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1 Introduction

We thank all the discussants for their critical observations and inspiring comments, which not only

help improve our own understanding of the area but also stimulate many new thoughts for future

research. We are grateful to the editors for organizing this thought-provoking event and to all the

discussants for their invaluable contributions.

There are many exciting new ideas proposed by the discussants that are worthy of further

investigations. Claeskens, Jansen, and Zhou (Claeskens&Jansen&Zhou) raised important questions

regarding the ultra-sparse setting and the impact of tuning parameter choices; Janson pointed

out the two-stage formulation in Li and Fithian (2021) and possible extensions of DS; Law and

Bühlmann (Law&Bühlmann) provided detailed power calculations for GM and DS; Li, Yao and

Zhang (Li&Yao&Zhang) outlined numerous novel findings (e.g., scale-free FDR control, fastMDS

etc.); Xia and Cai (Xia&Cai) illustrated better ways of adjusting the BHq procedure and the

bias-variance tradeoff; Zhang and Ma (Zhang&Ma) pointed out a possible way of improving DS

by combining with factor-adjusted techniques and suggested future researches for regression with

hierarchically-structured predictors; and both Zhang&Ma and Xia&Cai pointed out a potential

connection between MDS and e-value based approaches.

In this rejoinder, due to the space limit, we are only able to highlight some comments raised

by the discussants and provide some analyses in response to a few of their suggestions. In Section

2, we reformulate DS into a two-stage algorithm and discuss new potentials to construct mirror

statistics. In Section 3, we connect the MDS procedure with e-value and propose a new algorithm to

derandomize DS. In Section 4, we compare the ranking qualities of different FDR control procedures

and thus provide a way to theoretically compare their powers. In Section 5, we discuss possible

improvements and future research directions.

2 Reformulation to Facilitate Use of Prior Information

2.1 A unified framework for Knockoff and DS

A common feature of Knockoff, DS, and GM is that they construct test statistics by contrasting two

important measures of each feature. We here revisit the contrasting formulation from a conditional
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inference point of view to gain some new insights.

Li and Fithian (2021) showed that Knockoff can be recast as a conditional inference procedure

on a “whitened” estimator. Inspired by Janson’s comment, we present a similar reformulation. This

formulation not only brings together DS and Knockoff within a unified framework but also sheds

light on how to construct more powerful mirror statistics. It further complements the algebraic

equivalence between Knockoff and DS as pointed out by Li&Yao&Zhang. 1 Under the regression

setting with p features, and more generally, we consider p hypotheses Hj, j ∈ [p], each associated

with the null βj = 0. Suppose we have two independent estimates β̂
(1)
j and β̂

(2)
j for coefficient βj,

of which β̂
(2)
j follows a normal distribution centered at βj. DS can be viewed as a special case of

the following two-stage algorithm.

Stage 1. We accomplish the following two tasks with only access to β̂(1), |β̂(2)|, and domain knowledge

or information from independent data sources: (a) order the p hypotheses, H(1), . . . , H(p), so

that the front ones are more likely rejected; and (b) make a guess ψj on the sign of βj, where

ψj = 1 corresponds to βj > 0 and −1, otherwise.

Stage 2. We verify the consistency of our guesses by comparing ψj with sign(β̂
(2)
j ). For each k, we

reject those hypotheses among H(1), . . . , H(k−1) with sign(β̂
(2)
(j) ) = ψ(j). We estimate the FDP

of this rejection set as:

FDPk =
1 +

∑
i<k 1(sign(β̂

(2)
(i) ) 6= ψ(i))∑

i<k 1(sign(β̂
(2)
(i) ) = ψ(i)) ∨ 1

. (1)

The procedure ends by finding k̂ = arg maxk{FDPk ≤ q}.

