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ABSTRACT

The performance of Wi-Fi networks depends on the ability of de-
vices to adapt their transmissions to dynamic channel/network con-
ditions. Hence, “Rate Adaptation Algorithms (RAAs)” have been
devised to allow nodes to select appropriate modulation and cod-
ing schemes (and other parameters) in response to varying chan-
nel/network conditions. These algorithms are neither standardized
nor typically divulged by vendors, and devising a ‘performance-
optimal’ RAA for specific scenario remains an active topic that
necessitates a complex, multi-parameter cross-layer (PHY/MAC)
approach. The ns-3 network simulator offers detailed models of
the Wi-Fi medium access control (MAC) layer, including three ref-
erence RAA implementations; however testing and validation of
these RAA models has been very limited to date. This paper reports
on initial test and validation for ns-3 RAA models via 802.11n/ac/ax
simulations. After describing the RAA scope and implementations,
we explore and summarize insights from test results as to a) whether
the ns-3 RAAs are able to achieve the correct rates as configuration
is varied and b) how they respond to step changes in the received
signal-to-noise ratio (SNR) as a means for exploring their conver-
gence properties.
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1 INTRODUCTION

Rate Adaptation Algorithms (RAAs) are an integral part of wireless
communications, to enable reliable and stable link operations in dy-
namic conditions arising due to node mobility and/or time-varying
channel and interference scenarios. RAAs enable reactive updat-
ing of Modulation and Coding Scheme (MCS) based on current
assessment of link/network conditions, as indicated by Received

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WNS3 2023, June 28-29, 2023, Arlington, VA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0747-6/23/06.

https://doi.org/10.1145/3592149.3592162

Thomas R. Henderson

University of Washington

Seattle, Washington, USA
tomhend@uw.edu

Sumit Roy
University of Washington
Seattle, Washington, USA

sroy@uw.edu

Signal Strength (RSS), Packet Error Rates (PER) or other suitable
measurement metrics. Hence RAAs are fundamental to optimizing
network operations and continue to be actively studied via net-
work simulation in ns-3 (e.g., [5], [7]). As of the current ns-3.37
release, ns-3 contains models for three RAAs for 802.11n/ac/ax simu-
lations: IdealWifiManager, MinstrelHtWifiManager and Thompson-
SamplingWifiManager. Despite continuing interest, no structured
campaign has been conducted to rigorously test the ns-3 RAA im-
plementations and to cross-validate with implementations or prior
simulation works. The lack of such benchmarking is underscored by
the fact ns-3 currently has little to no test code for either MinstrelHt
or ThompsonSampling models, and the project’s issue tracker lists
several open issues. While some test code is available for the Ide-
alWifiManager, it has been reported [1] that its performance is
suboptimal. This work aims to start to fill the above gaps, by cap-
turing results from our efforts in evaluating the various RAAs as
applied to some basic Wi-Fi scenarios. After initial descriptions of
their operations, we describe results from tests of each in controlled
single-link (two-node) scenarios involving the change of link SNR
over time, for various parameter configurations. Using this simple
scenario, we explore the following questions:

(1) Is each RAA able to reach the correct transmission rate for
all possible parameter configurations?

(2) How fast do the RAAs converge to a step change in received
SNR, and what differences do we observe?

The literature on RAAs is significant and spans decades; for an
example of a recent taxonomy and survey, see [5]. One reason that
RAA continues to be a fertile area of active research is that the prob-
lem is inherently cross-layer, multi-parameter and multi-objective
optimization, inevitably involving multiple tradeoffs. A key element
of any RAA is the ability to sense current channel/network state
and incorporate filtered past observations, as predictors of future
channel/network conditions. Implementation constraints (ability to
sample good measurement from devices, resultant algorithmic com-
plexity subject to real-time operation, etc.) also impact the design
of RAAs. ns-3 only provides a (non real-time) simulation imple-
mentation and lacks necessary sophisticated PHY abstraction for
fast fading channels, channel state information feedback and other
hardware imperfections, etc. Nonetheless, given the continuing
interest in RAAs, this paper seeks to characterize the existing ns-3
implementations for simple, baseline PHY scenarios as benchmark.
A thorough study of ns-3 RAA performance would involve more
sophisticated scenarios and time-varying channels (fading channels
with coherence times allowing for adaptation), but we offer this
work as a starting point for basic ns-3 validation. We expect that as
the PHY abstractions are improved, so too will the capabilities for
more interesting RAA research with ns-3.
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Figure 1: ns-3’s Implementation of RAAs

