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Abstract

Inspection planning, the task of planning motions for a robot that enable it to inspect a set of points of interest, has
applications in domains such as industrial, field, and medical robotics. Inspection planning can be computationally
challenging, as the search space over motion plans grows exponentially with the number of points of interest to inspect.
We propose a novel method, Incremental Random Inspection-roadmap Search (IRIS), that computes inspection plans
whose length and set of successfully inspected points asymptotically converge to those of an optimal inspection plan.
IRIS incrementally densifies a motion-planning roadmap using a sampling-based algorithm and performs efficient near-
optimal graph search over the resulting roadmap as it is generated. We prove the resulting algorithm is asymptotically
optimal under very general assumptions about the robot and the environment. We demonstrate IRIS’s efficacy on a
simulated inspection task with a planar 5 DOF manipulator, on a simulated bridge inspection task with an Unmanned
Aerial Vehicle (UAV), and on a medical endoscopic inspection task for a continuum parallel surgical robot in cluttered
human anatomy. In all these systems IRIS computes higher-quality inspection plans orders of magnitudes faster than

a prior state-of-the-art method.
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1 Introduction

In this work, we investigate the problem of inspection
planning, or coverage planning (Almadhoun et al. 2016;
Galceran and Carreras 2013). Here, we consider the specific
setting where we are given a robot equipped with a sensor
and a set of points of interest (POI) in the environment
to be inspected by the sensor. The problem calls for
computing a minimal-length motion plan for the robot that
maximizes the number of POI inspected. This problem
has a multitude of diverse applications, including surface
inspections in industrial production lines (Raffaeli et al.
2013), surveying the ocean floor by autonomous underwater
vehicles (Bingham et al. 2010; Gracias et al. 2013; Johnson-
Roberson et al. 2010; Tivey et al. 1997), structural inspection
of bridges using aerial robots (Bircher et al. 2015, 2016),
and medical applications such as inspecting patient anatomy
during surgical procedures (Kuntz et al. 2018).

Naively computed inspection plans may enable inspection
of only a subset of the POI and may require motion
plans orders of magnitude longer than an optimal plan,
and hence may be undesirable or infeasible due to a
robot’s battery capacity or time constraints. In medical
applications, physicians may want to maximize the number
of POI inspected for diagnostic purposes. Additionally, the
procedure should be completed as fast as is safely possible
to reduce costs and improve patient outcomes, especially
if the patient is under anesthesia during the procedure. For
example, a robot assisting in the diagnosis of the cause of a
pleural effusion (a serious medical condition that can cause
the collapse of a patient’s lung) will need to visually inspect
the surface of the collapsed lung and chest wall inside the
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body in as short a time as possible (see Fig. 1a). In structural
inspecting applications, Unmanned Aerial Vehicles (UAVs),
or drones, can be used to efficiently inspect the complex
geometry of built structures. High-quality inspection plans
could reduce inspection time and reduce costs. Bridge
inspection (see Fig. 1b), for example, is critical to ensuring
bridge safety since almost 40% of the bridges in the United
States exceed their 50-year design life (ASCE 2016). We
note that it may not be possible to inspect some POI due to
obstacles in the environment and the kinematic constraints
of the robot. Our goal is to compute kinematically feasible
collision-free inspection plans that maximize the number of
POl inspected, and of the motion plans that inspect those POI
we compute a shortest plan.

Inspection planning is computationally challenging
because the search space is embedded in a high-dimensional
configuration space X (the space of all parameters that
determine the shape of the robot) (Choset et al. 2005;
Latombe 1991; LaValle 2006). Even finding the shortest
plan between two points in X that avoid obstacles (without
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(a) Human anatomy inspection.

(b) Bridge structure inspection.

Figure 1. Examples of applications of inspection planning. (a) Inspection planning in human anatomy. Left: The Continuum
Reconfigurable Incisionless Surgical Parallel (CRISP) robot (Anderson et al. 2017; Mahoney et al. 2016) is composed of
needle-diameter tubes assembled into a parallel structure inside the patient’s body (in which a tube uses a snare system to grip a
tube with a camera affixed to its tip) and then robotically manipulated outside the body, allowing for smaller incisions and faster
recovery times compared to traditional endoscopic tools (which have larger diameters). Middle: The CRISP robot in simulation
inspecting a collapsed lung, a scenario segmented from a CT scan of a real patient with this condition. The visualization shows the
robot (orange), the lungs (pink), and the pleural surface visible (green) and not visible (blue) by the robot’s camera sensor in its
current configuration. Right: Two example configurations with inspected POI. The CRISP robot (orange) inspects POI (blue) on the
organ surface, and visible points are covered by the cone shape (yellow). (b) Inspection planning for bridge structures. A UAV,
shown as a blue sphere, inspects points on the surface of a bridge structure. At a configuration, some points are visible (shown in

green) while other points are not visible (shown in orange).

reasoning about inspection) is computationally hard.” If
we want to compute a minimum-length motion plan that
maximizes the number of POI inspected, the complexity
of our problem is increased as we have to simultaneously
reason about the system’s constraints, motion plan length,
and POI inspected.

There are multiple approaches to computing inspection
plans. Optimization-based methods locally search over the
space of all inspection plans (Bircher et al. 2015; Bogaerts
et al. 2018). Decoupled approaches first independently
select suitable viewpoints and then determine a visiting
sequence, i.e., a motion plan for the robot that realizes
this sequence (Danner and Kavraki 2000; Englot and Hover
2011). Finally, recent progress in motion planning (Karaman
and Frazzoli 2011) has enabled methods to exhaustively
search over the space of all motion plans (Bircher et al.
2017; Kafka et al. 2016; Papadopoulos et al. 2013) thus
guaranteeing asymptotic optimality, an important feature
in many applications, including medical ones. Roughly
speaking, asymptotic optimality for inspection planning
means these methods produce inspection plans whose length
and the number of points inspected will asymptotically
converge to those of an optimal inspection plan, given
enough planning time.

Of all the aforementioned methods, only algorithms in the
latter group provide any formal guarantees on the quality
of the solution. This guarantee is achieved by attempting to
exhaustively compute the set of Pareto-optimal inspection
plans embedded in & for which full coverage has not
been obtained. Namely, for every configuration z € &, they
(asymptotically) compute the set of paths II,, starting from a
given start configuration x4 such that V1, mo € I1,, either 7y
is shorter than w9 and w5 covers POI not covered by
or vice versa. Once II, contains a path 7} that covers all
POI, this path is considered as a candidate solution. In our
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setting, the set of Pareto-optimal inspection plans is the
minimal set of inspection plans such that each plan is either
shorter or has better coverage of the POI than any other
inspection plan.” Unfortunately, this comes at the price of
very long computation times as the size of the search space
is exponential in the number of POIL.

To this end, we introduce Incremental Random Inspection-
roadmap Search (IRIS), a new asymptotically optimal
inspection-planning algorithm. IRIS incrementally con-
structs a sequence of increasingly dense roadmaps—graphs
embedded in X’ wherein each vertex represents a collision-
free configuration and each edge a collision-free transition
between configurations—and computes an inspection plan
on the roadmaps as they are constructed (see Fig. 2).

Unfortunately, even the problem of computing an optimal
inspection plan on a graph (and not in the continuous space)
is computationally hard. To this end, our key insight is to
compute a near-optimal inspection plan on each roadmap.
Namely, we compute an inspection plan that is at most 1 4 ¢
the length of an optimal plan while covering at least p-
percent of the number of POI (for any e > 0 and p € (0, 1]).
This additional flexibility allows us to improve the quality of
our inspection plan in an anytime manner, i.e., the algorithm
can be stopped at any time and return the best inspection plan
found up until that point. We achieve this by incrementally
densifying the roadmap and then searching over the densified
roadmap for a near-optimal inspection plan—a process that

*Computing the shortest motion plan for a point robot moving amidst
polyhedral obstacles in 3D is NP-hard, and many variants of the
general motion planning problem are PSPACE-hard. For further details,
see Halperin et al. (2018).

TMore formally, an inspection plan P connecting two configurations
q,q’ € X is said to be Pareto optimal in our setting if any other plan
connecting q to q’ is either longer or does not inspect a point visible to
P.
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Figure 2. Overview of the IRIS algorithmic framework.
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Section 5.2

is repeated as time allows. By reducing the approximation
factor between iterations, we ensure that our method is
asymptotically optimal.

The key contribution of our work is a computationally
efficient algorithm to compute provably near-optimal
inspection plans on graphs. Coupled with our method for
generating this graph, this algorithmic building block enables
us to dramatically outperform Rapidly-exploring Random
Tree Of Trees (RRTOT) (Bircher et al. 2017)—a state-of-the-
art asymptotically optimal inspection planner. Specifically,
we demonstrate the efficacy of our approach in simulation
for several complex robotic systems (Fig. 1) , including
a continuum robot with complex kinematics—the needle-
diameter Continuum Reconfigurable Incisionless Surgical
Parallel (CRISP) robot (Anderson et al. 2017; Mahoney et al.
2016), working in a medically inspired setting involving the
diagnosis of a pleural effusion.

In this paper, we are providing a refined version of our
results in Fu et al. (2019), and two important extensions.
First, we show results for a simulated bridge inspection
task with a UAV, where the inspection target has a complex
structure and the underlying roadmap to compute a near-
optimal inspection plan on is much larger (e.g. having
more nodes and edges). Second, we prove that IRIS is
asymptotically optimal under very general system and
environment assumptions. These extensions show that IRIS
can be used for general complex-structure inspection while
providing provable guarantees.

2 Related Work
2.1 Sampling-based motion planning

Motion planning algorithms aim to compute a collision-
free motion for a robot to accomplish a task in an
environment cluttered with obstacles (Halperin et al. 2018;
LaValle 2006; Lynch and Park 2017). A common approach
to motion planning is by sampling-based algorithms that
construct a roadmap. Examples include the Probabilistic
Roadmaps (PRMs) (Kavraki et al. 1996) (often for solving
multiple queries) and the Rapidly-exploring Random Trees

Prepared using sagej.cls

(RRTs) (LaValle and Kuffner 2001) for solving single
queries. These methods, and many variations thereof, are
probabilistically complete—namely, the likelihood that they
will find a solution, if one exists, approaches certainty as
computation time increases.

Recent variations of these methods, such as PRM* and
RRT* (Karaman and Frazzoli 2011), improve upon this
guarantee by exhibiting asymptotic optimality—namely that
the quality of the solution obtained, given some cost
function, approaches the global optimum as computation
increases. Roughly speaking, this is achieved by increasing
the (potential) edge set of roadmap vertices considered as its
size increases (Karaman and Frazzoli 2011; Solovey et al.
2018). One such algorithm is the Rapidly-exploring Random
Graphs (RRGs) (Karaman and Frazzoli 2011) which will be
used in our work. RRG combines the exploration strategy
of RRT with an updated connection strategy that allows
for cycles in the roadmap. It requires solving the two-
point boundary value problem (LaValle 2006), which is
only efficiently solvable for some robotic systems (including
ours).

Guaranteeing asymptotic optimality can come with a
heavy computational cost. This inspired work on planners
that trade asymptotic optimality guarantees with asymptotic
near optimality (e.g., Li et al. (2016); Marble and Bekris
(2011); Salzman and Halperin (2016)). Asymptotic near
optimality states that given an approximation factor € >
0, the solution obtained converges to within a factor
of (1+4¢€) of the optimal solution with probability one,
as the number of samples tends to infinity. Relaxing
optimality to near optimality allows a method to improve
the practical convergence rate while maintaining desired
theoretic guarantees on the quality of the solution.

2.2 Inspection planning

Many inspection-planning algorithms, or coverage planners,
decompose the region containing the POI into multiple sub-
regions and then solve each sub-region separately (Galceran
and Carreras 2013). These methods have limitations,
however, such as when occlusions play a significant role in
the inspection (Englot and Hover 2012), or when kinematic
constraints must be considered (Edelkamp et al. 2017).

