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1 Introduction

We thank all the discussants for their critical observations and inspiring comments, which not only
help improve our own understanding of the area but also stimulate many new thoughts for future
research. We are grateful to the editors for organizing this thought-provoking event and to all the
discussants for their invaluable contributions.

There are many exciting new ideas proposed by the discussants that are worthy of further
investigations. Claeskens, Jansen, and Zhou (Claeskens& Jansen&Zhou) raised important questions
regarding the ultra-sparse setting and the impact of tuning parameter choices; Janson pointed
out the two-stage formulation in Li and Fithian (2021) and possible extensions of DS; Law and
Biithlmann (Law&Biihlmann) provided detailed power calculations for GM and DS; Li, Yao and
Zhang (Li&Yao&Zhang) outlined numerous novel findings (e.g., scale-free FDR control, fastMDS
etc.); Xia and Cai (Xia&Cai) illustrated better ways of adjusting the BHq procedure and the
bias-variance tradeoff; Zhang and Ma (Zhang&Ma) pointed out a possible way of improving DS
by combining with factor-adjusted techniques and suggested future researches for regression with
hierarchically-structured predictors; and both Zhang&Ma and Xia&Cai pointed out a potential
connection between MDS and e-value based approaches.

In this rejoinder, due to the space limit, we are only able to highlight some comments raised
by the discussants and provide some analyses in response to a few of their suggestions. In Section
2, we reformulate DS into a two-stage algorithm and discuss new potentials to construct mirror
statistics. In Section 3, we connect the MDS procedure with e-value and propose a new algorithm to
derandomize DS. In Section 4, we compare the ranking qualities of different FDR control procedures
and thus provide a way to theoretically compare their powers. In Section 5, we discuss possible

improvements and future research directions.

2 Reformulation to Facilitate Use of Prior Information

2.1 A unified framework for Knockoff and DS

A common feature of Knockoff, DS, and GM is that they construct test statistics by contrasting two

important measures of each feature. We here revisit the contrasting formulation from a conditional



inference point of view to gain some new insights.

Li and Fithian (2021) showed that Knockoff can be recast as a conditional inference procedure
on a “whitened” estimator. Inspired by Janson’s comment, we present a similar reformulation. This
formulation not only brings together DS and Knockoff within a unified framework but also sheds
light on how to construct more powerful mirror statistics. It further complements the algebraic
equivalence between Knockoff and DS as pointed out by Li&Yao&Zhang. 1 Under the regression
setting with p features, and more generally, we consider p hypotheses H;, j € [p], each associated
with the null 8; = 0. Suppose we have two independent estimates B\](-l) and B](?) for coefficient f;,
of which B\J@) follows a normal distribution centered at 3;. DS can be viewed as a special case of

the following two-stage algorithm.

Stage 1. We accomplish the following two tasks with only access to | ﬁ ] and domain knowledge
or information from independent data sources: (a) order the p hypotheses, Hy,. .., Hy, so
that the front ones are more likely rejected; and (b) make a guess 1; on the sign of ;, where

1; = 1 corresponds to 3; > 0 and —1, otherwise.

Stage 2. We verify the consistency of our guesses by comparing v; with sign(@@)). For each k, we
reject those hypotheses among H(yy, ..., H(;—1) with sign(Bg))) = 1(j). We estimate the FDP

of this rejection set as:

rpp, - L Tica 16n(5E) # vio) 0

> Lsign(B2) = ¢ v 1

The procedure ends by finding k = arg max;{FDP}, < ¢}.

To show that DS is a special case of the above two-stage algorithm, we set 1); = sign(gj(.l)) and

sort the hypotheses based on || in the decreasing order. Recall the mirror statistics:

M; = sign(B}")sign (8 £(|BY71.187)), (2)

in which f(u,v) is non-negative, symmetric about u and v, and monotonically increasing in both

u and v. For each k, we have:

FDP, =

1L+ Y, L(sign(B(y) # v) LY LMy < 0) 1430 (M < —[ M) 3
Y) V1

i<k ]l(s%n(ﬁ(( ))) )V i UMy >0) v 3 LMy > [M) V1 (



where the last equality holds because the order of the hypotheses is given by |A;|. Note that the
key step in Algorithm 1 in Dai et al. (2023) is to find the smallest ¢ > 0, denoted as 7,, such that

L4+, 1(M; < —t)
S LM, > )V 1 =¢ )

FDP(t) =

We then reject all the hypotheses with M; > 7,. This is equivalent to Stage 2 since the value of
Fﬁ(t) only changes when ¢ crosses some |M,|.
We should emphasize that sign(@@)) can not be used at Stage 1. Specifically, the validity of
the two-stage algorithm relies on the following approximation:
Z l(sign(g(%)) # V@), Hyy is null) ~ Z ]1(81gn(5 ) = Yy, H is null). (5)
i<k i<k
The above equation holds since s&gn(ﬁ ) has equal probability of being +1 under the null and is
independent of the ordering of the hypotheses and the choice of ;.