To show that DS is a special case of the above two-stage algorithm, we set ψj = sign(β̂
(1)
j ) and

sort the hypotheses based on |Mj| in the decreasing order. Recall the mirror statistics:

Mj = sign(β̂
(1)
j )sign(β̂

(2)
j )f(|β̂(1)

j |, |β̂
(2)
j |), (2)

in which f(u, v) is non-negative, symmetric about u and v, and monotonically increasing in both

u and v. For each k, we have:

FDPk =
1 +

∑
i<k 1(sign(β̂

(2)
(i) ) 6= ψ(i))∑

i<k 1(sign(β̂
(2)
(i) ) = ψ(i)) ∨ 1

=
1 +

∑
i<k 1(M(i) < 0)∑

i<k 1(M(i) > 0) ∨ 1
=

1 +
∑

j 1(Mj < −|M(k)|)∑
j 1(Mj > |M(k)|) ∨ 1

, (3)
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where the last equality holds because the order of the hypotheses is given by |Mj|. Note that the

key step in Algorithm 1 in Dai et al. (2023) is to find the smallest t > 0, denoted as τq, such that

F̂DP(t) =
1 +

∑
j 1(Mj < −t)∑

j 1(Mj > t) ∨ 1
≤ q. (4)

We then reject all the hypotheses with Mj > τq. This is equivalent to Stage 2 since the value of

F̂DP(t) only changes when t crosses some |Mj|.

We should emphasize that sign(β̂
(2)
j ) can not be used at Stage 1. Specifically, the validity of

the two-stage algorithm relies on the following approximation:∑
i<k

1(sign(β̂
(2)
(i) ) 6= ψ(i), H(i) is null) ≈

∑
i<k

1(sign(β̂
(2)
(i) ) = ψ(i), H(i) is null). (5)

The above equation holds since sign(β̂
(2)
(j) ) has equal probability of being ±1 under the null and is

independent of the ordering of the hypotheses and the choice of ψj.

2.2 Prior-assisted DS

The flexible two-stage formulation of DS enables us to incorporate prior information into the

procedure. For example, in genetic studies, we may have domain knowledge and other independent

data showing that certain genetic variations are more likely associated with a given disease. To

illustrate this, we consider the following toy example.

Assume that β̂
(1)
j and β̂

(2)
j independently follow N(βj, 1), where βj =

√
δ log p for j ∈ S1, with

δ controlling the signal-to-noise ratio. Suppose we know that all the βj’s are all non-negative. We

consider the following three mirror statistics:

Mj = sign(β̂
(1)
j )sign(β̂

(2)
j )(|β̂(1)

j |+ |β̂
(2)
j |),

M̃j = sign(β̂
(2)
j )(|β̂(1)

j |+ |β̂
(2)
j |),

M̂j = sign(β̂
(2)
j )(β̂

(1)
j + |β̂(2)

j |).

(6)

From the two-stage perspective, we can carefully specify ψj and order the hypotheses using the

prior information that βj’s are non-negative. While Mj sets ψj = sign(β̂
(1)
j ) without considering

any prior information, M̃j and M̂j set their ψj = 1 to be consistent with the prior. As for ordering

the hypotheses, |β̂(1)
j + |β̂(2)

j || used in M̂j is a better ranking than |β̂(1)
j |+ |β̂

(2)
j | used in Mj and M̃j.

Indeed, if we know βj ≥ 0 and see that β̂
(1)
j < 0, we should downgrade the priority of Hj.
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Figure 1: Empirical FDRs, powers (left figure) and ROC curve (right figure) for the Normal mean model. We set

the number of features p = 800 and the number of relevant features p1 = 160. We vary the signal strength from 0.2

to 1.0. Each dot and each line represent the average from 500 independent runs.

We set the number of features as p = 800, of which p1 = 160 are relevant features. We

replicate DS 500 times, and the results of the FDR, power, and ROC curve are shown in Figure

1. Empirically, all three mirror statistics control FDR across all settings, with M̂j enjoying the

best ROC curve and the highest power, indicating that a better choice of ψj and a carefully-

designed ordering strategy can both boost the power. This example demonstrates that given prior

information, there could be better choices of mirror statistics than the form of Mj in (6), which

was proven to be optimal in a general prior-free setting (see Proposition 2.1 in Dai et al. (2022)).

