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Abstract—Keeping sensor data fresh is desired for Industrial
Internet of Things (IIoT), especially, in real-time monitoring
applications. However, this may require sensors always in active
mode and, thus, incur low energy efficiency. In this article, we
consider that a wireless sensor monitors a dynamical system and
reports real-time measurements to a processing center through
an unreliable wireless channel. We study the problem of opti-
mizing the sensor data freshness in terms of Age of Information
(AoI) while saving energy by scheduling the sensor to sleep when
needed. The problem is formulated as a Markov decision pro-
cess that takes both AoI and energy consumption into account, to
which we theoretically prove that the optimal scheduling policy
forms a cyclic sleep–wake pattern. The optimal sleep period is
also analyzed. Simulation results demonstrate that the proposed
scheduling policy outperforms other existing policies.

Index Terms—Age of Information (AoI), energy, Markov
decision process (MDP), optimization, sleep scheduling.

I. INTRODUCTION

I
N INDUSTRIAL Internet of Things (IIoT) applications

such as real-time monitoring and control, the freshness of

sensor data is of great importance [1], [2]. For example, in

remote monitoring applications, it has been shown that the

fresher data the remote estimator can receive, the smaller the

state estimation error the estimator could achieve [3]. Another

example is the federated learning applications in IIoT, where

the freshness of training data becomes particularly important

when data cannot remain structurally similar across time [4].

Although delay is one of the most commonly used met-

rics of packet-wise transmission performance in networks, it

does not accurately reflect the data freshness [5], [6]. Recently,
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the notion of Age of Information (AoI) has been proposed,

which tracks the time elapsed since the generation of the lat-

est received data from the perspective of the receiver, as a new

metric of data freshness [3], [4], [5], [6], [7], [8], [9]. In the lit-

erature, a number of studies have been devoted to minimizing

AoI for fresh data gathering over wireless networks [7], [8],

e.g., the Max-Weight policy [7], Whittle’s Index policy [7],

and SQRT-Weight policy [8]. However, many existing studies

assume that the sensors are always in active mode and ready

for data transmission once scheduled [7], [8].

Intuitively, the wireless sensor may try to seize every oppor-

tunity to transmit data in order to minimize the AoI. However,

such an always-on working mode may cause significant energy

waste for the sensor during its idle time, and, hence, may be

even unaffordable for a resource-constrained sensor [10]. In

IIoT, energy efficiency is an important issue, and improving the

energy efficiency of wireless devices and prolonging their life-

time becomes increasingly important as wireless technologies

are expected to gain more penetration in future IIoT [11], [12].

In this article, we consider a class of real-time monitoring

applications of IIoT with the aim at enhancing the sensor data

freshness as characterized by AoI while reducing the energy

consumption of the sensor. Motivated by the working mode

of duty-cycling sensors [13], we allow the sensor to sleep in

order to save energy. Many wireless technologies have specific

mechanisms similar to the sleeping mode. For example, tradi-

tional IEEE 802.11 specifies the power-saving mode, and the

recently released IEEE 802.11ax standard further introduces

the target wake time agreement to save energy [14]. Other

wireless technologies, such as WirelessHART and ZigBee,

also employ low-power modes to save energy.

Our basic idea is to save the sensor’s energy by switching it

off when needed without sacrificing much AoI. By doing so,

we are able to achieve a balance between information freshness

about the dynamic process at the remote processing center and

the sensor’s energy consumption. Specifically, the sensor saves

energy when sleeping without sending any data and improves

AoI only when it is in active mode. Taking both switching

energy and the energy for being active of the sensor into

account, we formulate an optimization problem of the sensor’s

sleep scheduling with the objective being a combination of a

generic AoI function and the total energy consumption. Based

on a Markov decision process (MDP), we theoretically prove

that the optimal solution yields a cyclic working pattern, i.e.,

in each cycle, the sensor first sleeps for a fixed period and then

wakes up and keeps active until successfully sending a data
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packet to the processing center. We compare our scheduling

policy with other existing policies, and the results demonstrate

that our policy outperforms the other in terms of AoI–energy

tradeoff. The main contributions are summarized as follows.

1) We formulate an optimal sensor sleep scheduling

problem that trades off between AoI and sensor’s energy

consumption. In the literature, although there are some

studies on AoI minimization in IIoT recently [6], [7],

very few of them shed light on the energy-efficiency

issue of AoI optimization by using sensor sleep mode.

2) We theoretically prove that the optimal sleep scheduling

policy leads to a cycling pattern.

3) We propose an algorithm to find the optimal sleep

period. Moreover, for cases that the AoI function is lin-

ear, we derive an explicit expression of the optimal sleep

period.

The remainder of this article is organized as follows.

Section II summarizes some related work. Section III intro-

duces the system model and formulates the optimization

problem. Section IV derives the optimal sleep scheduling

policy and proposes ways to find the optimal sleep period.

Section V presents the simulation results, while Section VI

concludes this article.

Notations: ⊕ denotes the XOR operator. E(·) denotes the

mathematical expectation. Let tr(·) represent the trace of a

matrix. Pr(·) denotes the probability of an event. Let N be

the set of nonnegative integers. Denote by 1event the indicator

function, which equals to 1 if event is true and 0 if otherwise.

II. RELATED WORK

Recently, AoI has attracted more and more attention in

applications where data freshness matters. For example, the

problems of when to sample the data and in what order to

process the data in order to optimize AoI are studied in [15]

and [16]. In time-slotted systems, transmission scheduling for

minimizing AoI is studied in [7] and [17].

Due to the limited energy of wireless sensors in many

IIoT systems, it is of great importance to save energy when

minimizing AoI. For example, under the constraint that the

average energy consumption of the sensor cannot exceed a

given value, a policy that can reduce AoI is proposed to choose

proper sensors to send their updates [18]. In [19], the problem

of data sending scheduling in order to minimize AoI and

energy is studied. Another thread of research toward energy-

efficient AoI minimization is to consider rechargeable sensors

[20], [21]. In [20], the source node needs the energy to sample

and send data, while the destination node, with power supply,

can transfer wireless energy to charge the source node. Then,

a joint sampling, charging, and updating policy is proposed to

minimize AoI. As for the case where energy arrives randomly,

in order to reduce AoI, Zhou et al. [21] proposed optimal

offline policies and efficient online policies to schedule the

transmitter whether to send the update when it arrives.

