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Abstract—Keeping sensor data fresh is desired for Industrial
Internet of Things (IIoT), especially, in real-time monitoring
applications. However, this may require sensors always in active
mode and, thus, incur low energy efficiency. In this article, we
consider that a wireless sensor monitors a dynamical system and
reports real-time measurements to a processing center through
an unreliable wireless channel. We study the problem of opti-
mizing the sensor data freshness in terms of Age of Information
(Aol) while saving energy by scheduling the sensor to sleep when
needed. The problem is formulated as a Markov decision pro-
cess that takes both Aol and energy consumption into account, to
which we theoretically prove that the optimal scheduling policy
forms a cyclic sleep-wake pattern. The optimal sleep period is
also analyzed. Simulation results demonstrate that the proposed
scheduling policy outperforms other existing policies.

Index Terms—Age of Information (Aol), energy, Markov
decision process (MDP), optimization, sleep scheduling.

I. INTRODUCTION

N INDUSTRIAL Internet of Things (IloT) applications
I such as real-time monitoring and control, the freshness of
sensor data is of great importance [1], [2]. For example, in
remote monitoring applications, it has been shown that the
fresher data the remote estimator can receive, the smaller the
state estimation error the estimator could achieve [3]. Another
example is the federated learning applications in IIoT, where
the freshness of training data becomes particularly important
when data cannot remain structurally similar across time [4].

Although delay is one of the most commonly used met-
rics of packet-wise transmission performance in networks, it
does not accurately reflect the data freshness [5], [6]. Recently,
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the notion of Age of Information (Aol) has been proposed,
which tracks the time elapsed since the generation of the lat-
est received data from the perspective of the receiver, as a new
metric of data freshness [3], [4], [5], [6], [7], [8], [9]. In the lit-
erature, a number of studies have been devoted to minimizing
Aol for fresh data gathering over wireless networks [7], [8],
e.g., the Max-Weight policy [7], Whittle’s Index policy [7],
and SQRT-Weight policy [8]. However, many existing studies
assume that the sensors are always in active mode and ready
for data transmission once scheduled [7], [8].

Intuitively, the wireless sensor may try to seize every oppor-
tunity to transmit data in order to minimize the Aol. However,
such an always-on working mode may cause significant energy
waste for the sensor during its idle time, and, hence, may be
even unaffordable for a resource-constrained sensor [10]. In
IIoT, energy efficiency is an important issue, and improving the
energy efficiency of wireless devices and prolonging their life-
time becomes increasingly important as wireless technologies
are expected to gain more penetration in future IIoT [11], [12].

In this article, we consider a class of real-time monitoring
applications of IIoT with the aim at enhancing the sensor data
freshness as characterized by Aol while reducing the energy
consumption of the sensor. Motivated by the working mode
of duty-cycling sensors [13], we allow the sensor to sleep in
order to save energy. Many wireless technologies have specific
mechanisms similar to the sleeping mode. For example, tradi-
tional IEEE 802.11 specifies the power-saving mode, and the
recently released IEEE 802.11ax standard further introduces
the target wake time agreement to save energy [14]. Other
wireless technologies, such as WirelessHART and ZigBee,
also employ low-power modes to save energy.

Our basic idea is to save the sensor’s energy by switching it
off when needed without sacrificing much Aol. By doing so,
we are able to achieve a balance between information freshness
about the dynamic process at the remote processing center and
the sensor’s energy consumption. Specifically, the sensor saves
energy when sleeping without sending any data and improves
Aol only when it is in active mode. Taking both switching
energy and the energy for being active of the sensor into
account, we formulate an optimization problem of the sensor’s
sleep scheduling with the objective being a combination of a
generic Aol function and the total energy consumption. Based
on a Markov decision process (MDP), we theoretically prove
that the optimal solution yields a cyclic working pattern, i.e.,
in each cycle, the sensor first sleeps for a fixed period and then
wakes up and keeps active until successfully sending a data
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packet to the processing center. We compare our scheduling
policy with other existing policies, and the results demonstrate
that our policy outperforms the other in terms of Aol-energy
tradeoff. The main contributions are summarized as follows.

1) We formulate an optimal sensor sleep scheduling
problem that trades off between Aol and sensor’s energy
consumption. In the literature, although there are some
studies on Aol minimization in IIoT recently [6], [7],
very few of them shed light on the energy-efficiency
issue of Aol optimization by using sensor sleep mode.

2) We theoretically prove that the optimal sleep scheduling
policy leads to a cycling pattern.

3) We propose an algorithm to find the optimal sleep
period. Moreover, for cases that the Aol function is lin-
ear, we derive an explicit expression of the optimal sleep
period.

The remainder of this article is organized as follows.
Section II summarizes some related work. Section III intro-
duces the system model and formulates the optimization
problem. Section IV derives the optimal sleep scheduling
policy and proposes ways to find the optimal sleep period.
Section V presents the simulation results, while Section VI
concludes this article.

Notations: @ denotes the XOR operator. E(-) denotes the
mathematical expectation. Let tr(-) represent the trace of a
matrix. Pr(-) denotes the probability of an event. Let N be
the set of nonnegative integers. Denote by Leyen the indicator
function, which equals to 1 if event is true and O if otherwise.

II. RELATED WORK

Recently, Aol has attracted more and more attention in
applications where data freshness matters. For example, the
problems of when to sample the data and in what order to
process the data in order to optimize Aol are studied in [15]
and [16]. In time-slotted systems, transmission scheduling for
minimizing Aol is studied in [7] and [17].

Due to the limited energy of wireless sensors in many
IIoT systems, it is of great importance to save energy when
minimizing Aol. For example, under the constraint that the
average energy consumption of the sensor cannot exceed a
given value, a policy that can reduce Aol is proposed to choose
proper sensors to send their updates [18]. In [19], the problem
of data sending scheduling in order to minimize Aol and
energy is studied. Another thread of research toward energy-
efficient Aol minimization is to consider rechargeable sensors
[20], [21]. In [20], the source node needs the energy to sample
and send data, while the destination node, with power supply,
can transfer wireless energy to charge the source node. Then,
a joint sampling, charging, and updating policy is proposed to
minimize Aol. As for the case where energy arrives randomly,
in order to reduce Aol, Zhou et al. [21] proposed optimal
offline policies and efficient online policies to schedule the
transmitter whether to send the update when it arrives.