Note that M̂j may still be sub-optimal mirror statistics in this case. It is an interesting challenge

for the researchers to figure out how to systematically and optimally incorporate prior information

in DS and other FDR control methods to improve their powers.

3 Connections to E-value

3.1 Derandomize DS via e-value

As pointed out in the discussions of Xia&Cai and Zhang&Ma, the e-BH procedure (Wang and

Ramdas, 2022) has received much attention recently as an alternative to p-value based FDR control

5



methods. Ren and Barber (2023) and Xia&Cai show that both Knockoff and DS can be formulated

as an e-BH procedure. This leads to a different way of derandomizing DS using e-values than MDS.

Let M
(k)
j denote the mirror statistic of feature Xj in the k-th data split, k ∈ [m]. Define

e
(k)
j = p

1(M
(k)
j > τ

(k)
α )

1 +
∑p

s=1 1(M
(k)
s < −τ (k)α )

, (7)

in which τ
(k)
α is the threshold defined in Algorithm 1 in Dai et al. (2023). Note that FDR control of

the e-BH procedure outlined in the Algorithm 1 below holds for any α > 0, although this parameter

can potentially affect power. Ren and Barber (2023) suggested α = q/2, and pointed out that α

should be smaller than q when m > 1; otherwise, the e-BH procedure may have zero power. In

practice, without losing asymptotic FDR control, we may try multiple choices of α < 1 and choose

the one that yields the largest selection set.

Algorithm 1 Derandomize DS: an e-BH procedure.

1. Calculate the average e-values: ēj =
∑m

k=1 e
(k)
j /m, j ∈ [p].

2. Sort the average e-values: ē(1) ≥ ē(2) ≥ . . . ≥ ē(p).

3. Given a designated FDR level q ∈ (0, 1), find the largest ` ∈ [p] such that ē(`) ≥ p/(`q).

4. Select the features Ŝ = {j : ēj ≥ p/(`q)}.

Theorem 3.1. Under Assumptions 3.1 and 4.1 in Dai et al. (2023) for the moderate-dimensional

and the high-dimensional regime, respectively, the e-BH procedure in Algorithm 1 asymptotically

controls FDR at any designated level q ∈ (0, 1).

The proof of Theorem 3.1 is very similar to that of Theorem 3 in Ren and Barber (2023). The

key is to establish

E

[ ∑
j∈S0

1(M
(k)
j > τ

(k)
α )∑

j∈S0
1(M

(k)
j < −τ (k)α )

]
≤ 1 + o(1)

for ∀α > 0, which, as shown in Remark 3.4 in Dai et al. (2023), is also crucial for justifying the

DS procedure, and relies on certain assumptions on the covariance matrix of the features.
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3.2 Comparison with MDS

The inclusion rate and the e-value has the following relationship.

Theorem 3.2. ∀α > 0, assume MDS targets at the FDR level α and the e-value is defined as in

Equation (7), then the inclusion rate Ij and the average e-value ēj satisfy

αēj
pIj
→ 1

under Assumptions 3.1(2) or 4.1(3)(b) of Dai et al. (2023) for moderate or high dimensions,

respectively.

Remark 3.1. Note that both the inclusion rate Ij and the average e-value ēj can be written as

1

m

m∑
k=1

w
(k)
j 1(M

(k)
j > τ (k)α ),

in which the weight w
(k)
j is

Ij : 1/w
(k)
j =

p∑
s=1

1(M (k)
s > τ (k)α ); ēj : p/w

(k)
j = 1 +

p∑
s=1

1(M (k)
s < −τ (k)α ).

