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Abstract: The food production system is vulnerable to diseases more than ever, and the threat is

increasing in an era of climate change that creates more favorable conditions for emerging diseases.

Fortunately, scientists and engineers are making great strides to introduce farming innovations to

tackle the challenge. Unmanned aerial vehicle (UAV) remote sensing is among the innovations

and thus is widely applied for crop health monitoring and phenotyping. This study demonstrated

the versatility of aerial remote sensing in diagnosing yellow rust infection in spring wheats in a

timely manner and determining an intervenable period to prevent yield loss. A small UAV equipped

with an aerial multispectral sensor periodically flew over, and collected remotely sensed images of,

an experimental field in Chacabuco (−34.64; −60.46), Argentina during the 2021 growing season.

Post-collection images at the plot level were engaged in a thorough feature-engineering process by

handcrafting disease-centric vegetation indices (VIs) from the spectral dimension, and grey-level

co-occurrence matrix (GLCM) texture features from the spatial dimension. A machine learning

pipeline entailing a support vector machine (SVM), random forest (RF), and multilayer perceptron

(MLP) was constructed to identify locations of healthy, mild infection, and severe infection plots in

the field. A custom 3-dimensional convolutional neural network (3D-CNN) relying on the feature

learning mechanism was an alternative prediction method. The study found red-edge (690–740 nm)

and near infrared (NIR) (740–1000 nm) as vital spectral bands for distinguishing healthy and severely

infected wheats. The carotenoid reflectance index 2 (CRI2), soil-adjusted vegetation index 2 (SAVI2),

and GLCM contrast texture at an optimal distance d = 5 and angular direction θ = 135◦ were the

most correlated features. The 3D-CNN-based wheat disease monitoring performed at 60% detection

accuracy as early as 40 days after sowing (DAS), when crops were tillering, increasing to 71% and

77% at the later booting and flowering stages (100–120 DAS), and reaching a peak accuracy of 79% for

the spectral-spatio-temporal fused data model. The success of early disease diagnosis from low-cost

multispectral UAVs not only shed new light on crop breeding and pathology but also aided crop

growers by informing them of a prevention period that could potentially preserve 3–7% of the yield

at the confidence level of 95%.

Keywords: yellow rust; disease; crop yield; yield loss; UAV; machine learning; temporal-spatio-

spectral fusion

1. Introduction

Wheat (Triticum aestivum L.) is among the most widely grown crops but very vul-
nerable to various pests and diseases such as yellow rust, powdery mildew, aphids, etc.,
which devastate the harvesting yield and thus endanger the world’s future food secu-
rity and sustainability needs [1]. Timely, effective, and precise disease monitoring for
the crop is of paramount importance to properly intervene and prevent significant eco-
nomic losses in farming practice. This prevention can be conventionally accomplished
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by chemical treatment, which is a calendar-based application of fungicides irrespective
of disease development and risks. Such a control strategy, however, not only incurs a
high cost (economically) but also increases the likelihood of groundwater contamination
(environmentally) and chemical residues in agricultural products (socially) [2]. By a more
sustainable crop management strategy, crop growers can simply avoid susceptible wheat
varieties before planting, or by a decision-based practice, detecting and controlling diseases
as early as standing crops being invaded, to halt the build-ups in the crop during the
growing season.

The traditional approach to detecting the presence of abiotic stress in plants involves an
invasive sampling followed by a lab-based verification, which is labor-intensive and highly
subjective to sampling bias, and thus unsuitable for large-scale and temporal monitoring.
On the contrary, with its user-defined spatial-spectral-temporal resolution, cost-friendliness
and flexibility, unmanned aircraft vehicle (UAV) remote sensing, equipped with minia-
turized and mobile sensors such as red-green-blue (RGB), multispectral, hyperspectral,
thermal, radar, etc., is gathering ever-increasing interest in the search for sustainable disease
control [3–6]. Complementing the advent of UAV hardware platforms, the revolution in
location-aware science and artificial intelligence (GeoAI) has fundamentally changed the
methods of data curation as well as the transformation of the data into actionable informa-
tion to alert farmers to the danger of a site-specific disease invasion in a timely manner.

The focal investigation of this work was wheat yellow rust (Puccinia striiformis f. sp.
tritici), which is one of the serious diseases occurring in most wheat crops in normal
environmental and meteorological conditions of plant growth. The most visible symptom
of the infection, making it easily diagnosed, is yellow-colored stripes on wheat leaves.
The rust stripes are usually 2 or 3 mm wide, running parallel to the leaf veins [2]. This
epidemic disease can significantly reduce the yield and quality, statistically by 10–30%,
which amounts to a USD 5 billion loss worldwide each year [7,8]. In theory, infection
by disease inevitably alters certain physical, physiological, and biochemical properties of
plants, and as a result, the photosynthesis pattern would change accordingly and reflect
the change in the radiant energy absorption and reflectance rate, which could be measured
by remote sensors such as multispectral and hyperspectral imagers [1,9], spectrographs [2],
spectroscopes [10], spectrometers [11,12], or spectrophotometers [13]. For example, yellow
rust brings typical changes in wheat vigor, pigments, chlorophyll, and water stress. [14]
found that chlorophyll content reduction could be observed in the visible (VIS) and red-
edge spectral wavelengths (550 nm; 650–720 nm). Altered pigments of infected plants are
likely to reshape the VIS and near-infrared (NIR) (680–800 nm) signals [14]. Most of the
aforementioned studies monitored the yellow rust disease development on the leaf scale at
the ground or near-surface level. Essentially, the proximal sensing seemingly brings more
valuable insights of wavelength sensitivity for selection and analysis.

It would be highly desirable if the whole field could be under real-time surveillance
at the expense of a coarser spatial resolution. A very few pioneering studies have done
so, revealing initial insights relative to the disease. [15] adopted airborne hyperspectral
imaging and demonstrated the photochemical reflectance index (PRI) [16] as the most
correlated index to yellow rust disease severity. The hyperspectral imaging system is
more sophisticated, but offers higher spectral resolution to establish PRI index (R531 and
R570) than the multispectral imager in this study. The aerial hyperspectral platform also
carries its own drawbacks, as it requires well-trained users to perform multiple complex
image processing, which possibly impedes its wide usage. [4] acquired aerial five-band
multispectral images and found the red and NIR bands, along with the normalized differ-
ence vegetation index (NDVI) [17], to be effective indicators to diagnose yellow rust. The
cross-sectional observation of the study disregarded temporal disease dynamics; however,
the temporal information could suggest a life-or-death decision to farmers. In their later
spatio-temporal study [6], the red, NIR, and NDVI were the most informative predictors
to detect yellow rust at 45 days after inoculation. These studies differed from our study
in that the disease was experimentally inoculated to wheat plants with labeled inoculum
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sizes that caused various expected levels of infection damage. A natural infection appears
to be more unpredictable at a preventable stage, as the disease spread, speed, and severity
are almost invisible to humans.

Besides original spectral bands, establishing vegetation indices (VIs) is a common prac-
tice of feature engineering in vegetation remote sensing research because of the effectiveness
of VIs in sensing phenological, physiological, and biochemical changes inside the crop
leaves. However, once exposed to a disease, the crops activate defenses that even change ex-
ternal characteristics such as stem height, leaf size, shape, roughness, morphology, etc. [18].
Texture features prove to be useful in identifying spatial variations in adjacent pixels con-
taining crop leaves and canopy surfaces, thereby capturing structural and morphological
alterations caused by disease attacks [19,20]. Pioneering studies combining spectral and
texture features showed an improvement in characterizing yellow rust in leaf scale on
wheats [21–23] and on grapevines [24]. These studies, however, did not fully consider the
influence of relative distance nor angular directions of adjacent pixels in each spectral band.