In the literature, a few works have been devoted to energy-
efficient Aol minimization with sensors that are allowed to
sleep to save energy [22], [23]. In [22], the sensors will sleep
if they find the channel is busy. And with the constraint of
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TABLE I
DEFINITIONS OF KEY NOTATIONS

Notation Definition
k The discrete-time step
s(k) The working mode (active or sleep) of the sensor
during step k
u(k) The scheduling decision (to keep or to switch mode)

at the beginning of step &
P The successful transmission probability

~v(k) Indicator of whether the remote center receives the
sensor data in k
ty(k) The generation time of the freshest data the remote
center received by the end of step k — 1
A(k) Age of information (Aol) at the beginning of step k
7 The Aol function
FEq, Es The one-step energy consumption of the sensor for
being in active and sleep, respectively
Eon, Eof The energy consumption for mode switching
C(k) The total one-step energy consumption of the sensor
J(k), J* The total cost function and its optimal value
T, The sleep scheduling policy and its optimal solution

The reward and value functions, respectively
The thresholds in the optimal scheduling policy 7*
The sleep period and its optimal value

R( ) )7 ‘/t(v )
active, —sleep
*

T,T

energy consumption, the optimal sleep parameters are derived
to minimize peak Aol. In [23], a new Aol-penalty function
is proposed to characterize the data eagerness for sensors that
wake up after sleeping for a certain time. Then, a Max-Weight-
based sensor scheduling policy is proposed to minimize the
sensors’ Aol-penalty. The above studies leverage sensors’
sleep mode to save energy, which, however, lacks a theoretical
explanation whether and to what extent the sensor can benefit
in terms of Aol by employing sleep mode.

III. SYSTEM MODEL

The main notations used throughout this article are summa-
rized in Table I.

We consider a real-time monitoring system in which a wire-
less sensor measures the dynamical state of a physical process
and sends the measurement data through an unreliable wireless
channel to a remote data processing center (DPC) [24], [25].
For example, in [24], a sensor sends real-time measurements
of a 2-DOF (degree of freedom) serial flexible joint robot to
a controller for monitoring and control purposes, where the
dynamics of the robot is modeled as follows:

x(k) = Ax(k — 1) + BOGk — 1) + w(k — 1) (1)

where x € R™ is the system state, 0 € R is the control input,
and A and B are coefficient matrices with proper dimensions.
w is the system noise which is Gaussian with zero mean and
covariance matrix X. k € {1,2,..., K} is the index of the
discrete-time steps. Note that (1) is only an example of the
physical process. This article focuses on a generic form of
Aol, which does not rely on any specific forms of the dynamic
process model. For other processes under monitoring, as long
as the corresponding Aol function evolves as in (5) below, the
results obtained in this article remain valid.

When the wireless sensor is in active mode, it measures
the state of the physical process at the beginning of the cur-
rent step and sends the measurement to the DPC. Whereas,
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Active: s(k)=1 s(k)=1

;uitch: u(k)=1
1 s(k)=0 T
T

l,

Sleep
k)=0
0 7’T

u(k)=1

Fig. 1. Schematic of the binary variables.

it keeps inactive to save energy in sleep mode. At the begin-
ning of every step, the sensor chooses whether to switch the
current mode or not. Let s(k) € {0, 1} denote the working
mode of the sensor during step k (after switching) with s(k)
equals to 1 indicating active mode and O otherwise. Denote
by u(k) € {0, 1} the switching decision at the beginning of
step k' such that u(k) = 0 means keeping the mode while
u(k) = 1 means otherwise. Therefore, the working mode of
the sensor during step k is determined by

s(k) = stk — 1) @ u(k). 2)

The relationship between s(k) and u(k) is shown in Fig. 1.
We assume that each sensor packet transmission can be
completed within one step and that the DPC replies the sen-
sor an acknowledgment upon successfully receiving the sensor
packet. The transmissions from the sensor are over an unre-
liable wireless channel with the probability of a successful
data transmission as p € (0, 1]. Since the acknowledgment
from the energy-rich DPC is short in length and can be sent
with high power, we assume its transmission is reliable [7].
Let y (k) = 1 indicate that the DPC successfully receives the
sensor’s measurement in k£ and y (k) = O otherwise. We have

E[y (0] = pEls()] = pE[stk — D @ u®].  (3)

A. Optimization Problem

According to [5], the Aol at the DPC at the beginning of
step k is defined as the time difference between the genera-
tion time of the freshest measurement packet that the DPC
receives from the sensor. Let #,(k) denote the generation time
of the freshest measurement the DPC receives from the sensor
by the end of step k — 1. Denote by A(k) = k —t,(k) the Aol
at the beginning of step k (the definition of Aol in [7]). If
the sensor is in active mode and transmits the measurement
successfully during step k (i.e., y (k) = 1), at the beginning
of the next step, to(k 4+ 1) = k; otherwise, t,(k 4+ 1) = t,(k).
Hence, we have

1, ifyk) =1
Atk+1) = { A(k) + 1, otherwise. @
We define an Aol function f(A) that evolves as follows [15]:
_[r, ify(k) =1
fAAK+1) = {f(A(k) + 1), otherwise ©)

where f(-) is assumed nondecreasing. The Aol function is a
metric of how Aol impacts the system performance. Taking

n practice, if in sleep mode, the sensor may not be able to make switching
decisions. A viable way can be that the sensor decides a sleep period and sets
a wake-up timer accordingly before it sleeps. In this article, for the ease of
problem formulation, we assume that the sensor can decide whether to wake
up or not when sleeping. However, our proposed optimal policy does not need
this assumption.
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the real-time monitoring system in (1), for example, the Aol
function can be defined as [3]

A—1 )

fay=%" tr((AT)lAiE) (6)

i=0
where X is the covariance of the system noise w. Equation (6)
represents the mean-squared error of the state estimation
performance in terms of Aol at the controller. In communica-
tion systems, typical Aol functions are defined as f(A) =
(e.g., [5], [6], and [7]) and f(A) = A (e.g., [15]). Notice that
the above Aol functions satisfy the assumption that they are
nondecreasing.

B. Problem Formulation

Denote the energy consumption of the sensor as E;, > 0
and E; > 0 (E; > Ej) at every step when it is in active and
sleep modes, respectively. Besides, in order to save energy, the
sensor should avoid switching its working mode too frequently.
As a consequence, we denote the energy consumption of the
sensor for waking up (from sleep to active) and turning off
(from active to sleep) as Eop > 0 and Eygr > 0O, respectively.
Then, the total energy consumption during step k is

Ck) = Eqls(k — 1) @ u(k)] + Eg[1 — sk — 1) @ u(k)]
+ Eonu(k)[1 — s(k — D] + Eofru(k)s(k — 1). (7)

For example, if s(k — 1) = 0 and u(k) = 1, the sensor wakes
up from the sleep mode and keeps in active during k, and,
hence, C(k) = E, + Eqp.