By the definition of τα, we have αēj ≥ pIj. Theorem 3.2 shows that this inequality in fact becomes

an equality as p → ∞. In fact, the above theorem holds true only if mink∈[m] |Ŝ(k)| → ∞, which

can be guaranteed by Assumption 3.1(2) and Assumption 4.1(3)(b) of Dai et al. (2023).

We shall emphasize that MDS and the e-BH procedure are still very different despite of the

nice coincidence in Theorem 3.2. For example, the connection between their selection rules remains

unclear. We empirically compare the two procedures on a simple Normal means model. We set

n = 500, p = 800, and sample Xij from N(µj, 1) for i ∈ [n], j ∈ [p]. We set 20% of µj’s to be

nonzero, and generate them from N(0, 2r log p/n). r is referred to as the signal strength, and we

test out scenarios with r varing from 0.2 to 1.8. The mirror statistic for each µj is

sign(X̄
(1)
j X̄

(2)
j )(|X̄(1)

j |+ |X̄
(2)
j |),

where X̄
(1)
j and X̄

(2)
j are the sample means on each half of the data. We also vary the designated

FDR control level q from 0.05 to 0.3. The simulation results are summarized in Figure 2. Both

methods control FDR well across most of the settings. MDS tends to have a higher power when

the signal is weak or the designated level q is small.
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Figure 2: Empirical FDRs and powers for the Normal mean model. We set the number of samples n = 500 and

the number of features p = 800. We vary the signal strength from 0.2 to 1.8, and vary the designated FDR control

level q from 0.05 to 0.3. Each dot represents the average from 100 independent runs.
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4 Power Analysis

Law&Bühlmann compared GM and DS for linear models in the moderate-dimensional regime where

p/n→ κ ∈ [0, 1/2). We here extend their results to Knockoffs. Consider the linear model:

y = Xβ? + ε, (8)

in which Xn×p is a random design matrix and εn×1 ∼ N(0, σ2In). Let X̃ be the Knockoff features.

Let Σ and Σ? denote the covariance matrices for X and [X, X̃], respectively. Theorem 4.1 below

summaries the variance calculations for the regression coefficient estimator β̂ of different methods.

Similar calculations also apply to generalized linear models (GLMs) in the moderate-dimensional

regime.

Theorem 4.1. Consider the linear model in (8) where the rows of X are i.i.d. samples from

N(0,Σ). Denote Θ = Σ−1, Θ? = Σ?−1 and τ 2j = 1/Θjj, ω
2
j = 1/Θ?

jj, j ∈ [p]. When n > 2p + 2,

we have

Estimator β̂OLS
j β̂KN

j (β̂GM
j,1 + β̂GM

j,2 )/2 (β̂DS
j,1 + β̂DS

j,2 )/2

Variance
σ2

τ2j (n− p− 1)

σ2

ω2
j (n− 2p− 1)

σ2

τ2j (n− p− 2)

σ2

τ2j (n− 2p− 2)

OLS yields the lowest variance of β̂, which is free of additional noise (GM, Knockoff) or sample

splitting (DS). Besides, when p/n → κ, the relative efficiency of GM, DS and Knockoff against

OLS are 1, (1− 2κ)/(1− κ), and ((1− 2κ)ω2
j )/((1− κ)τ 2j ), respectively, i.e., OLS = GM > DS >

Knockoff. The gap between GM and DS vanishes as κ→ 0, and the gap between DS and Knockoff

is large if ω2
j/τ

2
j is small. Since Σ is a principal sub-matrix of Σ?, we have ω2

j ≤ τ 2j , where the

inequality is often strict. Specifically, τ 2j and ω2
j are the conditional variances of Xj given X−j and

[X−j, X̃], respectively. Thus, ω2
j = τ 2j only if Xj ⊥ X̃ | Xj. If we use OLS to rank features, the

optimal construction of X̃ should be the one that maximizes ω2
j , i.e., the MVR-Knockoff procedure

proposed in Spector and Janson (2020).