With respect to prediction methods, it is ideal if an algorithm can ingest an intermin-
gling of the above-discussed data sources by some means of data fusion. The current
literature reported different methods with different capabilities of processing engineered
features and varying prediction accuracies. Machine learning methods such as support
vector machine (SVM) [25–27], random forest (RF) [4,27,28], and network-based multilayer
perceptron [27] are commonly and well known for effectively addressing the disease detec-
tion task. In the meantime, image-type feature learning has profoundly changed since the
introduction of convolutional operations in the last decade, and the continuous improve-
ments to deep convolutional neural networks (CNNs) in collaborative efforts [29–31]. In
a narrower review of the success of yellow rust monitoring, [28] developed a deep CNN
to distinguish healthy wheats from yellow-rust-infected wheats in aerial high-resolution
hyperspectral images and came up with an accuracy of 85% at late stages, surpassing the
RF classifier’s result (77%). [32] monitored a rust invasion on UAV multispectral images
by a CNN-based U-Net semantic segmentation but actually encountered the challenge of
limited data annotations. [33] proposed another semantic segmentation model, namely a
pyramid scene parsing network (PSPNet), to classify healthy wheat, yellow rust wheat, and
bare soil in small-scale UAV RGB images. The selected studies above and current literature
mostly developed a custom network relying on a 2-dimensional variant of convolutional
layers and overlooked the potential of a 3-dimensional version that could possibly learn
inter-correlated features (e.g., spectral-spatial-temporal features). The implementation of
3D convolutional neural networks (3D-CNNs) has not been scarce in other precision agri-
culture applications, including, but not limited to, early detection of a grapevine disease [9],
soybean and corn yield estimation [34], and maize phenotyping [35].

To bridge the literature gap discussed above, the current research was proposed to
explore the detection ability of the UAV remote sensing platform in the early stages of yellow
rust infection in spring wheats to determine, in a timely manner, an intervenable period
and preserve yield potential. To address the overarching objective, we aimed to achieve
the following sub-objectives: (1) investigating the detection ability of aerial multispectral
imagery remote sensing within a framework of machine learning and deep learning at
early infection stages of yellow rust in spring wheats, (2) examining the significance of a
variety of features along the spectral, texture, and temporal dimensions, both singly and
in combination, in detecting disease infection, and (3) assessing the impact of yellow rust
progress on permanent yield loss of the spring wheat harvest as a function of time.

2. Study Area and Data Collection

2.1. Study Area

The location of the test site in this study (Figure 1) was Chacabuco (−34.64; −60.46),
Argentina, which has a mild and humid climate, with mild summers (reaching a mean of
24 ◦C during January, which is the warmest month) and cool winters (reaching a mean
temperature of 9.7 ◦C during the month of July, which is the coldest month). Precipitation
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is generally lower from May to September (winter months) and higher during spring,
summer, and fall, reaching a historical mean of around 1000 mm accumulated per year.

− −

 

− −
Figure 1. The study site with spring wheats grown in field plots. Inset maps show the location in

Chacabuco (−34.64; −60.46), Argentina.

Three varieties of spring wheat (intermediate-long cycle, intermediate cycle, short
cycle) were grown in 700 field plots arranged along 35 rows and 20 columns within the
field. The plot size was 1.2 × 5 m, which is a formation of 7 rows of wheat per each
plot. In the 2021 growing season, the studied spring wheat was planted on 19 June and
harvested on 16 December. The soil type was fine-silty, mixed, thermic Typic Argiudoll
(USDA-Soil Taxonomy V. 2006). The in-season field management uniformly applied to
all field plots was an equal amount of insecticide, herbicide, and fertilizer when needed,
but no fungicide was used, under an assumption that the crop’s biotic stress arising in the
season would be caused by yellow rust disease. If any other biotic stress appeared, it would
be rigorously documented.

2.2. Aerial Data Collection

A DJI P4 Multispectral (DJI Corporation, Shenzhen, China) was the primary aerial
platform to collect the remotely sensed data from the in-standing crop. The UAV was
equipped with a multispectral sensor that can capture five discrete spectral bands (blue,
red, green, red edge, and near infrared). Connected to the sensor was a sunlight irradiance
sensor that records the dowelling radiance from the solar illumination and subsequently
converts the radiance to reflectance values in a real-time manner, regardless of variations
in ambient light during the collection window (Figure 2). In exchange for a very fine
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spatial resolution of imagery data, we programmed the UAV to fly at as low an altitude
as 20 m from the surface and eventually received 1.04 cm per pixel. The low-altitude
but high-resolution option necessitated the separation of the flight plan to 2 consecutive
missions in the same day to fully cover the entire field. The first lengthwise flight mission
covered the first column to the 15th column, which collected 300 plots, and the second
covered 400 plots from the 16th column to 35th column.

 

Figure 2. The field of interest (A) and aerial remote sensing platforms included (B) DJI P4 Multispec-

tral (DJI Corporation, Shenzhen, China), (C) the sunlight irradiance sensor, (D) the multispectral

sensor mounted to the airframe by an automatic stabilizer.

To surveil the crop periodically, the aerial data collection was designed to meet the
temporal dimension by flying the UAV 5 times throughout the growing stages, from the
first flight on 30 August 2021 (tillering) until the last flight on 17 November 2021 (flowering).
Table 1 summarizes the collection campaigns for both UAV remote sensing and ground
truth data and corresponding growing stages.

Table 1. Summary of data collection types across crop growing stages in the season.

Dates 19 June 30 August 24 September 5 October 7 October 26 October 15 November 17 November 16 December

Days of
Sowing (DOS)

0 40 65 77 79 98 119 121 150

Crop
Growing Stages

Planting Tillering Stem Extension
Stem

Extension/
Heading

Stem
Extension/
Heading

Heading/
Flowering

Flowering Flowering Harvesting

Data
Collection Types

UAV UAV UAV UAV UAV
Health Status
Annotation

UAV
Dry

Grain Yield

The post-collection process for the UAV aerial data entailed the practice of geo-
referencing and ortho-mosaicking snapshot images to a geo-corrected ortho-image of
the entire wheat field. With the assistance of the real-time irradiance sensor mounted
upward on the UAV and the availability of the auto-conversion of radiance to reflectance
function, the imagery data could output the reflectance values without interference. Pix4D
mapper software (Pix4D SA, Lausanne, Switzerland) allowed mosaicking and rectifying
of the airborne multispectral images. ArcGIS Pro 3.0 (ESRI, Redlands, CA, USA) enabled
georeferencing the field ortho-images and ensured that each image of a collection date
plot-wise precisely overlaid the ones of the consecutive dates, which created a spatial-
spectral-temporal data cube.
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2.3. Ground Data Collection

A team of pathological and phenological specialists headed to the experiment site on
November 15th to visually assess the health status of the wheat and annotate them into
categories of healthy, mild disease, and severe disease (Figure 3). The specialists judged the
status of disease infection by spotting damage on the leaves of the plants in each plot. If
the plants’ leaves had no loss in green, the whole plot was labeled as healthy. If several
yellow spots existed, it was labeled as mild infection, and as severe infection if almost all
plants in the plots were yellowish. It was noted that the crop health status annotation was
restricted to 592 out of 700 plots due to a constraint on labor availability.