Then, the total cost function during step k is set as
a weighted combination of both Aol function and energy
consumption as follows:

J(k) = (1 = Vf(AKR) +A1CK) ®)

where A € [0, 1] represents the weight of energy consumption
in the optimization objective. On the one hand, minimizing
Aol would require the sensor to keep active trying to send
its data as quickly as possible, which results in high energy
consumption. On the other hand, saving energy by letting
the sensor sleep may miss some data sending opportunities
and, hence, sacrifices the Aol. The larger the value of A, the
more the sensor prefers to sleep to save energy; otherwise,
it prefers to reduce the value of Aol if its energy is rich. For
the above problem to be meaningful, hereafter we assume that
0 < A < 1. Since the Aol function can be application specific,
its magnitude may be different from the energy consumption.
Therefore, in order to analyze them together, both the Aol
function and the energy consumption should be normalized.

Let 7 = [u(1), ..., u(K)] be a sleep scheduling policy that
determines whether the sensor sleep or awake and IT be the
set of all admissible policies. Without loss of generality, we
set t,(1) =0, A(1) = 1, and s(1) = 0. Then, our optimization
problem can be formulated as follows:

71.’[116111_11 J= hm — ZE J(k)] (9a)
st uk) € {O,I}Vk. (9b)

Let J* be the optimal solution.
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IV. OPTIMAL SCHEDULING POLICY

In this section, we first reformulate Problem (9) as an MDP,
based on which we find a structural property of the optimal
policy. Then, we derive the optimal scheduling policy and
analytically characterize its performance.

A. MDP Formulation of Problem (9)

At the beginning of step k, define the state and action of
the sensor as (A(k),s(k — 1)) and u(k), respectively, with
the action space {0, 1}. If the sensor was in sleep mode, i.e.,
s(k — 1) = 0, based on the dynamics of A(k) as given in (4),
one can see that A(k+ 1) = A(k) + 1 if u(k) = 0. If the
sensor chooses to switch its working mode, i.e., u(k) = 1
when s(k — 1) = 0, the change of Aol relies on the channel
state during step k in terms of that A(k+ 1) will drop to 1 if
the transmission is successful (with probability p); otherwise,
A(k+ 1) = A(k) + 1. Therefore, the one-step probabil-
ity transfer function from current state (A, 0) to a new state
(A’, s') at the beginning of the next step under action u can
be summarized as follows:

1, fu=s =0and A'=A+1
, _)p fu=s¢=1and A" =1
Pr(a’, 514, 0) = 1—p, ifu=s=1and A=A +1
0, otherwise.
(10)

Similarly, we can derive the probability transfer function when
the sensor was previously in active mode as

1, ifu=1,¥ =0and A’ =A+1
D, ifu=0,§ =1land A’ =1

!t —
PI‘(A,S|A,1)— 1_p’ ifu=0,s/=1andA'=A+l

0, otherwise.
(11)
In view of (9), define the reward as
R(A,s,u) = (1 = L)f(A)+AE;(s D u)
+ AEG[1 — (s ® w)] + AEoqu(l — 5)
+ AEoffus (12)

where we have used (7) and (8). Then, the value function
V:(A, s) can be given as follows:

Vir1(A,s) = glei%{R(A, s,u) + BE[Vi(A',s)]}  (13)

where 8 € (0, 1) is the discount factor. The above value
iteration can start at any initial value function Vj, and for
convenience, we set Vy(A,s) = (1 — A)f(A). Then,
Vi(A, s) converges to the optimal value function V*(A,s) =
lim;—, oo V:(A, s) for any A >0 and s € {0, 1}.

When the sensor was previously in sleep mode, submit-
ting (10) and (11) into (13), we have

Vit1(A,0) = H{l(i)nl}{(l = Mf(A) + AuEq + A(1 — w)Es + AuEon
uef0,

+ BE[Vi(A".5)]}
= min (1= 1f(A) + iy + (1 = wE; + Auon
uev,

+ B — w)V,(A +1,0) + BupVi(1, 1)
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+ Bu(l —p)Vi(A +1, 1)}
= min {(1 —w)L(A) + uls(A)}
ue{0,1}
= min{Ll,;(A), LZ,I(A)} (14)
= Li(8) + mi ]}{M[LZ,t(A) — L ()]}
=Li(A)+ Mg{l(i)nl}{uleeep,t(A)} (15)

where we have used (10) in deriving the second equality. In
the above

Li(A) 2 (1= Df(A) + AE; + BV(A+1,0)  (16)
Ly (A) £ (1 = Mf(A) + AEon + AE,
+ BpV: (1, ) + B —pVi(A+1,1) (A7)

Lyteep.1(A) = Lo ((A) — L1 (A)
=—BVi(A+1.00 = (1 =p)Vi(A + 1. )]

+ A(Eon + Eq — Ey) + BpVi(1, D). (18)
Similarly, when the sensor was previously active
Vf+1 (A7 1)
= min {(1 = 0)f(8) +4(1 = u)Eq + huEs + Moty
ue L,
+ BE[Vi(4".5)]}
= min {uls (D) + (1 — w)La (D))
ue{0,1}
= min{L3 ((A), Ls.((A)} 19)
= L4, (A i Lactive,t (A 20
4,1( )+ ug{l(l),l}{u actlve,l( )} (20)

where we have used (11) in deriving the second equality and

L3 (A) £ Ly 1(A) + AEost (21)
La (A) £ Ly (A) — MEon (22)
Lactive,/(A) £ L3 ((A) — Lg (D). (23)

In the sequel, we shall drop the subscript ¢ in L;;, Leep,s
and Laciive,; to indicate their converged values as 1 — oo.

B. Optimal Policy

Based on the above, we can derive the following properties
of the value function.