Other approaches simultaneously consider all POI. One
approach decouples the problem into the coverage sampling
problem (CSP) and the multi-goal planning problem (MPP),
and solves each independently (Bircher et al. 2015; Danner
and Kavraki 2000; Edelkamp et al. 2017; Englot and Hover
2012, 2011). In CSP, a minimal set of viewpoints that
provide full inspection coverage is computed. In MPP, a
shortest tour that connects all the viewpoints is computed.
These correspond to solving the art gallery problem and
the traveling salesman problem, respectively. Several of
these variants have been shown to be probabilistically
complete (Englot and Hover 2012), but none provide
guarantees on the quality of the final solution.

The set of viewpoints and the inspection plan itself can
also be generated simultaneously. Papadopoulos et al. (2013)
propose the Random Inspection Tree Algorithm (RITA).
RITA takes into account the differential constraints of the
robot and computes both target points for inspection and the
trajectory to visit the targets simultaneously. Bircher et al.
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(2017) propose Rapidly-exploring Random Tree Of Trees
(RRTQOT) which constructs a meta—tree structure consisting
of multiple RRT* trees. Both methods, which were shown
to be asymptotically optimal, iteratively generate a tree, in
which the inspection plan is enforced to be a plan from the
root to a leaf node. However, each inspection plan does not
consider configurations from other branches in the tree which
may cause long planning times. This motivates our RRG-
based approach.

2.3 Path planning on graphs

Planning a minimal-cost path on a graph is a well-
studied problem. When the cost function has an optimal
substructure (namely, when subpaths of an optimal path are
also optimal), efficient algorithms such as Dijkstra (Dijkstra
1959), A* (Hart et al. 1968), and the many variants thereof
can be used. However, in certain settings, including ours,
this is not the case. For example, Tsaggouris and Zaroliagis
(2004) consider the case where every edge has two attributes
(e.g., cost and resource), and the cost function incorporates
the attributes in a non-linear fashion.

It is worth mentioning the idea of progressively tightening
the approximation factor was also adopted in some anytime
A* algorithms based on weighted A* (Pohl 1970), including
Anytime Repairing A* (ARA*) by Likhachev et al. (2003)
and Restarting Weighted A* (RWA*) by Richter et al. (2010).
Anytime Nonparametric A* (ANA*) by van den Berg et al.
(2011) furthermore gets rid of the explicit approximation
parameter and performs solution improvement adaptively.
Nevertheless, as these methods are based on weighted A*, a
prerequisite for good performance is a high-quality heuristic,
which is not easy to obtain in the case of inspection planning
due to the lack of optimal substructure. Furthermore, these
methods focus on static graphs (while in our case the graph is
incrementally updated) and consider only a single objective
(while in our case we have two objectives, inspection and
path length). When looking at multiple objectives (though
still considering static graphs), recent work by Zhang et al.
(2022) extends the approach presented in this paper to
suggest an anytime approximate bi-criteria search algorithm.

Inspection planning also bears resemblance to multi-
objective path planning. Here, we are given a set of
cost functions and are required to find the set of Pareto-
optimal paths (Pardalos et al. 2008). Unfortunately, this
set may be exponential in the problem size (Ehrgott and
Gandibleux 2000). However, it is possible to compute a
fully polynomial-time approximation scheme (FPTAS) for
many cases (Tsaggouris and Zaroliagis 2009). For additional
results on path planning with multiple objectives or when
the cost function does not have an optimal substructure,
see e.g., (Chen and Nie 2013; Reinhardt and Pisinger 2011;
Herndndez et al. 2023) and references within.

3 Problem Definition

In this section, we formally define the inspection planning
problem. The robot operates in a workspace W C R? amidst
a set of obstacles Wys C W. The robot’s configuration g
is a d-dimensional vector that uniquely defines the shape
of the robot (including, for example, rotation angles and
translational extension of all joints). The set of all such
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configurations is the configuration space X. The geometry
of the robot is a configuration-dependent shape Shape(q) C
W, here, Shape(-) is a mapping from configuration space X’
to workspace W, determining the subset of the workspace
that the robot occupies for a given configuration. We
say that q € X is in collision if Shape(q) N Weps # 0.
Let X, C X be the obstacle space, such that X'\ Xyps
is an open set. Then the collision free space is defined
as Xgree = cl(X\ Xobs), where cl(-) is closure of a set.
In this work we define a motion plan for the robot as
a path P in X, which is represented as a sequence
of n configurations {qo, . ..,qn,—1} (vertices) connected by
straight-line segments (edges) in X'. And we say that P
is collision-free if all configurations along P (vertices and
edges) are collision-free. We assume that we have a distance
function ¢ : X x X — R and denote the length of a path P
as the sum of the distances between consecutive vertices, i.e.,
((P) := 3, U(qi, qi-1).

We assume that the robot is equipped with a sensor S
and we are given a set of k points of interest (POI) Z =
{i1,...,ix} in W. We model the sensor as a mapping S :
X — 2T where 27 is the power set of Z and S denotes the
subset of Z that can be inspected from each configuration.
By a slight abuse of notation, given a path P we set S(P) :=
U?;Ol S(q;) and note that in our model, we only inspect Z
along the vertices of a path.

Definition 1. Inspection coverage. A point of interesti1 € T
is said to be covered by a configuration q € X or by a path P
ifi € S(q) or ifi € S(P), respectively. In such a setting, we
say that q (or P) covers the point of interest 1.

Given a start configuration g5 € X, POl Z, and a
sensor model S, the inspection planning problem calls for
computing a collision-free path P starting at qs which
maximizes |S(P)| while minimizing ¢(P). Note that this
is not a bicriteria optimization problem—our primary
optimization function is maximizing the coverage of our
path. Out of all such paths we are interested in the shortest
one.

4 Method Overview

In this section, we provide an overview of IRIS—
our algorithmic framework for computing asymptotically
optimal inspection plans. A key algorithmic tool in our
approach is to cast the continuous inspection planning
problem (Sec. 3) to a discrete version of the problem
where we only consider a finite number of configurations
from which we inspect the POI, and a discrete set of
feasible movements between those configurations. The
assumption that inspection of POI only happens at vertices
is not significantly limiting since a robot’s motion can be
approximated by multiple vertices, and many inspection
applications require non-zero time to complete a high-quality
sensor measurement (e.g., to obtain non-blurry images, high-
accuracy lidar scans, etc.), which can be effectively encoded
at vertices. Thus, we start in Sec. 4.1 by formally defining
the graph inspection problem and then continue in Sec. 4.2
to provide an overview of how IRIS builds and uses such
graphs. We then describe the method in detail in Sec. 5, and
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in Sec. 6 show that IRIS’s solution converges to the length
and coverage of an optimal inspection path.

4.1

Similar to the (continuous) inspection problem, a graph
inspection problem is a tuple (G,Z,S,¢,vs) where G =
(V,€) is a motion-planning roadmap (namely, a graph
embedded in X, in which every vertex v €V is a
configuration and every edge (u,v) € £ denotes the
transition from configuration u to v), Z and S are defined
as in Sec. 3, ¢ : £ — R denotes the length of each edge in
the roadmap, and vy is the start vertex (corresponding to the
start configuration gs). A path P on G is represented by a
sequence of vertices v; € V such that P = {vg,...,vp_1},
vo =vs and (v;,v;11) € E. It is important to note that
there can be loops in a path, so it is possible that v, =
v for m # k. The length and coverage of P are defined
as the total length of P’s edges and the set of all points
inspected when traversing P, respectively. Namely, ¢(P) :=
Sl (vi,vig1) and S(P) :=J,cp S(v). The optimal
graph inspection problem calls for a path P* that starts at
vs and maximizes the number of points inspected. Out of
all such paths, P* has the minimal length. Finally, a path
is said to be near-optimal for some ¢ > 0 and p € (0, 1] if
[S(P)|/IS(P*)] = pand £(P) < (1 +2) - £(P*).

Graph inspection problem

4.2 Overview of IRIS

Our algorithmic framework, depicted in Fig. 2, interleaves
sampling-based motion planning and graph search. Specif-
ically, we incrementally construct an RRT T rooted at gy
which implicitly defines a corresponding RRG G. All edges
in 7 are checked for collision with the environment during its
construction (so the roadmap is guaranteed to be connected)
while all the other edges of G are not explicitly checked for
collision. Lazy edge evaluation, common in motion-planning
algorithms (Bohlin and Kavraki 2000; Hauser 2015; Dellin
and Srinivasa 2016; Salzman and Halperin 2015), allows us
to defer collision detection until absolutely necessary and
reduce computational effort. This is critical in our domain
of interest where computing Shape(-), the geometry of the
robot as is defined in Sec. 3, typically dominates algorithms’
running times (Niyaz et al. 2018).

The roadmap G = (V,E) induces the subset of the POI
that can be inspected, denoted as Zg := J,c\, S(v). Given
two approximation parameters ¢ > 0 and p € (0,1], we
compute a near-optimal inspection path for the graph-
inspection problem (G,Zg, S, ¢, vs) by casting the problem
as a graph-search problem on a different graph Gs (to be
defined shortly).

As we add vertices and edges to 7 incrementally, the
roadmap G is incrementally densified. In addition, we tighten
approximations by decreasing € and increasing p between
iterations. As we will see (Sec. 6), this will ensure that IRIS
is asymptotically optimal.

5 Method

In this section, we detail the different components of IRIS.
Sec. 5.1 and 5.2 describe how we construct a roadmap and
then search it, respectively. After describing in Sec 5.3 how
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we modify the approximation parameters used by IRIS, we
conclude in Sec. 5.4 with implementation details.

5.1

We construct a sequence of graphs embedded in X.
Specifically, denote the RRT constructed at the ¢ th iteration
as 7; defined over the set of vertices V;. We start with an
empty tree rooted at qs and at the ¢’th iteration sample a
random configuration, compute its nearest neighbor in 7;,
and extend that vertex toward the random configuration. If
that extension is collision-free we add it to the tree. If not, we
repeat this process (see Kuffner and LaValle (2000); LaValle
(2006) for additional details regarding RRT).

Note that it is not necessary to add only one collision-
free configuration in each roadmap update. Adding multiple
configurations in one iteration does not hurt the theoretical
guarantees while providing us more room to improve an
inspection plan in terms of both inspection and path length.
There are different possible strategies to balance between
roadmap construction and graph search on the roadmap. One
example is Fu et al. (2021) where a condition on additional
inspection coverage is used to trigger graph searches on the
updated roadmap. As the major focus of this paper is to
provide a theoretical foundation for the proposed algorithm
framework, we only discuss the variant where configurations
are added one at a time.

The tree 7; implicitly defines an RRG G; = (V;,&;)
defined over the same set of vertices where every vertex is
connected to all other vertices within distance r;. Here, we
define r; as in Lemma 3 which will allow us to prove that
our approach is asymptotically optimal (see Sec. 6).

Roadmap construction

5.2 Graph inspection planning

We use the RRG described in Sec. 5.1 to define a
graph inspection problem, and then compute near-optimal
inspection paths over this graph. Before describing how we
compute near-optimal inspection paths, we first describe how
we compute optimal paths given a graph inspection problem.

5.2.1 Optimal planning Given a graph inspection prob-
lem (G,Zg,S, !, vs), we compute optimal inspection paths
by formulating our inspection problem as a graph-search
problem on an inspection graph Gs := (Vs, Es). Here, ver-
tices are pairs comprised of a vertex w € V in the origi-
nal graph and subsets of Zg. Namely, Vs = V x 279, and
note that [Vs| = O (|V]-2/%¢!). An edge e between ver-
tices (u, Z,,) and (v, Z,) exists if (u,v) € Eand Z,, U S(v) =
Z,. If it exists, its cost is simply £(u, v).

Any (possibly non-simple) path P in the original graph G
from vs to u can be represented by a corresponding
path Pgg in the inspection graph Gs, from (vs,S(vs)) €
Vs to (u,S(Pg)) € Vs, and ¢(Pg) = £(Pgs). Thus, our
algorithm will run an A*-like search from (vs,S(vs)) €
Vs to any vertex in the goal set Vyou = {(v,Zg)|v € V}.
An optimal inspection path is the shortest path between
(vs,S(vs)) and any vertex in Vgoa1. For a visualization, see
Fig. 3. Note that here we assume the graph G is connected
and that the set of points to be inspected is Zg. This implies
that an optimal inspection path always exists.