2 RATE ADAPTATION IN NS-3 WI-FI

RAAs can be classified into two categories: measurement-based and
sampling-based. Measurement-based algorithms use physical layer
(PHY) measurements, such as averaged Received Signal Strength
Information (RSSI) for received frames, to estimate current chan-
nel/network condition and react accordingly. Measurements that
deliver per-subcarrier signal-to-noise (SNR) ratio samples offer
most fine-grained PHY information but are likely difficult to re-
alize in practice. Sampling-based algorithms on the other hand,
do not make use of measurement data at the physical layer but
instead probe the Layer-2 packet channel by trying different rates
according to some heuristic. Both Layer-1 (PHY) measurement and
Layer-2 sampling is typically filtered by low pass filters such as
an exponentially weighted moving average (EWMA). For modern
Wi-Fi standards (IEEE 802.11n and later), ns-3 has only one model
of a measurement-based approach, the so-called IdealWifiManager,
and two sampling-based models, the MinstrelHtWifiManager and
the ThompsonSamplingWifiManager.

In principle, an RAA could dynamically adapt multiple transmis-
sion parameters - transmit power, RTS/CTS (Request To Send/Clear
To Send) handshake, spatial diversity or multiple streams, dynamic
channel bonding, etc. However in ns-3 implementation, the current
RAAs only adapt the modulation and coding scheme (MCS), the
use of short guard intervals for 11n/ac (if both stations support),
the channel width, and the number of spatial streams, for both data
and selected control frames. As depicted in Figure 1, when channel
access is obtained, the FrameExchangeManager asks the RAA to
provide a WifiTxVector object conforming to the available channel
width and other transmission constraints that may exist (such as
maximum number of spatial streams supported).

The ns-3 WifiRemoteStationManager is the base class for ns-3
RAA models, responsible for selecting physical layer parameters
for the upcoming data, control, and management frame transmis-
sions, and for storing information regarding link capabilities to
each remote station, such as whether a short guard interval is sup-
ported. To track network dynamics and adapt transmission rate, the
WifiRemoteStationManager incorporates results from each frame
transmission (based on feedback from Wi-Fi unicast recipients) to
create a summary of current network state. A ConstantRateWifi-
Manager is also available for static assignment of MCS.
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Figure 2: Overview of MinstrelHtWifiManager Algorithm

The operation of RAAs in ns-3 is driven by the underlying PHY
error models governing whether receptions fail or succeed. For
example, later in the paper, the plots of Figure 7 depict ‘waterfall’
curves corresponding to the error rate performance of different
MCS values corresponding to IEEE 802.11ac standard and binary
convolutional code (BCC) encoding, for an additive white Gaussian
noise (AWGN) channel. As the SNR increases, higher MCS rates
become available. The exact breakpoint between the selection of
adjacent MCS values depends on the details of the RAA.