In the literature, a few works have been devoted to energy-

efficient AoI minimization with sensors that are allowed to

sleep to save energy [22], [23]. In [22], the sensors will sleep

if they find the channel is busy. And with the constraint of

TABLE I
DEFINITIONS OF KEY NOTATIONS

energy consumption, the optimal sleep parameters are derived

to minimize peak AoI. In [23], a new AoI-penalty function

is proposed to characterize the data eagerness for sensors that

wake up after sleeping for a certain time. Then, a Max-Weight-

based sensor scheduling policy is proposed to minimize the

sensors’ AoI-penalty. The above studies leverage sensors’

sleep mode to save energy, which, however, lacks a theoretical

explanation whether and to what extent the sensor can benefit

in terms of AoI by employing sleep mode.

III. SYSTEM MODEL

The main notations used throughout this article are summa-

rized in Table I.

We consider a real-time monitoring system in which a wire-

less sensor measures the dynamical state of a physical process

and sends the measurement data through an unreliable wireless

channel to a remote data processing center (DPC) [24], [25].

For example, in [24], a sensor sends real-time measurements

of a 2-DOF (degree of freedom) serial flexible joint robot to

a controller for monitoring and control purposes, where the

dynamics of the robot is modeled as follows:

x(k) = Ax(k − 1) + Bθ(k − 1) + w(k − 1) (1)

where x ∈ R
nx is the system state, θ ∈ R

nc is the control input,

and A and B are coefficient matrices with proper dimensions.

w is the system noise which is Gaussian with zero mean and

covariance matrix �. k ∈ {1, 2, . . . , K} is the index of the

discrete-time steps. Note that (1) is only an example of the

physical process. This article focuses on a generic form of

AoI, which does not rely on any specific forms of the dynamic

process model. For other processes under monitoring, as long

as the corresponding AoI function evolves as in (5) below, the

results obtained in this article remain valid.

When the wireless sensor is in active mode, it measures

the state of the physical process at the beginning of the cur-

rent step and sends the measurement to the DPC. Whereas,
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Fig. 1. Schematic of the binary variables.

it keeps inactive to save energy in sleep mode. At the begin-

ning of every step, the sensor chooses whether to switch the

current mode or not. Let s(k) ∈ {0, 1} denote the working

mode of the sensor during step k (after switching) with s(k)

equals to 1 indicating active mode and 0 otherwise. Denote

by u(k) ∈ {0, 1} the switching decision at the beginning of

step k1 such that u(k) = 0 means keeping the mode while

u(k) = 1 means otherwise. Therefore, the working mode of

the sensor during step k is determined by

s(k) = s(k − 1) ⊕ u(k). (2)

The relationship between s(k) and u(k) is shown in Fig. 1.

We assume that each sensor packet transmission can be

completed within one step and that the DPC replies the sen-

sor an acknowledgment upon successfully receiving the sensor

packet. The transmissions from the sensor are over an unre-

liable wireless channel with the probability of a successful

data transmission as p ∈ (0, 1]. Since the acknowledgment

from the energy-rich DPC is short in length and can be sent

with high power, we assume its transmission is reliable [7].

Let γ (k) = 1 indicate that the DPC successfully receives the

sensor’s measurement in k and γ (k) = 0 otherwise. We have

E
[

γ (k)
]

= pE[s(k)] = pE[s(k − 1) ⊕ u(k)]. (3)

A. Optimization Problem

According to [5], the AoI at the DPC at the beginning of

step k is defined as the time difference between the genera-

tion time of the freshest measurement packet that the DPC

receives from the sensor. Let tg(k) denote the generation time

of the freshest measurement the DPC receives from the sensor

by the end of step k − 1. Denote by �(k) = k − tg(k) the AoI

at the beginning of step k (the definition of AoI in [7]). If

the sensor is in active mode and transmits the measurement

successfully during step k (i.e., γ (k) = 1), at the beginning

of the next step, tg(k + 1) = k; otherwise, tg(k + 1) = tg(k).

Hence, we have

�(k + 1) =

{

1, if γ (k) = 1

�(k) + 1, otherwise.
(4)

We define an AoI function f (�) that evolves as follows [15]:

f (�(k + 1)) =

{

f (1), if γ (k) = 1

f (�(k) + 1), otherwise
(5)

where f (·) is assumed nondecreasing. The AoI function is a

metric of how AoI impacts the system performance. Taking

1In practice, if in sleep mode, the sensor may not be able to make switching
decisions. A viable way can be that the sensor decides a sleep period and sets
a wake-up timer accordingly before it sleeps. In this article, for the ease of
problem formulation, we assume that the sensor can decide whether to wake
up or not when sleeping. However, our proposed optimal policy does not need
this assumption.

the real-time monitoring system in (1), for example, the AoI

function can be defined as [3]

f (�) =

�−1
∑

i=0

tr
(

(

AT
)i

Ai�

)

(6)

where � is the covariance of the system noise w. Equation (6)

represents the mean-squared error of the state estimation

performance in terms of AoI at the controller. In communica-

tion systems, typical AoI functions are defined as f (�) = �

(e.g., [5], [6], and [7]) and f (�) = e� (e.g., [15]). Notice that

the above AoI functions satisfy the assumption that they are

nondecreasing.

B. Problem Formulation

Denote the energy consumption of the sensor as Ea > 0

and Es > 0 (Ea > Es) at every step when it is in active and

sleep modes, respectively. Besides, in order to save energy, the

sensor should avoid switching its working mode too frequently.

As a consequence, we denote the energy consumption of the

sensor for waking up (from sleep to active) and turning off

(from active to sleep) as Eon > 0 and Eoff > 0, respectively.

Then, the total energy consumption during step k is

C(k) = Ea[s(k − 1) ⊕ u(k)] + Es[1 − s(k − 1) ⊕ u(k)]

+ Eonu(k)[1 − s(k − 1)] + Eoffu(k)s(k − 1). (7)

For example, if s(k − 1) = 0 and u(k) = 1, the sensor wakes

up from the sleep mode and keeps in active during k, and,

hence, C(k) = Ea + Eon.

Then, the total cost function during step k is set as

a weighted combination of both AoI function and energy

consumption as follows:

J(k) = (1 − λ)f
(

�(k)
)

+ λC(k) (8)

where λ ∈ [0, 1] represents the weight of energy consumption

in the optimization objective. On the one hand, minimizing

AoI would require the sensor to keep active trying to send

its data as quickly as possible, which results in high energy

consumption. On the other hand, saving energy by letting

the sensor sleep may miss some data sending opportunities

and, hence, sacrifices the AoI. The larger the value of λ, the

more the sensor prefers to sleep to save energy; otherwise,

it prefers to reduce the value of AoI if its energy is rich. For

the above problem to be meaningful, hereafter we assume that

0 ≤ λ < 1. Since the AoI function can be application specific,

its magnitude may be different from the energy consumption.