We can speed up this naive algorithm using the
notion of dominance, which is used in many shortest-path
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(1,{1%3
1 a, 2 ¢, {1}

Figure 3. Computing optimal inspection paths on graphs by
casting a graph-inspection problem (bottom) to a graph-search
problem (top). Grey layers correspond to the set of all vertices
in Vs that share the same set of points inspected. Edges
connecting vertices in the same (different) layer are depicted in
dashed (dotted) lines, respectively. The start is (a, @) and the
goal set Vyoa1 contains all vertices in the top layer. Notice that
the optimal path (blue) visits vertex a twice.

algorithms (see, e.g., Salzman et al. (2017)). In our context,
given two paths P, P’ in our original roadmap G that start
and end at the same vertices, we say that P dominates P’
if {(P) <{(P') and S(P) 2 S(P’). Clearly, P is always
preferred over P’. Thus, when searching Gs, if we compute
a shortest path to some node (u,Z,) of length ¢,, we do
not need to consider any path of length larger than ¢, from
all vertices (u,Z;) such that Z/, C Z,,. For pseudo-code
describing a general A*-like search algorithm to optimally
solve the graph-inspection problem, see Alg. 1 without
lines 17-27.

While path domination may prune away paths in the
open list of the A*-like search, this algorithm is hardly
practical due to the exponential size of the search space
(recall that [Vs| = O(|Vs|-27¢!)). In the next sections,
we show how to prune away large portions of the search
space by extending the notion of dominance to approximate
dominance.

5.2.2 Near-optimal planning To perform near-optimal
planning, we introduce the idea of approximate dominance.
Approximate dominance is a relaxed version of the
(strong) dominance mentioned above, characterized by
approximation parameters.

Let P, P’ be two paths in G that start and end at the same
vertices and let ¢ > 0 and p € (0, 1] be some approximation
parameters.

Definition 2. ¢, p-domination. We say that path P ¢, p-
dominates path P’ if {(P) < (1+¢)-4(P’) and |S(P)| >
p-IS(PYUS(P)| =p-|Lg|

Note that it is possible that both P ¢, p-dominates P’
and P’ ¢, p-dominates P. For a visualization of the notions
of dominance and the approximate dominance, see Fig. 4.

Intuitively, approximate dominance allows us to dramati-
cally prune the search space by only considering paths that
can significantly improve the quality (either in terms of
length or the set of POI inspected) of a given path. When
pruning away (strongly) dominated paths, it is clear that
they cannot be useful in the future. However, if we prune
away approximate-dominated paths, we need to efficiently
account for all paths that were pruned away in order to
bound the quality of the solution obtained. If we prune away

Prepared using sagej.cls

approximate-dominated paths without any special considera-
tion, the “errors” introduced by each domination accumulate.
To bound the accumulated “error”, during the search, we
need to consistently keep track of “what is the best inspection
path if we do not perform approximate dominations that
happened so far”? Getting the best inspection paths precisely
is equivalent to optimal planning. Thus, we use estimations
and name such estimations potentially achievable paths or
PAP s.

Definition 3. Potentially achievable path. A potentially
achievable path (PAP) P to some vertex w €V is a pair
(0,7) such that £ > 0 and S(u) C T C Ig. By a slight abuse
of notation, we extend the definitions of £(-) and S(-) such
that {(P) = { and S(P) = 1.

It may seem that a PAP is simply a path but note (as
the name PAP suggests) that we do not require that there
exists any path P from v to u such that £(P) = {(P) and

S(P) = S(P). It merely states that such a path may exist.
We now use PAP s to define the notion of a path pair:

Definition 4. Path pair. Ler P and P be a path and a
PAP from v to some v €V such that {(P) < {(P) and
S(P) D S(P). Their path pair is PP := (P, P) and we call
P and P the achievable and potentially achievable paths of
PP, respectively.

Let us define operations on PAP s and on PP s,
visualized in Fig. 5. The first operation we consider is
extending a PAP P, by an edge e = (u,v), denoted as
P, +e. This can be thought of as appending e to P,,
had it existed and thus accounting for the length ¢(e) and
additional coverage S(v). Formally, extending P, + e yields
a PAP P, such that /(P,) = {(P,) + {(e) and S(P,) =
S(P,) U S(u). Extending the path pair PP, = (P,, P,) by
the edge e = (u,v) (denoted as PP, + e) simply extends
both P, and P, by e. This yields the path pair PP, =
(P,,P,) where ((P,) ={(P,)+{(e), S(P,) =S8(P,)U
S(v)and P, = P, +e.

The second operation is subsuming a path pair by another
one which can be thought of as constructing a PAP that
dominates the PAPs of both path pairs. Formally, Let PP; =
(P, Py) and PPy = (P», P;) be two path pairs such that
both connect the start vertex vs to some vertex u € ). The
path pair defined by PP, subsuming PP is

PP, @ PPy := (Py, (min{l(P,),{(P2)},S(P,) US(P))).

We now define the notion of bounding a path pair which
will be crucial for ensuring near-optimal solutions:

Definition 5. ¢, p-bounded. A path pair PP := (P, P) is
said to be e, p-bounded for some ¢ > 0 and p € (0,1] if P
€, p-dominates P.

To compute a near-optimal inspection path (Alg. 1 and
Fig. 6), we extend each path considered by our search
algorithm to be a path pair and use this additional data
to prune away approximately dominated paths. Similar to
A*, our algorithm uses two priority queues OPEN and
CLOSED to track the nodes considered by the search. It
starts by inserting the start vertex (vs, S(vs)) to the OPEN
list together with the path pair PP = (Ps, Ps) (here P is a
path containing only start vertex vg) (line 2).
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Figure 4. Visualization of the notion of dominating paths by considering a path P from v to some vertex u as a two-dimensional
point (¢(P),S(P)). Here Zg = {0, 1, 2,3} and P is depicted using the purple circle with £(P) = ¢ and S(P) = {2, 3}. All paths
from v to w that (a) are dominated by P (solid red), (b) are e-dominated by P (solid blue), (c) are p-dominated by P for p = 60%

(dashed red), (d) are ¢, p-dominated by P for ¢ > 0 and p = 60% (dashed blue).

—PP-(PP) Eé;%f“} A —— PP~ (PP Algorithm 1 Near-optimal inspection graph search
PP e E 8:%:;;? . PPy = (P, P2) Input: (Gs, Vs, Vgoals €, P)
. g o
Pe 2 f; _ PAP of PP, @ PP, 1: CLOSED « 0
. g 103 2: OPEN ¢ (v, S(vg), PPy)
o P+e Z 5! °; -
P = § Lo 3. while OPEN # () do
©p ¥ p, 4 (u,Z,,PP,) < OPEN.extract_min()
S Ci i % © 5. CLOSED.insert(u,Z,, PP
Length ? ﬁeﬁé{Lh ? 5: T -nser (U7 U u) _
) , ) ) 6: if P, € Vyoa1 then > P, is the PAP of PP,
(a) Extending a path pair (b) Subsuming a path pair . .
7: return P, > P, is the achievable path of PPy,

Figure 5. Depiction of operations on path pairs. (a) PP
extended by an edge e = (u, v) with S(v) = {2}. (b) PP,
subsuming PP;. Note that P is the achievable path of

PP1 & PP2 thus only the potentially achievable path is explicitly
marked.

Our algorithm proceeds in a similar fashion to A*—we
pop the most promising node n = (u,Z,, PP, ) from OPEN
(line 4) and move it to CLOSED (line 5). If the PAP of this
node is in the goal set Vyoar (line 6), we terminate the search
and return the achievable path of PP, (line 7). If not, we
consider all neighboring edges e of u in G and extend the
node n (line 9). This is akin to computing n’s neighbors
in gs.

At this point, our algorithm deviates from the standard
A* algorithm. For each newly created node (v,Z,,PP,)
we check if there exists a node in CLOSED whose PAP
dominates R). If so, this node is discarded (lines 11-14). If
no such node exists in the CLOSED list, we check if there
exists a node in OPEN that may subsume it. If so, that node
is updated and this node is discarded (line 17-21). Finally, we
check if this node can subsume nodes that are in OPEN. If so,
such nodes are discarded and this node is updated. (line 24-
27).

We prove that, Alg. 1 returns a path that €, p-dominates an
optimal inspection path on the roadmap (see Sec. 6).

5.3 Tightening approximation factors

Recall that our algorithm starts with approximation
parameters py and £y. We endow our algorithm with a
tightening factor f € (0,1], and at the ¢’th iteration we
set our approximation parameters as p; = p;—1 + f - (1 —
pi—1) and g, =¢€;—1+ f-(0—e;_1). As we will see
(Sec. 6), since lim p;, =1, im ¢, =, the tightening allows

our method to achieve asymptotic optimality.
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for ¢ = (u,v) € neighbors(u, G) do
(v,Z,,PP,) + extend((u,Z,, PP,), e)

10: valid = True
11: for (y,I;, PP’U) € ~CLOSED do

12: if P, dominates P, then

13: valid = False

14: break

15: if !valid then

16: continue

17: for (v,Z!,PP!) € OPEN do

18: if PP, @ PP, is ¢, p-bounded then
19: (v,Z,,PP)) < (v,I!,PP, & PP,)
20: valid = False

21: break

22: if !valid then

23: continue

2. for (v,7),PP,) € OPEN do

25: if PP, ® PP) is &, p-bounded then
26: OPEN.remove(v,Z/, PP.)

27 (v,Z,PP,) + (v,Z,PP, & PP.)

28: OPEN«+ (U,Iva PPU)
29: return NULL

5.4 Implementation details

5.4.1 Lazy computation in graph inspection planning We
run our search algorithm on G (Alg. 1) without checking if
its edges are collision-free or not (recall that only the edges
of 7 were explicitly checked for collision). Once a solution
is found, we start checking edges one by one until the entire
path was found to be collision-free or until one edge is found
to be in collision, in which case we remove it from the edge
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Figure 6. Visualization of Alg. 1 initialized with e = 2/3 and p = 1/2 (only the relevant parts of the inspection graph are depicted).
The search starts from (a, @) with the trivial PAP of length zero and no points inspected. (a) Two paths (red and blue) are extended
from the start node to (b, {0}) and (¢, {1}) with path pairs PP, and PP2, respectively (the PAP s of each path have the same length
and coverage as the paths themselves). (b) Blue path extended to (d, {0}) with £(P,) = £(P;) = 2 and S(P1) = S(Py) = {0}.

(c) Red path extended to (d, {1}) with £(P,) = £(P,) = 3 and S(P,) = S(P») = {1}. Here, PP, & PP ¢, p-dominates PP and
the red path is discarded and PAP; is updated to have length 2 and coverage {0, 1} (d) Blue path extended to vertex (e, {0, 2}).
Here, £(Py) = £(P,) = 3and S(P;) = {0,2}, S(P1) = {0, 1, 2}. The algorithm terminates with the path a — b — d — e whose
length is 3 and has coverage of {0, 2}. Notice that the path a — ¢ — d — e (not computed) is optimal as its length is four and it has
complete coverage. The computed path is within the bounds ensured by the approximation factor p and ¢.

set. This approach is common to speed up motion-planning
algorithms when edges are expensive to evaluate (Dellin and
Srinivasa 2016; Haghtalab et al. 2018).

5.4.2 Node extension in graph inspection planning Any
optimal inspection path can be decomposed into a sequence
of vertices that improve the coverage of the path called
milestones. It is straightforward to see that an optimal
inspection path will (i) terminate at a milestone and
(ii) connect a pair of milestones via a shortest path in G.
Following this observation, instead of extending each path P
from a vertex u by all outgoing edges in G (Alg. 1, line 8),
we run a Dijkstra-like search from u and collect all first-met
vertices that can be milestones.

5.4.3 Heuristic computation in graph inspection planning
Recall that A* orders nodes in the OPEN list according to
their computed cost-to-come added to a heuristic estimate
of their cost to reach the goal. The heuristic function that
we use for vertex (u,Z,) is computed as follows: we run
a Dijkstra search on G from u and consider the vertices
V., encountered during the search. We terminate when
(Upey, S(v)) UZ, =Zg and use the maximal distance
between u to any node in V,, as our admissible (Hart et al.
1968) heuristic function. We now show why the heuristic
is admissible. When we terminate with (Uvevu S(v)) U
T. = Ig, denote the last vertex added to V,, as vj,.s. Note
that vj,s¢ is also the most distant (via roadmap edges)
vertex from u due to the nature of Dijkstra’s algorithm.
According to the termination condition, there exists a non-
empty set of POI 7, that is covered by v),5 but not covered
by any other vertices in V,,. Namely, Zj,st C S(vjast) and

Thast N (Uvevu,v#vlast S (v)) = (). To achieve an inspection

coverage of Zg, the minimum distance to travel is equal to
or greater than the distance between u and vy,5¢ because with
any shorter path, 7,4 is not covered.