2.1 IdealWifiManager

The Ideal rate adaptation algorithm in ns-3 takes its name from the
use of an (idealized) feedback channel that reports, to the transmit-
ter, the most recently observed SNR value from that transmitter at
the receiver. The transmitter uses this reported SNR, as well as error
tables, to pick an MCS that meets a specific performance threshold;
namely, to pick an MCS such that the long-term BER will be lower
than a prescribed BER threshold (which defaults to 10~¢ BER). Due
to selecting a BER threshold, this algorithm may not be truly "Ideal"
because it might be too conservative depending on the channel
state. This algorithm is based on the Receiver Based Auto Rate
(RBAR) approach in the literature [2] and is a measurement-based
RAA that performs no filtering of past SNR history- only using the
most immediate history. The Wi-Fi ACKs (or block ACKs) are used
to deliver the received SNR to the transmitter through the use of
an ns-3 packet tag, a data field that is not available in a real 802.11
ACK frame. The IdealWifiManager uses the last observed SNR for a
given station, along with the error model tables being used for the
Wi-Fi channel model, to select the highest-rate MCS and supported
configuration that satisfies the BER criteria. For RTS frames, this
algorithm will pick the highest rate within the (legacy) basic rate
set; the use of High Throughput (HT) modes is not supported for
RTS, although it is allowed in the standard. If both stations can use
short guard intervals, then typically the use of short guard interval
will be selected because it offers a higher rate.

2.2 MinstrelHtWifiManager

MinstrelHt (Figure 2), extending the legacy Minstrel model, is based
on the Linux implementations of the same name. MinstrelHt is
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Figure 3: Overview of ThompsonSamplingWifiManager

a sampling-based approach that organizes possible combinations
of rate control parameters into ‘groups’, and tracks the history of
successful and failed receptions for each MCS in each group. Min-
strelHt is difficult to succinctly summarize (Chapter 5 of [1] is a
thorough overview of the ns-3 model), but Figure 2 captures the
essence of the approach. MinstrelHt uses sampling and maintains
statistics of its groups and rates within, to identify three rates in
particular: 1) the maximum throughput rate, 2) the next highest
throughput rate, and 3) the rate with the highest probability of
success. MinstrelHt uses these three rates in what is called a ‘retry
chain’, corresponding to the initial and (possible) retransmissions
of a frame. Most frames are sent according to this retry chain, but
MinstrelHt also uses a small number of frames to replace the max-
imum throughput rate with a randomly selected rate (to explore
performance of additional groups and rates). Randomly selected
rates are selected more-or-less in a round-robin fashion. Statistics
on the probability of success for each MCS, and on the average
Aggregated MAC Protocol Unit (A-MPDU) length, are aged out ev-
ery 50 ms by an Exponentially Weighted Moving Average (EWMA)
that may be represented [1] by the following equation:

y[n] = EWMA/100 + y[n — 1] + (100 — EWMA)/100 % x[n] (1)

In Equation 1, y[n] is the probability of success for the current MCS.
y[n — 1] is the previous probability of success for the current MCS.
x[n] is the proportion of success for the current MCS. The default
value of EW MA in ns-3 is 75; a smaller value will cause older values
to age sooner. This algorithm has evolved in Linux due to concerns
about convergence, including replacing the EWMA with a different
low-pass filter, as described in [1], but the ns-3 implementation
has not been updated. Like IdealWifiManager, when choosing pa-
rameters for an RTS frame, MinstrelHt picks a basic rate less than
or equal to the rate in use for data frames, with a normal guard
interval and using a single channel and spatial stream. Short guard
interval, if configured for both stations, can also be exploited.

2.3 ThompsonSamplingWifiManager

Finally, the ThompsonSamplingWifiManager (Figure 3) implements
a rate adaptation algorithm based on the Thompson sampling al-
gorithm. Thompson sampling is a Bayesian statistical technique
used to solve the multi-armed bandit (MAB) problem. The work
by [6] proposed to use this algorithm as an RAA, and in the work
by Krotov [3], an ns-3 implementation was developed and used
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as a performance baseline for another research algorithm; both
references can be consulted for more information about Thompson
sampling in general. The problem of rate selection for Wi-Fi can
be framed as a MAB problem with the objective to select the MCS
that maximizes throughput despite uncertainty in the success prob-
ability for any MCS (either initially, or due to changing channel
conditions). For each transmission opportunity, ThompsonSam-
pling will sample from the underlying Beta random variable for
each MCS, and calculate a value which is the product of this (prob-
abilistic) frame success rate and the PHY rate that results from that
rate. It then picks the maximum value from among all of the MCS.
The alpha and beta parameters of the underlying Beta distribution
are simply the number of successes and failures experienced for
each MCS. These counts are incremented upon ACK or block ACK
receptions, and are aged by an exponential decay factor:

