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Abstract—The warming of the Arctic, also known as Arctic
amplification, is led by several atmospheric and oceanic drivers.
However, the details of its underlying thermodynamic causes
are still unknown. Inferring the causal effects of atmospheric
processes on sea ice melt using fixed treatment effect strategies
leads to unrealistic counterfactual estimations. Such methods
are also prone to bias due to time-varying confoundedness.
Further, the complex non-linearity in Earth science data makes
it infeasible to perform causal inference using existing marginal
structural techniques. In order to tackle these challenges, we
propose TCINet - Time-series Causal Inference Network to
infer causation under continuous treatment using recurrent
neural networks and a novel probabilistic balancing technique.
More specifically, we propose a neural network based potential
outcome model using the long-short-term-memory (LSTM) layers
for time-delayed factual and counterfactual predictions with
a custom weighted loss. To tackle the confounding bias, we
experiment with multiple balancing strategies, namely TCINet
with the inverse probability weighting (IPTW), TCINet with
stabilized weights using Gaussian Mixture Model (GMMs) and
TCINet without any balancing technique. Through experiments
on synthetic and observational data, we show how our research
can substantially improve the ability to quantify leading causes
of Arctic sea ice melt, further paving paths for causal inference
in observational Earth science.

Index Terms—Causal Inference, Deep Learning, LSTM, Arctic
Amplification

I. INTRODUCTION

In the last few decades, Earth and Atmospheric scientists
have observed greater climate change near the polar regions as
compared to the rest of the world [20]. In 2018, the observed
mean sea ice extent (SIE) at Kara Sea during the summer
months of June, July and August (JJA) reduced to half of
what it was in 1979, i.e. from 1.25 million km

2 to just 0.5
million km

2. What we are observing can happen in response
to a change in global climate forcing. Due to the melting of
highly reflective sea ice and snow regions in the Arctic and
Antarctic, there is an increased absorption of solar radiation
which amplifies the warming. This phenomenon, also known
as polar amplification is causing the melting of polar ice
sheets, resulting in sea level rise, and the rate of carbon uptake
in the polar regions [20]. In light of this phenomenon, the
warming of Arctic sea ice is referred to Arctic Amplification

[28]. Though, it has not been scientifically proven if the Arctic
has warmed more than the rest of the hemisphere, studying
the cause of thinning and retreat of the Arctic sea ice is a
significant and substantial topic of atmospheric research [10].

In this paper, we dive deeper into the concept of time-
series Causal Inference (CI) and present the challenges and
opportunities for performing CI to study Arctic amplification
under continuous treatment effect. Causal inference can be de-
fined as the process of estimating the causal effects (influence)
of one event, process, state or object (a cause) on another
event, process, state or object (an effect). For estimation of
causal effect, there are two main categories of techniques,
potential outcome framework and do-calculus. The potential
outcome framework relies on hypothetical interventions such
that it defines the causal effect as the difference between the
outcomes that would be observed with and without exposure
to the intervention [32]. This technique is widely used in
epidemiology where patients are randomly divided into treated
and controlled groups and the effectiveness of treatment is
inferred by observing patients condition with and without
undergoing a treatment [33]. The treatment effect can be
measured at individual, treated group, sub-treated group and
entire population levels [25]. At the population level, the
treatment effect measured is called Average Treatment Effect
(ATE). In case of Earth science observational data, we consider
ATE a more suitable metric as a causal estimand which
quantifies the mean difference observed in potential outcomes
Y given the exposure to treatment X , i.e., Y (X = 1) versus
the inexposure to the treatment, i.e., Y (X = 0). The estab-
lished standard approach of performing time-varying causal
inference in case of linear time-series data is through the use of
marginal structural models [30], whereas, recent development
in deep learning has paved paths for robust techniques for
performing causal inference on non-linear observational and
longitudinal data [17]. While existing deep learning models
majorly handle independent and identically distributed (i.i.d)
data [17], we see only a handful of techniques capable of joint
representation learning of continuous treatment and covariates
in time-varying setting [4], [5], [21]. We compare in Table I
the capability of existing deep learning and machine learning



methods in fulfilling Earth science requirements.
In light of above background, this paper presents a deep

learning based time-series causal inference method that over-
comes the limitations of existing causal effect estimation ap-
proaches in answering important research questions pertaining
to the climate change effects in the Arctic. We present TCINet,
a deep learning based time-series causal inference model,
for counterfactual prediction under time-delayed continuous
treatment. Our major contributions can be summarized as
follows:

