 (and applying this fact to e.g. x = Yi�Ti,

y = Yj � Ti). Proposition 2.12 can be thought of as following from this fact (in the context of Theorem 2.13).
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Proof. We first prove (i). Without loss of generality, assume that µ = 0. For any A,B, we have
YB =

P
j2B �j and YB!A =

P
j2A\B �j (from the perspective of the experts in A, the values �j

for j 2 A \ B are known and the values �j for j 2 B \ A are zero in expectation). Therefore, for
any A,B, i we have

E
⇥
(YB � YB!A)

2
⇤
=

0

@
X

j2B\A

�j

1

A
2

=

0

@
X

j2(B[{i})\(A[{i})

�j

1

A
2

= E
⇥
(YB[{i} � YB[{i}!A[{i})

2
⇤
,

so Equation 2 is satisfied (with equality).

We now prove (ii), and we do so in two steps: first we show that taking the average of the
experts’ reports yields an approximation ratio of exactly 2

k �
1
k2 for all µ, and second we show that

no aggregation method beats averaging for every µ.
For the first step, again assume without loss of generality that µ = 0. Then Y[k] = Y =

P
i �i

and the average of the Yi’s is X = 1
k

P
i �i. Therefore we have

E
⇥
(Y[k] �X)2

⇤
= E

2

4
 
k � 1

k

X

i

�i

!2
3

5 =

✓
k � 1

k

◆2

E

2

4
 
X

i

�i

!2
3

5 .

On the other hand, we have that E
⇥
(Y[k] � E [Y ])2

⇤
= E

⇥
(
P

i �i)
2
⇤
, so (using Corollary 2.14) we

have that the approximation ratio is

1�
✓
k � 1

k

◆2

=
2

k
� 1

k2
.

This completes the first step. To complete the second step, we use the following well-known result
from statistical theory.11

Proposition 3.4 ([Bly51], [GS51], [HL51]). Let x1, . . . , xk be drawn independently from a normal
distribution with unknown mean µ and standard deviation 1. Let µ̂ := 1

k

Pk
i=1 xi. Then for every

function X of x1, . . . , xk, there exists µ such that E
⇥
(X � µ)2

⇤
� E

⇥
(µ̂� µ)2

⇤
.

Since E
⇥
(µ̂� µ)2

⇤
= 1

k for every µ, we have the following fact as a corollary.

Corollary 3.5. Let x1, . . . , xk be drawn independently from a normal distribution with unknown
mean µ and standard deviation 1. Then for every aggregation strategy X that takes as input
x1, . . . , xk, we have maxµ E

⇥
(X � µ)2

⇤
� 1

k .

(The only subtlety is that aggregation strategies are not required to be deterministic; how-
ever, replacing a randomized aggregation strategy with the deterministic strategy that outputs the
expected value of the randomized strategy given the inputs can only reduce expected squared error.)

Returning to our proof, let X be any aggregation strategy on inputs Y1, . . . , Yk. We define a
new aggregation strategy: X̃ := 1

k�1(
P

i Yi �X). We claim that if X achieves an approximation

ratio of more than 2
k � 1

k2 on every µ, then X̃ violates Corollary 3.5.

11
This fact does not generalize to more than two dimensions, meaning that if the xi are vectors in three or more

dimensions drawn independently from a normal distribution with unknown mean and known covariance matrix, then

there is an estimator for the mean that Pareto dominates the sample mean according to expected squared vector

distance. One such estimator is the James-Stein estimator [Ste56].
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Note that Yi = �i+(k�1)µ, which means that the Yi’s are independent samples from N(kµ, 1).
Consider X̃ as an estimator for kµ. We have

E
h
(kµ� X̃)2

i
= E

2

4
 
kµ� 1

k � 1

 
X

i

Yi �X

!!2
3

5

=
1

(k � 1)2
E

2

4
 
X

i

Yi � k(k � 1)µ�X

!2
3

5 =
1

(k � 1)2
E
⇥
(Y �X)2

⇤
,

where in the last step we use the fact that Y =
P

i �i =
P

i Yi � k(k � 1)µ. Now, suppose for
contradiction that X achieves an approximation ratio of more than 2

k � 1
k2 on every µ. Then for

all µ we have
✓
k � 1

k

◆2

= 1�
✓
2

k
� 1

k2

◆
>

E
⇥
(Y �X)2

⇤

E [(Y � E [Y ])2]
=

E
⇥
(Y �X)2

⇤

k
=

(k � 1)2

k
E
h
(kµ� X̃)2

i
,

so E
h
(kµ� X̃)2

i
<

1
k for every value of kµ (and thus for every µ). This contradicts Corollary 3.5

and completes the proof.