count(t) = count(t — At) * o~ DecayxAt @)

where the default ns-3 value of Decay is 1. Unlike MinstrelHt,
ThompsonSampling will not explore groups with lower than the
allowed channel width or number of spatial streams allowed for
the remote station (focusing its sampling only on varying the MCS).
ThompsonSampling will use the most robust MCS to send RTS and
other control frames and will also limit them to use only one spatial
stream and a single channel. ThompsonSampling will configure the
use of short guard interval if both stations support it.

2.4 Discussion

In all of the above algorithms, the use of short guard interval is not
consistent with how it may be used in practice. In practice, short
guard interval is used for environments that exhibit a low amount
of multipath. It has been reported [4] that short guard interval is
not typically employed unless a station has reached the best MCS
available. Only if the highest MCS is reached will a station try to
enable short guard interval once it has experienced success with
the normal guard interval. In ns-3 RAAs, short guard interval is
directly and immediately tried as an option if it is supported by
both stations, and since the ns-3 channel and error models do not
typically penalize the choice (there is no high delay spread channel
environment modeled), there is only benefit and no risk to enabling
it. Future refinement of the physical layer for channels with long de-
lay spread should provide different performance to different guard
interval selection, and in addition, ns-3 should consider to adopt
the procedure defined in [4] of only enabling it at the highest MCS.

3 SISO VERIFICATION RESULTS

We present results to verify correct operation of the three ns-3 RAAs
for single input, single output (SISO) links, with an exploration of
convergence time over non-fading (AWGN) channels.

3.1 Basic Operation

To confirm the basic operation, we created a script that configures
each possible combination of channel width, spatial streams and
guard interval for a given standard (802.11n, 802.11ac, or 802.11ax
OFDM). Our script is derived from that developed by Grunblatt
[1] and is similar to the wifi-manager-example.cc script in the ns-3
codebase. We observe the highest rate selected by each manager and



WNS3 2023, June 28-29, 2023, Arlington, VA, USA

Table 1: ns-3 Parameters for Variable Distance Test

Simulation Parameter Value
ns-3 Version 3.37
Wi-Fi Standard 802.11ac
Rate Adaptation Algorithm | Ideal, MinstrelHt or ThompsonSampling

Spatial Streams 1
Channel Width 20 MHz
Short Guard Interval Enabled
Propagation Loss Model Log Distance
Application Saturating 1420 byte packets
Preamble Detection Model disabled

Simulation Duration 30 seconds (five trials averaged)

compare them across possible configurations and with published
MCS tables. The ns-3 RAAs are able to select appropriate MCSes
(in alignment with MCS tables and AWGN error tables) in most
cases. The exception is the ThompsonSampling RAA when low
SNR is used. Unlike Ideal and MinstrelHt implementations, the ns-3
ThompsonSampling has no heuristic to quickly drop to a robust
MCS when faced with high packet losses (due to low SNR). This
problem has already been reported in the ns-3 issue tracker!. A
heuristic favoring more robust rates for certain retransmission
events might remedy this problem.

We also observed that MinstrelHt samples from a wider range of
possible configurations than does ThompsonSampling. For example,
if the allowed channel width is 80 MHz, ThompsonSampling will
tend to sample only from 80 MHz channel width configurations,
but MinstrelHt will also explore 40 MHz and 20 MHz options. As a
result, MinstrelHt convergence could take longer for 802.11ax than
for other standards, due to more combinations to sample.