• We propose a deep learning based time-series causal
inference model suitable for both time-varying and time-
invariant treatment effect estimation, which includes a
new definition for average treatment effect estimation in
case of time-delayed continuous treatment.

• We propose a novel probabilistic weighting technique
to balance time-varying confoundedness by leveraging
Gaussian Mixture Model (GMM).

• We perform extensive experiments evaluating our ap-
proach and compare it with the state-of-the-art (SOTA)
approaches using synthetic time series data for fixed and
continuous time-delayed treatments; further verifying our
quantified causal effect results of thermodynamic pro-
cesses on the Arctic sea ice melt with domain knowledge.

Moving forward, we will use the following terminologies:
treatment variable (which is an identified cause), potential out-
come (the variable identified as effect) and covariates (a set of
variables that are either common cause of both treatment and
outcome or are descendants of treatment variables identified
in the causal graph).

A. Formulating Causal Inference for Earth Science
Climate data is non-stationary with climatological trends

and visible annual seasonality cycles, therefore, binary or
fixed treatment effect estimation can be an unrealistic way of
quantifying causation. Further, in the absence of ground truth,
the exposure to a policy change or applying dynamic treatment
regime cannot be observed. This leads to the inability to
evaluate model’s performance for counterfactual predictions
in observational data [34], [38]. Existing techniques such as
marginal structural models [30], time-series regression [16],
matching methods [38] and deep learning based counterfactual
predictions struggle in accurately inferring causation under
time-delayed continuous intervention [17]. To fill this gap,
we propose a deep learning based inference model, based
on the potential outcomes framework [32] and extending the
recurrent methods based counterfactual approach [21] to study
the impact of time-delayed treatment in the presence of time-
varying covariates.

More formally, given treatment Xt at timestep t, our model
infers the time-delayed outcome Yt+l at l steps ahead in future,
in the presence of a set of M time-dependent covariates Zt. We
give a generic formulation of our problem as follows. Y (X̂t) is
the potential outcome, i.e., forecasted values under intervened
treatment X̂ at time t, and Y (Xt) is the potential outcome
under treatment X at time t without intervention (also called

placebo effect), whereas Zt represents the covariates at time t,
and f represents our proposed deep learning based inference
model. We utilize both factual and counterfactual predictions
of Y for all N timesteps to estimate lagged average treatment
effect (LATE) under continuous intervention:

Yt+l(X = xt) = f(Zt, xt) (1)

Yt+l(X̂ = x̂t) = f(Zt, x̂t) (2)

LATE(l) =
1

N

N∑

t=1

E[Yt+l(X̂t)→ Yt+l(Xt)] (3)

For consistent causal effect estimation under time-varying
treatment, our proposed model holds the standard identifiabil-
ity conditions or causal assumptions of consistency, positivity
and conditional exchangeability [25], [30]. Our implementa-
tion code can be accessed at the iHARP GitHub repository1.

II. RELATED WORK

Though causality based study is a comparatively a new
paradigm in Earth science, causal inference has been a widely
studied topic for decades in statistics, economics, public policy
and even healthcare [17], [25], [41].