Theorems 3.1 and 3.3 give us non-matching lower and upper bounds on the optimal approxima-
tion ratio under the projective substitutes condition. In particular, for k = 2 experts, Theorem 3.1

tells us that averaging achieves an approximation ratio of 3+
p
7

8 ⇡ 0.706, while Theorem 3.1 tells us
that no aggregation strategy can achieve an approximation ratio larger than 0.75. We now show
that for two experts, our positive result is tight.

Theorem 3.6. In the prior-free setting, no aggregation strategy achieves an approximation ratio

larger than 3+
p
7

8 on every two-expert information structure that satisfies projective substitutes.

Proof. Let I+ be the following information structure, where p = 1 �
p
7
4 and x =

p
14 � 2

p
2.

We label the signals �1 and 1 because these are the expected values conditional on the respective
signals.

I+ :=

8
><

>:
Y =

�2 = 1 �2 = �1

�1 = 1 1�(1�2p)x
2p x

�1 = �1 x
�1�(1�2p)x

2p

P =
�2 = 1 �2 = �1

�1 = 1 p
1
2 � p

�1 = �1 1
2 � p p

9
>=

>;

Let I� be the same information structure, but with x = 2
p
2�

p
14. It is a matter of calculation

to verify that these information structures satisfy projective substitutes.12

Note that any aggregation strategy that outputs a number other than 1 on input (Y1, Y2) =
(1, 1) has an approximation ratio of negative infinity on an information structure where Y = 1
deterministically. This is likewise true for �1 in place of 1. Thus, if Theorem 3.6 were false, it would
be disproved by an information structure that outputs 1 on I+ and I� if (�1,�2) = (1, 1) and �1
if (�1,�2) = (�1,�1). Conditional on this, the aggregation method that minimizes the maximum
expected squared distance to Y[k] on I+ and I� is the one that returns 0 when (�1,�2) = (1,�1)
or (�1,�2) = (�1, 1). It is a matter of calculation to verify that this aggregation strategy achieves

an approximation ratio of exactly 3+
p
7

8 .
12
These information structures were found by finding values that would make the inequalities in the proofs of

Theorem 3.1 and Lemma 3.2 hold with equality.
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4. The Known Prior Setting

Let us now expand the information available to the aggregator by allowing them knowledge of the
prior E [Y ]. How might this change the optimal aggregation strategy?

Consider the following information structure: a coin comes up heads Y fraction of the time,
selected uniformly from [0, 1]. Each of two experts sees an independent flip of the coin. It can be
calculated that an expert who sees heads has a posterior of 2

3 . However, consider the situation in
which both experts report heads: collectively they have seen two heads and zero tails, conditional
on which the expected value of Y is 3

4 .
In this setting, it is beneficial to push the average of the experts’ reports away from the prior, a

method known as extremization in the forecasting literature. Extremization has been demonstrated
empirically to improve the accuracy of aggregate forecasts, and the theoretical intuition for the
benefit of extremization extends beyond the above example. An expert’s report is the posterior
resulting from observing a fraction of all available evidence. If many experts update upward from
the prior as a result of each of their pieces of evidence, then it stands to reason that observing all
of the evidence would cause an update that is larger than the update of an average expert.

4.1. The Extremization Factor

Consider the following aggregation strategy, parameterized by a constant d which we will call the
extremization factor.