6 Theoretical Guarantees

In this section, we provide theoretical properties showing
that IRIS is guaranteed to be asymptotically optimal, given
that the system and the environment satisfy several general
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assumptions. For brevity, we only state the main definitions,
lemmas, and theorems and defer all proofs to Appendix A
and Appendix B. Recall that IRIS iteratively densifies the
roadmap and runs a near-optimal inspection graph search
on the latest roadmap. Thus, we begin (Thm. 1) by proving
that our graph-inspection search algorithm (Alg. 1) returns a
near-optimal solution when compared to the optimal solution
(available for that specific roadmap). We then continue
(Thm. 2) to show that IRIS is asymptotically optimal when
the approximation parameters satisfy that im ey = 0 and
Jim_ 5y =1, where N is the number of vertices in the
roadmap. This is done by using the notion of probablistic
exhaustivity (Schmerling et al. 2015) coupled together with
the assumptions that (i) an optimal inspection trajectory is
well behaved (Def. 8) (ii) an optimal inspection trajectory
weak 6 -clearance and that (iii) the inspection problem is
regular (Def. 10). It is worth noting that all proofs are general
enough to account for complex robotic systems, including
those having differential constraints. Having said that, as we
use a graph-based search method, we require a method is
required to compute valid motions (if such motions exist)
between two close-by configurations.
We start by proving that Alg. 1 is near-optimal.

Definition 6. Optimal inspection path on a roadmap. Let
(G,Zg,S,l,vs) be a graph inspection problem. An optimal
inspection path P* is a path on roadmap G, starting at v,
and satisfies

(P*) = argmin{l(P)|P is a path with S(P) = Ig}.

Where (* :={(P*) and S* :=S(P*) =1Ig, denote the
length and coverage of an optimal path, respectively.

Lemma 1. In Alg. 1 (near-optimal inspection graph
search), all path pairs in OPEN and CLOSED during the
search are €, p-bounded.

Lemma 2. Let P* ={vg,v1,...,v,+} be an optimal
inspection path and denote P*[i] .= {vy,...,v;}, fori €
[0,n*] as the path composed of the first i waypoints of P*.
During every iteration of Alg. 1, there exists a path pair
PP, = (PU,P,,) in OPEN and an index i such that v = v;
and P, strictly dominates P*[i]. Namely, ((P) < {(P*[i])
and S(P*[i]) C S(P).
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With Lemma 1 and 2, we can show that Alg. 1 returns a
near-optimal result.

Theorem 1. Near-optimal inspection graph search. Near-
optimal inspection graph search (Alg. 1) computes a path P
that e, p-dominates an optimal inspection path P*. Namely,
((P) < (1+¢)-£(P")and |S(P)| z p-[S(P")].

We now continue to prove that IRIS is asymptotically
optimal. To prove this, we show that an optimal inspection
path £* can be approximated by a sequence of configurations
sampled by IRIS, given certain conditions. Specifically, we
will need to show that as the number of iterations approaches
infinity, the following requirements hold: (i) the length of
the path induced by this sequence of samples converges
asymptotically to the length of x*, (ii) the coverage obtained
by this sequence of samples converges asymptotically to the
coverage of z* and that (iii) our inspection graph search
algorithm finds such a sequence of samples. To do so, we
rely on the notion of probabilistic exhaustivity (Schmerling
et al. 2015). Roughly speaking, it is the notion that given
a sufficiently large set of uniformly sampled configurations,
any path can be traced arbitrarily well in the configuration
space by a path defined as a sequence of configurations.

Lemma 3. Probabilistic exhausitivity. Ler x: [0,T] —
Xiree be a dynamically feasible trajectory. Let Qn be a set
of N points sampled independently and identically from the
uniform distribution on the collision-free space Xs.co and set
Vn = {z(0)} U Qn. For a given N, set

ry = k- (log(N)/N)/P .

Here, D is a constant capturing the dimension of the system
and k is a commutable constant depending on the system
dynamics, N, D, and some tuning parameter 1 > 0. Let
Ay be the event that there exists a discrete sequence
of configurations P = {q;}"_; C Vi that (0,r)-traces x
for any § € (0,1) and r = ry. The probability that event
Ay doesn’t happen, denoted by P(Af\,) is asymptotically
bounded by

P(A3) <O (N"log B N) .

As is defined above, ) > 0 is some tuning parameter.

In addition, we assume that 2* is well-behaved. Roughly
speaking, this ensures that there are no singular points along
the trajectory where a POI can only be inspected from. This,
in turn, will allow us to ensure that trajectories that trace an
optimal inspection path cover the same set of POIL.

Definition 7. Inspecting configuration region. Leti € Z be
a point of interest (POI), the inspecting configuration region
of i, denoted as Xinsp(1), is defined to be the union of all
configurations from which the POI can be inspected. Namely,

-)(insp(i) = {q € Xiyee 11 € S(q)}

Similarly, the inspecting configuration region of T' C T is
defined as

Xinsp(I/) = {Cl € Xfree : I/ c S(q)}
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Definition 8. Well-behaving of an inspection trajectory. Let
x:[0,T] = Xieo be a feasible inspection trajectory. x is
said to be strongly £-well behaved ifVi € S(x), there exist at
least one point along x whose &-neighborhood is completely
within the inspecting configuration region of i. Namely,

Vi e S(z),3t € [0,T] s.t. BS(x(t),&) C Xingp ().

Similarly, x is said to be weakly &-well behaved if Vi €
S(z)/ (S(z(0)) US(x(T))), there exists at least one point
along x whose &-neighborhood is completely within the
inspecting configuration region of i. Namely,

Vi € S(z)/ (S(x(0)) US(z(T))), 3t € [0,T)
5.t BE(2(t), €) € Xingp (3).

It is not hard to see, that any strongly well-behaved
trajectory can be shortened to a weakly well-behaved
trajectory without loosing coverage. Thus an optimal
inspection trajectory can only be weakly well-behaved.

We further require the inspection-planning problem to be
regular. The notion of regularity is required because for
a weakly well-behaved optimal inspection trajectory z* :
[0,T] — Xee We need to take special care to cover the POI
inspected at *(T"). The notion of regularity will ensure that
there always exists a region near z*(7") that IRIS can sample
inside.

Definition 9. Regular boundary. A set X' C Xpyee is said
to have a regular boundary if there exists v > 0 such that
Vq € OX, there exists ' € X with B¢(q',v) C X' andq €
oB(d', 7).

Definition 10. Regularity of an inspection-planning problem.
Let P = (X,Z,8,¢,qs) be an inspection-planning problem
and Xiee be the set of collision-free configurations. P is
said to be regular if Vq € Xivee, Xinsp(S(Q)) has a regular
boundary.

Similar to many other analyses of sampling-based
planning algorithms (see, e.g., Kavraki et al. (1996);
Karaman and Frazzoli (2011); Solovey et al. (2018)), we
also assume that an optimal trajectory to trace has clearance
from Xps.

Definition 11. Strong/weak d-clearance. Let x : [0,T] —
Xiree be a feasible trajectory. x has strong . -clearance if
Vt € [0,T), z(t) is in dqi-interior of Xeree (namely, z(t) is at
least 6. away from any point in X,ps using the Euclidean
distance). Furthermore, x has weak . -clearance if there
exists a sequence of homotopic paths {xy }ren that satisfies:

(i) Jm gz =
(ii) xo has strong 6. -clearance.

(iii) Yk € [0, 00), zy, is dynamically feasible and has strong
di-clearance for some 5y, > 0, and i 6, = 0.

im ¢(xp) = 4(x).

k—o0

(iv)
We are finally ready to state our final theorem.

Theorem 2. I[RIS asymptotic optimality. Let P =
(X,Z,8,¢,q5) be a regular inspection-planning problem
and Xy be the collision-free space. Assume that the robot
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system satisfies the assumptions mentioned in Schmerling
et al. (2015) and Let x* :[0,T] = Xyoe be an optimal
feasible inspection trajectory such that

(i) *(0) = qs,
(ii) x* has weak 6. -clearance for some 6, > 0,
(iii) x* is weakly &-well behaved for some & > 0.

Furthermore, let {; and S; denote the arc length, and
the inspection coverage, respectively of the trajectory
returned by IRIS at the N ’th iteration using approximation
parameters €y and py, and a lower-bound connecting
radius v (as defined in Lemma 4). If Jm ey =0 and
Jim pn =1, we have that

Nm POy > (14 A)l(z*)) =0
for any A > 0 and that

lim P(|Sy| < [Z°]) = 0.

N—o0

7 Results

We evaluated IRIS on three simulated scenarios: (1) a planar
manipulator inspecting the boundary of a square region
(Fig. 7a), (2) an unmanned aerial vehicle (UAV) inspecting
the outer surface of a bridge (Fig. 7b), and (3) a CRISP robot
inspecting the inner surface of a pleural cavity (Fig. 7c).
For all experiments, we order path pairs in OPEN (Alg. 1
line 4) according to the path pair with the minimal potentially
achievable path cost. All tests were run on a 3.4GHz 8-core
Intel Xeon E5-1680 CPU with 64GB of RAM.

7.1 Planar manipulator scenario

In this scenario, depicted in Fig. 7a, we have a 5-link planar
manipulator fixed at its base that is tasked with inspecting
the boundary of a rectangular 2D workspace, which is
discretized into 400 POI. The sensor is a camera attached
to the tip of the manipulator, aligning with the direction of
the robot’s final segment. When modeling the camera for
inspection, we consider a field of view (FOV) of 45 degrees
and an unbounded effective inspecting distance. We start by
evaluating IRIS for fixed p and € and then compare it with
RRTOT using our approach for dynamically reducing the
approximation factors. For every set of parameters, we ran
ten experiments for 1000 seconds and report the average
value together with the standard deviation.

This scenario serves as a simple example where
we compare the approximation algorithm for inspection
planning with optimal inspection planning (i.e., p=
1,6 =0). When p =1, indicating we do not allow any
approximation on inspection coverage, and we vary ¢
(Fig. 8a), we can see that even small approximation factors
(e.g., € = 0.5) allow to dramatically increase the coverage
obtained as each search episode takes less time and more
configurations can be added to the RRT tree. While optimal
inspection planning (using ¢ = 0) did not result in 80%
coverage even after 1000 seconds, this was achieved within
one second for € > 1.0. This comes at the price of slightly
longer inspection paths. When € = 0, indicating we do not
allow any approximation on path length, and we vary p
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(Fig. 8b), we get roughly the same coverage per time but at
the price of much longer paths for higher values of p.

Following the above discussion, when reaching high
coverage is the sole objective, one should use large initial
values of pg and 9. When we want initial solutions to also
be short, one should start with smaller approximation factors.
We compared IRIS with different initial approximation
factors to RRTOT (Bircher et al. 2017), see Fig. 8c. We can
see that our approach allows producing higher-quality paths
than RRTOT. For example, IRIS obtains more than a 264 x
speedup when compared to RRTOT when producing the
same quality of inspection planning for the case of roughly
85% coverage and path length of 85.8 units. Final inspection
paths obtained by IRIS are both shorter and inspect larger
portions of Z.

7.2 Bridge inspection scenario

In this scenario, depicted in Fig. 7b, a UAV equipped with a
camera inspects the surface of a bridge structure. The bridge
structure is obtained from a 3D mesh (Elkassar 2008) and
discretized into 3817 POI. The bridge structure serves as
both an inspection target and an obstacle that may block
movements and occlude sensing. And we do not consider
other environmental obstacles except for the ground, which
means the UAV can only fly above the ground.

The UAV has a configuration space of SO(2) x R3. It first
can translate in 3D space, then can rotate around its vertical
axis, and finally, the camera can rotate around the pitch axis.
When modeling the camera for inspection, we consider a
FOV of 90 degrees and an effective inspecting distance of
10 meters.