 

Figure 3. Close-view pictures of wheat plots labeled in three different categories: healthy (left), mild

infection (middle), and severe infection (right).

The grain yield data of the 700 plots were collected plot-by-plot at the end of growing
season by an Almaco harvester, which is specialized for harvesting with breeding purposes.
After the wheat in each plot was cut down, the seeds of each plot were taken into the
breeding station where they were sorted and weighed. A correction for humidity in the
grain composition was made to ensure standardization and compatibility. The measures
were finally extrapolated from kg/plot to kg/hectares.

3. Method

3.1. Descriptive Statistics

The wheat field had 700 plots in total, among which 592 plots were disease-annotated
and 108 plots were of unknown health status. The statistics of harvest yield (Table 2) on
the 700-sample dataset and 592-sample subset appeared to be almost identical across the
metrics, which implied the possibility of a result generalization from the smaller to the
larger set. Within the 592 plots, the pathologists categorized 106 healthy plots, 430 mild
infection plots, and 56 severe infection plots. A glimpse into the mean values among three
groups showed a subtle difference between the healthy and mild infection groups, while
the severe infection group seemed to have a lower mean yield than other two groups. An
in-depth analysis was carried out and is presented in the next sections.
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Table 2. Statistical summary of ground truth data on disease statuses and harvesting yield (Kg/ha).

700 Field Plots in Total

Total Plots592 Plots Identified Health Status 108 Plots Unknown
Health StatusHealthy Mild Infection Severe Infection

No. of plots 106 430 56 108 700
Mean 4046.35 4126.53 3482.70 4190.85 4072.80
STD 466.55 469.37 608.73 469.57 512.59
CV (%) 11.53 11.39 17.48 11.20 12.58
Min 3012 2196 2174 2277 2174
25% 3715.25 3871 3054.75 4038.75 3801.75
50% 4126 4166.50 3550 4251 4143
75% 4415.75 4435.75 3964.75 4450 4420.25
Max 5094 5279 4539 5124 5279

3.2. Feature Engineering for Machine Learning

By overlying plot boundary vectors on the field ortho-image, image chips of plots
were individually cropped, along with attached information of plot identification and
disease labels. Figure 4 displays a drone’s-eye view of each plot in each healthy standing
category: healthy, mild infection, and severe infection, as well as the corresponding spectral
profiles of each plot over time. It is vital to select and transform input features, converting
them from raw to amenable to a predictive model using machine learning. The process
becomes more necessary when the input data is a high-dimensional imagery type that can
decompose to thousands of features of spatial, spectral, and temporal dimensions, and, if
improperly engineered, unrelated and noisy features could eventually add to the model and
impede the model generalization. Isolating key spectral information, highlighting reflected
vegetation patterns, and bringing in phenological domain expertise to assemble vegetation
indices (VIs) is a usual practice of the vegetation remote sensing community. The very
thorough review of previous articles in the section above suggested a set of 43 common VIs
that could be extracted from aerial multispectral images (Table 3). The resultant plot-wise
VIs had values in different scales, which required a re-scaling before being funneled to a
machine learning pipeline described in the next section.

Table 3. Selected vegetation indices (VIs) extracted from the aerial multispectral images.

No. Index Names Index Formula Reference

1 Normalized difference vegetation index ndvi = (NIR − R)/(NIR + R) [17]
2 Green normalized difference vegetation index gndvi = (NIR − G)/(NIR + G) [36]
3 Ratio vegetation index rvi_1 = NIR/R [37]
4 Green chlorophyll index gci = (NIR/G) − 1.0 [38]
5 Red-green ratio vegetation index rgvi = R/G [39]
6 Difference vegetation index dvi = NIR − R [40]

7 Soil-adjusted vegetation index
L = 0.5
savi = ((NIR − R)/(NIR + R + L))×(1.0 + L)

[41]

8 Modified soil-adjusted vegetation index
msavi = 0.5 × ((2.0 × NIR) + 1.0 − ((2.0 × NIR + 1.0)2

− 8.0 × (NIR − R))0.5 [42]

9 Optimized soil-adjusted vegetation index osavi = (NIR − R)/(NIR + R + 0.16) [43]
10 Renormalized difference vegetation index rdvi = ((NIR − R)2/(NIR + R))0.5 [44]
11 Triangular vegetation index tvi = 60.0 × (NIR − G) −100.0 ∗ (R − G) [45]

12 Transformed soil-adjusted vegetation index
a, b = 0.96916, 0.084726
tsavi = (a × (NIR − a × R − b))/(a × NIR + R − a × b)

[46]

13 Perpendicular vegetation index
a, b = 0.96916, 0.084726
pvi = (NIR − a × R − b)/(1 + (a)2)0.5 [47]

14 Soil-adjusted vegetation index 2
a, b = 0.96916, 0.084726
savi_2 = NIR/(R − (b/a))

[48]
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Table 3. Cont.

No. Index Names Index Formula Reference

15 Adjusted transformed soil-adjusted vegetation index
a, b, X = 0.96916, 0.084726, 0.08
atsavi = (a × (−a × R − b))/(a × NIR + R − a × b + X
× (1 + np.square(a)))

[49]

16 Normalized difference water index ndwi = (G − NIR)/(G + NIR) [50]
17 normalized total pigment to chlorophyll a ratio index npci = (R − B)/(R + B) [51]
18 Simple ratio pigment index srpi = B/R [51]
19 Ratio vegetation index rvi_2 = NIR/G [52]
20 Modified chlorophyll absorption ratio index mcari = (RE − R − 0.2 × (RE − G)) × (RE/R) [53]
21 Modified chlorophyll absorption ratio index 1 mcari_1 = 1.2 × (2.5 × (NIR − R) − 1.3 × (NIR − G)) [54]

22 Modified chlorophyll absorption ratio index 2
mcari_2 = 1.5 × (2.5 × (NIR − R) − 1.3 × (NIR − G))
× ((2.0 × NIR + 1)2) − (6.0 × NIR − 5.0 × R) − 0.5

[54]

23 Modified triangular vegetation index 1 mtvi_1 = 1.2 × (1.2 × (NIR − G) − 2.5 × (R − G)) [54]

24 Modified triangular vegetation index 2
mtvi_2 = 1.5 × (1.2 × (NIR − G) − 2.5 × (R − G)) ×
((2 × NIR + 1)2) − (6.0 × NIR−5.0 × R) − 0.5

[54]

25
Ratio of Modified chlorophyll absorption ratio index
and Modified triangular vegetation index 2

r_mcari_mtvi2 = ((RE − R − 0.2 × (RE − G)) ×
(RE/R))/(1.5 × (1.2 × (NIR−G) − 2.5 × (R − G)) ×
((2 × NIR + 1)2) − (6.0 × NIR − 5.0 × R) − 0.5)

[55]

26 Enhanced vegetation index evi = (NIR − R)/(NIR + 6.0 × R − 7.5 × B + 1.0) [56]
27 Datt’s chlorophyll content datt = (NIR − RE)/(NIR − R) [57]
28 Normalized difference cloud index ndci = (RE − G)/(RE + G) [58]
29 Plant senescence reflectance index psri = (R − G)/RE [59]
30 Structure insensitive pigment index sipi = (NIR − B)/(NIR + R) [60]
31 Spectral polygon vegetation index spvi = 0.4 × 3.7 × (NIR − R) − 1.2 × |G − R| [61]