Therefore, in order to analyze them together, both the AoI

function and the energy consumption should be normalized.

Let π = [u(1), . . . , u(K)] be a sleep scheduling policy that

determines whether the sensor sleep or awake and � be the

set of all admissible policies. Without loss of generality, we

set tg(1) = 0, �(1) = 1, and s(1) = 0. Then, our optimization

problem can be formulated as follows:

min
π∈�

J̄ = lim
K→∞

1

K

K
∑

k=1

E[J(k)] (9a)

s.t. u(k) ∈ {0, 1} ∀k. (9b)

Let J̄∗ be the optimal solution.
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IV. OPTIMAL SCHEDULING POLICY

In this section, we first reformulate Problem (9) as an MDP,

based on which we find a structural property of the optimal

policy. Then, we derive the optimal scheduling policy and

analytically characterize its performance.

A. MDP Formulation of Problem (9)

At the beginning of step k, define the state and action of

the sensor as (�(k), s(k − 1)) and u(k), respectively, with

the action space {0, 1}. If the sensor was in sleep mode, i.e.,

s(k − 1) = 0, based on the dynamics of �(k) as given in (4),

one can see that �(k + 1) = �(k) + 1 if u(k) = 0. If the

sensor chooses to switch its working mode, i.e., u(k) = 1

when s(k − 1) = 0, the change of AoI relies on the channel

state during step k in terms of that �(k + 1) will drop to 1 if

the transmission is successful (with probability p); otherwise,

�(k + 1) = �(k) + 1. Therefore, the one-step probabil-

ity transfer function from current state (�, 0) to a new state

(�′, s′) at the beginning of the next step under action u can

be summarized as follows:

Pr
(

�′, s′|�, 0
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if u = s′ = 0 and �′ = � + 1

p, if u = s′ = 1 and �′ = 1

1 − p, if u = s′ = 1 and �′ = � + 1

0, otherwise.

(10)

Similarly, we can derive the probability transfer function when

the sensor was previously in active mode as

Pr
(

�′, s′|�, 1
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if u = 1, s′ = 0 and �′ = � + 1

p, if u = 0, s′ = 1 and �′ = 1

1 − p, if u = 0, s′ = 1 and �′ = � + 1

0, otherwise.

(11)

In view of (9), define the reward as

R(�, s, u) = (1 − λ)f (�) + λEa(s ⊕ u)

+ λEs[1 − (s ⊕ u)] + λEonu(1 − s)

+ λEoffus (12)

where we have used (7) and (8). Then, the value function

Vt(�, s) can be given as follows:

Vt+1(�, s) = min
π∈�

{

R(�, s, u) + βE
[

Vt

(

�′, s′
)]}

(13)

where β ∈ (0, 1) is the discount factor. The above value

iteration can start at any initial value function V0, and for

convenience, we set V0(�, s) = (1 − λ)f (�). Then,

Vt(�, s) converges to the optimal value function V∗(�, s) =

limt→∞ Vt(�, s) for any � ≥ 0 and s ∈ {0, 1}.

When the sensor was previously in sleep mode, submit-

ting (10) and (11) into (13), we have

Vt+1(�, 0) = min
u∈{0,1}

{

(1 − λ)f (�) + λuEa + λ(1 − u)Es + λuEon

+ βE
[

Vt

(

�′, s′
)]}

= min
u∈{0,1}

{(1 − λ)f (�) + λuEa + λ(1 − u)Es + λuEon

+ β(1 − u)Vt(� + 1, 0) + βupVt(1, 1)

+ βu(1 − p)Vt(� + 1, 1)}

= min
u∈{0,1}

{

(1 − u)L1,t(�) + uL2,t(�)
}

= min
{

L1,t(�), L2,t(�)
}

(14)

= L1,t(�) + min
u∈{0,1}

{

u
[

L2,t(�) − L1,t(�)
]}

= L1,t(�) + min
u∈{0,1}

{

uLsleep,t(�)
}

(15)

where we have used (10) in deriving the second equality. In

the above

L1,t(�) � (1 − λ)f (�) + λEs + βVt(� + 1, 0) (16)

L2,t(�) � (1 − λ)f (�) + λEon + λEa

+ βpVt(1, 1) + β(1 − p)Vt(� + 1, 1) (17)

Lsleep,t(�) � L2,t(�) − L1,t(�)

= −β
[

Vt(� + 1, 0) − (1 − p)Vt(� + 1, 1)
]

+ λ(Eon + Ea − Es) + βpVt(1, 1). (18)

Similarly, when the sensor was previously active

Vt+1(�, 1)

= min
u∈{0,1}

{

(1 − λ)f (�) + λ(1 − u)Ea + λuEs + λuEoff

+ βE
[

Vt

(

�′, s′
)]}

= min
u∈{0,1}

{

uL3,t(�) + (1 − u)L4,t(�)
}

= min
{

L3,t(�), L4,t(�)
}

(19)

= L4,t(�) + min
u∈{0,1}

{

uLactive,t(�)
}

(20)

where we have used (11) in deriving the second equality and

L3,t(�) � L1,t(�) + λEoff (21)

L4,t(�) � L2,t(�) − λEon (22)

Lactive,t(�) � L3,t(�) − L4,t(�). (23)

In the sequel, we shall drop the subscript t in Li,t, Lsleep,t,

and Lactive,t to indicate their converged values as t → ∞.

B. Optimal Policy

Based on the above, we can derive the following properties

of the value function.

Lemma 1: ∀� ≥ 0 and ∀n ≥ 0, the following inequalities

hold:

1) V∗(� + n, s) ≥ V∗(�, s) (24)

2) V∗(� + n, 0) − V∗(�, 0)

≥ V∗(� + n, 1) − V∗(�, 1) (25)

3) V∗(� + n, 0) − (1 − p)V∗(� + n, 1)

≥ V∗(�, 0) − (1 − p)V∗(�, 1). (26)

Proof: The proof is provided in the Appendix.

Next, we derive a threshold structure of the optimal policy.

Lemma 2: ∀� ≥ 0, there exist �active ≤ �sleep ≤ ∞ such

that the optimal scheduling policy π∗ has a threshold structure

in terms of that

u∗(�, s) =

{

1�≥�sleep
, if s = 0

1�≤�active
, if s = 1

(27)
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where u∗(�, s) represents the optimal scheduling decision

when the sensor is in state (�, s).

Proof: According to (15) and (20), the optimal schedul-

ing decision depends on the sign of Lsleep(�) and Lactive(�).