We ran IRIS and RRTOT for this scenario ten different
times for 10,000 seconds (Fig. 9). IRIS obtains more than a
8% speedup when compared to RRTOT when producing a
better quality of inspection planning for the case of roughly
57% coverage and path length of 230 units, which is only
68% of that of RRTOT.

7.3 Pleural effusion inspection scenario

The anatomical pleural effusion environment for this
simulation scenario was obtained from a Computed
Tomography (CT) scan of a real patient suffering from this
condition, and a fine discretization of the internal surface
of the pleural cavity is used as the set of POI containing
49506 points. We also use the internal surface of the cavity
as obstacles and prohibit the robot from colliding with
the pleural surface, lung, and chest wall (except at tube
entry points). Pleural effusion volumes can be geometrically
complex, as the way in which the lung separates from the
chest wall can be inconsistent. This results in unseparated
regions of the lung’s surface that can inhibit movement
and occlude the sensor from visualizing areas further in the
volume.

Here we consider a CRISP robot with two tubes, where
a snare tube is grasping a camera tube in order to create a
parallel structure made of thin, flexible tubes. Each tube can
be independently rotated in three dimensions about its entry
point into the body, and independently translated into and
out of the cavity. The system has 8 degrees of freedom with
a configuration space of SO(3)? x R?, which enables the
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(a) Planar manipulator (b) Bridge inspection (c) Pleural effusion inspection

Figure 7. Simulation scenarios. (a) A 5-link planar manipulator (orange) inspects the boundary of a square region (blue) where
rectangular obstacles (red) may block the robot and occlude the sensor. The sensor’s field of view (FOV) is represented by the
yellow region. S(q) are the points on the boundary in the sensor’s unobstructed FOV and are shown in purple. (b) The bridge
inspection scenario involves a UAV (blue) inspecting the outer surface of a bridge, including the POI that are covered (green) and
non-covered (orange) from the current configuration. (c) The pleural effusion inspection scenario involves the CRISP robot (orange)

inspecting the inner surface of a pleural cavity, including the POI that are covered (green) and non-covered (blue) from the current
robot configuration.
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Figure 8. Quality of inspection paths computed for the planar manipulator. The algorithm falls back to optimal inspection planning
when p = 1, = 0. (a) IRIS running with p = 1, f = 0 and varying values of . (b) IRIS running with ¢ = 0, f = 0 and varying
values of p. (c) Comparison of IRIS and RRTOT. IRIS running with po = 0.95, g = 20.0, and f = 0.0005.
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Figure 9. Comparing the quality of inspection paths computed
for the bridge inspection scenario. IRIS was run with po = 0.7,
€0 = 5, and f = 0.0001.
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same quality of inspection planning for the case of roughly
33% coverage and path length of 0.3 units.

8 Conclusion and Future Work

In this work, we presented IRIS, an algorithmic framework
for computing asymptotically optimal inspection plans. Our
key contribution is an algorithm to efficiently compute
near-optimal inspection plans on graphs. Interestingly, our
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Figure 10. Comparing the quality of inspection paths computed
for the pleural effusion scenario. IRIS was run with po = 0.8,
go = 10, and f = 0.01.

problem of graph-inspection planning lies in the intersection
between single and bi-criteria shortest path problems.
Clearly, we are computing a shortest path on the inspection
graph Gs. However, en route, we compute an approximation
of the set of Pareto optimal paths to every node in the original
graph G. Thus, we believe that our approach may be useful
for the general problem of bicriteria optimization.

We showed IRIS outperforms the prior state-of-the-art,
including in a medical application in which a surgical
robot inspects a tissue surface inside the body as part of a
diagnostic procedure. However, the efficiency of IRIS can be
further improved. We now highlight several avenues where
such improvement could be obtained.

8.1 Dynamic updates in graph inspection
planning

IRIS reruns Alg. 1 every iteration which may be highly
inefficient as we would like to reuse information constructed
from previous search episodes. Indeed, the general case
where a graph undergoes a series of edge insertions and edge
deletions and we wish to update a shortest-path algorithm
is a well-studied problem referred to as the fully dynamic
single-source shortest-path problem (Frigioni et al. 2000;
Ramalingam and Reps 1996). Efficient algorithms exist even
when running an A*-like search (Koenig et al. 2004). Thus,
an immediate next step to improve the efficiency of our
algorithm is to adapt the aforementioned algorithms to the
case of near-optimal graph inspection planning.

8.2 Balancing graph search and lazy
computation

Recall that we employ a lazy search paradigm when
computing near-optimal inspection plans on the inspection
graph (Sec. 5.4). This was done because edge evaluation
is computationally complex. However, as the number of
iterations increases, the search starts to dominate the overall
running time of our algorithm and not edge evaluation (see
Fig. 11). Recently Mandalika et al. (2018, 2019) presented
an algorithm that balances edge evaluation and graph search
when edges are expensive to evaluate using the notion
of lazy look-ahead. Thus, we suggest using their method
dynamically varying the so-called lazy look-ahead—in the
initial stages of the algorithm, when the search is not a

Prepared using sagej.cls

RRT construction lIRRG validation ["]Lazy search
0 10 20 3

0

8

o

6

o

4

o

Computation time (%)

N
o

o

Iterations

Figure 11. Time decomposition of IRIS as a function of
iteration number.

bottleneck, employ a large look-ahead (which corresponds to
performing more search). As the algorithm progress, reduce
the look-ahead to account for the fact that edge evaluation is
relatively cheaper than graph search.

8.3 Efficient sampling of configurations in RRT
construction

Recall that in our RRT constructions we sample config-
urations uniformly at random from AX. Common imple-
mentations of RRT typically employ a goal bias where
configurations from the goal are sampled with some proba-
bility LaValle (2006). Similarly, we suggest biasing sampling
towards configurations that increase coverage. Namely, to
configurations q such that S(q) UZg # 0. We suspect that
the goal bias should be dynamically changed—when the
inspection graph Gs has low coverage the bias should be
high. As the overall coverage of Gs increases, the goal bias
should be reduced to allow for shorter inspection plans.

8.4 Employing multiple heuristics in graph
inspection planning

As the number of iterations increases, graph search
dominates the running time of our algorithm. Heuristics have
been shown to be an effective tool in speeding up search
algorithms and we suggest employing recent developments
from the search community to speed up this part of
our framework. One such development is using multiple
heuristics to guide the search in a systematic way (Aine et al.
2016) that has shown to be an effective tool in robot planning
algorithms (Islam et al. 2018; Ranganeni et al. 2018).

Roughly speaking, using multiple heuristics allows
encoding domain knowledge without having to worry about
the heuristic functions being admissible. In our setting, we
are simultaneously reasoning about inspection coverage and
plan length in our graph inspection planning. Thus, it may
be beneficial to design one (or more) heuristics that account
for path length and one (or more) heuristics that account
for path coverage. Then we could apply a method similar
to MHA* (Aine et al. 2016) to combine the efforts of these
heuristics.
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8.5 Adaptively updating approximation
parameters

In our work, we used a simplistic approach to update
the approximation parameters. These may have a dramatic
effect on the quality of plans produced. We suggest further
inspecting how to update these parameters, possibly doing
this in a dynamic fashion according to information obtained
from previous search episodes.
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Appendix A Near-optimal inspection graph
search

Definition 1. Optimal inspection path on a roadmap. Let
(G,Zg,S, !, vs) be a graph inspection problem. An optimal
inspection path P* is a path on roadmap G, starting at v,
and satisfies

0(P*) = argmin{¢(P)|P is a path with S(P) = Ig}.

Denote the length and coverage of an optimal path as {* :=
L(P*) and 8* := S(P*) = Ig, respectively.

Lemma 1. In near-optimal inspection graph search
(Alg. 1), all path pairs in OPEN and CLOSE during the
search are €, p-bounded.

Proof. Recall that the first path pair (line 2) is PP, =
(Ps, Ps) (here Py is a path containing only start vertex vg).
Namely, the potentially achievable path is identical to the
achievable path of PP and the path pair is trivially e, p-
bounded.

We now show that the set of €, p-bounded path pairs are
closed under extending and subsuming operations proving
the Lemma.

Closure under subsuming operation (line 18-21, 25-
27): This holds trivially since subsuming only occurs after
checking that the resultant path pair will be ¢, p-bounded
(line 18 and 25).

Closure under extending operation (line 9): Let PP, be an
g, p-bounded path pair extended by edge ¢ = (u, v) to obtain
the path pair PP, (line 9). Let us consider both the length
and coverage of PP,,.

By definition of the extending operation we have that

() £(P,) = £(P,)+L(e) and (i) ((P,) = £(P,)+ {(e).
Thos: U(P,) = £(P,) + ((e)
<(1+e)-4P,)+Le)
<(1+e)- (((Pu) + 4 ))
=(1+¢) - UP)
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Here, the first and last equalities follow from the definition
of the extend operator, the first inequality follows from the
fact that PP,, is €, p-bounded.

Moving to the coverage of the resultant path pair, by
definition of the extend operator we have that (i) S(P,) =

S(P,) US(v) and (ii) S(P,) = S(P,) U S(v). Thus:
S(P)] = IS(P.) US()|
= IS(P)| +1S(v) NS(P)
> IS(P)|+18() N S(P) N S(P,)|
> p- S(P) US(P)| +1S(0) NS(P) N S(P,)
> p- (IS(P) US(P)| +IS() N SP) N S(P) )
= p-S(P) US(P,)]

Here S(P) := Zg \ S(P), the first and last equalities follow
from the definition of the extend operation, the second
inequality follows from the fact that PP,, is €, p-bounded.
Thus, an ¢, p-bounded PP will remain ¢, p-bounded after
the extending operation. |

Lemma 2. Let P* ={vg,v1,...,v,+} be an optimal
inspection path* Denote P*[i] := {vg,...,v;}, fori €
[0,n*] as the path composed of the first i waypoints of P*.
During every iteration of Alg 1, there exists a path pair
PP, = (P,, R,) in the open list and an index i such that v =
v; and P, strictly dominates P*[i]. Namely, {(P P) < ((P*[i])
and S(P*[i]) C S(P).

Proof. We will prove a slightly stronger claim showing
that at every iteration of Alg 1 there exists a path pair
PP, = (P,, P,) in the open list such that the following two
properties hold:

P1 There exists an index ¢ such that v = v; and 15@ strictly
dominates P*[i].

P2 There is no index j > i such that there is another path
pair PP, = (P, P,) in either the open or the closed
list where u = v; and P, strictly dominates P*[j].

Property P1 is exactly what we need to prove for Lemma 2
while property P2 simplifies the proof. The proof will be by
induction on the iterations of Alg. 1.

Induction base: In line 2, the open set is initialized with
the path pair PP, = (Ps, Py). P trivially dominates P*[0]
(property P1). Furthermore, there is no path in the closed list
so property P2 holds trivially.

Induction step: Assume that at iteration ¢, there exists some
index n; € [0,n*] and some path pair PP,,, = (P,,, P,,)
such that P, dominates P*[n;]. Note that following
property P2, there is no other path pair PP, = (P,, P,) in
either the open or the closed list and an index n; > n; such
thatu = v, and P, strictly dominates P* [n;]. There are two
cases to consider—either PP,,, was popped from the open
list or not.

C1 First, we consider the case where PP,,, was popped
from the open list. Consider the set V,;,, of neighbors

¥ There may be more than one optimal path and it is possible that n* > |V|
since P* may revisit vertices on G.
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of v, that lie on P*. Namely,
Vabr = {Vn;+k|(Un;, Un;+x) € Eand k > 1},

Note that Vyp, is not empty as €;11 = (v, Vn,+1) €
E. For each vertex vy, € Vypy, denote PP, =
(Pp, k> Pn,+x) the path pair that will be generated
after extending the edge (vy,;, Vn,+) (line 9). Let k*
be the maximal index such that (i) vy, 41+ € Vapy and
(ii) Pni«Hc* strictly dominates P*[n; + k*]. Note that
k* exists since P, strictly dominates P*[n; + 1]
(this is easily verified using the induction hypothesis).
Assume that PP,,,  x~ was the first path pair that was
generated® (line 8) and that the induction hypothesis
holds prior to this event. It is straightforward to see
that both properties hold for PP,,, . Now, we need
to consider the following sub-cases:

Cl1.1 P,, 4~ is strictly dominated by some path

P/ . that is part of the path pair PP, ;. =
(Pr’lﬁk*,ﬁ’r’t#k*) in the closed list (line 12).
Note that P, . strictly dominates P*[n; +

k*] and recall that P, - strictly dominates
P*[n; + k*]. Thus, P, . strictly dominates

P*[n; + k*] in contradiction to property P2
meaning that this cannot occur.