1) G-Methods for Time-Varying Causal Inference: Esti-
mating time-varying causal or treatment effects leads to the
problem of time-varying confounding, that is the common
influence a past treatment or covariate might have on the future
treatments and the future outcome. Robin’s g-methods have
shown to provide promising results on reducing bias caused
by time-varying treatment and covariates on the potential
outcome [26]. G-methods provide metrics to overcome the
problem of time-varying confounding through standardization,
g-computation, and inverse probability of treatment weighted
(IPTW) estimators [26]. The prediction models of these es-
timators are typically based on linear or logistic regression
such as Causal-ARIMA [24], Time Based Regression (TBR)
[16] and Marginal Structural Models (MSMs) [30]. One big
limitation of these methods is that, in case of complex non-
linearity in treatment or outcome variables, the methods will
lead to inaccurate results.

2) Deep Learning based Causal Inference: Causal in-
ference methods based on representation learning or deep
learning techniques [3] learn the representation of input data
by extracting features from the covariate space [17], where
majority of the existing deep learning based methods are
developed for i.i.d data [17]. In these deep learning based CI
methods, a single neural network (also called meta learner)
can be trained to make predictions for both treatment and
control groups individually to estimate the average treatment
effect (ATE). Existing meta-learners include S(ingle)-learner
[18], and T-learner or multi-task learners [15], [36] that jointly
predict outcome for treated and controlled groups. X-learner
[18] or cross-group learners are a hybrid form of meta learners
that overcome the problem of unbalanced data in treatment
and controlled groups. U-learner [27] and R-learner utilizes

1github.com/iharp-institute/causality-for-arctic-amplification

https://github.com/iharp-institute/causality-for-arctic-amplification/tree/main/tcinet-icmla2023


Robinson transformation to develop a custom loss function for
conditional ATE estimation [27]. SCIGAN is another causal
inference method for estimating the effects of continuous-
valued interventions that aim to learn the distribution of unob-
served counterfactuals using Generative Adversarial Networks
(GANs) [6]. The limitations of CI methods for i.i.d. data is
that these methods perform poorly on sequential or time-series
data with no capability to handle time lags or time-varying
confounding effects, thereby leading to invalid causal effect
estimation results. For time-series causal inference, researchers
have proposed methodologies based on machine learning and
deep learning models that can also tackle the problem of time-
varying confounding [25]. Recurrent Marginal Structural Net-
works (R-MSN) [21] and Counterfactual Recurrent Network
(CRN) [5] are some of the recent models that claim to estimate
causal effects in the presence of time-varying confounders,
however, contrary to the claim, these methods are healthcare-
specific and cannot be generalized for other domain areas like
Earth science because these models require on-hot encoded
treatment flags with multivariate combined dosage. Talking
about counterfactuals, the most recent model, Time Series
Deconfounder - a multi-task method, leverages the assignment
of multiple treatments over time to enable the estimation
of treatment effects in the presence of multi-cause hidden
confounders [4]. The Conditional Instrumental Variable (CIV)
[39] method measures the causal effect ω from covariates
to the target variable using instrument variables that have a
relation with covariates and target but are independent of any
hidden confounder. To yield a better estimation the instrument
variables are conditioned for single or multiple previous time
steps in CIV. Though deep representation learning methods
are capable of automatically learning the intrinsic correlations
and are also effective in accurate counterfactual estimation,
they often lead to predictions with high variance or uncertainty
estimates.

3) Time-Varying Causal Inference for Earth Science: From
climate or atmospheric science perspective, causality remains
a lesser tapped area [14], [34], [35] and climatologist still rely
on dynamical modeling techniques where certain atmospheric
variables are nudged or perturbed as initial conditions in the
physical simulation models (also called Earth System Models)
to evaluate the outcome of these interventions on target
variables [12], [22], [40]. Applying deep learning techniques
to infer causal effects of climate change offers a data-driven
and cost-effective solution to the problem. Deep learning (DL)
models can work more efficiently and effectively than current
climate model simulators that are highly computationally
expensive. Our work will build on top of deep learning based
predictive models where we will extend them from fixed
treatment to continuous treatment setting. Table I shows a
holistic comparison of some of the time-series based causal
inference methods and their capabilities to handles different
causal inference scenarios.