Lemma 1: YA > 0 and Vn > 0, the following inequalities
hold:

D VYA +n,5)>V*A,s) (24)
2) V¥(A +n,0) — V*(A,0)
> V(A +n1)— VA, (25)
)V (A+n0) —0-pVA+n]
> V*(A,0) — (1 —p)V¥*(A,1). (26)
Proof: The proof is provided in the Appendix. |

Next, we derive a threshold structure of the optimal policy.
Lemma 2: YA > 0, there exist Agcive < Agleep < 00 such

that the optimal scheduling policy 7r* has a threshold structure
in terms of that
lAzAsleep’ ifs=0

]LAanclive’ lf S = l (27)

u*(A,s) ={
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where u*(A,s) represents the optimal scheduling decision
when the sensor is in state (A, s).
Proof: According to (15) and (20), the optimal schedul-

ing decision depends on the sign of Lgjeep(A) and Lactive (A).
When Lgeep(A) > 0 or Lyctive(A) > 0, (15) and (20) sug-
gest that the corresponding optimal scheduling decision is
w* = 0. Similarly, if Lgeep(A) < 0 or Laciive(A) < 0, the
corresponding optimal scheduling decision is u* = 1. When
Lgleep(A) = 0 or Lactive(A) = 0, the corresponding optimal
scheduling decision u* is derived as below by considering
whether Lgjeep(A) = 0 or Lactive(A) = 0 have nonnegative
solutions.

First, suppose that Lgjeep(A) = 0 (0r Lycive(A) = 0) has
nonnegative solutions. Let Ageep be the maximum nonnegative
solution of the following:

leeep(A) = AEon — AE; + AE; + ,BPV*(L 1)
- B[V*(A+1,00—1—-pV*(A+1,1)]
=0. (28)

Consider that the sensor was previously in sleep mode, i.e.,
s = 0. According to (26), Lgjeep(A) is nonincreasing in A.
Therefore, combining (28) and Lgieep(Asieep) = 0, we have
the following inequalities hold for any n > 0:

leeep(Asleep + n) = Ls]eep(Asleep) =0
leeep(Asleep - n) z leeep(Asleep) =0.

From (29), one can see that the optimal scheduling decision is
u* =1 when the current Aol is greater than Agjeep. Similarly,
from (30), one can see that the optimal scheduling decision is
u* = 0 when the current Aol is less than Agjeep. Notice that if
the nonnegative solutions of (28) are not unique, the solutions
must be a continuous interval, say [ésleep, Agleep], Which is
because Lgeep(A) is nonincreasing in A. In this case, without
affecting its optimality, u* can be set as 1 if the current Aol
is greater than Ageep and 0 if otherwise. Above all, we obtain
the first line of (27).

When the sensor was previously in active mode, i.e., s = 1,
in a similar argument, we obtain the second line of (27), where
Agctive 18 the minimum nonnegative solution of the following:

Lactive (A) = IBV*(A +1,0) - 801 _P)V*(A + 11
+ AEoff + AEg — AE, — BpV*(1, 1)

(29)
(30)

=0. 3D
Besides, according to (18) and (23)
Lacive(A) + leeep(A) = AEon + AEoft > 0. (32)

At the point Ayeive Where Lactive (Aactive) = 0, Lsleep (Aactive)
should be nonnegative according to (32), i.e.,

leeep(AaCtive) >0= leeep (Asleep)-

Therefore, Agleep > Aactive due to that Lgjeep (A) is nonincreas-
ing in A.

Next, we discuss the cases when Lgeep(A) = 0 or
Lactive(A) = 0 has no nonnegative solution. For ease of expo-
sition, in what follows, when we say one of Lgeep(A) = 0
and Lycive(A) = 0 has no nonnegative solution while the

(33)
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_____ Lactive (A) leeep (A)
A A
o~ Aactive —
> - »
ol 1 _--"" A o 1 -7 A
- - - - - -
- Agctive= +
A -7 A

-
- . =
P Aactwe

0
1 Asleep A

Asleep: 0

Fig. 2. Four cases where Lgjeep(A) = 0 or Lyctive (A) = 0.

other has nonnegative solution, we mean that the other has
a unique solution. For the cases when it has multiple solu-
tions, our analysis below remain valid for the reason similar
to the above.

As shown in Fig. 2, there are four cases for that

Lgieep(A) = 0 or Lactive (A) = 0 has no nonnegative solution.

1) Case 1: If Lgjeep(A) > 0 and Lactive(A) < 0 VA > 0.
Since VA > 0, Lgeep(A) > 0, the optimal scheduling
decision is u* = 0 when the sensor was in sleep mode
according to (15). Similarly, since VA > 0, Lactive (A) <
0, the optimal scheduling decision is u* = 1 when
the sensor was in active mode. Therefore, (27) holds
if letting Agleep = Aactive = 0.

2) Case 2: If VA > 0, Lgjeep(A) > 0 while Lyctive(A) =0
has a nonnegative solution A,gve. As aforementioned,
the optimal scheduling decision is u* = 0 when the sen-
sor was previously in sleep mode, which validates the
first line of (27) by letting Ageep = 00. Meanwhile, the
second line of (27) holds for the same reason above (31).

3) Case 3: If Lgjeep(A) < 0 and Lyctive(A) > 0 VA > 0.
Similar to case 1, (27) holds if letting Ageep =
Aactive = 0.

4) Case 4: If VA > 0, Lyctive(A) > 0 while Lgjeep(A) =0
has a nonnegative solution Ageep. Similar to case 2, (27)
holds if letting Agciive = 0.

In sum, the optimal scheduling decision of u* is given in (27)
for some Ajctive < Agleep < 00. |

The threshold structure in Lemma 2 can be interpreted as

follows. When the sensor was previously in sleep mode with
low energy consumption, the increasing Aol becomes domi-
nating the cost function J(k). When the value of Aol becomes
excessively large, the sensor switches to the active mode and
spends some energy to transmit data in order to make Aol
drop. The switching happens at the point A, which is the
smallest integer greater than Ageep With Lgeep(Agleep) = 0.
This can be viewed as that the expected change of the
value function V due to mode switching, i.e., Lr(A) —
Li(A) as in (18), is beneficial to reducing the total cost J.
The scheduling decision threshold Ag,cive can be interpreted
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Fig. 3. Illustration of the sleep—wake working pattern.

similarly. In extreme cases, e.g., A = 1 (i.e., only energy con-
sumption matters in J) or p = 0 (i.e., the wireless channel
between the sensor and the remote DPC is blocked), the sensor
may keep in sleep mode, which can be viewed as Agjeep = 00.

Based on Lemma 2, we can further obtain the working
pattern of the sensor.

Theorem 1: Under the optimal sleep scheduling policy, the
sensor works in a cycling pattern as follows: in each cycle, it
first sleeps for a fixed period T € N, and then wakes up and
keeps active until successfully sending a data packet. After
that, a new cycle begins and it switches to sleep mode again.

Proof: As has been assumed, initially A =1 and s = 0.
According to Lemma 2, A > 1 and Ageep > Apctive- Since
Agleep and Agetive can be any of {0, 1, ..., 0o}, we prove the
theorem by dividing the problem into the following cases.