2.2 Prior-assisted DS

The flexible two-stage formulation of DS enables us to incorporate prior information into the
procedure. For example, in genetic studies, we may have domain knowledge and other independent
data showing that certain genetic variations are more likely associated with a given disease. To
illustrate this, we consider the following toy example.

Assume that Bj(.l) and B\j@) independently follow N(f;,1), where 8; = \/dlogp for j € Sy, with
0 controlling the signal-to-noise ratio. Suppose we know that all the /3;’s are all non-negative. We

consider the following three mirror statistics:

M; = sign(5}")sign(87) (18] + |B1)),
M; = sign(B) (18] + 1B17)), (6)
M; = sign(B7) (Y + |B)).

From the two-stage perspective, we can carefully specify 1; and order the hypotheses using the
prior information that §;’s are non-negative. While M; sets 1); = sign(@(.l)) without considering
any prior information, ]\A/[/J and MJ set their 1); = 1 to be consistent with the prior. As for ordering
the hypotheses, |B\](.1) + |§§2) || used in ]\/4\] is a better ranking than |B\](.1)| + |B§2)] used in M, and ]\Ajj
Indeed, if we know 3; > 0 and see that B}l) < 0, we should downgrade the priority of H;.
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Figure 1: Empirical FDRs, powers (left figure) and ROC curve (right figure) for the Normal mean model. We set
the number of features p = 800 and the number of relevant features p; = 160. We vary the signal strength from 0.2

to 1.0. Each dot and each line represent the average from 500 independent runs.

We set the number of features as p = 800, of which p; = 160 are relevant features. We
replicate DS 500 times, and the results of the FDR, power, and ROC curve are shown in Figure
1. Empirically, all three mirror statistics control FDR across all settings, with ]\/4\] enjoying the
best ROC curve and the highest power, indicating that a better choice of 1, and a carefully-
designed ordering strategy can both boost the power. This example demonstrates that given prior
information, there could be better choices of mirror statistics than the form of M; in (6), which
was proven to be optimal in a general prior-free setting (see Proposition 2.1 in Dai et al. (2022)).

Note that ]\//TJ may still be sub-optimal mirror statistics in this case. It is an interesting challenge
for the researchers to figure out how to systematically and optimally incorporate prior information

in DS and other FDR control methods to improve their powers.

3 Connections to E-value

3.1 Derandomize DS via e-value

As pointed out in the discussions of Xia&Cai and Zhang&Ma, the e-BH procedure (Wang and

Ramdas, 2022) has received much attention recently as an alternative to p-value based FDR control



methods. Ren and Barber (2023) and Xia&Cai show that both Knockoff and DS can be formulated
as an e-BH procedure. This leads to a different way of derandomizing DS using e-values than MDS.

Let M ;k) denote the mirror statistic of feature X in the k-th data split, k € [m]. Define

k k
) IL(M]( ) s 7l ))

P : 7
Tt i < -7y "

in which 7" is the threshold defined in Algorithm 1 in Dai et al. (2023). Note that FDR control of
the e-BH procedure outlined in the Algorithm 1 below holds for any . > 0, although this parameter
can potentially affect power. Ren and Barber (2023) suggested a = ¢/2, and pointed out that o
should be smaller than ¢ when m > 1; otherwise, the e-BH procedure may have zero power. In
practice, without losing asymptotic FDR control, we may try multiple choices of a@ < 1 and choose

the one that yields the largest selection set.

Algorithm 1 Derandomize DS: an e-BH procedure.

1. Calculate the average e-values: ; = > )", eg.k) /m, j € [p].
2. Sort the average e-values: €(1) > €) > ... > €(p).
3. Given a designated FDR level ¢ € (0, 1), find the largest ¢ € [p] such that ey > p/({q).