III. DATASETS

To evaluate our model, we first generate synthetic data with
time-delayed continuous treatment and time-varying covari-
ates. We further provide details of the real world observational
dataset pertaining to our research problem.

A. Synthetic Data
Using gaussian white noise, we generate four non-linear

time-series given in Equations 4 to 7, mimicking the non-
linearity in dynamic climate models.

The corresponding true causal graph for these time-series
is given in Figure 1. Here, we have taken S3 to be the
treatment and S4 as the potential outcome. S1 and S2 will be
considered as covariates where S1 is an observed time-varying
confounder of both treatment and outcome. To generate coun-
terfactuals, we intervene on S3, in two settings. First, we
intervene on S3 as fixed treatment with binary values of [0, 1]
to generate counterfactual values of S4. Next, we intervene
on S3 by increasing S3 by 10% and generate corresponding
S4 counterfactuals under continuous treatment.

S1t = cos(
t

10
) + log(|S1t→6 → S1t→10|+ 1) + 0.1ε1 (4)

S2t = 1.2e
S12t→1

2 + ε2 (5)

S3t = →1.05e
→S12t→1

2 + ε3 (6)

S4t = →1.15e
→S12t→1

2 +1.35e
→S32t→1

2 +0.28e
→S42t→1

2 + ε4 (7)

Fig. 1. Causal graph of non-linear synthetic data.

B. Observational Arctic Data
We used observational sea-ice and reanalysis atmospheric

and meteorological data which is available from 1979 till
present. The reanalysis data is available with open access
and can be obtained from European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-5 global reanalysis
product [2]. Whereas the sea ice concentration (SIC) values
are obtained from Nimbus-7 SSMR and DMSP SSM/I-SSMIS
passive microwave data version 1 [8] provided by the National
Snow and Ice Data Center (NSIDC). The original data format
is spatiotemporal from which we generated spatially averaged
time-series combining sea ice extent values, oceanic and
atmospheric variables. For this, daily gridded data over the
regions of Barents Sea and Kara Sea, during 1979-2018, has
been averaged using area-weighted method. The details of
these variables are enlisted in Table II.



TABLE I
COMPARISON OF TCINET WITH EXISTING TIME-SERIES CAUSAL INFERENCE METHODS.