D) If Agcrive < Agieep < 1: The sensor will keep active all
the time, which is equivalent to that the sleep period T
is equal to 0.

2) If Ageep = 00: The sensor will sleep all the time, and
the sleep period T is equal to co.

3) If Agctive < 1 and 1 < Agep < o0: The sensor
will stay in sleep mode until the Aol gets greater than
Agleep- Then, the sensor will switch to active mode and
start to transmit the measurement. After that, the sensor
will keep active all the time and the sleep period T is
equal to 0.

4) Otherwise: The sensor will stay in sleep mode until the
Aol is greater than Agjeep. Then, the sensor will switch to
active mode and start to transmit the measurement. The
Aol will drop to 1 when the transmission is successful.
After that, the sensor will turn to sleep since A,ciive > 1.

Above all, the sensor will repeat the above working process
to form a cycle, where T = Agjeep. [ |

An example of the sleep—wake working pattern is depicted
in Fig. 3.

C. Performance Analysis

We may wonder about the performance comparison of
Aol and energy consumption between the sensor with sleep
scheduling policy and the nonsleeping sensor in [7]. Since the
sensor will be nonsleeping when the sleep period 7 = 0, we
only discuss the case where T > 1. Let ¢aor and @energy denote
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the ratio of time-average Aol function and time-average energy
consumption between the sensor with sleep scheduling policy
and nonsleeping policy, respectively.

Lemma 3: The ratio of time-average Aol and time-average
energy consumption between the sensor under sleep schedul-
ing policy (T > 1) and the nonsleeping sensor are, respectively

YR )+ XX (1= p) AT+ A)
B (T + DY A_ (0 —pA7lf(a)
T+ DE, ' E,

where E = E, — Es +pSign(T)(Eon + Eof) and Sign(T) equals
to 1 if T > 0 and O otherwise.

Proof: First, let us consider the sensor under the proposed
sleep—wake policy. In each cycle, the Aol A evolves as fol-
lows: it starts at 1 and grows to 7 during the sleeping period.
After that, A grows to T + ¢, where £ is the number of trans-
mission trials for the sensor to successfully transmit a packet.
Thus, the deliveries of the sensor data form a renewal pro-
cess [26], and the number ¢ follows a geometric distribution
with Pr(¢ = j) = p(1 — py~! and E[¢] = 1/p. Therefore, the
average energy consumption of the sleep—wake sensor is

Aol 34

Penergy = (35)

EaE[g] + TES + Eon + Eoff _ E +E (36)
T+ E[¢] TpT4+1 7
and the averaged Aol function is
DIDIARTIEN] I D OASTIEN]
T+E[]  pT+1
D oo T+L
—1
= T+1 o> pa=p) i)
=1 A=1
_ |y i(l —p @)
pT—|— 1 A=l (=1
+ )Y A=-p T+ A)}
A=1{=A
» T [ee)
_ o NA—d
= 771 LZZIM) + AZ=1(1 p)A T+ A)}.
(37)

Then, for the nonsleeping sensor, the average energy con-
sumption is E, and the averaged Aol function is

L 00
pE[Zf(A)} =p Y (1=p)*7'f(A). (38)

A=1 A=1
Thus, (34) and (35) are proved. [ |

Remark 1: 1t is difficult to analyze (34) for a generic Aol
function. If we consider the special Aol function f(A) = A,
(34) can be simplified as @aoqr = (1/2)(p + pT + 1 +
([1 — pl/[pT + 1])) = 1. On the other hand, since usually
Eg, Eon, and Egy are much smaller than E,, (35) reduces
t0 @energy ~ (1/[pT + 1]) < 1. Therefore, by applying the
sleep—wake policy, the sensor is able to balance between Aol
and energy consumption. Moreover, by using an optimal sleep
period T, the sleep—wake sensor is able to achieve better
performance in terms of J than the nonsleeping sensor.
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Further, we may be interested in the optimal value of the
sleep period T* in the sleep—wake working pattern. Below we
first show that the optimal T* is finite in normal cases and
then we derive an expression of 7% for a commonly used Aol
function [6], [7]: f(A) =

Theorem 2: If A # 1 and p # 0, and the Aol
function increases at a speed faster than « > 0, ie.,
f(A+1) —f() > aA, then the optimal sleep period is upper
bounded as

Trefre__* gy
ap(1—2)

Additionally, if E < 2ap(1/x» — 1), T* = 0.
Proof: By (36) and (37), the objective of Problem (9) is

- (1=np
=0 [Zf(A)+Z(1— O 1f(T+A)]

A=l
+ A E +E
pT +1 A

Then, let us examine the monotonicity of J(T). We have

(39)

(40)

JT+1)—J(D

T+1
o (1 - A)p[(pﬂ DY A~ T +p+1) Zf(A)
A=1 A=1

+ ET+D Y A=—p* ' f(T+14A)

A=1
— PT+p+ 1Y (1 —p 'f(T+ A)} — wpE
A=1
(41)

where o« means “proportional to.” After some rearrangements,
the right-hand side of the above becomes

(1-np? {p(u DY A=p* FT+1+4)
A=1

T+1
Zf( ) — A) }

B T+1
> (1= 2)p*| (T + DT +2) - Zf( ) — ) }
- A -
-0 fT+2) —f1) - ——E
> (1= Mp?|F(T+2) = f(1) (1_x)p]

> (1 —0p*|aT+1) - (42)

A
—F|.
I =21p }
Therefore, when T > T*, the objective J(T) becomes mono-
tonically increasing, which means the optimal T* exists and
is below T*. ]

From the above, one can see that when A = 1 or p = 0,
the optimal sleep period is co, which means the sensor better
sleep all the time to save energy. For a special case of the Aol
function, the optimal sleep period can be obtained as follows.