32
Transformed chlorophyll absorption in
reflectance index

tcari = 3.0 × ((RE − R) − 0.2 × (RE − G) × (RE/R)) [62]

33 Ratio of TCARI and OSAVI
r_tcari_osavi = (3.0 × ((RE − R) − 0.2 × (RE − G) ×
(RE/R)))/((NIR − R)/(NIR + R + 0.16))

[62]

34 Red edge relative index reri = (RE − R)/NIR [63]
35 Normalized difference red edge index ndre = (NIR − RE)/(NIR + RE) [64]
36 MERIS terrestrial chlorophyll index mtci = (NIR − RE)/(RE − R) [65]
37 Enhanced vegetation index 2 evi_2 = 2.5 × ((NIR − R)/(NIR + 2.4 × R + 1.0)) [66]
38 Red edge chlorophyll index reci = (NIR/RE) − 1 [38]
39 Normalized excess green index nexg = (2 × G − R − B)/(G + R + B) [67]
40 Normalized green-red difference index ngrdi = (G − R)/(G + R) [40]
41 Enhanced normalized difference vegetation index endvi = (NIR + G − 2.0 × B)/(NIR + G + 2.0 × B) [68]
42 Anthocyanin reflectance index 2 ari_2 = NIR × ((1.0/G) − (1.0/RE)) [69]
43 Carotenoid reflectance index 2 cri_2 = (1.0/G) − (1.0/RE) [70]

If vegetation indices (VIs) could presumably apprehend spectral details from the UAV
multispectral images, texture features is another level of information that measures the
spatial variation of image grayscale levels (i.e., a single spectral band) as a function of pixel
value scale. [71] brought out the concept of grayscale level of a co-occurrence matrix (GLCM)
to calculate texture details, which has since become a widely used feature extraction method
(Table 4). The matrix is a function of both the angular relationship and the distance between
two neighboring pixels. The suggested implementation considered four angular directions
(0◦, 45◦, 90◦, 135◦) between neighboring cells in the single-band image that are separated
by a distance, d (1, 3, 5 in this study). These angles and distance values were then input into
six second-order texture metrics in GLCM: Contrast, Dissimilarity, Homogeneity, Angular
Second Moment (ASM), Energy, and Correlation, for each of the five spectral bands (Blue,
Green, Red, Red-Edge, and NIR) and eventually generated 360 texture features.



Remote Sens. 2023, 15, 3301 9 of 28

 

−

−

−

−

−
− −

−

−

−

− − ∗ −

Figure 4. Random chip images and their spectral profiles of healthy, mild, and severe infection over

different times (date format: MM/DD/YYYY).

Table 4. GLCM texture features [71] extraction.

Texture Attributes Formulas
Neighboring

Distances
Angulars Spectral Bands Total

Contrast ∑
levels−1
i,j=0 Pi,j(i − j)2 3 values (1, 3, 5)

4 angles (0◦, 45◦,
90◦, 135◦)

5 bands (B, G, R,
RE, NIR)

60

Dissimilarity ∑
levels−1
i,j=0 Pi,j|i − j| 3 values (1, 3, 5)

4 angles (0◦, 45◦,
90◦, 135◦)

5 bands (B, G, R,
RE, NIR)

60

Homogeneity ∑
levels−1
i,j=0

Pi,j

1+(i−j)2
3 values (1, 3, 5)

4 angles (0◦, 45◦,
90◦, 135◦)

5 bands (B, G, R,
RE, NIR)

60

Angular second
moment (ASM) ∑

levels−1
i,j=0 P2

i,j
3 values (1, 3, 5)

4 angles (0◦, 45◦,
90◦, 135◦)

5 bands (B, G, R,
RE, NIR)

60

Energy
√

ASM 3 values (1, 3, 5)
4 angles (0◦, 45◦,

90◦, 135◦)
5 bands (B, G, R,

RE, NIR)
60

Correlation ∑
levels−1
i,j=0 Pi,j





(i−µi)(j−µj)
√

(σ2
i )

(

σ2
j

)



 3 values (1, 3, 5)
4 angles (0◦, 45◦,

90◦, 135◦)
5 bands (B, G, R,

RE, NIR)
60

Total Texture Attributes 360
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3.3. A Machine Learning Pipeline

An end-to-end machine learning construct orchestrates the flow of data into, and
output from, a set of multiple machine learning algorithms, which helps to streamline
and automate the workflows. A sequential series of tasks in the pipeline included data
scaling, data dimensional reduction, model selection, and prediction generation. As stated
above, the established VIs and texture features ranged in different scales and far from each
other, which could confuse the learning algorithms and make the models biased toward
features that have values higher in magnitude. In gradient descent-based models such
as neural networks, the varying feature scales could impede the flow of gradient descent
smoothly and hardly reach the minima of the loss function. Two common standard and
min-max feature scalers were plugged into the pipeline as alternatives for each task. Next,
principal component analysis (PCA and its kernel variants) functioned as a dimensional
reduction tool because the section above brought out a total of 403 features from 43 VIs and
360 texture attributes.

The most common supervised machine learning algorithms—support vector machine
(SVM) [72], random forest (RF) [73], and multi-layer perceptron (MLP) [74,75]—were
selected for the pipeline. The idea of SVM under the hood is that the algorithm can create
a line or hyperplane which separates the data into classes. The objective of SVM is to
maximize the distance (a.k.a. the margin) between the line and the points (a.k.a. support
vectors) closest to the line from classes. A number of SVM’s hyperparameters were passed
through the pipeline to fine-tune and attain an optimal model, including the C parameter
(controls the width of the margin), kernel function (projects original features to into a
higher-dimensional space via a mapping function), y parameter (controls the distance of a
single training example’s influence). RF is an ensemble learning algorithm that combines a
great number of base learners (i.e., a decision tree) to achieve a better performance than
each individual learner alone. Several of RF’s tunable hyperparameters were taken into the
pipeline, namely the number of decision trees (k), the maximum depth that a tree can grow,
and the minimum number of samples at the leaf nodes. The meta-learner RF also provided
insights on the importance of a feature to the prediction power via the mean decrease
impurity (MDI) analysis, which will be discussed in a later section. The MLP is a neural
network constructed by input and output layers, and one or more hidden layers with many
neurons stacked together. MLP relies on the feedforward and backpropagation learning
mechanism to iteratively adjust the weights in the network with the goal of minimizing
the loss function. A suite of hyperparameters needed tuning for the MLP including the
number of hidden layers, number of neurons in each hidden layer, activation functions for
each hidden layer, solver for weight optimization [76], learning rate schedule for weight
updates, size of minibatches for stochastic optimizers, and number of iterations. Further,
class weights were computed to offset the imbalance in the number of samples in each
disease status. Lastly, a GridSearch Python library assisted to combine different sets of
hyperparameters to search for an optimal pipeline, with a recommendation of at least 5-fold
inner cross-validation [77].