Method Binary/
fixed treatment

Continuous
treatment

Time varying
treatment

Time varying
covariates

Applicable on
Earth Science

Difference in Difference [19] ✁ ✂ ✂ ✂ ✂
Causal Impact [7] ✁ ✁ ✁ ✂ ✁

CIV [39] ✁ ✁ ✁ ✁ ✁
CRN [5] ✁ ✂ ✁ ✁ ✂

MSM [30] ✁ ✂ ✁ ✂ ✂
R-MSN [21] ✁ ✂ ✁ ✁ ✂

Time-series Deconfounder [4] ✁ ✂ ✁ ✁ ✂
TCINet (ours) ✁ ✁ ✁ ✁ ✁

TABLE II
VARIABLES IN THE ARCTIC DATASET

VARIABLE RANGE UNIT

SPECIFIC HUMIDITY [0,0.1] KG/KG
SHORTWAVE RADIATION [0,1500] W/m2

LONGWAVE RADIATION [0,700] W/m2

RAINFALL RATE [0,800] MM/DAY
SEA SURFACE

TEMPERATURE [200,350] K
AIR TEMPERATURE [200,350] K

GREENLAND
BLOCKING INDEX [5000,5500] M
SEA ICE EXTENT [4, 13] MILLION Km2

IV. METHODOLOGY

Following the same principle of meta-learning used in
existing deep learning based causal inference approaches, we
propose a time-varying causal inference model, called Time-
series Causal Inference Network (TCINet), on top of our
previous work on LSTM based sea-ice forecasting model [1].
The training and inference phases of our TCINet pipeline are
illustrated in Figure 2. In the training phase, time-delayed
treatments Xt→l and time-varying covariates Zt→l are fed
to our potential outcome model (see Subsection IV-B). To
balance the bias due to time-varying covariates, we leverage
Gaussian mixture modeling to compute stabilized weights
(see Subsection IV-A). We also define a custom weighted
loss to incorporate the balancing weights into our potential
outcome model (see Subsection IV-C). In the inference phase,
we perturb the treatment variable and feed it to the pretained
outcome model to make factual and counterfactual predictions
(see Subsection IV-D). We further explain how we estimate
uncertainty during inference arguing on the feasibility of
bootstrapping for time-series data.

A. Balancing Time-varying Covariates

Balancing is a treatment adjustment strategy that aims
to deconfound the treatment from outcome by forcing the
treated and control covariate distributions as close as possible.
When conducting observational studies, researchers often face
the challenge that treatment assignment is not randomized,
leading to potential confounding variables that can bias the

treatment effect estimates. Inverse Probability of Treatment
Weights (IPTW) [31] is a statistical technique used in causal
inference to address confounding bias in observational studies.
IPTW generates a pseudo-population in which treatments
are independent of confounders. To calculate IPTW, we first
need the predicted probabilities of the observed treatments
given the covariates. This is also known as the propensity
score, given by prob(X|Z = z). When treatment and con-
founders are time-varying, these IPTW weights for time-
fixed treatments need to be generalized. For a time-varying
treatment X̄t = (X1, X2, ..., Xt) and time-varying covariate
Z̄t = (Z1, Z2, ..., Zt), the IP weights for every timestep t are
given by [13]:

IPTW (l) = !l
t=1

1

f(X̄t|Z̄t)
(8)

Here, l represents the lag or length of treatment sequence,
f(.) is the propensity score model, widely implemented using
logistic regression following marginal structural modeling
technique [30]. However, the propensity scores that are near
0 or 1 can yield extreme IPTW weights, leading to unstable
estimates and inflated variances. To tackle this, [30] proposed
the stabilized weights in which the IPTW is multiplied by
the probability of receiving treatment, as given in Equation
9. Stabilized weights offer greater stability and reduce the
variance in treatment effect estimation, which can improve
the precision of the estimates. They are generally preferred in
practice because of their improved numerical properties and
stability.

SW (l) =
!l

t=1f(Xt|X̄t→1)

!l
t=1f(Xt|X̄t→1, Z̄t)

(9)

Here, f(.) represents the probability density function (PDF)
of treatment at every timestep given covariates and treatment
history. In case of binary or discrete treatment, the PDF can
be estimated using logistic regression or sigmoid function.
However, in case of continuous treatment such as our case,
this estimation becomes complex as it requires a parametric
model to estimate the PDF at every stage t [13].

We implement a Gaussian Mixture Model (GMM) [29]
to estimate the probability density of treatment Xt at every
timestep t. The step-by-step implementation of GMM for
calculating stabilized weights is given in Algorithm 1. We



refer to the conditional probability densities in Equation 9 as
X pdf and XZ pdf in our algorithm. Whereas, the mean
µ, covariance ” and parameter ϑ, estimated as mixing co-
efficients, are all learned by the GMM model. First, we fit
the GMM model on treatment history and covariates to learn
these parameters. We then estimate the probability density of
Xt given these parameter values at every timestep t using
Equation 10.

f(Xt|µ,”) =

(
1

(2ϖ)d/2
√
|”|

) exp

[
→1

2
(Xt → µ)T”→1(Xt → µ)

]
(10)

Algorithm 1: Stabilized Weights for Continuous Treat-
ment

Data: Treatment Data: X , Treatment History: X̄hist,
Time-varying Covariates: Z̄

Result: Stabilized Weight Estimates SW

1 Function PDF_calc(X , X̄hist, Z̄ = []):
// Concatenate the treatment

history and covariates
2 XZ ↑ concat(X̄hist, Z̄) ;
3 l ↑ length of sequence XZ;
4 for i ↑ 1 to l do
5 ncomp ↑ Number of components for GMM;