Corollary 1: In case if the Aol function is defined as
f(A) = A, under the sleep—wake working pattern, the optimal
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Algorithm 1: Searching the Optimal Sleep Period T*

Input: E,, E;, Eon, Eoft, p, A, f(A), T*;
1T <0, T <0, Jypjn < 00 ;
2 for T=1to T* do
3 Calculate J by (40) ;
4 if J < Jnin then
5 T < T, Jmin < J;
6
7

end
end

cost is

1—AT+ (1 —p)(1 — 1) + 2ApE
2 2p(1 +pT)

n 1 -=M1+p)
2p

JHT) =

+ AE; (43)

and the optimal sleep period T* that minimizes J*(T) is

T* = argmin J*(T)

(44)
Tefo,[T].[T])

szax{l 1( 1)} @

Proof: First, (43) can be directly obtained by submitting
f(A) into (40). When T > 1, by letting the derivative of J(T)
with respect to T [i.e., J'(T)] be zero, we obtain

i

which is not necessarily an integer. If T <1, then J'(1) > 0
and J(T) increases monotonically when 7' > 1. In this case,
the optimal sleep period T* is 1. If 7 > 1, then J'(T) < 0
when 1 < T < T and J'(T) > 0 when T > T. Therefore,
J(T) decreases monotonically when 1 < T < T and increases
monotonically when 7' > T. In this case, the optimal sleep
period T* should be the closest integer around T. |

Remark 2: If f(A) = A, one can see that, when E;, Eop,
and E, increase, the optimal sleep period T* increases so that
the sensor can sleep longer to save energy. However, when
Eon or Eof become very large, the sensor will spend a lot of
mode-switching energy. In such a situation, the sensor may be
unwilling to spend extra energy to switch its working mode
and, hence, will keep active all the time. This corresponds to
the case of 7% = 0 in Corollary 1.

Remark 3: Above we have characterized the optimal sleep
period T* in a special case. For a generic Aol function f(A),
it is difficult to find a generic expression of T*. Therefore, we
propose Algorithm 1 to search the optimal sleep period T*.
The computation complexity of this algorithm is O(T*¢)
where ¢ is the time complexity of calculating the objective
function in (40).

where

2ph -
T E+1-p
11— +

2ph -
S E+1-p
1—A +
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V. SIMULATION RESULTS

In our simulations, we consider remotely estimating the state
of a dynamical system (1) with parameters

1 02 1 0.1 0

A= [—0.1 1.2]’ b= M x= [ 0 0.1}' (46)
The Aol function is chosen as (6) which represents the
mean-squared error of the remote estimation performance [3].
According to the parameters of TR1001 in [27], the default
settings of the following parameters are E, = 3.6 x 1074/,
E; = 0.0015 x 1074/, Egy = 0.252 x 107*J, Eogy = 0.0283 x
10747, p=0.5, » = 0.5, and K =2 x 10*.

A. Performance of the Proposed Sleep Scheduling Policy

First, we evaluate the performance of the proposed sleep
scheduling policy by simulations and compare it with four
other existing policies—Greedy policy [6], optimal stationary
randomized (OSR) policy [7], duty-cycle (DC) policy [13], and
dynamic programming (DP)-based policy [28]. The Greedy
policy makes decisions according to the cost it brings.
Specifically, during step k, the Greedy policy considers the
energy cost during step k and the Aol during step k + 1.
Therefore, the sensor changes its working mode from sleep
to active when

MEon + Ea) + (1 = M) [pf(D) + (1 = p)f (Ak) +1)]
<A =Mf(AKk)+ 1)+ rE; (D)

and changes its working mode from active to sleep when

MEoff + Eg) + (1 = Mf (A + 1)
< AEq+ (1= M[pf () + A =pf(Atk) + D]

The OSR policy switches the sensor’s working mode with a
fixed probability S € [0, 1] at every step. The deliveries of the
measurement form a renewal process. Then, we can establish
an optimization problem to minimize the average cost in (9)
and get the optimal probability 8*, which forms the OSR pol-
icy. The DC policy makes the sensor switch the working mode
at a fixed time interval [29], in which we set the sleep and
active periods of equal length which is calculated by (44) for
a fair comparison. We apply the DP method as in [28] to
optimally solve the optimization problem (9) and the solution
forms the DP policy. Then, we conduct Monte Carlo simula-
tions to evaluate the proposed sleep scheduling policy and the
above four existing policies in terms of the average cost in (9).
The results reported in the following figures are averages of
3 x 10* independent simulation runs.

Fig. 4 shows the results with different E,, € {0.152,
0.252,0.352, ..., 1.052}. Fig. 5 shows the results with differ-
ent E, € {3.5,3.6,3.7,...,4.4}. Fig. 6 shows the results with
different p € {0.3,0.4,0.5..., 1}. From Figs. 4-6, we can find
that the proposed optimal sleep scheduling policy has the best
average cost performance. And the performance of the optimal
sleep scheduling policy is almost coincident with that of the
DC policy. This also reflects the correctness of Theorem 1
and Corollary 1. The DC requires backtracking every time a
decision is made, which leads to a very high time complexity
and may rise the so-called “dimension disaster” problem [28].

(43)
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Moreover, in practice, the sensor if in sleep mode may not
be able to make scheduling decisions. The DC policy may be
not applicable in this situation. Therefore, a viable method can
be that the sensor decides a sleep period and sets a wake-up
timer before it sleeps. The proposed optimal sleep scheduling
policy meets the above condition and it only needs to calcu-
late the optimal sleep period 7% in advance. The sensor only
needs to work according to the preset pattern when running,
and no extra calculation is needed when making decisions. We
evaluate the performance of our policy when the function is
the most commonly used one [15]: f(A) = A. As shown in
Fig. 7, the optimal sleep scheduling policy also has the best
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Fig. 7. Performance comparisons under different E, with f(A) = A.

performance. Notice that the curve of the Greedy policy has
some inflection points. The reason is as follows. Based on (47)
and (48), it is easy to deduce that, under the Greedy policy
and with f(A) = A, the sensor also works in a cyclic pattern
similar to that in Theorem 1, except that the sleeping period is
[(A/[p(1 = VDD (E;+ Eon — Es)]. That is, the inflection points
occur mainly due to the nonsmoothness of this sleeping period.
In contrast, in our sleep scheduling policy, the optimal sleep-
ing period is used which is derived from solving the original
optimization problem.

B. Performance Comparison With Event-Based Policy

We compare the sleep scheduling policy and a typical
Event-Based policy as proposed in [30] for reducing mea-
surement transmissions in remote state estimation systems.
In the Event-Based policy [30], during every step, the sen-
sor generates an independent random variable ¢ (k) which is
uniformly distributed over the interval [0, 1]. When the sen-
sor is in sleep mode, it will switch to active mode when
¢ (k) > exp(—(1 /2)A(k)?Y), where Y is a positive param-
eter. When the sensor is in active mode, it will switch to
sleep mode when ¢ (k) < exp(—(1/2)A(k)?Y). Fig. 8 shows
the performance of the optimal sleep scheduling policy and
the Event-Based policy. With the increase of Y, the Event-
Based policy will make the sensor stay in active mode for
a longer time, resulting in the decrease of Aol function and
the increase of energy consumption. Fig. 8(c) shows the aver-
age cost comparisons of the optimal sleep scheduling policy
and the Event-Based policy. We can see that the optimal sleep
scheduling policy outperforms the other one. In addition, since
the event-based policy requires the sensor to make decisions
at every step, the sensor might have to wake up at the begin-
ning of every step to decide whether to remain in active or
sleep again. This may incur extra energy cost. In contrast,
in our proposed policy, the sensor only needs to maintain a
wakeup clock once sleeps and wake up when the clock counts
down to 0.