C1.2 PP, 4+ is subsumed by some other path
pair PPgpen = (Popen,Popen) in the open list
(lines 17-21). The resulting path pair PP,
from this subsuming operation has é(ﬁres) =
min{l( Py, 11+ ), {(Popen) } < (Pr,++)

and S(Pres) = S(Pp, 11+) US(Popen) 2

S(Pp;+x+). Thus, as P strictly dominates

P, 4k it also strictly dominates P*[n; 4+ k*].
This, in turn, implies that both properties hold.

C1.3 PP, - is subsuming some other path in the
open list (lines 24-27). Similar to C1.2, the
resulting path pair from subsuming operation
has potentially achievable path that strictly
dominates Pni+k*, thus strictly dominates
P*[n; + k*]. Again, this implies that both
properties hold.

C14 PP, ;- is inserted into the open list without
being subsumed or subsuming any other path
pair. Here the induction hypothesis trivially

holds.

We now need to consider all other path pairs generated
throughout. However, non can result in a path pair
that subsumes PP,,,,;+ or is subsumed by PP,,, -~
meaning that the induction hypothesis still holds.

C2 Now consider the case that PP,,, was not popped from
the priority queue. Some other path pair was popped
from the priority and extended and pushed into the
closed list. Out of all newly created path pairs (line 9)
let PP,,; be the one for which property P1 holds and
for which the index n; is maximal. If no such path pair
exists then the induction hypothesis continues to hold.
Again, we will consider several sub-cases.
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C2.1 If n; < ny, then both property P1 and P2 still
hold for PP,,,.

C22 If n; = n;1, then either (i) PP,,, was subsumed
by PP, (i) PP,, was subsumed by PP,,
or (iii) no path pair was subsumed. It is
straightforward to see that in all cases both
property P1 and P2 still hold for the newly
created path pair in cases (i) and (ii) or for both
path pairs PP,,, and PP,,; on case (iii).

C2.3 If nj > n;, then both property P1 and P2 hold
for PP, ..

Similar to C1, we need to consider all other path pairs
generated throughout. However, non can result in a
path pair that subsumes PP,, . or is subsumed by PP,
meaning that the induction hypothesis still holds.

[
Note: Lemma 2 and its proof were stated for the optimal

inspection path P*. However, the proof holds for any path
P.

We can order path pairs in the open list (line 4) either
according to (i) the path pair with the minimal achievable
path cost or (ii) the path pair with the minimal potentially
achievable path cost. We now show that if either method
is used, the path returned by the algorithm (line 7) e, p-
dominates an optimal inspection path P*.

Theorem 1. Near-optimal inspection graph search. Near-
optimal inspection graph search (Alg. 1) computes a path P
that €, p-dominates an optimal inspection path P*. Namely,
((P)<(1+¢) " and |S(P)| =z p-|S™|.

Proof. When Alg. 1 terminates (line 6-7), we have that
S(P,) = Ig = S*. According to Lemma 1, PP, is «,p-
bounded, thus ¢(P,) < (1+¢) ~€(P~’u) and |[S(P,)| >p-
|S(Rt) U S(Ht)| =P |S*|

According to Lemma 2, for an optimal inspection path P*
there always exists a path pair in the open set and an index
i such that P dominates P*[i]. If the terminating PP, =
(P,, P,) (on line 6-7) happens to be such a path pair, it
is straightforward that /(P,) < (14¢)-4(P,) < (1 +¢)-
¢(P*[i]) < (1 +¢€) - £*. Otherwise, such a path pair PP’ =
(P, P’) is still in the open set.

When using the achievable cost to order the open list, we
have that

§The assumption that PPy, +k* was the first path pair that was generated is
not required for Lemma 2 to hold but it simplifies the proof.

qTStrictly speaking, when n; = n;, the notation PP,, and PPnj is
ambiguous. However, to simplify notation, we continue to refer to PP,
as the path pair for which the induction hypothesis holds and to PPy, ; as the
newly created path pair.
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When using potentially achievable costs to order the open
list, we have

((P,) < (1+¢e)-L(P,)
< (1+4¢) P
< (1+e¢)-L(P*i])
<(I4¢)-0*

Appendix B Asymptotically optimal
inspection planning

To prove that IRIS is asymptotically optimal, we will show
that the optimal inspection path z* can be approximated
by a sequence of configurations sampled by our algorithm.
Here, we will need to show that as the number of iterations
approaches infinity, the following requirements hold: (i) the
length of the path induced by this sequence of samples
converges asymptotically to the length of z*, (ii) the
coverage obtained by this sequence of samples converges
asymptotically to the coverage of * and that (iii) our graph-
inspection algorithm finds such a sequence of samples.

To do so, we rely on the notion of probabilistic
exhaustivity (Schmerling et al. 2015). Roughly speaking, it
is the notion that given a sufficiently large set of uniformly
sampled configurations, any path can be traced arbitrarily
well in the configuration space by a path defined as a
sequence of configurations. The original definition of tracing
(to be formalized shortly) was used in the context of path
cost and, as we will see, is insufficient for our purposes.
Thus, we start in Sec. A in extending the definition of tracing
and showing that probabilistic exhaustivity still holds for the
extended version. This lays the groundwork to show that (i)
and (ii) hold.

We then continue in Sec. B to formally define the well-
behaving of an inspection trajectory. Together with the
notion of tracing, well-behaving lays the groundwork to
show that (ii) holds. Roughly speaking, this will ensure that
there are no singular points along a trajectory where a POI
can only be inspected from. This, in turn, will allow us to
ensure that trajectories that trace an optimal inspection path
cover the same set of POL.

Finally, in Sec. C, we come to the conclusion that IRIS is
asymptotically optimal.

A Probabilistic exhaustivity

In order for our proof to be applicable to general systems
with differential constraints, we need to introduce several
notations. These will be used to prove the notion of
probabilistic exhaustivity (Schmerling et al. 2015) for our
setting. We start by defining (following (Schmerling et al.
2015, Sec. IV)) the arc length of a path and sub-Riemmanian
distances.

Definition 2. Trajectory arc length. Let x : [0,T] — X be
a continuous trajectory, the arc length of x is defined as

() = / (1) dt.

Here, ||2(t)|| = +/{(&(t),2(t)) is the squared root of the
standard Euclidean inner product. See Fig. 1.
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Figure 1. Arc length of a trajectory.

Figure 2. Distances between two configurations. Here

zo(t), ..., x3(t) are all dynamically feasible trajectories, and
x3(t) is a trajectory with the shortest arc length, among all
dynamically feasible trajectories connecting q1 and q2. So the
sub-Riemmanian distance ds-(q1, q2) is the arc length of x3(t).
The Euclidean distance ||qi1 — q2|| is the length of the green
dotted line.

Figure 3. One possible example showing a sub-Riemannian
ball and a Euclidean ball with the same center and radius.

Definition 3. Sub-Riemmanian distance. Let q;,q2 € X
be two configurations, the sub-Riemmanian distance between
them is defined as

dsr(qh OI2) = igf f(x)

Namely, it is the length of the shortest dynamically feasible
trajectory' x(t) connecting q; and qs. See Fig. 2.

Given the above definitions, we define the Euclidean ball
on X as

B(z,e) ={yeX: |z —y| <e},
and the sub-Riemannian ball on X as
B(z,e) ={y € X : dg(x,y) < e}

Note that by definition it holds that Va,y |z —y| <
dsr(x,y) and Vo, e B(z,e) C B¢(x,¢). See Fig. 3.

The result of our algorithm, as is common in sampling-
based methods, is a trajectory that is implicitly defined by
a discrete sequence of configurations (a.k.a. waypoints).
The following definition formalizes the continuous path
associated with a discrete sequence of waypoints.

Definition 4. Associated optimal trajectory. Let P =
{q;}?_, C X be a discrete sequence of configurations. The

I Roughly speaking, a trajectory is said to be dynamically feasible if there is
a control function that satisfies the kinematic constraints of the system. For
a precise definition, see (Schmerling et al. 2015, Sec. II).
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TTp q;

Figure 4. The associated optimal trajectory 7p of a discrete
sequence of configurations P. Each segment connecting
subsequent configurations is optimal. Namely, its length equals
the sub-Riemannian distance between two configurations.

associated optimal trajectory of P, denoted by wp : [0, S] —
X, is (i) dynamically feasible and (ii) sequentially connects
the waypoints qi,...,q, such that each connection is
locally optimal. Namely, it provides the shortest connection

length {(mp (i, Qit1)) = dsr (i, Qit1)- See Fig. 4.

A key notion used in proving probabilistic exhaustivity is
tracing (to be formally defined shortly). Roughly speaking,
a given path z is said to be traced by a sequence of
points P if they are close to = and the length of 7p, the
path associated with P, is close to the length of the given
path. This corresponds to ensuring a one-way Hausdorff
distance between mp and x ((¢i¢) in Definition 5). In the
original definition of (J,r)-tracing, (see (Schmerling et al.
2015, Section 1V)), requiring only one-way Hausdorff was
sufficient as the proof was only concerned with path length
(and not coverage). This is because if mp “shortcuts” the
original path, the path length is only reduced. However, in
our setting, this may result in points covered by = not being
covered by mp. Thus, we add an additional requirement
that all points along the path x are close to a point in P
which, roughly speaking, corresponds to requiring the two-
way Hausdorff distance ((i4¢) and (v) in Definition 5).

Definition 5. (§,r)-tracing. Let z:[0,7] = X be a
dynamically feasible trajectory, P = {q;}{~1 C X be a
discrete sequence of configurations and T p be the associated
optimal trajectory of P. P is said to (6,r) — trace x if:

(i) dsr (qivqi-l-l)i:l,“.,nfl <

(ii) the arc length of wp is bounded by {(np) < (14 46) -
U(z),

(iii) any point along the path wp is at most r-distance
away from some point along the path x. Namely,
2 o (5)2(0) < v

(iv) any point along the path x is at most 1-
distance away from some point in P. Namely,

5 inf )
0 G a(0) < 7

See Fig. 5.

To use the extended (and slightly more restrictive)
definition of tracing, we introduce the notion of an (r, k)-
bounded trajectory. This notion formally defines to what
extent a path can change (by limiting the curvature of a path)
in a local neighborhood. This, in turn, will be used to inform
us how many samples are required to trace a given path
in order to prove probabilistic exhaustivity under our new
definition of tracing.
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TIp ¥
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Figure 5. P (9, r)-traces x. (a) The trajectory is dense enough,
namely sequentially nearby configurations are within r
sub-Riemaniian distance to another. (b) The arc length of the
associated optimal trajectory is bounded. (c) 7p is close
enough to z, in other words any point along 7p is at most
r-distance away from some point along z. (d) x is close enough
to P, in other words any point along x is at most r-distance
away from some point in P.

Figure 6. Depiction of t» used in Def. 6. There might be
multiple points along x that satisfy ds-(x(¢1), z(t)) = r (the
points on the boundary of the shown sub-Riemannian ball), we
want ¢, to be the smallest.

Definition 6. (rcyv, k)-bounding. Let x: [0,T] — X be
a dynamically feasible trajectory, for k > 1, x is said to be
(reury, k)-bounded if ¥r € (0, reury], we have

Z(m(tl, tg)) g k‘ . dsr(aj(h), l‘(tz)),
YO0 <t < T7
to =min ({t € (t1,7T) : dsr(x(t1),2(t2)) > r}U{T}).

Here, x(t1,1t2) is the curve segment on x between x(t1) and
x(tz). See Fig. 6.