When Lsleep(�) > 0 or Lactive(�) > 0, (15) and (20) sug-

gest that the corresponding optimal scheduling decision is

u∗ = 0. Similarly, if Lsleep(�) < 0 or Lactive(�) < 0, the

corresponding optimal scheduling decision is u∗ = 1. When

Lsleep(�) = 0 or Lactive(�) = 0, the corresponding optimal

scheduling decision u∗ is derived as below by considering

whether Lsleep(�) = 0 or Lactive(�) = 0 have nonnegative

solutions.

First, suppose that Lsleep(�) = 0 (or Lactive(�) = 0) has

nonnegative solutions. Let �sleep be the maximum nonnegative

solution of the following:

Lsleep(�) = λEon − λEs + λEa + βpV∗(1, 1)

− β
[

V∗(� + 1, 0) − (1 − p)V∗(� + 1, 1)
]

= 0. (28)

Consider that the sensor was previously in sleep mode, i.e.,

s = 0. According to (26), Lsleep(�) is nonincreasing in �.

Therefore, combining (28) and Lsleep(�sleep) = 0, we have

the following inequalities hold for any n > 0:

Lsleep

(

�sleep + n
)

≤ Lsleep

(

�sleep

)

= 0 (29)

Lsleep

(

�sleep − n
)

≥ Lsleep

(

�sleep

)

= 0. (30)

From (29), one can see that the optimal scheduling decision is

u∗ = 1 when the current AoI is greater than �sleep. Similarly,

from (30), one can see that the optimal scheduling decision is

u∗ = 0 when the current AoI is less than �sleep. Notice that if

the nonnegative solutions of (28) are not unique, the solutions

must be a continuous interval, say [�sleep,�sleep], which is

because Lsleep(�) is nonincreasing in �. In this case, without

affecting its optimality, u∗ can be set as 1 if the current AoI

is greater than �sleep and 0 if otherwise. Above all, we obtain

the first line of (27).

When the sensor was previously in active mode, i.e., s = 1,

in a similar argument, we obtain the second line of (27), where

�active is the minimum nonnegative solution of the following:

Lactive(�) = βV∗(� + 1, 0) − β(1 − p)V∗(� + 1, 1)

+ λEoff + λEs − λEa − βpV∗(1, 1)

= 0. (31)

Besides, according to (18) and (23)

Lactive(�) + Lsleep(�) = λEon + λEoff ≥ 0. (32)

At the point �active where Lactive(�active) = 0, Lsleep(�active)

should be nonnegative according to (32), i.e.,

Lsleep(�active) > 0 = Lsleep

(

�sleep

)

. (33)

Therefore, �sleep ≥ �active due to that Lsleep(�) is nonincreas-

ing in �.

Next, we discuss the cases when Lsleep(�) = 0 or

Lactive(�) = 0 has no nonnegative solution. For ease of expo-

sition, in what follows, when we say one of Lsleep(�) = 0

and Lactive(�) = 0 has no nonnegative solution while the

Fig. 2. Four cases where Lsleep(�) = 0 or Lactive(�) = 0.

other has nonnegative solution, we mean that the other has

a unique solution. For the cases when it has multiple solu-

tions, our analysis below remain valid for the reason similar

to the above.

As shown in Fig. 2, there are four cases for that

Lsleep(�) = 0 or Lactive(�) = 0 has no nonnegative solution.

1) Case 1: If Lsleep(�) > 0 and Lactive(�) < 0 ∀� ≥ 0.

Since ∀� ≥ 0, Lsleep(�) > 0, the optimal scheduling

decision is u∗ = 0 when the sensor was in sleep mode

according to (15). Similarly, since ∀� ≥ 0, Lactive(�) <

0, the optimal scheduling decision is u∗ = 1 when

the sensor was in active mode. Therefore, (27) holds

if letting �sleep = �active = ∞.

2) Case 2: If ∀� ≥ 0, Lsleep(�) > 0 while Lactive(�) = 0

has a nonnegative solution �active. As aforementioned,

the optimal scheduling decision is u∗ = 0 when the sen-

sor was previously in sleep mode, which validates the

first line of (27) by letting �sleep = ∞. Meanwhile, the

second line of (27) holds for the same reason above (31).

3) Case 3: If Lsleep(�) < 0 and Lactive(�) > 0 ∀� ≥ 0.

Similar to case 1, (27) holds if letting �sleep =

�active = 0.

4) Case 4: If ∀� ≥ 0, Lactive(�) > 0 while Lsleep(�) = 0

has a nonnegative solution �sleep. Similar to case 2, (27)

holds if letting �active = 0.

In sum, the optimal scheduling decision of u∗ is given in (27)

for some �active ≤ �sleep ≤ ∞.

The threshold structure in Lemma 2 can be interpreted as

follows. When the sensor was previously in sleep mode with

low energy consumption, the increasing AoI becomes domi-

nating the cost function J(k). When the value of AoI becomes

excessively large, the sensor switches to the active mode and

spends some energy to transmit data in order to make AoI

drop. The switching happens at the point �, which is the

smallest integer greater than �sleep with Lsleep(�sleep) = 0.

This can be viewed as that the expected change of the

value function V due to mode switching, i.e., L2(�) −

L1(�) as in (18), is beneficial to reducing the total cost J.

The scheduling decision threshold �active can be interpreted
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Fig. 3. Illustration of the sleep–wake working pattern.

similarly. In extreme cases, e.g., λ = 1 (i.e., only energy con-

sumption matters in J) or p = 0 (i.e., the wireless channel

between the sensor and the remote DPC is blocked), the sensor

may keep in sleep mode, which can be viewed as �sleep = ∞.

Based on Lemma 2, we can further obtain the working

pattern of the sensor.

Theorem 1: Under the optimal sleep scheduling policy, the

sensor works in a cycling pattern as follows: in each cycle, it

first sleeps for a fixed period T ∈ N, and then wakes up and

keeps active until successfully sending a data packet. After

that, a new cycle begins and it switches to sleep mode again.

Proof: As has been assumed, initially � = 1 and s = 0.

According to Lemma 2, � ≥ 1 and �sleep ≥ �active. Since

�sleep and �active can be any of {0, 1, . . . ,∞}, we prove the

theorem by dividing the problem into the following cases.

1) If �active ≤ �sleep ≤ 1: The sensor will keep active all

the time, which is equivalent to that the sleep period T

is equal to 0.

2) If �sleep = ∞: The sensor will sleep all the time, and

the sleep period T is equal to ∞.

3) If �active ≤ 1 and 1 < �sleep < ∞: The sensor

will stay in sleep mode until the AoI gets greater than

�sleep. Then, the sensor will switch to active mode and

start to transmit the measurement. After that, the sensor

will keep active all the time and the sleep period T is

equal to 0.