C. Optimal Sleep Period T*

Furthermore, we analyze the optimal sleep period T* by
simulations under the proposed sleep scheduling policy. Fig. 9
demonstrates the value of the optimal sleep period 7* under
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Fig. 8. Performance comparison with event-based policy [30]. (a) Average
Aol function. (b) Average energy consumption. (c) Average energy
consumption.

different E,, and E,. For a fix E,, the optimal sleep period
increases when the value of E,, increases. However, when
E,n exceeds a certain value, the optimal sleep period drops
to 0. This is because the sensor becomes unwilling to spend
more energy to wake up as E,, is high, and, hence, it keeps
active all the time and 7* = 0. On the other hand, for a
fixed Eqp, the figure shows that the larger the E,, is, the longer
the optimal sleep period will be. This is reasonable because
when the energy consumption for staying in active mode grows
larger, the sensor prefers to sleep for a longer time to save
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energy. Fig. 10 demonstrates the value of the optimal sleep
period T* under different p and A. We can observe that the
larger the A is, the longer the optimal sleep period becomes.
This is because the larger the weight of energy consumption is,
the more time the sensor will spend in sleeping to save energy.
In addition, with a smaller successful data transmission rate p,
the sensor is expected to spend more time in active in order
to successfully deliver a packet, leading to a higher energy
consumption. Thus, it needs to sleep less to reduce Aol by
using a shorter sleep period, as shown in Fig. 10.

D. Comparison With Nonsleeping Sensor

Then, we compare the performance of Aol and energy con-
sumption between the sensor with the optimal sleep scheduling
policy and the nonsleeping sensor [7]. Fig. 11 demonstrates
the comparison results with A € {0.1,0.2,...,0.9}. When
A = 0.1, the optimal sleep period is O for the sleep—wake
sensor, so the Aol and energy cost of the sleep—wake sensor
are the same as the nonsleeping sensor. When A is larger, the
energy cost is more important and the optimal sleep period is
larger. Although the optimal sleep—wake sensor sacrifices the
freshness of the data, it saves a lot of energy. Therefore, intro-
ducing sleep mode for the sensor and adopting the optimal
sleep scheduling policy in this article are good attempts to
balance Aol and energy consumption.

VI. CONCLUSION

Although the freshness of the data is quite important, we
have to consider the energy consumption of the sensor in IIoT.
In order to provide fresh information while reducing the energy
consumption of the sensor, we introduce two working modes
for the sensor: 1) sleep mode and 2) active mode. The sensor
can switch its mode at the beginning of every step. Then,
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Fig. 11. Performance comparison with the nonsleeping sensor scenario.

we establish an Aol and energy consumption optimization
problem. The problem is formulated into an MDP and we
reveal the optimal scheduling policy follows a kind of thresh-
old structure. Furthermore, we find the optimal scheduling
policy forms a cyclic sleep—-wake working pattern. Then, we
theoretically obtain the ratio of average Aol function and
average energy consumption between the sleep—wake sensor
and the nonsleeping sensor. Later, we theoretically derive the
optimal sleep period when the Aol function is linear and we
propose an algorithm to find the optimal sleeping period for
the common Aol function. In the simulation results, we can
find that the proposed optimal sleep scheduling policy has the
best performance. Moreover, the simulation demonstrates the
introduction of sleep mode and the optimal sleep scheduling
policy saves a lot of energy, which is a good way to balance
the freshness of data and energy consumption.

APPENDIX
PROOF OF LEMMA 1

Proof: First, we prove (24) by induction. Initially when
t =0, we choose Vp(A,s) = (1 —A)f(A). Then, we can get
Vo(A+n,s) = (1—X)f(A+n). Since f(A) is nondecreasing,
it holds that Vo(A + n,s) > Vo(A,s) VA > 0 and Vn >
0. Next, assuming that V(A 4+ n,s) > V,(A,s) VA > 0
and Vn > 0, we need to prove that this inequality also holds
for r+ 1. Because V;(A +n,0) > V/(A,0), L1 (A +n) >
L1 +(A), and Ly (A +n) > Ly ;(A), i.e., all the two terms in
the minimum operation of (14) are nondecreasing, we have
Vis1(A+n,0) = Vir1(A,0) YA > 0 and Vn > 0. Similarly,
we can get Vi 1(A+n,1) > Vi (A, 1) VA >0and Vr > 0.
As a consequence, Viy1(A+n,s) > Vii1(A,s) YA >0 and
Vn > 0. By induction, Vt € N

Vi(A +n,5) > Vi(A,s) YA >0 ¥n > 0. (49)

Thus, when ¢t — oo, we have V¥*(A + n,s) > V*(A,s)
VA >0 and Vn > 0.

Second, we prove (25) by induction. Similar to the above,
we choose Vo(A,s) = (1—-X)f(A). Then, we can get Vo(A+
n,0) —Vo(A,0) =Vo(A+n,1) —Vy(A,1) VA > 0 and
Vn > 0. Next, we assume that the above inequality holds for
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iteration ¢ and we need to prove the inequality for ¢+ 1, i.e.,

VI+I(A + n, 0) - VI+1(A1 0)

2 V(A +n 1D = Vi (A D. (50)

Based on (21) and (22), it is obvious that L; ;(A) < L3 (A)
and Lp;(A) > L4;(A). Moreover, according to the proof
of (24), L1, Ly, L3, and L4 are nondecreasing in A. From
iteration ¢ on, we have the following inequality for any n > 0
and A > 0:

L3 (A +n) — L3 (A) = L1,(A+n) — L (A)
=1 =0FA+n) —f(A)
+ BVi(A+n+1,0) — V(A +1,0)
> A=A +n) —f(A)
FAVUA +nt 1, 1) — V(A + 1, 1)
> (1 =M{F(A+n) —f(A)
F B0 =pVi(A+n+1,1)
- -pVi(A+11
=Ly (A +n)— Ly (D)

= Ly (A +n) — Lg (D) (5D

where we have used (49) in deriving the first inequality. To
prove (50), we divide the problem into the following 20 cases
according to the property of L, Ly, L3, and L4. The following
discussions are valid for any n > 0 and any A > 0.
1) Case 1: If Ly ((A) < L3 ((A) < Ly (A) < Lo (A) and
Lif(A+n) <L (A+n) <Ly (A+n) <Ly (A+n),
based on (14) and (19), we have

Vie1(A +n,0) = Vi1 (A, 0) = Li (A +n) — Ly (D)
Vier(A+n, 1) = Vi (A 1) = L3 (A +n) — L3 (D).