X :=
1

k

X

i

Yi + (d� 1)

 
1

k

X

i

Yi � E [Y ]

!
. (12)

Setting d = 1 recovers the average of the reports; setting d = 0 simply returns the prior. In general,
setting d > 1 extremizes the average (i.e. pushes it away from the prior) by a factor of d. As an
example, consider the class of information structures in Theorem 3.3, where averaging achieved an
approximation ratio of 2

k � 1
k2 . On the other hand, extremizing by a factor of k (i.e. setting d = k

above) recovers Y exactly (thus achieving an approximation ratio of 1).
We now prove that by extremizing, we can achieve an approximation ratio that is higher than

what we could hope to attain without knowledge of the prior. In particular, we find that by

extremizing, it is possible to achieve an approximation ratio of at least
3
p
3

2k �O(1/k2) ⇡
2.598/k, a substantial improvement not only over our positive result in the prior-free setting, but
also over our negative result.

4.2. Positive Result for the Known Prior Setting

Theorem 4.1. Let I = (⌦,P, S, Y ) be an information structure for k experts that satisfies projective

substitutes, and let X = 1
k

Pk
i=1 Yi + (d� 1)

�
1
k

Pn
i=1 Yi � E [Y ]

�
, where d = k(

p
3k2�3k+1�2)
k2�k�1 . Then

X attains an approximation ratio of at least

(3k2 � 3k + 1)3/2 � 9k2 + 9k + 1

2(k2 � k � 1)2
� 3

p
3

2k
�O

✓
1

k2

◆
.

The proof is similar to the proof of Theorem 3.1. We provide a sketch of the proof and refer to
Appendix A for the details.
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Proof sketch. Let d > 0 and let X := 1
k

P
i Yi + (d � 1)

�
1
k

P
i Yi � E [Y ]

�
. By rearranging terms

and applying Equation 4, we find that

E
⇥
(Y[k] �X)2

⇤
= (d�1)2E

⇥
(Y[k] � E [Y ])2

⇤
�d(d� 2)

k

X

i

E
⇥
(Y[k] � Yi)

2
⇤
�d

2

k2

X

1i<jk

E
⇥
(Yi � Yj)

2
⇤
.

We then apply Lemma 3.2 and use the Pythagorean theorem and Equation 9 to find that for any

a, b � 0 such that b � (2a�1)2

4a , if d(d�2)
k + bd2(k�1)

k2 + ad2

k2  0 then

E
⇥
(Y[k] �X)2

⇤

✓
1 +

d
2 � 2d

k
� (a� b)

k � 1

k2
d
2

◆
E
⇥
(Y[k] � E [Y ])2

⇤
.

Just as in the proof of Theorem 3.1, our goal is now to maximize a�b, this time with the constraints

b � (2a�1)2

4a and d(d�2)
k + bd2(k�1)

k2 + ad2

k2  0. Solving this optimization problem yields the theorem
statement.

It is worth noting how d varies with k. While d increases with k, it reaches a limit — namely,p
3 ⇡ 1.732.13 Thus, the strategy given in Theorem 4.1 does not extremize in the way that one

might guess based on the optimal response to the information structures in our negative result for
the prior-free setting, Theorem 3.3. This makes sense, because the signals received by each expert
were independent; the worst-case optimal strategy, on the other hand, must compromise between
doing well in such settings (where a large extremization factor makes sense) and ones where experts’
information is highly dependent (where little or no extremization is optimal).

4.3. Negative Results for the Known Prior Setting

We first prove a conditional negative result: specifically, that our above approach of averaging and
extremizing by a constant factor cannot achieve an approximation ratio better than 4

k .

Theorem 4.2. Fix any k � 1. Let Iind be the information structure in which each expert i receives
an independent signal �i ⇠ N(0, 1). Let Ieq be the information structure in which each expert i

receives the same signal �i, which is also drawn from ⇠ N(0, 1). For both information structures,
Y =

Pk
i=1 �i. Then

(i) Iind and Idep satisfy projective substitutes.

(ii) There is no d 2 R for which the aggregation strategy that averages the experts’ reports and
extremizes by a factor of d attains an approximation ratio of more than 4k

(k+1)2 on both Iind
and Idep.

As with Theorem 3.3, the result extends to all settings that permit both Iind and Idep.

Proof. The fact that Iind satisfies projective substitutes follows from part (i) of Theorem 3.3. The
fact that Idep satisfies projective substitutes is clear because the right-hand side of Equation 2 is
zero.