We adapted a scenario developed by Grunblatt [1], in which
a station as source is separated by a given distance from an AP
operating as sink, and transmits saturating traffic. Each simulation
trial lasts 30 seconds, and uses the ns-3 FlowMonitor to record
throughput over the duration of the data transfer. An external script
calculates and plots the sample average and standard deviation
of throughput observed in five simulation runs. The distance is
increased in steps of 1 meter and the experiment is repeated. Results
are provided for parameters in Table 1. The minimum and maximum
AP-STA distance are 1 and 99 meters, respectively. Figure 4 shows
that as the distance increases, all ns-3 RAAs provide comparable
throughput.

3.2 Convergence

One key aspect of RAAs is their ability to quickly converge to an
appropriate MCS in response to changing channel conditions. Upon
a change in the channel that affects reception statistics, both the
ns-3 MinstrelHt and ThompsonSampling models require time to
sample possible alternative configurations. This section examines
the response of both models to the most basic exploratory scenario:
a step change in the received SNR of the channel.

3.2.1 General Behavior. In the following time-series figures, we
illustrate how different RAAs respond and converge when a sudden

https://gitlab.com/nsnam/ns-3-dev/-/issues/414
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Figure 5: Time Series Plots of Convergence to a New MCS

change is applied to the channel, as depicted in Figure 5a. RAA per-
formance is quantified via the link layer throughput between two
nodes, one of which is transmitting data to the other in saturation
mode. The Received Signal Strength (RSS) is set to a constant value
(SNR of 31 dB, which leads to an 802.11ac MCS of 8) for a duration
of 25 seconds. At 25 seconds, a 20 dB SNR drop occurs, and each
RAA is then responsible for adapting to the new channel.

Ideal RAA immediately selects the expected MCS at the start of
the simulation by using the received SNR tag piggybacked onto
control frames. Ideal RAA quickly converges (convergence time
depends on the delay to receive the new SNR tag as shown in
Figure 5b), after a change in channel, by making a single new MCS
selection for new channel condition.

When MinstrelHt builds its sample table, it acquires statistics on
the channel state for each group and MCS, and then selects the best
MCS, spatial streams, guard interval, and channel bandwidth based
on its channel history. The convergence process of MinstrelHt after
stepping down from MCS 8 is shown in Figure 5c. When there is
a drop in SNR at time 25 seconds, the previous history becomes
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invalid, and thus MinstrelHt samples other MCS values and evolves
the history using an EWMA. During the transition, all lower MCS
values are selected at some point because the history suggests that
they could offer the highest throughput, since all the MCS values
previously had worked during sampling. However, after the channel
degrades, MCS 7, 6, 5, and 4 all result in transmission failures,
leading to a momentarily lower throughput because the highest
supportable MCS is 3. After learning enough about the new channel,
MinstrelHt converges on the highest sustainable throughput offered
by MCS 3, as observed in the plot by no further changes in the
selected MCS after around 26 seconds.

In ThompsonSampling, the algorithm strongly prefers the MCS
value that leads to the highest PHY rate, so long as the frame
success ratio is high enough, as explained in previous sections.
Initially, because all of the underlying Beta random variables are
similarly distributed, the algorithm will favor the highest sup-
ported MCS, and will not subsequently sample lower MCS val-
ues. However, at time 25 seconds, the channel conditions change
and the success probability of the highest MCS drops significantly,
leading to the selection of lower MCS values. In general, Thomp-
sonSampling has a preference for higher rates due to the follow-
ing heuristic: SelectedMCS = MAX(FrameSuccessProbability
PHYrate(MCS)). Figure 5d shows the response of ThompsonSam-
pling to the change in channel conditions. After 28 seconds, the
algorithm continues to periodically vary the selected MCS; the
periodicity is controlled by the Decay factor, a configurable param-
eter that determines how quickly ThompsonSampling forgets its
previous history and attempts higher rates again.