// Create a GMM object
6 gmm ↑ GaussianMixture(ncomp) ;

// Fit the GMM model
7 gmm.fit(XZi);

// Extract model parameters:
8 (ϑ, µ,”) ↑ (gmm.weights, gmm.means,

gmm.covariances);
// Estimate PDF for every

component
9 for j ↑ 1 to ncomp do

10 pdfcomp[j] ↑ ( 1

(2ω)d/2
↓

|!j |
) ↔

exp
[
→ 1

2 (Xi → µj)T”
→1
j (Xi → µj)

]
;

// Sum PDF over all components
11 pdf [i] ↑

∑ncomp
j=1 (pdfcomp[j]↗ ϑ[j]);

// Take product of PDFs over all
sub-sequences

12 pdfproduct ↑ !l
i=1pdf [i] return pdfproduct

13 X pdf ↑PDF calc(X , X̄hist) ;
14 XZ pdf ↑PDF calc(X , X̄hist, Z̄) ;

// Calculate stabilized weights at
every timestep

15 for k ↑ 1 to ttimesteps do
16 SW [k] ↑ X pdf [k]

XZ pdf [k] ;

B. Potential Outcome Model (POM)

We develop an LSTM-based prediction model as our poten-
tial outcome model (POM), following the S-learner approach
[17]. POM takes in input a 3D tensor of shape N ↗ T ↗ F .
Here N represents the mini-batch size, T represents the time
lag and F comprises the covariates and the treatment variable
at timestep t. The model comprises three LSTM layers with
RELU activation, where first two many-to-many (also called
seq2seq) layers are followed by a Dropout layer to cater
uncertainty estimation. These seq2seq layers take in a se-
quence of input of length l and learn the latent representations
ϱ of treatment and covariates. The third LSTM layer is a
many-to-one layer succeeded by three fully connected Dense
layers with linear activation. The purpose of these layers
is to combine the learned representations to jointly predict
the potential outcome Yt+l at timestep t + l where l is the
time-dependency or lag. The model is compiled using Adam
optimizer using the early stopping technique.

For a joint input, the model will learn mixed representations
of covariates and treatment. This will be problematic in
causal effect estimation as we want to keep the covariates
independent of the intervention on the treatment variable. This
is where the balancing strategy comes into play. To debias the
confoundedness, we use Gaussian Mixture Model (GMM), as
discussed in Subsection IV-A, to get the stabilized weights
SWt for time-varying treatment at each timestep t given the
confounders. To train POM to make weighted predictions for
potential outcome Yt+l, we implement a custom-weighted loss
function.

C. Custom Weighted Loss

We introduce the stabilized weights into the POM model
using a custom weighted loss technique, to regularize the
predictive model. The SW weights SWt calculated using
GMM are inducted to the predictive model loss L

pred. This
implies the final loss of the model will be a weighted average
of prediction loss over observed data points N , as shown in
Equation 11, where L

pred is the mean squared error (MSE)
loss.

Ltot =
1

N

N∑

t=1

SWt ↔ Lpred
t (11)

D. Inference

Once the predictive model, namely POM, is trained on
the observational data, the next step is to predict factual
and counterfactual outcomes. We do this by perturbing the
treatment variables at every timestep while retaining the ob-
served values of time-varying covariates. The updated data
is fed to the model to make counterfactual predictions while
factual predictions are made without performing any nudging
or intervention on the treatment variable. Once we have
both predictions for all timesteps, we calculate LATE using
Equation 3.