To show the second part, note that for Iind we have Yi = �i, so Y =
P

i Yi, and for Idep we
have Yi = k�i, so Y = 1

k

P
i Yi. Therefore, an extremization factor of d (as in Equation 12) attains

an approximation ratio of 1� (k�d)2

k2 for Iind and 1� (1� d)2 for Idep. The d that maximizes the

minimum of these two expressions is d = 2k
k+1 , which yields an approximation ratio of 4k

(k+1)2 for

both information structures.
13
Interestingly, the value of d recommended by our theoretical analysis is consonant with the empirical findings

in [SU15].
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Finally, we note that Theorem 4.1 tells us that by averaging and extremizing by a factor of

2(
p
7� 2) ⇡ 1.292 achieves an approximation ratio of 7

p
7�17
2 ⇡ 0.760. We prove that this is tight.

Note that this result, unlike Theorem 4.2, is unconditional.

Theorem 4.3. In the known prior setting, no aggregation strategy achieves an approximation ratio

larger than 7
p
7�17
2 on every two-expert information structure that satisfies projective substitutes.

Proof. Let I+ be the following information structure, where p = 2+
p
7

12 and x =
p

2+
p
7

3 . We label
the signals �1 and 1 because these are the expected values conditional on the respective signals.

I+ :=

8
><

>:
Y =

�2 = 1 �2 = �1

�1 = 1 1�(1�2p)x
2p x

�1 = �1 x
�1�(1�2p)x

2p

P =
�2 = 1 �2 = �1

�1 = 1 p
1
2 � p

�1 = �1 1
2 � p p

9
>=

>;

Let I� be the same information structure, but with x = �
p

2+
p
7

3 . It is a matter of calcu-
lation to verify that these information structures satisfy projective substitutes. The quantity
E
⇥
(Y � E [Y ])2

⇤
is the same for I+ and I�, so the aggregation strategy X that guarantees the

largest possible approximation ratio when the information structure is one of I+ and I� is the one
that minimizes the maximum value of E

⇥
(Y �X)2

⇤
over these two information structures. This is

achieved by outputting 0 when (Y1, Y2) is (1,�1) or (�1, 1), 1
2p when (Y1, Y2) = (1, 1), and �1

2p when
(Y1, Y2) = (�1,�1). It is a matter of calculation to verify that this aggregation strategy achieves

an approximation ratio of exactly 7
p
7�17
2 .

Remark 4.4. The example in Theorem 4.3 in fact shows that for k = 2 experts it is impossible to

achieve an approximation ratio larger than 7
p
7�17
2 even if the aggregator has access to substantially

more information than the prior. In particular, the aggregator cannot do better even if given access
to P and to the random variables Y1, Y2 as functions (i.e. what the value of Y1 is under every possible
signal outcome �1, and similarly for Y2).

4.4. Beyond Linear Extremization?

In this section we have focused on what [SU15] call linear extremization: extremization by a fixed
multiplicative factor. To our knowledge this is the only extremization method for real-valued
forecasts that has been studied.14 As byproducts of our upper and lower bounds on the power of
this technique, our work provably separates what is possible with and without knowledge of the
prior, justifies in a formal sense the practice of linear extremization (by showing that it is superior
to straightforward averaging), and provides guidance as to how much extremization is appropriate.

Our general model reveals a natural open question, namely whether there are more exotic
aggregation strategies guaranteed to outperform linear extremization. This question, which can
easily be phrased formally using the definitions and performance metrics of our general model,
appears not to be formally explored in the existing literature and is an intriguing question for
future work.

14
Other methods have been studied for extremizing probabilistic forecasts, see e.g. [Sat+14], but that is not our

setting.

19



References

[ABS18] Itai Arieli, Yakov Babichenko, and Rann Smorodinsky. “Robust forecast aggregation”.
In: Proceedings of the National Academy of Sciences 115.52 (2018), E12135–E12143.
issn: 0027-8424. doi: 10.1073/pnas.1813934115. url: https://www.pnas.org/
content/115/52/E12135.

[AW80] J. Aczél and C. Wagner. “A Characterization of Weighted Arithmetic Means”. In:
SIAM Journal on Algebraic Discrete Methods 1.3 (1980), pp. 259–260. doi: 10.1137/
0601029.