We consider a special case where Σ is block-wise diagonal. Each block is a 2×2 matrix, in which

the diagonal and the off-diagonal elements are 1 and ρ, respectively. In this case, τ 2j = 1− ρ2 and

all ω2
j ’s are equal for j ∈ [p]. We calculate the relative efficiency of the MVR-Knockoff procedure
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against DS, i.e., ω2
j/τ

2
j , for ρ varying from 0 to 0.9. Table 1 shows that the relative efficiency

of MVR-Knockoffs decreases as the correlation ρ increases. This is consistent with the patterns

observed in Figures 2, 3, and 4 of Dai et al. (2023).

ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ω2
j/τ

2
j 1.00 0.99 0.97 0.93 0.89 0.85 0.82 0.78 0.75 0.72

Table 1: Relative efficiency of the MVR-Knockoff procedure against DS.

We end this section by clarifying the question raised by Claeskens&Jansen&Zhou regarding the

power of DS and MDS in ultra-sparse models. Specifically, they see a power decrease of general

contrast-based methods outlined in Section 2 (e.g., DS/MDS/Knockoff) when the model is ultra-

sparse. For example, when the number of relevant features is only 5, if we set q = 0.1, the selection

rule in (4) will make no rejections even when the signal-to-noise ratio is arbitrarily high (because of

“+1” in its numerator). This also explains why the power gap between BHq and the contrast-based

methods disappears when we set a larger q.

5 Future Directions

Motivated by the fascinating comments and analyses from our discussants, in this section, we list

some future directions that may enhance the performance and broaden the applicability of DS and

other FDR-control methods.

A number of discussants have suggested alternative approaches to DS. Janson highlighted the

post-selection literature, which provides a novel approach for obtaining two independent estimators

by introducing additional randomness to the response variable. Rasines and Young (2022) showed

that this approach allows for a higher selection and inferential power than DS. Li&Yao&Zhang

proposed a “mirror-statistic-free” method, which relies on well-designed t-statistics and is also

free of estimating the variance factor. Their simulation showed that the proposed σn-BH method

achieved a comparable or even higher power compared to DS. However, their approach still faces

challenges of instability and potential power loss associated with data splitting, and the MDS

framework may help resolve these issues. Xia&Cai corrected the BHq procedure proposed in Ma
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et al. (2020) by adopting the variance estimator adjustment from Liu et al. (2021), which can be

a subject of independent investigation.

Law&Bühlmann proposed a high dimensional GM approach for linear models and demonstrated

encouraging results in simulation studies. However, their method is computationally demanding,

which requires a total of p2 Lasso fittings. The fast data-splitting technique proposed by Li&Yao&

Zhang offers potential solutions to speed up GM in high dimensions. Furthermore, extending the

methodology to high-dimensional GLMs presents an intriguing avenue for future explorations.

Claeskens&Jansen& Zhou raised an important point regarding the choice and the impact of

the hyper-parameters in our and other related FDR control methods. Theoretically speaking, the

hyper-parameters should be specified so that the sure screening property (Dai et al., 2022) or the

asymptotic normality (Dai et al., 2023) holds. It is important to investigate the robustness of our

method with respect to different choices of the hyper-parameters and examine how they affect the

performance of the approach.

It is of great value to generalize the DS framework to more structured and non-linear problems.

Zhang&Ma pointed out some promising applications of our method, e.g., high dimensional inter-

action analysis and collective analysis of data from multiple resources. For non-linear problems,

Zhao and Xing (2023) combines the DS procedure with sliced inverse regression to control the FDR

without assuming any conditional distribution of the response. Exploring group feature selection

and investigating additional applications in additive models could also yield fruitful insights.

Our rejoinder aims at stimulating further explorations in combining classic data-splitting ap-

proaches with FDR control. The discussions so far have highlighted several promising directions

for future research. We would like to express our sincere gratitude once again to the discussants

and editors for providing us with this invaluable opportunity to engage in this meaningful and

insightful intellectual exchange.
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