4. Select the features S = {j : e; > p/(lq)}.

Theorem 3.1. Under Assumptions 3.1 and 4.1 in Dai et al. (2023) for the moderate-dimensional

and the high-dimensional regime, respectively, the e-BH procedure in Algorithm 1 asymptotically
controls FDR at any designated level ¢ € (0,1).

The proof of Theorem 3.1 is very similar to that of Theorem 3 in Ren and Barber (2023). The

key is to establish
> ess LMP > )

J

e, LM < —7)

<1+o(1)

for Vao > 0, which, as shown in Remark 3.4 in Dai et al. (2023), is also crucial for justifying the

DS procedure, and relies on certain assumptions on the covariance matrix of the features.



3.2 Comparison with MDS
The inclusion rate and the e-value has the following relationship.

Theorem 3.2. Va > 0, assume MDS targets at the FDR level a and the e-value is defined as in
Equation (7), then the inclusion rate I; and the average e-value €; satisfy
oz_éj
pl;
under Assumptions 3.1(2) or 4.1(3)(b) of Dai et al. (2023) for moderate or high dimensions,

—1

respectively.

Remark 3.1. Note that both the inclusion rate I; and the average e-value €; can be written as

1~ k
EZU}; )]1(M]( ) > Tg"’)),
k=1
in which the weight wj(-k) 18
p p
L 1wl =3 1MW > 2 0) g p/el =14 Y 1(M® < -7 ®),
s=1 s=1

By the definition of 7,, we have ae; > pl;. Theorem 5.2 shows that this inequality in fact becomes
an equality as p — oo. In fact, the above theorem holds true only if mingepy, \:S'\(’“)] — 00, which

can be guaranteed by Assumption 3.1(2) and Assumption 4.1(3)(b) of Dai et al. (2023).

We shall emphasize that MDS and the e-BH procedure are still very different despite of the
nice coincidence in Theorem 3.2. For example, the connection between their selection rules remains
unclear. We empirically compare the two procedures on a simple Normal means model. We set
n = 500, p = 800, and sample X;; from N(u;,1) for i € [n],5 € [p]. We set 20% of u;’s to be
nonzero, and generate them from N(0,2rlogp/n). r is referred to as the signal strength, and we

test out scenarios with r varing from 0.2 to 1.8. The mirror statistic for each p; is
oo () 5@y (2
sign(X{V X ) (| XV] + X)),

where X ;1) and X ;2) are the sample means on each half of the data. We also vary the designated
FDR control level ¢ from 0.05 to 0.3. The simulation results are summarized in Figure 2. Both
methods control FDR well across most of the settings. MDS tends to have a higher power when

the signal is weak or the designated level ¢ is small.
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Figure 2: Empirical FDRs and powers for the Normal mean model. We set the number of samples n = 500 and
the number of features p = 800. We vary the signal strength from 0.2 to 1.8, and vary the designated FDR control

level g from 0.05 to 0.3. Each dot represents the average from 100 independent runs.



4 Power Analysis

Law&Biihlmann compared GM and DS for linear models in the moderate-dimensional regime where

p/n — k € [0,1/2). We here extend their results to Knockoffs. Consider the linear model:
y=Xp"+e (8)

in which X, is a random design matrix and €,,; ~ N(0,021,). Let X be the Knockoff features.
Let ¥ and ¥* denote the covariance matrices for X and [X, X ], respectively. Theorem 4.1 below
summaries the variance calculations for the regression coefficient estimator B\ of different methods.
Similar calculations also apply to generalized linear models (GLMs) in the moderate-dimensional

regime.

Theorem 4.1. Consider the linear model in (8) where the rows of X are i.i.d. samples from

N(0,%). Denote © = 7', ©* =S and 77 = 1/0y;, w? =1/0%,, j € [p]. Whenn > 2p+ 2,

J Jj’
we have
Estimator @OLS BJKN (ﬁﬂw + ]G%VI)/Q (@Dls + @Dzs)/Q
o2 o2 o? o?
Vari
ariance sz(n_p_ 1) wjz(n—Qp— 1) Tf(n—p—2) sz(n—Qp—2)

OLS yields the lowest variance of 3 , which is free of additional noise (GM, Knockoff) or sample
splitting (DS). Besides, when p/n — k, the relative efficiency of GM, DS and Knockoff against
OLS are 1, (1 —2x)/(1 — &), and ((1 = 2k)w7)/((1 = K)77), respectively, i.e., OLS = GM > DS >
Knockoff. The gap between GM and DS vanishes as k — 0, and the gap between DS and Knockoff
is large if wjz / 7']2 is small. Since X is a principal sub-matrix of »X*, we have w]2- < 7']2, where the
inequality is often strict. Specifically, 7']-2 and w]2- are the conditional variances of X; given X_; and
[X_j,)~(], respectively. Thus, wf = 77 only if X; L X | X;. If we use OLS to rank features, the
optimal construction of X should be the one that maximizes w?-, i.e., the MVR-~-Knockoff procedure
proposed in Spector and Janson (2020).