[Bar+14] Jonathan Baron, Barbara A. Mellers, Philip E. Tetlock, Eric Stone, and Lyle H. Ungar.
“Two Reasons to Make Aggregated Probability Forecasts More Extreme”. In: Decision
Analysis 11.2 (2014), pp. 133–145. doi: 10.1287/deca.2014.0293. url: https:
//ideas.repec.org/a/inm/ordeca/v11y2014i2p133-145.html.

[BHVK13] Tilman Börgers, Angel Hernando-Veciana, and Daniel Krähmer. “When are signals
complements or substitutes?” In: Journal of Economic Theory 148.1 (2013), pp. 165–
195. issn: 0022-0531. doi: https://doi.org/10.1016/j.jet.2012.12.012. url:
https://www.sciencedirect.com/science/article/pii/S0022053112001275.

[Bly51] C. Blyth. “On Minimax Statistical Decision Procedures and Their Admissibility”. In:
Annals of Mathematical Statistics 22 (1951), pp. 22–42.

[CW16] Yiling Chen and Bo Waggoner. “Informational Substitutes”. In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA. Ed. by Irit Dinur. IEEE Computer
Society, 2016, pp. 239–247. doi: 10.1109/FOCS.2016.33. url: https://doi.org/
10.1109/FOCS.2016.33.

[DL14] Franz Dietrich and Christian List. Probabilistic Opinion Pooling. Oct. 2014. url: http:
//philsci-archive.pitt.edu/11349/.

[FCK15] Rafael M. Frongillo, Yiling Chen, and Ian A. Kash. “Elicitation for Aggregation”. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. Ed. by Blai Bonet and Sven Koenig. AAAI Press,
2015, pp. 900–906. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/
paper/view/9770.

[FNW21] Rafael Frongillo, Eric Neyman, and Bo Waggoner. “Agreement Implies Accuracy for
Substitutable Signals”. Nov. 2021.

[Gen84] Christian Genest. “A Characterization Theorem for Externally Bayesian Groups”. In:
Ann. Statist. 12.3 (Sept. 1984), pp. 1100–1105. doi: 10.1214/aos/1176346726.

[GS51] M. A. Girshick and L. J. Savage. “Bayes and Minimax Estimates for Quadratic Loss
Functions”. In: Berkeley Symposium on Mathematical Statistics and Probability. 1951,
pp. 53–73.

[HL51] J. L. Hodges Jr. and E. L. Lehmann. “Some applications of the Cramér-Rao inequal-
ity”. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, 1950. University of California Press, Berkeley and Los Angeles, 1951,
pp. 13–22.

20

https://doi.org/10.1073/pnas.1813934115
https://www.pnas.org/content/115/52/E12135
https://www.pnas.org/content/115/52/E12135
https://doi.org/10.1137/0601029
https://doi.org/10.1137/0601029
https://doi.org/10.1287/deca.2014.0293
https://ideas.repec.org/a/inm/ordeca/v11y2014i2p133-145.html
https://ideas.repec.org/a/inm/ordeca/v11y2014i2p133-145.html
https://doi.org/https://doi.org/10.1016/j.jet.2012.12.012
https://www.sciencedirect.com/science/article/pii/S0022053112001275
https://doi.org/10.1109/FOCS.2016.33
https://doi.org/10.1109/FOCS.2016.33
https://doi.org/10.1109/FOCS.2016.33
http://philsci-archive.pitt.edu/11349/
http://philsci-archive.pitt.edu/11349/
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9770
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9770
https://doi.org/10.1214/aos/1176346726


[Lic+17] Kenneth C. Lichtendahl, Yael Grushka-Cockayne, Victor Richmond R. Jose, and Robert
L. Winkler. “Extremizing and Anti-Extremizing in Bayesian Ensembles of Binary-
Event Forecasts”. In: ERN: Forecasting Techniques (Topic) (2017).

[LR20] Gilat Levy and Ronny Razin. “Combining forecasts in the presence of ambiguity over
correlation structures”. In: Journal of Economic Theory (2020), p. 105075. issn: 0022-
0531. doi: https://doi.org/10.1016/j.jet.2020.105075. url: https://www.
sciencedirect.com/science/article/pii/S0022053118303144.