3.4. Deep Convolutional Neural Networks

The convolutional neural network (CNN) enjoys its popularity in computer vision
applications due to its efficient and robust learning process on imagery data. Compared
with fully connected neural network (FCN) types such as the MLP above, CNNs have a
substantially smaller number of weights in the network, largely relying on two important
schemes: sparse connectivity (a single element in the feature map is connected to only
a small patch of pixels) and parameter-sharing (the same weights are used for different
patches of the input image). From the review above, the 3D convolutional version proved
to be versatile for processing aerial remotely sensed images such as multispectral and
hyperspectral. The model architecture assembled 3D convolutional and subsampling
layers into a network that merits its automation and effectiveness at extracting jointly
spatial, spectral, and temporal representations encoded in adjacent pixels and spectral
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wavelengths in the continuum of multispectral images. The first three convolutional layers
were arranged with a 3D kernel cube of 5 × 5 × 3, a stride of 1 pixel, and the number
of filters starting from 32 in the first layers and raising to a power of 2 in the next layers.
On these particular data, the features tended to encode patterns over different tiles of
a feature map, and thus the 3D maximal subsampling layers apparently obtained more
informative and useful details than other pooling forms. The max pool kernel (2 × 2 × 1 in
this study) could also sustain with image noise while generating features due to the quality
of local invariance [35]. Inserted between the convolutional hidden layers was a batch
normalization [78], which normalizes outputs from the preceding layer before passing them
on as the input of the succeeding layer. The normalization over mini-batches also makes
weights easier to initialize and thus increase the speed of training cycles. The execution
of the prediction task was carried out by a block of two fully connected layers with 128
neuron units to map convolutional features to the output classes. The graphical illustration
for the custom 3D-CNN for disease status identification was sketched in Figure 5.

 

∑(்௉ା்ே)∑(்௉ା்ேାி௉ାிே)ଶ்௉ଶ்௉ାி௉ାிே்௉೔∑ ்௉೔ା ிே೔

Figure 5. Disease identification by Deep 3D Convolutional Neural Network (CNN).

A variety of well-established techniques to stabilize the network and reduce the risk
of model overfitting were implemented. The usage of the Glorot uniform distribution [75]
was for kernel weight initialization, while kernel bias was typically initialized with 0.
The rectified linear unit (ReLU) [79] is well-known for countering the vanishing gradient
problem when adding more layers to the network. The regularization scheme to prevent
model overfitting included dropout [80] and elastic net [81]. The former involves the
removal of random filters of convolutional layers in each cycle of training to reduce the
possibility of model overreliance on certain features. The latter is a network regularization
combined by L1 and L2 regularizers together to elevate the shortcomings of the individual
techniques by reducing the impact of different features while not eliminating all of the
features. The Adam (adaptive moment estimation) optimizer assisted in finding the global
minima owing to the capability of updating step size derived from the running average of
gradient moments. A dynamic learning rate scheme was set to exponentially reduce every
5 epochs as it reached closer to the minima. Lastly, data augmentation to the deep learning
model was achieved by iterating random cropping within a boundary of each plot via a
spatial fixed-size window [35]. With this technique, we oversampled the healthy and severe
classes to be nearly equal to the number of samples in the majority class, mild infection.

3.5. Model Evaluation and Assessment of Disease Impact on Yield Loss

It is essential to test the performance of prediction algorithms on independent and
unseen samples, and we therefore randomly split the dataset by a ratio of 60%-20%-20%
for training, validation, and testing. The model performance on the holdout test set laid a
basis for model comparison across algorithms and datasets. The disease status results were
computed and represented on a confusion matrix, which could later derive quantitative
metrics used to report the accuracy. Overall accuracy (OA) measures the number of correctly
classified samples to the total number of test samples. Dealing with imbalanced data in
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the study, the F1 score could express a better view on the model accuracy. Lastly, we also
reported the accuracy of each disease status and their meanings to the practicality.

OA =
∑(TP + TN)

∑(TP + TN + FP + FN)

F1 score =
2TP

2TP + FP + FN

Accuracy i class =
TPi

∑ TPi + FNi

where True Positive (TP) and True Negative (TN) are the number of plots for a disease
status correctly predicted by the model, and False Negative (FN) and False Positive (FP)
are the number of plots for a certain status wrongly predicted as another status.

4. Results

4.1. Temporal and Spectral Dimensions by Disease Status

It is worthwhile to provide exploratory insights of yellow rust progress by original
spectral bands along the temporal dimension (Figure 6). With only five original spectral
bands, the wheat health categories could be seemingly indistinguishable early in the
crop’s life course. The juxtaposed histograms of healthy, mild, and severe categories
in Figure 6a–d’s diagonal axes confirmed an undivided state. Progressing until 98 days
after sowing (DAS) (Figure 6e) and thereafter (Figure 6f), the severe infection was plainly
discernible by the red-edge and NIR bands. The separation of healthy and mild infection
appeared to be impossible over the course of time.

4.2. Dimensional Reduction by Principal Component Analysis

It became obvious that the contributory value of five raw spectral bands toward a
highly accurate disease identification was insufficient, which explains the addition of
43 common VIs and 360 texture attributes to improve the prediction accuracy. Figure 7
elucidates the result of dimension-reduction principal component analysis (PCA) in re-
ducing the combined data of five spectral bands, 43 VIs, 360 texture attributes, and their
temporal values of six collection dates from 2448 features to 10 features. It is noted that
with an assistance of GridSearch Python library, we experimented with a wide range of
a reduced number of components and came up with the best parameter at 10 features
(Figure 7a) that cumulatively explained 91% of the variance of the original data. The first
three PCA components (Figure 7b) revealed a definite opportunity to separate healthy
(green dots) and severe infection plots (red dots). The influence of each feature on the
PCA components can be partially viewed from Figure 7c. Among the 10 most positive
correlations with PCA components, the texture contrast with a distance of 5 and an angle
of 135◦ in all spectral bands at the early time had the most positive relationship with the
PCA components. Conversely, at the later stages, the vegetation indices such as SAVI2 and
CRI2 were among the 10 most negatively related to the PCA components. It bears noting
that the sign of correlation coefficients was not a matter, but the higher magnitude of the
coefficients between the texture features and the first PCA component (Figure 7c, dark red)
indicated a greater influence of texture features than VIs (Figure 7c, light red).
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Figure 6. Pairwise plots of the five normalized spectral bands (Blue, Green, Red, Red-edge, NIR) by

disease status (Healthy, Mild, and Severe infection) over the temporal dimension of (a) 30 August,

(b) 24 September, (c) 5 October, (d) 7 October, (e) 26 October, and (f) 17 November.
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Figure 7. A dimension-reduction principal component analysis (PCA) transformed the data from a

high-dimensional, temporal, and multicollinearity space to a low-dimensional and orthogonal space

of 10 principal components. (a) The 10 newly reduced features explained 91% of the original data

variance. (b) A 3D scatter plot between three PCA components by disease categories. (c) A heatmap

of PCA components influenced by original features (10 most positive influence and another 10 most

negative influence).

4.3. Classification Performance of Fused Data and Classifiers

The four machine learning classifiers resulted in different performance of disease
status identification on the spring wheat (Figure 8). At first glance, the resulting overall
accuracy (OA) varied from model to model, but increased along the temporal dimension.
With the earliest UAV aerial images on August 30th, the best model 3D-CNN could detect
the wheat’s health standing at the OA = 60%. As the season went on, the OA of the 3D-CNN
improved to 77% on the November 17th dataset. The temporal fusion of datasets apparently
became superior in the OA, with 65%, 71%, 77%, and 79%, respectively, as results from
the SVM, RF, MLP, and 3D-CNN. The RF and 3D-CNN handled the imbalance class issue
better than the SVM and MLP when the results from both SVM and MLP favored a certain
class (i.e., the healthy plots and mild infection plots, respectively).