To gain confidence in the predicted counterfactual values,
we analyze the predictive skill of the underlying deep learning



Fig. 2. Training and inference/test phase pipeline of our proposed TCINet model.

model and measure the model’s epistemic uncertainty. Boot-
strapping is a common approach used for quantifying model
uncertainty in causal inference techniques [37], however, boot-
strapping will lead to two potential problems in case of our
data. First, bootstrapping requires random sampling of data
for train and test split but sampling randomly from time-series
data will corrupt the sequential pattern and lead to unrealistic
results. Second, bootstrapping involves retraining the model
every time a random number of samples are taken from the
data. In case of TCINet, it will be computationally expensive to
retrain the deep learning model n number of times as required
by bootstrapping.

We therefore take an alternative approach, where we train
the TCINet modules POM and GMM once and make pre-
dictions n times for each interventional scenario. We then
calculate the mean and standard deviation of these predictions.
The ATEs are recorded for observational data after making
predictions for each case 50 times with a 95% confidence
interval.

V. RESULTS & ANALYSIS

In this section, we report our experimental setup and results
obtained on synthetic and observational data, followed by a
critical analysis of our findings using RMSE, LATE and PEHE
scores.

A. Evaluation Metrics

1) Root Mean Square Error (RMSE): We evaluate the
performance of our predictive models using the Root Mean
Square Error (RMSE) which can be only calculated for fac-
tual observational data but cannot be done for counterfactual
predictions.

RMSE =

√
1

N
”N

i=1(Yi → Ŷi)2 (12)

2) Precision in Estimated Heterogeneous Effects (PEHE):
This metric is commonly used in machine learning literature
for calculating the average error across the predicted ATEs
[9]. PEHE metric, measuring causal effect estimation skill,
can only be calculated for synthetic data which has ground
truth information.

↓
PEHE =

√
1

N
”N

i=1(ATEi → ˆATEi)2 (13)

B. Experimental Setup
We implement TCINet using Keras functional API with

TensorFlow backend. The model has a total of 40, 551 train-
able parameters. We compile the model using Adam optimizer
with a 0.001 learning rate and train it using early stopping
technique. We train three variants of our model depending
upon the underlying balancing strategies used in custom
weighted loss: TCINet with SW weights using GMM which
we refer to as TCINet-GMM, TCINet with IPTW weights
using Logistic Regression model, which we refer to as TCINet-
LR; and TCINet without any weighting using standard Mean
Squared Error loss which we refer to as TCINet→ in Table III.

C. Results on Synthetic Data
We report our results on the three variants of the model;

TCINet-GMM, TCINet-LR and TCINet and compare them
with two state-of-the-art (SOTA) methods: time-varying CIV
technique [39] and time-invariant Causal Impact [7] causal
inference methods. We evaluate both the CIV and Causal
Impact method using the synthetic dataset to measure the
causal effect from the cause S3 to the target variable S4
in case of the fixed and continuous treatments explained in
III-A. We report these results in Table III. Comparing the
performance of three TCINet variants in Table III, we notice
that all variants have marginal differences in RMSE scores,
however, we see substantial differences in ATE estimation by



these models. This performance difference is also evident from
the low PEHE scores for TCINet-GMM in Table III. Since
CIV does not provide RMSE values on factual estimation,
we compare its performance based on estimated ATE values.
Though CIV is an easier model to implement, we notice
that in both cases, i.e., fixed and continuous treatment effect
estimation, CIV performs poorly as compared to TCINet
variants and Causal Impact, which gives us more confidence in
our model performance. It is important to note here that Causal
Impact provides the second best performance in case of fixed
and continuous treatments, however, inherently Causal Impact
cannot work with time-varying covariates and is therefore
not suitable for our case. Moving forward, we analyze the
observational data using TCINet-GMM owing to its superior
performance.