3.2.2 Convergence Experiment. To explore convergence time be-
havior, we constructed an experiment based on the scenario de-
scribed above in Figure 5a, checking the ability of the RAA to re-
spond to a drastic change in SNR. However, this experiment differs
in that both managers (ThompsomSampling and MinstrelHt) were
evaluated by sweeping the magnitude of the SNR change across a
wide range, and by starting from both a high SNR and a low SNR
initial starting point. Specifically, the first configuration involves
a decrease in SNR from an initial signal-to-noise ratio (SNR) of 32
dB. This is accomplished by decreasing the SNR with a granularity
of 0.1 dB, and the time taken to converge is recorded. This process
is repeated in 100 randomized trials to obtain an average value,
and the resulting average convergence times are displayed in the
plots. The second configuration differs only in that it involves an
improvement in channel conditions, starting from an initial SNR
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of 1 dB. Each simulation trial lasts for 20.5 seconds, allowing for
warmup of 0.5 seconds, followed by 10 seconds of data transfer at
the initial SNR, and 10 seconds of observing the behavior after the
change in channel at 10.5 seconds.

The primary objective of this experiment is to explore conver-
gence trends in a very simple, controlled experiment. Although
MinstrelHt and ThompsonSampling are both sampling-based al-
gorithms, they do have substantial differences in implementation.
For instance, MinstrelHt chooses and prefers the ‘best’ rate for an
interval, whereas ThompsonSampling does not officially converge
on a best rate but operates on dynamically changing probability
tables. Although not presented herein, we also have observed that
the speed of convergence is affected by the configuration of the Min-
strelHt EWMA and the ThompsonSampling Decay factor. Because
of the differences between MinstrelHt and ThompsonSampling,
we defined convergence times in slightly different ways. For Min-
strelHt, we define convergence time (Figure 6a) as the time, after a
channel change, until the last reported MCS selection. This can be
done in ns-3 by leveraging the fact that MinstrelHt will not report
MCS changes for sampled rates; only changes to the selected MCS
are reported. Unlike MinstrelHt, ThompsonSampling will report all
sampled MCS values through its trace source, so we cannot use a
similar convergence definition. Instead, for ThompsonSampling, we
define convergence time (Figure 6b) by first looking at the lowest
MCS value selected during the last second of simulation time, and
then looking backward from that time, finding the point in time
after which no lower MCS value is selected.

Figure 7 presents the results of the experiment. Four subplots
are shown according to the combination of RAA and direction of
SNR change. Each subplot shows two datasets and two Y axes on
a shared X axis. The X axis represents the resulting SNR value
after the SNR was changed. The colored data series represent the
average convergence times (left Y-axis), and the gray dashed lines
(right Y-axis) show the error rate performance of each MCS value
(ranging from 0 to 8) as a function of SNR and packet size, with
MCS 0 as the left-most curve and MCS 8 the right-most curve. We
included the error rate curves because they explain some of the
behavior of the convergence curves.

All subplots demonstrate underlying trends of increase or de-
crease in convergence time as a function of the resulting SNR value.
However, they also exhibit very strong peaks at several SNR points.
Each peak corresponds to a transition between two MCS values, as
the algorithms have difficulty converging when there is a tradeoff
between the higher throughput offered by a higher MCS and the
better frame success ratio offered by a lower MCS at these regions.

Focusing first on the experiment shown in Figure 7a, notice that
the convergence time increases with the size of the SNR drop (i.e.,
as the resulting SNR value is lower). This trend can be attributed to
the way in which MinstrelHt statistics evolve over time. Specifically,
when fast rates are used, or when sampling occurs, a larger number
of attempts can be made for a higher MCS (i.e., a specific number
of MPDUs sent using that MCS), compared to slower rates, which
limit the number of attempts that can be made within a given time
interval. Consequently, as more attempts are made for a particular
MCS, MinstrelHt can accumulate more information on that MCS,
leading to a faster convergence time. An additional interesting
aspect of the plot is the wider peaks observed in regions where the
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SNR is less than 10.8 dB. We hypothesized that an additional effect
was coming into play in these regions. Wi-Fi acknowledgments are
sent at selected basic rates of 6, 12, or 24 Mbps, and at certain SNR
regions, the selection of an appropriate acknowledgment rate can
be difficult, leading to lost acknowledgments as well. To confirm
this hypothesis, we conducted an experiment in which control
frames were forcibly set to use 6 Mbps to ensure their robustness.
The results are not shown here due to space, but this modified
experiment also resulted in narrow peaks for these low SNR regions.