4) Otherwise: The sensor will stay in sleep mode until the

AoI is greater than �sleep. Then, the sensor will switch to

active mode and start to transmit the measurement. The

AoI will drop to 1 when the transmission is successful.

After that, the sensor will turn to sleep since �active ≥ 1.

Above all, the sensor will repeat the above working process

to form a cycle, where T = �sleep.

An example of the sleep–wake working pattern is depicted

in Fig. 3.

C. Performance Analysis

We may wonder about the performance comparison of

AoI and energy consumption between the sensor with sleep

scheduling policy and the nonsleeping sensor in [7]. Since the

sensor will be nonsleeping when the sleep period T = 0, we

only discuss the case where T ≥ 1. Let ϕAoI and ϕenergy denote

the ratio of time-average AoI function and time-average energy

consumption between the sensor with sleep scheduling policy

and nonsleeping policy, respectively.

Lemma 3: The ratio of time-average AoI and time-average

energy consumption between the sensor under sleep schedul-

ing policy (T ≥ 1) and the nonsleeping sensor are, respectively

ϕAoI =

∑T
�=1 f (�) +

∑∞
�=1(1 − p)�−1f (T + �)

(pT + 1)
∑∞

�=1(1 − p)�−1f (�)
(34)

ϕenergy =
Ẽ

(pT + 1)Ea

+
Es

Ea

(35)

where Ẽ = Ea −Es +pSign(T)(Eon +Eoff) and Sign(T) equals

to 1 if T > 0 and 0 otherwise.

Proof: First, let us consider the sensor under the proposed

sleep–wake policy. In each cycle, the AoI � evolves as fol-

lows: it starts at 1 and grows to T during the sleeping period.

After that, � grows to T + �, where � is the number of trans-

mission trials for the sensor to successfully transmit a packet.

Thus, the deliveries of the sensor data form a renewal pro-

cess [26], and the number � follows a geometric distribution

with Pr(� = j) = p(1 − p)j−1 and E[�] = 1/p. Therefore, the

average energy consumption of the sleep–wake sensor is

EaE[�] + TEs + Eon + Eoff

T + E[�]
=

Ẽ

pT + 1
+ Es (36)

and the averaged AoI function is

E

[

∑T+�
�=1 f (�)

]

T + E[�]
=

pE
[

∑T+�
�=1 f (�)

]

pT + 1

=
p

pT + 1

∞
∑

�=1

T+�
∑

�=1

p(1 − p)�−1f (�)

=
p2

pT + 1

[

T
∑

�=1

∞
∑

�=1

(1 − p)�−1f (�)

+

∞
∑

�=1

∞
∑

�=�

(1 − p)�−1f (T + �)

]

=
p

pT + 1

[

T
∑

�=1

f (�) +

∞
∑

�=1

(1 − p)�−1f (T + �)

]

.

(37)

Then, for the nonsleeping sensor, the average energy con-

sumption is Ea and the averaged AoI function is

pE

[

�
∑

�=1

f (�)

]

= p

∞
∑

�=1

(1 − p)�−1f (�). (38)

Thus, (34) and (35) are proved.

Remark 1: It is difficult to analyze (34) for a generic AoI

function. If we consider the special AoI function f (�) = �,

(34) can be simplified as ϕAoI = (1/2)(p + pT + 1 +

([1 − p]/[pT + 1])) ≥ 1. On the other hand, since usually

Es, Eon, and Eoff are much smaller than Ea, (35) reduces

to ϕenergy ≈ (1/[pT + 1]) ≤ 1. Therefore, by applying the

sleep–wake policy, the sensor is able to balance between AoI

and energy consumption. Moreover, by using an optimal sleep

period T , the sleep–wake sensor is able to achieve better

performance in terms of J̄ than the nonsleeping sensor.
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Further, we may be interested in the optimal value of the

sleep period T∗ in the sleep–wake working pattern. Below we

first show that the optimal T∗ is finite in normal cases and

then we derive an expression of T∗ for a commonly used AoI

function [6], [7]: f (�) = �.

Theorem 2: If λ 
= 1 and p 
= 0, and the AoI

function increases at a speed faster than α > 0, i.e.,

f (� + 1) − f (1) ≥ α�, then the optimal sleep period is upper

bounded as

T∗ ≤ T̄∗ �
λ

αp(1 − λ)
Ẽ − 1. (39)

Additionally, if Ẽ < 2αp(1/λ − 1), T∗ = 0.

Proof: By (36) and (37), the objective of Problem (9) is

J̄(T) =
(1 − λ)p

pT + 1

[

T
∑

�=1

f (�) +

∞
∑

�=1

(1 − p)�−1f (T + �)

]

+ λ

(

Ẽ

pT + 1
+ Es

)

. (40)

Then, let us examine the monotonicity of J̄(T). We have

J̄(T + 1) − J̄(T)

∝ (1 − λ)p

[

(pT + 1)

T+1
∑

�=1

f (�) − (pT + p + 1)

T
∑

�=1

f (�)

+ (pT + 1)

∞
∑

�=1

(1 − p)�−1f (T + 1 + �)

− (pT + p + 1)

∞
∑

�=1

(1 − p)�−1f (T + �)

]

− λpẼ

(41)

where ∝ means “proportional to.” After some rearrangements,

the right-hand side of the above becomes

(1 − λ)p2

[

p(T + 1)

∞
∑

�=1

(1 − p)�−1f (T + 1 + �)

−

T+1
∑

�=1

f (�) −
λ

(1 − λ)p
Ẽ

]

≥ (1 − λ)p2

[

(T + 1)f (T + 2) −

T+1
∑

�=1

f (�) −
λ

(1 − λ)p
Ẽ

]

≥ (1 − λ)p2

[

f (T + 2) − f (1) −
λ

(1 − λ)p
Ẽ

]

≥ (1 − λ)p2

[

α(T + 1) −
λ

(1 − λ)p
Ẽ

]

. (42)

Therefore, when T ≥ T̄∗, the objective J̄(T) becomes mono-

tonically increasing, which means the optimal T∗ exists and

is below T̄∗.

From the above, one can see that when λ = 1 or p = 0,

the optimal sleep period is ∞, which means the sensor better

sleep all the time to save energy. For a special case of the AoI

function, the optimal sleep period can be obtained as follows.