[MZ93] Chung ki Min and Arnold Zellner. “Bayesian and non-Bayesian methods for combining
models and forecasts with applications to forecasting international growth rates”. In:
Journal of Econometrics 56.1 (1993), pp. 89–118. issn: 0304-4076. doi: https://doi.
org/10.1016/0304-4076(93)90102-B. url: https://www.sciencedirect.com/
science/article/pii/030440769390102B.

[OIL21] Henrique De Oliveira, Yuhta Ishii, and Xiao Lin. “Robust Merging of Information”.
In: EC ’21: The 22nd ACM Conference on Economics and Computation, Budapest,
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[Sat+14] Ville Satopää, Jonathan Baron, Dean Foster, Barbara Mellers, Philip Tetlock, and
Lyle Ungar. “Combining multiple probability predictions using a simple logit model”.
In: International Journal of Forecasting 30 (Apr. 2014), 344–356. doi: 10.1016/j.
ijforecast.2013.09.009.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), pp. 612–613.
doi: 10.1145/359168.359176. url: http://doi.acm.org/10.1145/359168.359176.
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= E
⇥
(Y � YA)

2
⇤
� E

⇥
(Y � YB)

2
⇤
= E

⇥
(YB � YA)

2
⇤
,

where the last step follows by setting the variables A,B,C in Proposition 2.12 to Y , YB, and
YA, respectively. Proposition 2.6 follows directly from Equation 13 after rearranging the terms in
Equation 1.

Proof of Proposition 2.12. Observe that E [AB] = E [E [AB | B]] = E
⇥
B

2
⇤
, so E

⇥
(A�B)2

⇤
=

E
⇥
A

2
⇤
� E

⇥
B

2
⇤
. Additionally, note that

E [AC] = E [E [AC | F ]] = E [E [A | F ]C] = E [BC] ,

where in the second step we use that C is defined on F . Therefore, we have

E
⇥
(A� C)2

⇤
= E

⇥
A

2
⇤
+ E

⇥
C

2
⇤
� 2E [BC] = E

⇥
A

2
⇤
� E

⇥
B

2
⇤
+ E

⇥
B

2
⇤
� 2E [BC] + E

⇥
C

2
⇤

= E
⇥
(A�B)2

⇤
+ E

⇥
(B � C)2

⇤
,

as desired.

Proof of Corollary 2.14. We have

v(Z)

v(Y[k])
=

E
⇥
(Y � E [Y ])2

⇤
� E

⇥
(Y � Z)2

⇤

E [(Y � E [Y ])2]� E
⇥
(Y � Y[k])2

⇤

=

�
E
⇥
(Y � Y[k])

2
⇤
+ E

⇥
(Y[k] � E [Y ])2

⇤�
�
�
E
⇥
(Y � Y[k])

2
⇤
+ E

⇥
(Y[k] � Z)2

⇤�

E [(Y � E [Y ])2]� E
⇥
(Y � Y[k])2

⇤

=
E
⇥
(Y[k] � E [Y ])2

⇤
� E

⇥
(Y[k] � Z)2

⇤

E
⇥
(Y � Y[k])2

⇤ = 1�
E
⇥
(Y[k] � Z)2

⇤

E
⇥
(Y[k] � E [Y ])2

⇤ .

We use Proposition 2.12 for A = Y , B = Y[k], C = E [Y ] in the second and third steps, and also
for A = Y , B = Y[k], C = Z in the second step.

Proof of Theorem 4.1. Let d > 0 and let X := 1
k

P
i Yi + (d � 1)

�
1
k

P
i Yi � E [Y ]

�
. As with the

proof of Theorem 3.1, we start by upper bounding E
⇥
(Y[k] �X)2

⇤
. We have

E
⇥
(Y[k] �X)2

⇤
= E

2

4
 
d

 
Y[k] �

1

k

X

i

Yi

!
� (d� 1)

�
Y[k] � E [Y ]

�
!2
3

5

= d
2E

2

4
 
Y[k] �

1

k

X

i

Yi

!2
3

5+ (d� 1)2E
⇥
(Y[k] � E [Y ])2

⇤

� 2d(d� 1)

k
E
" 

kY[k] �
X

i

Yi

!
�
Y[k] � E [Y ]

�
#

= d
2

0

@1

k

X

i

E
⇥
(Y[k] � Yi)