The OA and accuracy of the individual classes above could be somewhat misinter-
preted by the imbalance class issue. Instead, F1 metrics are obviously a more precise and
interpretable measure, which shows in Figure 9. The MLP stood out as the best prediction
model for early aerial sensed images, while the 3D-CNN worked best with late-season
images. The F1 score of the 3D-CNN climbed up from 0.55 in the October data to 0.77 in
the November data and 0.79 in the combined data. The two classical machine learning
algorithms, SVM and RF, appeared to be less able to detect yellow rust disease in the early
growing season (e.g., F1 score = 0.4 by SVM prediction on September data).
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Figure 8. The overall accuracy (OA) and accuracy of each class as a result of support vector machine

(SVM), random forest (RF), multilayer perceptron (MLP), and 3D convolutional neural network

(3D-CNN) over temporal datasets (date format: MM/DD/YYYY).

Figure 9. The F1 metrics across four different machine learning algorithms over temporal datasets

(date format: MM/DD/YYYY).
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4.4. Spatial Mapping of Disease Status

If the numerical OA and F1 metrics in the above section were derived in the test
set to precisely reflect the detective performance of each algorithm, in this section we
projected the best trained models of temporal-spectral-texture fused data over the entire
field via spatial maps (Figure 10). Figure 10a visualizes an actual annotation of disease
statuses, where mildly infected plots took the majority of the field. The yellow rust disease
aggressively progressed in the bottom half of the field, or in the southeast part of the
cardinal direction. In the meantime, most of the upper wheat plots (the northwest portion)
were able to remain free from the disease attack. The disease developed severely in adjacent
plots, but those severely attacked plots seemed to be spatially disconnected and scattered
away. The machine learning algorithms on training plots (Figure 10b) were deployed
on the whole field and projected the predicted disease statuses back to the map. The
SVM and RF (Figure 10c,d) appeared to bias the disease detection as the two methods
favored more healthy plots. Generally, this false negative type could pose a greater risk as
disease-infected plots were diagnosed as healthy plots, which might lead to more disease
transmission to the whole field. The MLP and 3D-CNN’s prediction (Figure 10e,f) came
to more closely approach the actual patterns, which exactly located a greater number of
healthy plots in the northwest area and disease plots in the opposite direction.

 

Figure 10. Spatial distribution maps of disease statuses. (a) The 700 plots included 592 plots of

manually labeled healthy, mild infection, and severe infection and another 108 unknown plots (Null).

(b) The 592 plots further spatially and randomly split 80–20 into training (473 plots) and testing

(119 plots) during the modelling stage. (c) The trained SVM of temporal-spectral-texture fused data

predicting the entire field. (d) The trained RF of temporal-spectral-texture fused data predicting the

entire field. (e) The trained MLP of temporal-spectral-texture fused data predicting the entire field.

(f) The trained 3D-CNN of temporal UAV imagery predicting the entire field.
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4.5. Spatial Assessment of Disease Impact on Yield Loss

Assuming all other genetic and environmental factors held constant, the yellow rust
disease obviously exerted a great influence on the variance of the end-season wheat harvest.
Figure 11 demonstrates the adverse impact of the disease on wheat yield through a lens of
a comparison of yield among healthy, mild infection, and severe infection. The majority
of the field’s plots were mildly rust-infected (Figure 11a), and the yield harvested in these
mildly-infected plots exhibited a low standard deviation and clustered values around the
mean in a thin bell-shaped curve. More noticeably, the mean difference in yield between
healthy and mild infection plots (Figure 11b) was very subtle, possibly gaining 4000 kg/ha
on average when the season ended. The substantial loss of 500 kg/ha in the yield return
could be estimated in the plots attacked severely by the disease. The normalized yield of
each group centered their data to 0 with a standard deviation of 1 (Figure 11c), indicating
a minimal impact of the mild rust infection on the harvesting yield, as evidenced by a
few plots in the southeastern area (Figure 11c, yellow-colored plots) having yield loss. By
contrast, the very low yield values were obviously found in severe infection plots, which
clustered in the middle and southern part of the field (Figure 11c, dark-red-colored plots).

Figure 11. The disease-induced impact on yield loss. (a) The harvest yield distribution by wheat dis-

ease degrees. (b) Means and standard deviations of wheat yield by disease statuses. (c) A normalized

harvest yield by disease statuses on a spatial map.
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A one-way ANOVA hypothesis test was conducted to solidify the findings above.
Table 5 summarizes the ANOVA results, comparing the means of yield produced by
plots from three independent categories of wheat heath. The omnibus F-statistic = 43.92,
p < 0.001 indicated a statistically significant difference overall between all groups. A post
hoc Tukey’s Honest Significant Difference (HSD) [82] test was followed up to explore which
pairwise comparisons were truly significantly different. As a result, the test rejected the
difference in the yield harvested from healthy and mild infection plots (p = 0.2785) but
accepted the difference in yield harvested from either of the healthy or mild infection plots
and the severe infection plots. The test’s result also implied that in comparison with healthy
wheat, a severe attack of yellow rust can erode 563.65 Kg/ha from each plot on average.
The 95% confidence interval (CI) affirmed the yield loss from a severe infection could be
somewhere between 375.93 kg/ha and 751.37 kg/ha.

Table 5. Summary of one-way ANOVA test on the harvest yield among three health statuses.

Group 1 Group 2 Mean Difference p Value Lower CI Upper CI Reject

Healthy Mild 80.18 0.2785 −43.05 203.403 False
Healthy Severe −563.65 <0.001 −751.37 −375.93 True

Mild Severe −643.83 <0.001 −805.26 −482.40 True

F-statistic = 43.92, p < 0.001.

The test above firstly revealed a statistical indifference in wheat yield between healthy
and mild infection plots. The fact is that the abiotic stress is not a deciding factor affecting
potential yield, but other contributing factors could be considered, such as environmental
conditions, or, more importantly, genotypes, not to mention the interaction between them.
Plots were grown with different genotypes, among which some genotypes were highly
susceptible to the rust and some were very resistant. However, the genetic information
was proprietary to the data provider, and therefore we counted the factor as a limitation.
The test secondly affirmed the detrimental impact of severe yellow rust attack on the
harvesting yield. From this angle, correctly identifying the likelihood of a plot being
severely infected by yellow rust appeared to be more critical than predicting all the classes
at a high overall accuracy in determining the exact time for intervention. Both OA and
F1 score (Figures 8 and 9) favored the results of the 3D-CNN method at a higher accuracy,
though the SVM method (Figure 8) correctly detected a greater number of severe infection
plots than the 3D-CNN did. Figure 12 spatially presents 11 plots annotated as severe
infection in the test set (119 plots) and the associated SVM predictions over different stages
of the crop’s growing season. The probability of correctly detecting a severe attack of
yellow rust increased from 36.37% (4 out of 11 plots) on 30 August (40 days after sowing) to
54.54% (6 out of 11 plots) on 17 November (121 days after sowing). Upon the detection, an
implication that can translate the disease probability to potential yield preservation could
be simply carried out to help the crop growers. This will be inclusively discussed in the
next section.
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Figure 12. The actual labeling of severe infection plots (light red) on the test set and its correctly

predicted labels (dark red). The test set was randomly assigned 119 plots, among which were

11 severe infection plots. Those infected plots primarily caused permanent yield loss on the crop.