Figure 7b presents results from an increase of SNR from an
initial value of 1 dB, for MinstrelHt, and shows similar peaks in
the convergence times. Interestingly, a slight trend is observed,
where larger increases in SNR correspond to slower convergence
times. This behavior can be attributed to MinstrelHt first converg-
ing to a supportable but less optimal MCS. Moreover, the trend is
found to be weaker than the previously described trend, due to
MinstrelHt’s avoidance of re-sampling already-used rates or very
robust rates (those with an empirical weighted moving average
probability (EWMAProb) of greater than 95%). These heuristics al-
low MinstrelHt to sample other rates, even if the currently used rate
is performing successfully, and converge to a better rate quickly.

The next two subplots repeat the previous experiments but for
ThompsonSampling. Figure 7c shows a noticeable trend in which an
increase in the magnitude of the drop in SNR leads to a correspond-
ing increase in the convergence time. This trend can be attributed
to the fact that prior to the change in the channel, Thompson had
already built up successful statistics for all rates up to and including
the supported MCS 8. However, after the channel change, the statis-
tics for the previously successful MCS values need to be lowered by
attempting those rates and failing, until the newly supported MCS
is learned. Consequently, a larger drop in SNR will necessitate that
Thompson Sampling gather information on more MCSs to ensure
that the optimal MCS is not erroneously chosen. It is noteworthy
that the plot deviates from this trend when the resulting SNR is less
than 5dB. This is because when the supported MCS is greater than
MCS 0, Thompson Sampling may occasionally lock onto a less than
optimal MCS due to its robustness. Then, it takes some time for
the statistics to decay enough for ThompsonSampling to attempt
a higher rate that may be successful. In contrast, if the supported
MCS is MCS 0, there are no other MCSs for ThompsonSampling to
potentially lock onto.

Observations made from Figure 7d reveal a pattern that is similar
to that observed in Figure 7b. Specifically, an increase in SNR results
in an increase in the convergence time. This phenomenon can be
attributed to the tendency of ThompsonSampling to converge on
suboptimal rates that are robust, thereby necessitating the decay
of probabilities to a point where a better rate can be selected. The
only region that doesn’t follow this trend corresponds to resulting
SNR greater than 23 dB. We have yet to explain this region.

4 CONCLUSIONS

This paper summarized the ns-3 RAA implementations and de-
scribed their current behavior and limitations via experiments in
simple two-link scenarios with variable SNR. All ns-3 RAAs were
verified to achieve appropriate MCS in most situations; the Thomp-
sonSampling algorithm could use better heuristics to cope with low
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Figure 7: Convergence Times as Function of SNR Step
Changes

SNR channels, and MinstrelHt may benefit from more heuristics to
improve convergence for 802.11ax OFDM. We observed that the use
of 802.11n/ac/ax short guard interval was not in line with reported
practice, and could be an area of improvement for all algorithms.
Due to space limitations, we did not present results on the sensitiv-
ity of convergence behavior to the exponential decay factors in use
by the sampling algorithms; this topic could be a subject of future
work. All simulation scripts and instructions are available?. We
expect future improvements to the ns-3 PHY abstraction to focus
on incorporating channel state information feedback for MIMO,
and models for operation in time-varying fading channels, which
may lead to new or improved RAAs. New RAAs will also be needed
in ns-3 for 802.11ax/be features such as OFDMA and spatial reuse.
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