Corollary 1: In case if the AoI function is defined as

f (�) = �, under the sleep–wake working pattern, the optimal

Algorithm 1: Searching the Optimal Sleep Period T∗

Input: Ea, Es, Eon, Eoff, p, λ, f (�), T̄∗;

1 T∗ ← 0, T ← 0, Jmin ← ∞ ;

2 for T = 1 to T̄∗ do

3 Calculate J by (40) ;

4 if J < Jmin then

5 T∗ ← T , Jmin ← J;

6 end

7 end

cost is

J̄∗(T) =
1 − λ

2
T +

(1 − p)(1 − λ) + 2λpẼ

2p(1 + pT)

+
(1 − λ)(1 + p)

2p
+ λEs (43)

and the optimal sleep period T∗ that minimizes J̄∗(T) is

T∗ = arg min
T∈

{

0,
⌈

T̃
⌉

,
⌊

T̃
⌋}

J̄∗(T) (44)

where

T̃ = max

{

1,
1

p

(

√

2pλ

1 − λ
Ẽ + 1 − p − 1

)}

. (45)

Proof: First, (43) can be directly obtained by submitting

f (�) into (40). When T ≥ 1, by letting the derivative of J(T)

with respect to T [i.e., J′(T)] be zero, we obtain

T̂ =
1

p

(

√

2pλ

1 − λ
Ẽ + 1 − p − 1

)

which is not necessarily an integer. If T̂ ≤ 1, then J′(1) ≥ 0

and J(T) increases monotonically when T ≥ 1. In this case,

the optimal sleep period T∗ is 1. If T̂ > 1, then J′(T) ≤ 0

when 1 ≤ T ≤ T̂ and J′(T) > 0 when T > T̂ . Therefore,

J(T) decreases monotonically when 1 ≤ T ≤ T̂ and increases

monotonically when T > T̂ . In this case, the optimal sleep

period T∗ should be the closest integer around T̂ .

Remark 2: If f (�) = �, one can see that, when Ea, Eon,

and Eoff increase, the optimal sleep period T∗ increases so that

the sensor can sleep longer to save energy. However, when

Eon or Eoff become very large, the sensor will spend a lot of

mode-switching energy. In such a situation, the sensor may be

unwilling to spend extra energy to switch its working mode

and, hence, will keep active all the time. This corresponds to

the case of T∗ = 0 in Corollary 1.

Remark 3: Above we have characterized the optimal sleep

period T∗ in a special case. For a generic AoI function f (�),

it is difficult to find a generic expression of T∗. Therefore, we

propose Algorithm 1 to search the optimal sleep period T∗.

The computation complexity of this algorithm is O(T̄∗ζ )

where ζ is the time complexity of calculating the objective

function in (40).
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V. SIMULATION RESULTS

In our simulations, we consider remotely estimating the state

of a dynamical system (1) with parameters

A =

[

1 0.2

−0.1 1.2

]

, B =

[

1

1

]

, � =

[

0.1 0

0 0.1

]

. (46)

The AoI function is chosen as (6) which represents the

mean-squared error of the remote estimation performance [3].

According to the parameters of TR1001 in [27], the default

settings of the following parameters are Ea = 3.6 × 10−4J,

Es = 0.0015 × 10−4J, Eon = 0.252 × 10−4J, Eoff = 0.0283 ×

10−4J, p = 0.5, λ = 0.5, and K = 2 × 104.

A. Performance of the Proposed Sleep Scheduling Policy

First, we evaluate the performance of the proposed sleep

scheduling policy by simulations and compare it with four

other existing policies—Greedy policy [6], optimal stationary

randomized (OSR) policy [7], duty-cycle (DC) policy [13], and

dynamic programming (DP)-based policy [28]. The Greedy

policy makes decisions according to the cost it brings.

Specifically, during step k, the Greedy policy considers the

energy cost during step k and the AoI during step k + 1.

Therefore, the sensor changes its working mode from sleep

to active when

λ(Eon + Ea) + (1 − λ)
[

pf (1) + (1 − p)f (�(k) + 1)
]

≤ (1 − λ)f (�(k) + 1) + λEs (47)

and changes its working mode from active to sleep when

λ(Eoff + Es) + (1 − λ)f (�(k) + 1)

≤ λEa + (1 − λ)
[

pf (1) + (1 − p)f (�(k) + 1)
]

. (48)

The OSR policy switches the sensor’s working mode with a

fixed probability β ∈ [0, 1] at every step. The deliveries of the

measurement form a renewal process. Then, we can establish

an optimization problem to minimize the average cost in (9)

and get the optimal probability β∗, which forms the OSR pol-

icy. The DC policy makes the sensor switch the working mode

at a fixed time interval [29], in which we set the sleep and

active periods of equal length which is calculated by (44) for

a fair comparison. We apply the DP method as in [28] to

optimally solve the optimization problem (9) and the solution

forms the DP policy. Then, we conduct Monte Carlo simula-

tions to evaluate the proposed sleep scheduling policy and the

above four existing policies in terms of the average cost in (9).

The results reported in the following figures are averages of

3 × 104 independent simulation runs.

Fig. 4 shows the results with different Eon ∈ {0.152,

0.252, 0.352, . . . , 1.052}. Fig. 5 shows the results with differ-

ent Ea ∈ {3.5, 3.6, 3.7, . . . , 4.4}. Fig. 6 shows the results with

different p ∈ {0.3, 0.4, 0.5 . . . , 1}. From Figs. 4–6, we can find

that the proposed optimal sleep scheduling policy has the best

average cost performance. And the performance of the optimal

sleep scheduling policy is almost coincident with that of the

DC policy. This also reflects the correctness of Theorem 1

and Corollary 1. The DC requires backtracking every time a

decision is made, which leads to a very high time complexity

and may rise the so-called “dimension disaster” problem [28].

Fig. 4. Performance comparisons under different Eon.

Fig. 5. Performance comparisons under different Ea.

Fig. 6. Performance comparisons under different p.

Moreover, in practice, the sensor if in sleep mode may not

be able to make scheduling decisions. The DC policy may be

not applicable in this situation. Therefore, a viable method can

be that the sensor decides a sleep period and sets a wake-up

timer before it sleeps. The proposed optimal sleep scheduling

policy meets the above condition and it only needs to calcu-

late the optimal sleep period T∗ in advance. The sensor only

needs to work according to the preset pattern when running,

and no extra calculation is needed when making decisions. We

evaluate the performance of our policy when the function is

the most commonly used one [15]: f (�) = �. As shown in

Fig. 7, the optimal sleep scheduling policy also has the best
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Fig. 7. Performance comparisons under different Ea with f (�) = �.

performance. Notice that the curve of the Greedy policy has

some inflection points. The reason is as follows. Based on (47)

and (48), it is easy to deduce that, under the Greedy policy

and with f (�) = �, the sensor also works in a cyclic pattern

similar to that in Theorem 1, except that the sleeping period is

�(λ/[p(1 − λ)])(Ea + Eon − Es)�. That is, the inflection points

occur mainly due to the nonsmoothness of this sleeping period.