TABLE III
CAUSAL INFERENCE MODELS PERFORMANCE ON SYNTHETIC DATA

UNDER FIXED AND CONTINUOUS TREATMENTS FOR ONE-STEP AHEAD
PREDICTION (TRUE ATE = -0.0514)

MODEL TEST ESTIMATED PEHE
RMSE LATE

FIXED TREATMENT
TCINET→ 1.079 -0.040 1.132
TCINET-LR 1.142 -0.037 1.227
TCINET-GMM 1.023 -0.051 1.004
CIV [39] N/A -0.219 N/A
CAUSAL IMPACT [7] N/A -0.060 1.110

CONTINUOUS TREATMENT
TCINET→ 1.026 -0.036 1.221
TCINET-LR 1.000 -0.049 1.143
TCINET-GMM 0.998 -0.050 1.102
CIV [39] N/A 0.515 N/A
CAUSAL IMPACT [7] N/A -0.040 1.112

D. TCINet for Arctic Amplification
After gaining confidence in the predictive skill of TCINet

for synthetic data, we use the model to answer an important
domain science question on the observational data as identified
by Atmospheric scientists [11]: How does increased Greenland
Blocking (GBI) affect summertime regional Arctic sea ice
melting given snowfall rate and solar radiation data?

The Greenland block is a ridge of high pressure that sits near
or over Greenland. It is the normalised area-weighted 500 hPa
geopotential height over the region 60 → 80↑N, 20 → 80↑W .
To identify the regions of interest and time lag by which GBI
affects sea ice extent, we performed lagged correlation test
between daily GBI values and regional sea ice extent given
by [23] for sixteen sub-regions. We conducted experiments
for a lag of 0 to 30 days and found the highest correlation
at day 8 between GBI and SIE in Barents Sea and Kara Sea
(combined as BarKara Sea in our analysis).

To answer the domain science question, we first trained
TCINet-GMM on forty years of our observational data. We
then predict sea ice extent by perturbing the values of sum-
mertime (June, July, August) GBI to the following four values:

1) 40-year-averaged daily GBI, 2) double GBI annual trend,
3) triple GBI annual trend, 4) quadruple GBI annual trend.

In our efforts to quantify the effects of increasing GBI on
declining sea ice, we first make predictions for summertime
(June, July, August) sea ice for mean daily GBI values.
We then perturb the GBI values by increasing them by a
multiplicative factor of the daily recorded trend, i.e. 0.039.
Our interpretation of ATE in case of observational sea ice
data is that it reflects the average increase or decrease in sea
ice extent under interventional treatment.

Fig. 3. Comparison of annual mean sea ice extent (SIE) predictions given
observational data (factual) versus predictions under interventional GBI (coun-
terfactual) between 2003-2018. Here, each data point represents summer (JJA)
mean SIE predicted for that year.

As shown in Figure 3, we notice that increasing GBI leads
to decrease in sea ice extent (blue line with counterfactual pre-
dictions). Quantitatively, our model predicts that the average
daily sea ice extent value in JJA summer months would have
decreased by 0.64, 0.65 and 0.69 million km

2 between 2003
to 2018, given the GBI was increased by 2, 3 and 4 times
the daily trend. This aligns with the findings of [11] where
summertime low clouds play an important role in driving sea
ice melt by amplifying the adiabatic warming induced by a
stronger anticyclonic circulation aloft.

VI. DISCUSSION & FUTURE WORK

In this paper, we propose a deep learning based time-series
inference method for time-varying causal inference under
continuous treatment effects using stabilized weights. We
introduce a probabilistic method of implementing stabilized
weights through gaussian modeling. Through ablative study,
we show how our proposed model balances confoundedness in
case of time-delayed treatment. We presented one use-case of
analyzing the causal relation between Greenland blocking and
sea ice melt. Through experiments, we noticed our data-driven
findings align with the literature on ”increasing GBI leads to
decreasing SIE”. For our ongoing research, we will continue
to analyze similar other use cases in the realm of Arctic
Amplification, such as the effects of atmospheric processes
on Arctic sea ice melt. We will further extend our work to
spatiotemporal causal inference to explore the potential of
neural networks in learning and answering important Earth



Science questions in the presence of temporal and spatial
confounders.
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