We now prove that when the target trajectory is not
pathological (||Z(¢)|| < co), then for any constant k > 1,
we can always find a value r such that the trajectory is
(r, k)-bounded. Intuitively, this will allow us to argue that
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x(1)

(@) z(t) is not (r1, k)-bounded. (b) z(t) is (r2, k)-bounded.

Figure 7. For a given k£ > 1, we can always find rcurv > 0 for
which a trajectory x is (rcurv, k)-bounded. (a) An example of
z(t) not bounded when d., is too large. (b) An example of z(t)
bounded when d,. small enough.

when we sample along a target trajectory at small-enough
intervals (defined by r), the length of the curve connecting
two nearby sampled points is not too long compared to the
sub-Riemmanian distance between them.

Lemma 3. Ler z:[0,T) = X be a dynamically fea-
sible trajectory and x(t) is bounded, namely, Vt €
[0,T], |£()|| € [0, dTmax]- For every constant k > 1, there
exists some radius 7 = Teury (k, x) > 0 such that x is (r, k)-
bounded. See Fig. 7.

Proof. According to Definition 2, we have that

t1+At
(s, b + AF)) = / () .
t1

For certain ¢, if ||z(¢)|| =0, it is straightforward that
d(l(x)) = 0. When 0 < ||(t)|| < dTmax, take derivative for
t on both sides
d(t(z))
dt

sy = @) [da]
= e = S5 = 12

= d(l(x)) = ||dz|

which can be written in another form as
A (20, + At)) — £(x(0,t1)))
:Alirlﬂ»o E(x(tla i1+ At))

— lim

=Jim Izt + At) — z(t,)||
<Ay dor(x(t1), (ty + At))
<dim k- dop(2(ty), 2(t + A))

lim E(l‘(tl, tl + At))
A0 der(z(tr), z(t + At))

According to the definition of limit, for some § > 0,
there always exists £ > 0 such that when At —0 <¢&,
% — ko(t) < 4. Then we could take § = k —
1, then with corresponding &, take r = min{ds, (z(t), z(t +
€),t€]0,T—&]} would guarantee that x is (r,k)-
bounded. |

:ko(tl) <l<k

We now use Lemma 3 to prove that for a target trajectory
x, given a large-enough number of samples, there exist a
sequence of configurations that traces xz, under the new
definition of (J,r)-tracing (Definition 5). To do so, we
use several results that were used in the original proof of
probabilistic exhaustivity.
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Figure 8. Sub-Riemannian balls (green) along = (dark blue)
spaced at sub-Riemannian distances r /2. With high
probability, each ball contains at least one point. We select one
point from each of the balls to form a tracing sequence Pn
(orange).

Lemma 4. Probabilistic exhaustivity. Let x:[0,7] —
Xiree be a dynamically feasible trajectory. Let Qn be a set
of N points sampled independently and identically from the
uniform distribution on the collision-free space X and set
Vv = {z(0)} U Qn. Fora given N, set

ry = £ - (log(N)/N)/P .

Here, D is a constant capturing the dimension of the system
and k is a commutable constant depending on the system
dynamics, N, D, and some tuning parameter n > 0.** Let
AN be the event that there exists a discrete sequence
of configurations P = {q;}!'_y C Viy that (6,r)-traces x
for any 6 € (0,1) and r = rn. The probability that event
Ay doesn’t happen, denoted by P(AS) is asymptotically
bounded by

P(A%) <O (N"og B N) .

As is defined above, n > 0 is some tuning parameter.

Proof. Define Ty ={7n1,7n My} as a sequence
of points such that (i) 7n1 = (0), (i) x(7n;) and

x(TNi+1) are at sub-Riemannian distances 7y/2,
where  7n;4y1 > 7y, is  the smallest timestamp
that  satisfies  dsr(z(7nvy), (TN,i+1)) =TN/2  (see

Fig. 6) and (i) 7y = «(T). Furthermore, define
By = {Bn.1, BN,y } a sequence of sub-Riemannian balls
such that By ; is centered at x(7n ;) and has radius 7y /4.
Define Ay to be the event that each ball in By contains at
least one point in Vv (see Fig. 8).

In (Schmerling et al. 2015, Thm. IV.5) it was shown that
with probability at least

1-0 (N”’log_%N>

it holds that there exists a discrete sequence of configu-
rations P = {q;}"; C Vi such that Ay exists and that
requirements (¢) — (¢7¢) in Definition 5 hold for § and r =
rn. Thus, we only need to show that requirement (iv) in
Definition 5 holds for § and » = rp. Namely, that
relor] el dor (qi, 2(2)) < 7.

Thus, we now show that V¢ € [0,T],Ji s.t. (q;, z(t)) <7

which will conclude the proof. We consider two cases:

**For exact definitions of x and D, see (Schmerling et al. 2015, Thm. IV.5).
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Figure 9. Shortest distances from arbitrary point along « to
points in Px. Sub-Riemannian distances are shown in orange
and yellow. Trajectory segment x(Zym,, Tm+1) is shown in dark
blue.

C1 «(t) lies at a center of some ball in By. Thus,
there exists some 4 such that x(t) = z(7y ;) and it is
straightforward to see that ds, (q;, (7w ;) < rn /4

C2 «x(t) does not lie at a center of some ball in By.

Following Lemma 3, there exists some constant ¢,
for which z is (Teurv, 2)-bounded. Fix N sufficiently

large such that 7n/2 < 7eury. Such N exists as
Ny = 0.

Assume that x(t) lies on the curve connecting z (7 ;)
and z(7x ;41) for some i. We have that

dsp (2(nv,3), (1)) + dor (2(1), 2(Trv,i41))
< U(z(7ngi, 1) + 0(2(t, TN i)
=Ux(TN,i, TN,i+1))

< 2 dyp (2(TN,0), 2(TN 1))

The first inequality follows from Definition 3, the
first equality follows from Definition 2, the second
inequality follows from the fact that x is (Tcurv, 2)-
bounded.

Now,

dsr(qi, 2(t)) + der(2(t), dit1))
< d‘;r(q“ (TN z)) + dsr(z(TN,i)am(t))
+dsr(2(t), 2(TNi11)) + dsr (T(TN,i41), Qi 1)
< dor(di, (7N ) + dsr Qi1 2(TNi41))
+ 2 dor(2(7n,0), 2(T,i41))
<ry/d+rn/4+2-1Nn/2
=(3/2)-rn
the first inequality follows from Definition 3, the
second inequality from Eq. (1), the third inequality
follows from ds-(q;,z(7n;)) < rn/4 and the fact

that (7 ;) are spaced along x at sub-Riemannian
distance r /2. See Fig. 9. Finally, we have

76{1 n} (qJ7 ())

dsr
< min (dg, (q, (1)), dsr (Qis1, 2(t)))
<(1/2)-(3/2) -ry <rn.

e))

B Well-behaved inspection trajectories

In this section, we introduce the notion of a well-behaved
trajectory. Roughly speaking, it ensures that there are no
singular points along a trajectory which a POI can only be
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Xingpl(Li1,131)

Figure 10. Inspecting configuration region (Definition 7).

inspected from. This, in turn, will allow us to ensure that
trajectories that trace an optimal inspection path cover the
same set of POL.

Recall that an  inspection-planning  problem
P =(X,Z,8,¢,q) is a tuple where Z is the set of all POI,
X is the configuration space of the robot and qj is the start
configuration. Furthermore, recall that Xpee = cl(X/Xops)
where cl(+) is the closure operator.

Definition 7. Inspecting configuration region. Let i € T be
a point of interest (POI), the inspecting configuration region
of i, denoted as Xisp (1), is defined to be the union of all
configurations from which the POI can be inspected. Namely,

Xmsp( ) = {q € Xpree 11 € S( )}

Similarly, the inspecting configuration region of T' C T is
defined as

Xinsp(zl) = {q € Xfree :I/ c S(q)}

Definition 8. Well-behaving of an inspection trajectory.
Let z: [0,T] = Xireo be a feasible inspection trajectory. x
is said to be strongly &-well behaved if Vi € S(x), there
exists at least one point along x whose &-neighborhood is
completely within the inspecting configuration region of 1.
Namely,

Vi € S(x),3t € [0,T) s.t. BE(x(t), €) C Xinep (4)-

Similarly, x is said to be weakly &-well behaved if Vi €
S(z) \ (S(x(0)) US(x(T))), there exists at least one point
along x whose &-neighborhood is completely within the
inspecting configuration region of i. Namely,

Vie S(x)\ (8(2(0)) US(x(T))),
3t € [0,T] s.t. B¢(z(t),£) C Xinsp(i)-

See also Fig. 11.

A strongly well-behaved trajectory extends into the
inspecting configuration region of some POI while a weakly
well-behaved trajectory can terminate at the boundary of
some inspecting configuration region. It is not hard to see,
that any strongly well-behaved trajectory can be shortened to
a weakly well-behaved trajectory without losing coverage.
Thus, we introduce the notion of inspection completion time
which will simplify the proofs of the following lemmas and
theorems.



Fu et al.

21

X1

Xingpi1s 31

' Xy )/

Figure 11. Strongly and weakly well-behaving trajectories
(Definition 8). x1 is strongly well-behaved, while x2 is weakly
well-behaved. For trajectory z1 : [0,71] — X, inspection

completion time T,.(z1) < T1. For trajectory x2 : [0, T2] — X,
inspection completion time Te.(z2) = T5.
Definition 9. Inspection completion time. Ler x : [0,T] —

Xiree be a feasible inspection trajectory, then the inspection
completion time of x is defined as

Te(x) = arg min {S(z(0,1)) = S(x)}.

t€[0,7]

Stated differently, the inspection completion time of x is the
last point along x that adds a new POI covered by x. When
it is clear from the context, we will use T, instead of T,.(x).

Using the above definitions, the following lemma gives the
condition under which a discrete sequence of configurations
covers all POI that are inspected along a continuous
trajectory.

Lemma 5. Letr z: [0,T] = Xiee be a feasible weakly &-
well behaved inspection trajectory and let P = {q,,}7"_; C
Xiree be a discrete sequence of configurations. If

(i) a1 = z(0),

(ii) Im € [n] such that S(z(T.)) C S(am ), and

(iii) P (9,r)-traces x forr <&,
then S(x) C S(P).

Proof. The sequence P (0,r)-traces x, thus following
Definition 5, we have that

sup inf

tefo.1] JE{L,.m} la; ==l < sup - jnf

tef0,7) J€{1;...n}
Thus, V¢t € [0,7] we have that the closest point in P
to x(t), denoted by Qclose(z,t) satisfies Qclose(T,t) €
Be(x(t),r). With r < &, we further have that Qelose (2, ) €
Be(a(t),r) € B (a(t), €).

Additionally, x is weakly &-well behaved. Thus following
Definition 8, we have that

vieS(x)\ (S(x(0) U
3t €[0,7],j € [n] s.t.

S((1))),
B(z(t),€) C Xinsp(i).

Namely, for every POI inspected along x (except for the
endpoints of z), there exists at least one configuration in P
from which the POI can also be inspected.

To show that S(z) C S(P), we still need to show that
S(x(0)) C S(P) (which follows trivially from the fact that
q; = z(0)) and that S(z(T)) C S(P). To show the latter,
we consider two subcases:
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dsr (aj, () <7

Cl1 T, <T. In this case S(z(T)) C S(z)/S(z(T)), so
S(z(T)) is already covered by S(P),

C2 T, =T. In this case S(z(T)) = S(x(T¢)) C S(am)
for some m € {1,...,n}, so POI that is inspected at

x(T) is covered by such S(qm, ).

Thus, we have that S(x) C S(P). [ ]

The following lemma gives the condition under which a
continuous trajectory covers all POI inspected along another
continuous trajectory.