2
⇤
� 1

k2

X

1i<jk

E
⇥
(Yi � Yj)

2
⇤
1

A

+ (d� 1)2E
⇥
(Y[k] � E [Y ])2

⇤
� 2d(d� 1)

k

X

i

E
⇥
(Y[k] � Yi)

2
⇤
.
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In the last step, we adapt the first term using Equation 4 and adapt the last term by observing
that

E
⇥
(Y[k] � Yi)(Y[k] � E [Y ])

⇤
= E

⇥
Y[k](Y[k] � Yi)

⇤
� E [Y ]E

⇥
Y[k] � Yi

⇤

= E
⇥
Y[k](Y[k] � Yi)

⇤
= E

⇥
(Y[k] � Yi)

2
⇤

(where the last step holds because for any given Yi, E
⇥
Y[k] | Yi

⇤
= Yi, so E

⇥
Yi(Y[k] � Yi)

⇤
= 0).

Grouping like terms, we have

E
⇥
(Y[k] �X)2

⇤
= (d�1)2E

⇥
(Y[k] � E [Y ])2

⇤
�d(d� 2)

k

X

i

E
⇥
(Y[k] � Yi)

2
⇤
�d

2

k2

X

1i<jk

E
⇥
(Yi � Yj)

2
⇤
.

Now, recall Lemma 3.2. Consider any a, b � 0 satisfying b � (2a�1)2

4a ; then for all i, j we have

E
⇥
(Yi � Yj)

2
⇤
� a

�
E
⇥
(Y{i,j} � Yi)

2
⇤
+ E

⇥
(Y{i,j} � Yj)

2
⇤�
�b
�
E
⇥
(Yi � E [Y ])2

⇤
+ E

⇥
(Yj � E [Y ])2

⇤�
.

Therefore we have

E
⇥
(Y[k] �X)2

⇤
 (d� 1)2E

⇥
(Y[k] � E [Y ])2

⇤
� d(d� 2)

k

X

i

E
⇥
(Y[k] � Yi)

2
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� d
2

k2
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1i<jk

�
a
�
E
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2
⇤
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⇤
+ E
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⇤��
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k

◆
E
⇥
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⇤
�
✓
d(d� 2)

k
+

bd
2(k � 1)
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◆X

i

E
⇥
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2
⇤
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2

k2

X
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�
E
⇥
(Y{i,j} � Yi)

2
⇤
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⇥
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2
⇤�

,

where in the last step we use the Pythagorean theorem to write E
⇥
(Yi � E [Y ])2

⇤
as E

⇥
(Y � E [Y ])2

⇤
�

E
⇥
(Y � Yi)2

⇤
. Now we use Equation 7:

E
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⇤

✓
(d� 1)2 +

bd
2(k � 1)

k

◆
E
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⇤

�
✓
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k
+
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k2
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2

k2

◆X

i

E
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(Y[k] � Yi)

2
⇤
.

Now, supposing that d(d�2)
k + bd2(k�1)

k2 + ad2

k2 is not positive, we may use Equation 9 to obtain:

E
⇥
(Y[k] �X)2

⇤

✓
(d� 1)2 +

bd
2(k � 1)

k
� k � 1

k

✓
d(d� 2) +

bd
2(k � 1)

k
+
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2

k

◆◆
E
⇥
(Y[k] � E [Y ])2

⇤

=

✓
1 +

d
2 � 2d

k
� (a� b)

k � 1

k2
d
2

◆
E
⇥
(Y[k] � E [Y ])2

⇤
.

With d held fixed, our goal is to maximize a � b, just as in the proof of Theorem 3.1. This time,

our constraints are b � (2a�1)2

4a (as before) and d(d�2)
k + bd2(k�1)

k2 + ad2

k2  0, which can be rewritten

as a+ b(k � 1)  2�d
d k. The optimal values are

a =
2
dk � 1 +

q�
2
dk � 1

�2 � k(k � 1)

2k
and b =

(2a� 1)2

4a
.
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Now, let a and b be as above. We may select d as we please and seek to minimize the expression

1 +
d
2 � 2d

k
� (a� b)

k � 1

k2
d
2
.

We choose the value of d in the theorem statement (which one can verify is optimal using a computer
algebra system). This yields the desired approximation ratio.
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