In contrast, in our sleep scheduling policy, the optimal sleep-

ing period is used which is derived from solving the original

optimization problem.

B. Performance Comparison With Event-Based Policy

We compare the sleep scheduling policy and a typical

Event-Based policy as proposed in [30] for reducing mea-

surement transmissions in remote state estimation systems.

In the Event-Based policy [30], during every step, the sen-

sor generates an independent random variable φ(k) which is

uniformly distributed over the interval [0, 1]. When the sen-

sor is in sleep mode, it will switch to active mode when

φ(k) > exp(−(1/2)�(k)2Y), where Y is a positive param-

eter. When the sensor is in active mode, it will switch to

sleep mode when φ(k) < exp(−(1/2)�(k)2Y). Fig. 8 shows

the performance of the optimal sleep scheduling policy and

the Event-Based policy. With the increase of Y , the Event-

Based policy will make the sensor stay in active mode for

a longer time, resulting in the decrease of AoI function and

the increase of energy consumption. Fig. 8(c) shows the aver-

age cost comparisons of the optimal sleep scheduling policy

and the Event-Based policy. We can see that the optimal sleep

scheduling policy outperforms the other one. In addition, since

the event-based policy requires the sensor to make decisions

at every step, the sensor might have to wake up at the begin-

ning of every step to decide whether to remain in active or

sleep again. This may incur extra energy cost. In contrast,

in our proposed policy, the sensor only needs to maintain a

wakeup clock once sleeps and wake up when the clock counts

down to 0.

C. Optimal Sleep Period T∗

Furthermore, we analyze the optimal sleep period T∗ by

simulations under the proposed sleep scheduling policy. Fig. 9

demonstrates the value of the optimal sleep period T∗ under

(a)

(b)

(c)

Fig. 8. Performance comparison with event-based policy [30]. (a) Average
AoI function. (b) Average energy consumption. (c) Average energy
consumption.

different Eon and Ea. For a fix Ea, the optimal sleep period

increases when the value of Eon increases. However, when

Eon exceeds a certain value, the optimal sleep period drops

to 0. This is because the sensor becomes unwilling to spend

more energy to wake up as Eon is high, and, hence, it keeps

active all the time and T∗ = 0. On the other hand, for a

fixed Eon, the figure shows that the larger the Ea is, the longer

the optimal sleep period will be. This is reasonable because

when the energy consumption for staying in active mode grows

larger, the sensor prefers to sleep for a longer time to save
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Fig. 9. Optimal value of sleep period T∗ under different Eon and Ea.

Fig. 10. Optimal value of sleep period T∗ under different p and λ.

energy. Fig. 10 demonstrates the value of the optimal sleep

period T∗ under different p and λ. We can observe that the

larger the λ is, the longer the optimal sleep period becomes.

This is because the larger the weight of energy consumption is,

the more time the sensor will spend in sleeping to save energy.

In addition, with a smaller successful data transmission rate p,

the sensor is expected to spend more time in active in order

to successfully deliver a packet, leading to a higher energy

consumption. Thus, it needs to sleep less to reduce AoI by

using a shorter sleep period, as shown in Fig. 10.

D. Comparison With Nonsleeping Sensor

Then, we compare the performance of AoI and energy con-

sumption between the sensor with the optimal sleep scheduling

policy and the nonsleeping sensor [7]. Fig. 11 demonstrates

the comparison results with λ ∈ {0.1, 0.2, . . . , 0.9}. When

λ = 0.1, the optimal sleep period is 0 for the sleep–wake

sensor, so the AoI and energy cost of the sleep–wake sensor

are the same as the nonsleeping sensor. When λ is larger, the

energy cost is more important and the optimal sleep period is

larger. Although the optimal sleep–wake sensor sacrifices the

freshness of the data, it saves a lot of energy. Therefore, intro-

ducing sleep mode for the sensor and adopting the optimal

sleep scheduling policy in this article are good attempts to

balance AoI and energy consumption.

VI. CONCLUSION

Although the freshness of the data is quite important, we

have to consider the energy consumption of the sensor in IIoT.

In order to provide fresh information while reducing the energy

consumption of the sensor, we introduce two working modes

for the sensor: 1) sleep mode and 2) active mode. The sensor

can switch its mode at the beginning of every step. Then,

Fig. 11. Performance comparison with the nonsleeping sensor scenario.

we establish an AoI and energy consumption optimization

problem. The problem is formulated into an MDP and we

reveal the optimal scheduling policy follows a kind of thresh-

old structure. Furthermore, we find the optimal scheduling

policy forms a cyclic sleep–wake working pattern. Then, we

theoretically obtain the ratio of average AoI function and

average energy consumption between the sleep–wake sensor

and the nonsleeping sensor. Later, we theoretically derive the

optimal sleep period when the AoI function is linear and we

propose an algorithm to find the optimal sleeping period for

the common AoI function. In the simulation results, we can

find that the proposed optimal sleep scheduling policy has the

best performance. Moreover, the simulation demonstrates the

introduction of sleep mode and the optimal sleep scheduling

policy saves a lot of energy, which is a good way to balance

the freshness of data and energy consumption.

APPENDIX

PROOF OF LEMMA 1

Proof: First, we prove (24) by induction. Initially when

t = 0, we choose V0(�, s) = (1 − λ)f (�). Then, we can get

V0(�+n, s) = (1−λ)f (�+n). Since f (�) is nondecreasing,

it holds that V0(� + n, s) ≥ V0(�, s) ∀� ≥ 0 and ∀n ≥

0. Next, assuming that Vt(� + n, s) ≥ Vt(�, s) ∀� ≥ 0

and ∀n ≥ 0, we need to prove that this inequality also holds

for t + 1. Because Vt(� + n, 0) ≥ Vt(�, 0), L1,t(� + n) ≥

L1,t(�), and L2,t(� + n) ≥ L2,t(�), i.e., all the two terms in

the minimum operation of (14) are nondecreasing, we have

Vt+1(� + n, 0) ≥ Vt+1(�, 0) ∀� ≥ 0 and ∀n ≥ 0. Similarly,

we can get Vt+1(�+n, 1) ≥ Vt+1(�, 1) ∀� ≥ 0 and ∀n ≥ 0.