Lemma 6. Let x : [0,T] — Xiee be a feasible, weakly &-
well behaved inspection trajectory with optimal coverage
S(x)=7% and let y:[0,T'] = Xxeo be a feasible
inspection trajectory. If

(i) y(0) = x(0),
(ii) y(T") = 2(T), and
(iii) inf () —y(t)|| <rfor0<r<§

te[o T) ¥'€[0,T7]

then S(y) = Z* and y is weakly (§ — r)-well behaved.
Proof. Following condition (iii) above, ¥t € [0, T] we have

that the closest point in y to z(t), denoted by Yelose(,t)

satisfies Yelose(x,t) € B(x(t),r). As r <&, we further

have that
Yelose(x, 1) € B(x(t),§). 2

Additionally x is weakly £-well behaved. Thus, following
Definition 8, we have that

Vie S(z),3t € [0,T] s.t. BS(x(t),€) C Xingp(?).  (3)
Combining Eq. 2 and 3, we have that

Vi€ S(x) \ (S(x(0)) US(x(T))

), 3t ¢ € [0,7] s.t.,
y(t') € B(x(t),€) and B*(x(t), &) C

4
Kli)
Eq. 4 implies that for every POI inspected along = (except
for at the endpoints), there exists at least one configuration
along y from which that POI can also be inspected. The
POI covered at the endpoints, namely at z(0) and z(T),
are covered by y following from conditions (i) and (ii)
above. Z* = S(x) C S(y) C Z*, which, in turn, implies that
S(y) =1~
We now show that y is also weakly (& — r)-well-
behaved. Following Eq. (4) and the fact that r < ¢, for
each y(t') € B(x(t), &), we further have that B¢ (y(t'),§ —
r) C B¢(x(t),£) C Xinsp- This implies that Vi € S(z)\
(8(x(0)) US(x(T))), there exists at least one point along
y whose (£ — r)-neighborhood is completely within the
inspecting configuration region of ¢. Since

S(@)\ (8(x(0)) US(=(T))) = S(y) \ (S(y(0) US(Y(T))),

and y satisfies the definition of being weakly (£ — r)-well
behaved. n
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C Asymptotic optimality of IRIS

In this section, we are finally ready to prove the asymptotic
optimality of IRIS. To simplify the proof, we do so for a
variant of IRIS where at each iteration we construct a PRM
and not an RRG. While not identical, both roadmaps exhibit
similar properties which are typically easier to show for
PRMs (see, Karaman and Frazzoli (2011); Solovey et al.
(2018)).

We start (Thm. 2) by showing that w.h.p. given a weakly &-
well behaved trajectory with strong d.j-clearance and optimal
inspection coverage, as the number of samples tends to
infinity, IRIS returns an inspection trajectory whose length
and coverage are bounded away from this trajectory. We
then continue to introduce the notion of a regular inspection
problem which, roughly speaking, states that the boundary
of inspecting configuration regions has some structure. This
will allow us (Thm. 3) to show that given a regular inspection
planning problem, and an optimal inspection trajectory (that
may be weakly &-well behaved, with weak . -clearance)
then w.h.p. IRIS returns an inspection trajectory whose
length and coverage are bounded away from this trajectory.

Theorem 2. IRIS comparison. Let P = (X,Z,S5,¢,qs)
be an inspection-planning problem and Xt.eo be the set of
collision-free configurations. Assume that the robot system
satisfies the assumptions mentioned in Schmerling et al.
(2015) and let x : [0,T] = Xpee be a feasible inspection
trajectory such that

(i) 2(0) = qs,
(ii) x has strong 6. -clearance for some 6. > 0,
(iii) x is weakly &-well behaved for some & > 0,
(iv) x has optimal coverage, namely S(x) = Z*, and

(v) 3t € [0,T] such that B*(x(t),7) C Xinsp(S(z(T¢)))
for v > 0 where T is the inspection completing point

of x.

Furthermore, let ¢n and Sy denote the arc length
and inspection coverage, respectively, of the trajectory
returned by IRIS at the N ’th iteration using approximation
parameters €y and py, and a lower-bound connecting
radius ryn (as defined in Lemma 4). Then for any fixed
d€(0,1),

P(ly > (1+en)(1+0)l(z)) = O (N‘"log’%N> :

P(ISn| < pw - [Z)) = O (N"log D N ) .

Proof. Let Gy = (Vn,EN) denote the roadmap con-
structed by IRIS at the N’th iteration and notice that
N = |V|. Assume N to be sufficiently large so that ry <
min{¢, vy, dq/2} and UvEVN S(v) =T*.

Following Lemma 4, we have that with a probability
of at least 1 — O (N’"log_%N , there exists a discrete
sequence of configurations P = {q,, }7,_; C Vthat (6, ry)-
traces x. We now show that in the event that such P

exists, then IRIS will return a trajectory such that ¢ <
(14+en)(1+6)l(x) and |[Sy| > pN - |Z%]-
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Assume that such a sequence P exists. We can bound the
minimal distance of any point in P to an obstacle in the
configuration space as follows:

Im, Bl — ol 2 2, e~ all ~ lam —
>0l — TN
Z TN-.

ThllS, Be(qmaTN) ngree~ As P:{Qm}%=1 (57TN)'
traces x, for any point q along the locally optimal edge
between q,,, and q,,,+1, we have

||Qm - Q|| S dsr(q'rruq) S dsr(qm; q’m—i-l) S N.

Thus q € B%(Qum,T~n) € Xiee- Namely, all the vertices of
P as well as locally optimal paths connecting subsequent
vertices in P are collision-free. This, together with the
connection radius used ensures that all edges connecting
vertices along P are collision-free and are added to Ex.

By construction, we have that q; = qs = x(0). In
addition, following condition (v) and Definition 5 we have
that 3m € [n] such that S(qy,) = S(z(1.)). Together with
the fact that x is weakly {-well behaved, P (4, r v )-traces z,
and ry < ¢ then by Lemma 5 it holds that S(z) C S(P).
As z has optimal coverage (condition (iv)), we have that
S(P)=1".

Let £} and S} denote the arc length and inspection
coverage of optimal inspection trajectory on roadmap Gy,
respectively. We have that

In <(I+en)ly < (1 +en)l(np)
< (IT+en)(1+0)l(x).

Here, the first inequality follows from Thm. 1, the second
inequality follows from the fact that ¢}, is the infimum
taken over the arc length of all trajectories that has optimal
coverage on the graph, and the last inequality follows from
Definition 5.

Similarly, we have that

ISn| > pN - [SN| =pN - 1T7].

Here, the first inequality follows from Thm. 1 and the first
equality follows from the fact that S}, = Z*. |

Before stating our final result, we introduce the notion of
a regular boundary and regular inspection planning problem.
This is required because an optimal inspection trajectory
will never be strongly well-behaved but only weakly well-
behaved and special care needs to be taken in order for IRIS
to cover the POI covered by z*(T'). The notion of regularity
will ensure that there always exists a region near x*(7') that
IRIS can sample inside. See also Fig. 12.

Definition 10. Regular boundary. A set X' C Xpyee is said
to have a regular boundary if there exists v > 0 such that
Vq € OX, there exists ' € X with B¢(q',v) C X' and q €
oB(d', 7).

Definition 11. Regularity of an inspection-planning problem.
Let P = (X,Z,8,4,qs) be an inspection-planning problem
and Xyee be the set of collision-free configurations. P is
said to be regular if Vq € Xpvee, Xinsp(S(Q)) has a regular
boundary.
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Figure 12. If the inspection planning problem is regular, namely
all (non-empty) inspecting configuration regions have regular
boundaries, then there always exists a small region near z(T")
that is within the same inspecting configuration region (denoted
by purple circle in the figure).

Definition 12. Strong/weak d.j-clearance. Lerx : [0,T] —
Xiree be a feasible trajectory. x has strong 0. -clearance if
Yt € [0,T), z(t) is in di-interior of Xieo (namely, x(t) is at
least 6.1 away from any point in Xons using the Euclidean
distance). Furthermore, x has weak 6. -clearance if there
exists a sequence of homotopic paths {x, } ren that satisfies:

(l) hm = .
(ii) xo has strong d.-clearance.

(iii) Vk € [0, 00), xk, is dynamically feasible and has strong
dx-clearance for some 6y, > 0, and 1 &, = 0.

(iv) lim L(xx) = £(x).
We are now ready to state our final result.

Theorem 3. IRIS asymptotic optimality. Let P =
(X,Z,8,¢,qs) be a regular inspection-planning problem
and Xipee be the collision-free space. Assume that the robot
system satisfies the assumptions mentioned in Schmerling
et al. (2015) and let x* :[0,T] = Xyeo be an optimal
feasible inspection trajectory such that

(i) z*(0)

(ii) x* has weak d.-clearance for some 6. > 0,

= Qs

(iii) x* is weakly &-well behaved for some & > 0.

Furthermore, let { and Sy denote the arc length, and
the inspection coverage, respectively of the trajectory
returned by IRIS at the N ’th iteration using approximation
parameters €y and py, and a lower-bound connecting
radius vy (as defined in Lemma 4). If M ey =0 and
lim = 1, we have that

N—o0

NPy > (14 A)(z")) =0

for any A > 0 and that

N P(|Sh| < |Z7]) = 0.

Proof. Assume w.l.0.g. that £(z*) > 0. Following (Kara-
man and Frazzoli 2011, Lemma 50) and the fact that =* has
weak d. -clearance, there exists a sequence {x } ey of paths
such that khjolc x), = =¥ and z, has strong d-clearance where
{0k }ken is a sequence of real numbers such that lim 5, = 0.
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Figure 13. We construct an extended trajectory z}, by
extending zx into Xinsp(zx(7%)). The extended part is shown in
red, whose length is required to be shorter than (A/4)¢(x™).

Choose kg € N such that Vk > kg we have that

U(zy) < (1+A/4) - £(z7),

and that

sup inf
t*e[0,7+] t€[0,T]

[l (t) =2 (E°) ]| < & = &,

with & € (0,€). Furthermore, we assume that kg is large
enough such that V& > kg, the inspection completing point
of zj equals its completion time (namely, T.(xy) = Ty
where T}, is the completion time of xy,).

Notice that as z* and z;, are homotopic, we have that
25 (0) = 2*(0) and z(T}) = «*(T"). Thus, using Lemma 6
we have that S(xp) =Z* and that x is weakly & -well
behaved.

To use Thm. 2, we show how to construct a new trajectory
x}, that extends zj, into the interior of Xinep(S(zk(Z%)))-
This is similar to the construction used in (Schmerling et al.
2015, Thm. VI.2). As 23 (T%) € 0Xinsp(vx(T%)) and since
the inspection planning problem P is regular, then there
exists some configuration z such that z € Xinsp(xx(Tk)).
B¢(z,7) C Xingp(zx(Ty)) and z*(T') € IB°(z,~) for some
~v > 0 (see also Fig. 13).

Set 2’ to be the configuration on the straight-line segment
connecting z(T}) and z such that dg.(xp(Tk),2) <
(A/4)¢(x*). Finally, set xj. to be the extension of wz
constructed by concatenating x;, with the shortest sub-
Riemannian path between xy, (7)) and z’. We now bound the
arc length of ), by

U(ay) < Uak) + der(24(Th), 2)

< tlan) + (A/1)1(") 5
< (L A/0)-0") + (A1) - (")
=(1+A/2) L(z").

Clearly, for v’ = ||z’ — x4 (T)| it holds that B¢(z’,~") C
B¢(z,7) C Xinsp(2k(T%)). In addition, for any point p € x,
along the path between x4 (T}) and 2’ we have that

W lp —all > I ag(Th) — all = [lp — x1(Th) |
> 0 — 0k /2

= 01/2.

Thus, ) has strong 0, /2 clearance.
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Notice that 2}, satisfies all requirements of Thm. 2. Using
a value of § := A /4, we have that

0] (N_"logféN)
=P(ln > (1+en)(1+ A/4) - £(y,))
>PUn > (14+en)1+A/)A+A/2) - £(z"))
ZP(In > (1 +en)(1+A) - £(a")).
Here, the first equality follows from Thm. 2, the first
inequality follows from equation (5), and the last inequality

follows from the fact that A € (0,1). Similarly, Thm. 2
implies that

P(ISv| < pw - [T)) = O (N"log P N ) .

Using the fact that im ey =0 and that im py =1, we
have that
0= [lm O (N*"log_%N)
= Jm P(ly > (L+en)(1+0)l(z"))
= ym P(ln > (1+0)(1 +6)(a"))
=y Py > (1+0)l(z")).

T N—ooco
Similarly,
0= Jim O (N—ﬂog*%zv)
= Jm P(|Sn| <pn - IZ7])
= Jm P(|Sn| < 1-|Z7))

N—o0

= 4 P(ISh] < 1Z7))

N—o0
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