UAVs could detect and identify yellow rust at the early stages of the growing season: (a) the SVM

correctly predicting 4 out of 11 plots on 30 August, (b) the SVM correctly predicting 3 out of 11 plots

on 24 September, (c) the SVM correctly predicting 5 out of 11 plots on 5 October, (d) the SVM correctly

predicting 5 out of 11 plots on 7 October, (e) the SVM correctly predicting 3 out of 11 plots on

26 October, and (f) the SVM correctly predicting 6 out of 11 plots on 17 November.

5. Discussion

5.1. Importance of Spectral, Texture, and Temporal Information

The results above to some extent highlighted the significance of each dimension of
information used in the study. The multispectral images with recorded information at
five discrete wavelengths apparently offered a greater chance than regular RGB images to
detect changes in crop’s defenses when they were fighting against foreign invaders. The
red-edge (RE) (690–740 nm) and NIR (740–1000 nm) spectral bands (Figure 6) proved to
be key indicators of distinguishing rust-infected plots from the healthy. This finding was
somewhat aligned with what [4,6] found in their studies, in that the NIR band brought
the most discriminating power to classify wheat disease severity. It is plausible that the
presence of yellow rust in wheats led to a decrease in RE and NIR reflectance, and, more
importantly, the amount of the decrease was proportional to severity levels of infection
as a function of time. This is mainly because of a reduction of chlorophyll content and
an increased evaporation on the stressed wheat leaves that made them turn brown and
dry, which can also be effectively sensed by low altitude UAVs at a canopy level. More
concretely, the finding was also supported by the feature importance analysis (Figure 7c),
which revealed the two most influential VIs, the carotenoid reflectance index 2 (CRI2) [70]
and soil-adjusted vegetation index 2 (SAVI2) [48]. The former index was arithmetically
formed from the green and RE bands, while the latter was derived from the red and
NIR bands.
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The grey-level co-occurrence matrix (GLCM) texture features named the image contrast
as the most sensitive to PCA components when predicting disease statuses (Figure 7c). The
contrast feature measures the difference between the highest and the lowest values of the
adjacent sets of pixels of a certain spectral band. The discriminating power of the image
contrast occurred in all five spectral bands but particularly in airborne multispectral images
collected at the early stage of infection from 40 DAS to 77 DAS. Studies [21,22] utilizing
hyperspectral images for yellow rust monitoring also highlighted the predictive capability
of the image contrast feature. However, their findings occurred only in late infection
stages, which was then explained by very minimal external characteristics obtained during
asymptomatic or mild infection; instead, the majority of alterations resided in pigment-
related inner tissues of plants which were more properly accessible through VIs than texture
features. Owing to a very much finer resolution of 1.04 cm per pixel, our study disclosed
that the contrast texture feature extracted from early collected images could bring more
value and set a higher statistical dependency on the prediction model. Conceptually, the
crop’s structure, the canopy shape, and the leaf morphology of single plants could be
separately obtained by the UAV without the confounding effects of neighbor plants when
the plots were lower-density and higher open space. The optimal distance d at 5 pixels and
angular direction θ of 135◦ found in this study solidified the conjecture above when the
5 pixels were equivalent to 5–6 cm, which was roughly the size of a single plant at the stage
of tillering and stem elongation.

The predictability of the temporal dimension became manifest in the increased accu-
racy and F1 metrics (Figures 8 and 9, 3D-CNN Performance). At the early onset stage when
the crop was tillering (40 DAS), the aerial remotely sensed images correctly recognized
the wheat’s health standing at 60% accuracy, seemingly leveling off the accuracy at 57%,
61%, and 50% at the stem extension and heading stages (65–80 DAS) before picking up the
increasing pattern at a high accuracy of 71% and 77% at the later booting and flowering
stages (100–120 DAS). The disease detection pattern found in this study was very consistent
and identical with those in previous studies of spatio-temporal yellow rust monitoring [4,6].
There exists, however, an underpinning difference in that the previous studies purposefully
and artificially inoculated the disease in wheats with several preset severity levels, whereas
our experimental field was naturally invaded by the pathogens with an uncertainty of the
attack severity. The natural outbreak posed a real challenge in this study, such that early
season infection was supposed to be varied from plot to plot. In certain plots, the pathogen
survived in wheat as dormant mycelium, while in other plots, violent infection resulted
in plant stunting that reflected its vigor and shape in the UAV’s sensor. The mid-season
then developed the complication of multiscale and various-speed spreading of the disease.
The yellow conspicuous rows on old leaves turning brown and dry were obscured by
the new green leaves emerging on the top of the canopy (Figure 3) where the UAV flew
over for a nadir-angle data capture. The later flowering stage, though, somewhat negated
the detectability, confusing whether a reduced greenness in a certain area was caused by
the disease or the emergence of the wheat spikes. This stage also witnessed the infection
reaching maturity and violently and uniformly spreading over all of the plots, which wholly
lost the greenness and made it easier for the aerial surveillance.

5.2. Prediction Performance of Multimodality Fusion

With the values of each dimension discussed earlier, the inclusion of these information
dimensions together was obviously worthwhile. An improved accuracy of combined-data
models could be observed across all the machine learning algorithms SVM, RF, MLP, and
3D-CNN, at 65%, 71%, 77%, and 79% respectively (Figure 8), which was considerably higher
than any single-data models. Not only research on wheat yellow rust control [4,6,21,22],
but also various remote sensing applications, such as grapevine viral disease detection [9],
soybean yield estimation from the aerial scale [83] or satellite observation [34], urban
tree classification [84,85], and maize high-throughput phenotyping [35] demonstrated a
3–10% improvement if a fusion of different modalities were applied. Apparently, in as
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many representations of the crop as being sensed, each of these, either singly or jointly,
supplemented the predictive power to detect the crop’s disease severity. More specifically,
spectral bands and VI derivatives characterized ample information related to leaf and stem
pigments, leaf biochemicals (e.g., protein, lignin, cellulose, . . . ), cell structure, and water
content [9,86]. GLCM texture features communicated spatial variations of crop vigor and
structures, i.e., leaf and canopy shapes [87,88]. Temporal data provided insights of crop
growth characteristics, health status, and the infection progress as a function of time. The
benefit of the aggregated insights was more than proportional because each time the UAV
flew over a certain plot, it collected different and new details of that particular plot when
plots were geo-referenced.

5.3. Comparison between Traditional Machine Learning and Deep Learning 3D CNN

The predictive performance comparison was shown in Figures 8 and 9 (accuracy
metrics and F1 scores) between feature-wise and image-wise methods, or, more precisely,
between traditional machine learning and deep learning CNN’s 3D version. The F1 pre-
diction metrics favored the deep learning method over the other three classical machine
learning methods, with the exception of the September and early October datasets. The
MLP produced a higher F1 score but failed to solve the class imbalance issue, leading to
higher accuracy of the mild infection class, but very low accuracy of the healthy and severe
infection classes. Most of the findings from various studies [9,28,33,35] have also advocated
for the CNN, perhaps for the several following reasons. First, the assembling of multiple
filters and 3D kernel cubes with a sliding window size of 5 × 5 × 3 lent the CNN itself
to effectively gather all possible information from each wheat plot. Most especially, at
the sliding step of 1 unit, the 3D kernels can powerfully uptake and retain interrelated
and interdependent spatial-spectral features prior funneling the learned features to the
prediction layers at the end of the network. Concrete evidence could be visibly viewed
through a higher accurate prediction of the 3D-CNN for the 30 August data, when the
field plots contained a mixture of vegetation and soil objects. With the feature-fed machine
learning method, the input features had been confounded by the soil and non-vegetation
features, not to mention the fact that the separate extraction of spectral bands, VI, or texture
features possibly suggested an inadequate capture of mutually spectral-spatial-temporal
information on wheats. Second, the infection progressed and spread heterogeneously
within a plot, meaning some plants were infected while the others remained green and
healthy. The data augmentation applied in the study by repetitively and randomly cropping
image chips in all areas of a plot essentially enriched crop plots’ information more than
simply taking average values of plots. Third, the working mechanism of automated feature
learning in the image-centric 3D-CNN method by a bi-directional optimization process
(i.e., forward and backward propagation) [89] appeared to be more competent than feature
engineering in locating and retaining discriminating representations. The handcrafting
procedure heavily relied on expert knowledge and human decisions to be established, and
thus, was highly likely to be susceptible to missing previously unknown but pertinent
informative parameters.