As a consequence, Vt+1(� + n, s) ≥ Vt+1(�, s) ∀� ≥ 0 and

∀n ≥ 0. By induction, ∀t ∈ N

Vt(� + n, s) ≥ Vt(�, s) ∀� ≥ 0 ∀n ≥ 0. (49)

Thus, when t → ∞, we have V∗(� + n, s) ≥ V∗(�, s)

∀� ≥ 0 and ∀n ≥ 0.

Second, we prove (25) by induction. Similar to the above,

we choose V0(�, s) = (1−λ)f (�). Then, we can get V0(�+

n, 0) − V0(�, 0) = V0(� + n, 1) − V0(�, 1) ∀� ≥ 0 and

∀n ≥ 0. Next, we assume that the above inequality holds for
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iteration t and we need to prove the inequality for t + 1, i.e.,

Vt+1(� + n, 0) − Vt+1(�, 0)

≥ Vt+1(� + n, 1) − Vt+1(�, 1). (50)

Based on (21) and (22), it is obvious that L1,t(�) ≤ L3,t(�)

and L2,t(�) ≥ L4,t(�). Moreover, according to the proof

of (24), L1, L2, L3, and L4 are nondecreasing in �. From

iteration t on, we have the following inequality for any n ≥ 0

and � ≥ 0:

L3,t(� + n) − L3,t(�) = L1,t(� + n) − L1,t(�)

= (1 − λ)(f (� + n) − f (�))

+ βVt(� + n + 1, 0) − βVt(� + 1, 0)

≥ (1 − λ)(f (� + n) − f (�))

+ βVt(� + n + 1, 1) − βVt(� + 1, 1)

≥ (1 − λ)(f (� + n) − f (�))

+ β(1 − p)Vt(� + n + 1, 1)

− β(1 − p)Vt(� + 1, 1)

= L2,t(� + n) − L2,t(�)

= L4,t(� + n) − L4,t(�) (51)

where we have used (49) in deriving the first inequality. To

prove (50), we divide the problem into the following 20 cases

according to the property of L1, L2, L3, and L4. The following

discussions are valid for any n ≥ 0 and any � ≥ 0.

1) Case 1: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L3,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n),

based on (14) and (19), we have

Vt+1(� + n, 0) − Vt+1(�, 0) = L1,t(� + n) − L1,t(�)

Vt+1(� + n, 1) − Vt+1(�, 1) = L3,t(� + n) − L3,t(�).

Then, Vt+1(�+n, 0) −Vt+1(�, 0) = Vt+1(�+n, 1) −

Vt+1(�, 1) by (51). Therefore, (50) holds in this case.

2) Case 2: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),

we can get

Vt+1(� + n, 0) − Vt+1(�, 0) = L1,t(� + n) − L1,t(�)

= L3,t(� + n) − L3,t(�)

Vt+1(� + n, 1) − Vt+1(�, 1) = L4,t(� + n) − L3,t(�)

≤ L3,t(� + n) − L3,t(�).

where we have used L4,t(� + n) ≤ L3,t(� + n).

Hence, (50) holds in this case.

3) Case 3: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 2, (50) holds.

4) Case 4: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),

similar to case 2, (50) holds.

5) Case 5: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 2, (50) holds.

6) Case 6: If L1,t(�) ≤ L3,t(�) ≤ L4,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

we can get

Vt+1(� + n, 0) − Vt+1(�, 0) = L2,t(� + n) − L1,t(�)

= L4,t(� + n) − L3,t(�) + λEon + λEoff

≥ L4,t(� + n) − L3,t(�)

= Vt+1(� + n, 1) − Vt+1(�, 1).

Therefore, case 6 meets (50).

7) Case 7: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),

we can get

Vt+1(� + n, 0) − Vt+1(�, 0) = L1,t(� + n) − L1,t(�)

Vt+1(� + n, 1) − Vt+1(�, 1) = L4,t(� + n) − L4,t(�).

According to (50), (51) holds.

8) Case 8: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

9) Case 9: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),

similar to case 7, (50) holds.

10) Case 10: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

11) Case 11: If L1,t(�) ≤ L4,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

similar to case 6, (50) holds.

12) Case 12: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and

L1,t(�+n) ≤ L4,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

13) Case 13: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

14) Case 14: If L1,t(�) ≤ L4,t(�) ≤ L2,t(�) ≤ L3,t(�) and

L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

we can get

Vt+1(� + n, 0) − Vt+1(�, 0) = L2,t(� + n) − L1,t(�)

Vt+1(� + n, 1) − Vt+1(�, 1) = L4,t(� + n) − L4,t(�)

= L2,t(� + n) − L2,t(�).

Therefore, (50) holds since L1,t(�) ≤ L2,t(�).

15) Case 15: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n) ≤ L2,t(�+n),

similar to case 7, (50) holds.

16) Case 16: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

17) Case 17: If L4,t(�) ≤ L1,t(�) ≤ L3,t(�) ≤ L2,t(�) and

L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

similar to case 14, (50) holds.

18) Case 18: If L4,t(�) ≤ L1,t(�) ≤ L2,t(�) ≤ L3,t(�) and

L4,t(�+n) ≤ L1,t(�+n) ≤ L2,t(�+n) ≤ L3,t(�+n),

similar to case 7, (50) holds.

19) Case 19: If L4,t(�) ≤ L1,t(�) ≤ L2,t(�) ≤ L3,t(�) and

L4,t(�+n) ≤ L2,t(�+n) ≤ L1,t(�+n) ≤ L3,t(�+n),

similar to case 14, (50) holds.
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20) Otherwise: If L4,t(�) ≤ L2,t(�) ≤ L1,t(�) ≤ L3,t(�)

and L4,t(� + n) ≤ L2,t(� + n) ≤ L1,t(� + n) ≤

L3,t(� + n), then

Vt+1(� + n, 0) − Vt+1(�, 0) = L2,t(� + n) − L2,t(�)

Vt+1(� + n, 1) − Vt+1(�, 1) = L4,t(� + n) − L4,t(�).

Based on (51), we can get that Vt+1(� + n, 0) −

Vt+1(�, 0) = Vt+1(� + n, 1) − Vt+1(�, 1).

Therefore, (50) holds.

Above all, (50) holds in all cases. Then, by induction, we prove

the inequality (50) for iteration t ∈ N. As a consequence, (25)

can be proved when t → ∞.

Finally, we prove (26). Equation (25) can be rewritten as

V∗(� + n, 0) − V∗(� + n, 1) ≥ V∗(�, 0) − V∗(�, 1). (52)

While (24) reveals that

pV∗(� + n, 1) ≥ pV∗(�, 1). (53)

Then, combining (52) and (53) yields (26).
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