Then, Vi+1(A+n,0) —Vi11(A,0) = Vi1 (A+n, 1) —
Vir1(A, 1) by (51). Therefore, (50) holds in this case.

2) Case 2: 1 Ly () < L3 ((A) < Ly (A) < Lp,(A) and
Li(A+n) <Ly (A+n) < L3 (A+n) <Ly (A+n),
we can get

Vit1(A+n,0) = Vig1 (A, 0) = Ly (A +n) — L1+(D)
= L3 (A +n) — L3 (A)
Viri(A+n,1) = Vg1 (A, 1) = La (A + 1) — L3 (D)
< L3 (A +n) — L3 (D).

where we have used L4:(A + n)
Hence, (50) holds in this case.

3) Case 3: 1f Ly ((A) < L3 (A) < Ly (A) < Lp(A) and
Li(A+n) <Ly(A+n) < Lo (A+n) < La(A+n),
similar to case 2, (50) holds.

4) Case 4: 1f L1 ((A) < L3 (A) < Lay(A) < Lp,(A) and
Lif(A+n) <Ly (A+n) <Ly (A+n) <Ly (A+n),
similar to case 2, (50) holds.

5) Case 5: 1f Ly (A) < Ly (A) < Ly (A) < Lp,(A) and
Liyf(A+n) <Li(A+n) <Lo(A+n) < La(A+n),
similar to case 2, (50) holds.

6) Case 6: 1f Ly (A) < L3 (D) < Ly (A) < Lp(A) and
Lif(A+n) < Lo (A+n) <Ly (A+n) <Ly (A+n),

< L3J(A + }’l)

7)

8)

9)

10)

1)

12)

13)

14)

15)

16)

17)

18)

19)
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we can get

Vier (A 4+n,0) = Vig 1 (A,0) =Ly (A +n) —Li(A)
= La (A +n) — L3,(A) + AEon + AEoft
> La (A +n) — L3 (D)
=V (A+n,1) = Vi1 (A D).

Therefore, case 6 meets (50).

Case 7: If L1 4(A) < La(A) < L3,(A) < La,(A) and
Ly (A+n) <Ly (A+n) <Lz (A+n) <L, (A+n),
we can get

Vie1(A+n,0) = Vi1 (A, 0) = Ly 1(A +n) — Ly 1(A)
Vigr (A +n, 1) = Vi1 (A 1) = La (A +n) — Ly i (D).

According to (50), (51) holds.

Case 8: If L1 ;(A) < Ly (A) < L3 (A) < Lp(A) and
Ly (A+n) <Ly(A+n) <Ly (A+n) < L3, (A+n),
similar to case 7, (50) holds.

Case 9: If L1 ((A) < La(A) < L3 4(A) < Ly,(A) and
Lif(A+n) <Li(A+n) <Ly (A+n) <Ly (A+n),
similar to case 7, (50) holds.

Case 10: If L1 ((A) < L4 1(A) < L3 4(A) < Ly ;(A) and
Ly (A+n) <Ly (A+n) <Ly (A+n) < L3, (A+n),
similar to case 7, (50) holds.

Case 11: If L1 ;(A) < Ls(A) < L34(A) < Lp(A) and
Lif(A+n) < Lo (A+n) <Ly (A+n) < Ls(A+n),
similar to case 6, (50) holds.

Case 12: If L1 ((A) < L4 (A) < Ly (A) < L3 ;(A) and
L1 (A+n) <Ly (A+n) <Ly (A+n) < L3, (A+n),
similar to case 7, (50) holds.

Case 13: If L1 ;(A) < L4 (A) < L (A) < L3 (A) and
Liy(A+n) <L (A+n) <Lo(A+n) < La(A+n),
similar to case 7, (50) holds.

Case 14: If L1 ((A) < L4 (A) < Ly (A) < L3 ;(A) and
Li(A+n) <Ly (A+n) <Li(A+n) <Ly (A+n),
we can get

Vig1 (A +n,0) = Vi1 (A, 0) = Ly i (A +n) — Li (D)
Vier(A+n, 1) = Vig1 (A, 1) = Ly (A +n) — Ly (D)
= Ly(A+n) — Ly (A).

Therefore, (50) holds since L ;(A) < Ly ((A).

Case 15: If Ly ;(A) < L1 (A) < L3(A) < Lp(A) and
Ly (A+n) <Ly (A+n) <Lz (A+n) <L, (A+n),
similar to case 7, (50) holds.

Case 16: If La ;(A) < L1 +(A) < L3 +(A) < Ly ;(A) and
Lif(A+n) <Li(A+n) <Lo(A+n) < Ls(A+n),
similar to case 7, (50) holds.

Case 17: If La ((A) < L1 4(A) < L3 (A) < Lp;(A) and
Ly (A+n) <L (A+n) <Ly (A+n) < L3, (A+n),
similar to case 14, (50) holds.

Case 18: If Ly ;(A) < L14(A) < Ly (A) < L3(A) and
Lif(A+n) <Li(A+n) <Lo(A+n) < La(A+n),
similar to case 7, (50) holds.

Case 19: If Ly ;(A) < Ly (A) < Ly (A) < L3 +(A) and
Ly (A+n) <L (A+n) <Ly (A+n) <Lz (A+n),
similar to case 14, (50) holds.
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20) Otherwise: If Ly (A) < Ly, (A) < Li4(A) < L3 ,(A)

and Ly (A +n) < L(A+n) =< Li(A+n =<
L3 (A + n), then

Vit 1(A+n,0) = Vig1 (A, 0) = Lo (A +n) — Lo (D)
Viet (A + 1, 1) = Vg1 (A, 1) = Ly (A + 1) — Lay(A).
Based on (51), we can get that Vi 1(A + n,0) —

Vir1(A, 0) = V(A +n 1) — V(A D.
Therefore, (50) holds.

Above all, (50) holds in all cases. Then, by induction, we prove
the inequality (50) for iteration € N. As a consequence, (25)
can be proved when ¢ — oo.

Finally, we prove (26). Equation (25) can be rewritten as

VF(A +n,0) — VXA +n, 1) > VXA, 0) — VA, 1).  (52)

While (24) reveals that

pV*(A +n,1) > pV*(A, ). (53)
Then, combining (52) and (53) yields (26). [ |
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