5.4. Impact of Disease on Permanent Yield Loss

What made this study intriguing lay in the post-detection application regarding de-
termining permanent yield loss as well as an intervention period to prevent the loss. The
ANOVA test indicated a significant yield loss if a wheat plot is severely attacked by yellow
rust. For this reason, a post-detection focus of identifying early only severe infection plots
could be more meaningful to the farming practice. Despite a higher OA and F1 scores
predicted by the 3D-CNN, the SVM turned out to be better for this specific task, detecting
severe plots at a higher accuracy. It is commonly accepted that the automated feature
learning process of 3D-CNN demands a sufficiently large volume of data to achieve its
excellence in learning performance, but the study had a few numbers of plots annotated
and labeled as severe infection (56 plots for both training and testing). Assuming a constant
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of genetic and environmental factors, the translation from the probability of successfully
detecting severe attacks to permanent yield loss were simply achieved by multiplying the
563.65 kg/ha difference in the yield harvested between severe infection plots and control
plots (healthy wheats) (Table 5). The estimated yield loss is able to be reversed to possible
attainment if crop growers detect disease early and properly intervene. Figure 13 presents
the absolute figures of potential yield preservation for this specific field (Figure 13, left verti-
cal axis) and relative figures in percentage for generalization (Figure 11, right vertical axis).
The earliest estimation from the SVM method could help to preserve 8000–15,000 kg/ha
for this farm, which was functionally equivalent to 3–7% of the possible yield preservation
in general. Similar quantities were also found in agronomical lab-based studies in different
wheat varieties and conditions [90–92].

Figure 13. The quantitative estimate of potential yield preservation in Kg/ha and in percentage (%)

if the yellow rust can be early detected and properly intervened (date format: MM/DD/YYYY).

5.5. Limitations of UAV Aerial Data

Compared to ground or proximal sensing, several noticeable challenges of aerial
remote sensing for disease monitoring are the objects’ reflectance information captured
in a substantially-reduced spatial resolution, in addition to meteorological effects of at-
mosphere and illumination variation. Further, the study incurred discrepancies in the
spatial resolution of UAV aerial images (Figure 14), which in turn deteriorated some parts
of the results. The very large field and constraint of battery capacity limited the UAV to
conduct a single flight mission to cover the entire field. Different flight missions in the
same collection date caused a discrepant spatial resolution of plot-level image chips. For
instance, the image resolution of the data collected on 7 October (Figure 14, orange dots)
varied between two flight missions;, more specifically, images collected from the first flight
had a coarser resolution than those from from the second flight. The underlying causes
could be traced back to an unreliable flight planning software, imprecise in-flight motion
adaptation, in-flight GPS signal loss or interruption, etc. Several UAV studies found a
similar phenomenon in their aerial data [22,93,94].
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Figure 14. Discrepancies in the resolution of UAV aerial images. Within the same collection date,

the image resolution collected by one flight mission differed from that collected by another mission.

It possibly explained the drop in prediction accuracy from the models used with the 5 October

data compared with those used with the 7 October data, especially the image-wise method such

as 3D-CNN.

The image resolution variation probably brought a negative effect on establishing
GLCM texture features and image-based CNN methods more than VI-based models be-
cause the texture or CNN calculations were typically controlled by the pixel size and the
neighborhood relation of adjacent pixels. In addition, the yellow rust pathogens developed
and spread out in a spatial pattern as discussed in the foregoing sections, but variation
between the flight missions existed and hindered the observation, especially longitudinal
disease monitoring over time. It was plausibly explained why two datasets collected from
consecutive dates, 5 and 7 October, yielded considerably different accuracies. Unlike the
7 October data, all of the plot-level image chips of the 5 October data (Figure 14, blue dots)
more consistently clustered in a finer resolution of 490 × 130 pixels.
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6. Conclusions

The work methodically presented an automated disease monitoring system for world-
wide yellow rust in wheat with an aerial remote sensing platform in combination with
state-of-the-art machine learning techniques. Early detection of infectious disease is obvi-
ously a real challenge but this study evidenced a possibility that UAV airborne multispectral
images can detect the disease early and disseminate actional information to crop growers
in a timely manner to prevent potential yield loss. From the above findings and discussions
came the following conclusions:

1. Red-edge (RE) (690–740 nm) and near infrared (NIR) (740–1000 nm) were critical spec-
tral bands to distinguish between healthy wheats and severely yellow-rust-infected
wheats. All raw spectral bands originally obtained from the UAV were incapable of
differentiating healthy and mildly infected wheats.

2. Among engineered features, the carotenoid reflectance index 2 (CRI2) [70] and soil-
adjusted vegetation index 2 (SAVI2) [48] became the two most influential VIs in
detecting disease infection early. Similarly, GLCM contrast texture at an optimal
distance of d = 5 pixels and angular direction of θ = 135◦ from airborne multispectral
images brought in the most predictive value for disease sensing.

3. The AI-powered wheat disease monitoring performed at 60% detection accuracy
as early as 40 DAS when tillering, increasing to 71% and 77% at the later booting
and flowering stages (100–120 DAS). The accuracy reached a peak of 79% for the
spectral-spatio-temporal fused data model.

4. Neither relying on human expertise nor being prone to human judgement, the
imagery-based 3D convolutional neural network (3D-CNN) method, on the basis of an
automated learning process, outperformed feature-based machine learning methods
in detecting the wheat disease invasion early.

5. Violent attacks of yellow rust on wheats permanently caused a significant amount
of yield loss. The success of early sensing from low-cost multispectral UAVs could
preserve a potential amount of yield of 3–7% at the confidence level of 95%.

Interested readers are highly encouraged to recognize the study’s limitations and
delimitations below before making any generalizations. The use of aerial observation
platforms other than DJI P4 Multispectral (DJI Corporation, Shenzhen, China) with the
mounted multispectral sensor could lead to a different result. At the authors’ discretion,
another study, carrying the same data but different machine learning or deep learning meth-
ods, could produce a result varying from the one found in this study. This work attempted
to address the small size and imbalance class issue in actual samples by technical techniques
described in the forgoing sections, but they are by no means negligible limitations. Further
research should collect a larger and more balanced number of observations, such that
the study reliability could be assured. The longitudinal disease severity assessment by
collecting disease status in multiple timestamps is highly suggested to accommodate this
study limitation that overlooked the developmental infection process on each plot. There
existed room for further improvement by designing an advanced deep learning architecture
or leveraging the capability of transfer learning to optimally comprehend intra- and inter-
related spectral-spatio-temporal patterns of disease progress. The possibility of having
different wheat varieties tested in multi-location, multi-season, and multi-environment
fields, in addition to multiscale remote sensing (underground, proximal, low-altitude aerial,
and satellite) is highly suggested to confirm the results’ consistency, as those mentioned
factors were noteworthy limitations in this study.
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