We consider a special case where Y is block-wise diagonal. Each block is a 2 x 2 matrix, in which

the diagonal and the off-diagonal elements are 1 and p, respectively. In this case, 7']-2 =1-—p?and

all w?-’s are equal for j € [p]. We calculate the relative efficiency of the MVR-Knockoff procedure
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against DS, i.e., w?- /7'j27 for p varying from 0 to 0.9. Table 1 shows that the relative efficiency
of MVR-~Knockoffs decreases as the correlation p increases. This is consistent with the patterns

observed in Figures 2, 3, and 4 of Dai et al. (2023).

p o0 01 02 03 04 05 06 07 08 09
wf-/sz 1.00 0.99 097 093 0.89 0.8 0.82 0.78 0.75 0.72

Table 1: Relative efficiency of the MVR-~Knockoff procedure against DS.

We end this section by clarifying the question raised by Claeskens&Jansen&Zhou regarding the
power of DS and MDS in ultra-sparse models. Specifically, they see a power decrease of general
contrast-based methods outlined in Section 2 (e.g., DS/MDS/Knockoff) when the model is ultra-
sparse. For example, when the number of relevant features is only 5, if we set ¢ = 0.1, the selection
rule in (4) will make no rejections even when the signal-to-noise ratio is arbitrarily high (because of
“+1” in its numerator). This also explains why the power gap between BHq and the contrast-based

methods disappears when we set a larger q.

5 Future Directions

Motivated by the fascinating comments and analyses from our discussants, in this section, we list
some future directions that may enhance the performance and broaden the applicability of DS and
other FDR-control methods.

A number of discussants have suggested alternative approaches to DS. Janson highlighted the
post-selection literature, which provides a novel approach for obtaining two independent estimators
by introducing additional randomness to the response variable. Rasines and Young (2022) showed
that this approach allows for a higher selection and inferential power than DS. Li&Yao&Zhang
proposed a “mirror-statistic-free” method, which relies on well-designed t-statistics and is also
free of estimating the variance factor. Their simulation showed that the proposed o,-BH method
achieved a comparable or even higher power compared to DS. However, their approach still faces
challenges of instability and potential power loss associated with data splitting, and the MDS

framework may help resolve these issues. Xia&Cai corrected the BHq procedure proposed in Ma
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et al. (2020) by adopting the variance estimator adjustment from Liu et al. (2021), which can be
a subject of independent investigation.

Law{&Biihlmann proposed a high dimensional GM approach for linear models and demonstrated
encouraging results in simulation studies. However, their method is computationally demanding,
which requires a total of p? Lasso fittings. The fast data-splitting technique proposed by Li& Yao&
Zhang offers potential solutions to speed up GM in high dimensions. Furthermore, extending the
methodology to high-dimensional GLMs presents an intriguing avenue for future explorations.

Claeskens&Jansen& Zhou raised an important point regarding the choice and the impact of
the hyper-parameters in our and other related FDR control methods. Theoretically speaking, the
hyper-parameters should be specified so that the sure screening property (Dai et al., 2022) or the
asymptotic normality (Dai et al., 2023) holds. It is important to investigate the robustness of our
method with respect to different choices of the hyper-parameters and examine how they affect the
performance of the approach.

It is of great value to generalize the DS framework to more structured and non-linear problems.
Zhang&Ma pointed out some promising applications of our method, e.g., high dimensional inter-
action analysis and collective analysis of data from multiple resources. For non-linear problems,
Zhao and Xing (2023) combines the DS procedure with sliced inverse regression to control the FDR
without assuming any conditional distribution of the response. Exploring group feature selection
and investigating additional applications in additive models could also yield fruitful insights.

Our rejoinder aims at stimulating further explorations in combining classic data-splitting ap-
proaches with FDR control. The discussions so far have highlighted several promising directions
for future research. We would like to express our sincere gratitude once again to the discussants
and editors for providing us with this invaluable opportunity to engage in this meaningful and

insightful intellectual exchange.
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