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Abstract. We study the transfer learning process between two linear regression problems. An important
and timely special case is when the regressors are overparameterized and perfectly interpolate their
training data. We examine a parameter transfer mechanism whereby a subset of the parameters
of the target task solution are constrained to the values learned for a related source task. We
analytically characterize the generalization error of the target task in terms of the salient factors
in the transfer learning architecture, i.e., the number of examples available, the number of (free)
parameters in each of the tasks, the number of parameters transferred from the source to target task,
and the relation between the two tasks. Our non-asymptotic analysis shows that the generalization
error of the target task follows a two-dimensional double descent trend (with respect to the number
of free parameters in each of the tasks) that is controlled by the transfer learning factors. Our
analysis points to specific cases where the transfer of parameters is beneficial as a substitute for
extra overparameterization (i.e., additional free parameters in the target task). Specifically, we show
that the usefulness of a transfer learning setting is fragile and depends on a delicate interplay among
the set of transferred parameters, the relation between the tasks, and the true solution. We also
demonstrate that overparameterized transfer learning is not necessarily more beneficial when the
source task is closer or identical to the target task.
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1. Introduction. Transfer learning [21] is a prominent strategy to address a machine
learning task of interest using information and parameters already learned and/or available
for a related task. Such designs significantly aid training of overparameterized models like deep
neural networks (e.g., [4, 24, 16]), which are inherently challenging due to the vast number
of parameters compared to the number of training data examples. There are various ways
to integrate the previously-learned information from the source task in the learning process
of the target task; often this is done by taking subsets of parameters (e.g., layers in neural
networks) learned for the source task and plugging them in the target task model as parameter
subsets that can be set fixed, finely tuned, or serve as non-random initialization for a thorough
learning process. Obviously, transfer learning is useful only if the source and target tasks are
sufficiently related with respect to the transfer mechanism utilized, e.g., [23, 29, 13]. Moreover,
finding a successful transfer learning setting for deep neural networks was shown in [22] to
be a delicate engineering task. The importance of transfer learning in contemporary practice
should motivate fundamental understanding of its main aspects via analytical frameworks
that may consider linear structures (see, e.g., [14]).

In general, the impressive success of overparameterized architectures for supervised learn-
ing have raised fundamental questions on the classical role of the bias-variance tradeoff that
guided the traditional designs towards seemingly-optimal underparameterized models [5]. Em-
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pirical studies from recent years [25, 9, 2] have demonstrated the phenomenon that overpa-
rameterized supervised learning corresponds to a generalization error curve with a double
descent trend (with respect to the number of parameters in the learned model). This double
descent shape means that the generalization error peaks when the learned model starts to
interpolate the training data (i.e., to achieve zero training error), but then the error contin-
uously decreases as the overparmeterization increases, often arriving to a global minimum
that outperforms the best underparameterized solution. This phenomenon has been studied
theoretically from the linear regression perspective in an extensive series of papers, e.g., in
[3, 11,28, 17, 1, 19]. The next stage is to provide corresponding fundamental understanding to
learning problems beyond a single fully-supervised regression problem (see, for example, the
study in [7] on overparameterized linear subspace fitting in unsupervised and semi-supervised
settings).

In this paper we study the fundamentals of the natural meeting point between overpa-
rameterized models and the transfer learning concept. Our analytical framework is based on
the least squares solutions to two related linear regression problems: the first is a source task
whose solution has been found independently, and the second is a target task that is addressed
using the solution already available for the source task. Specifically, the target task is carried
out while keeping a subset of its parameters fixed to values transferred from the source task
solution. Accordingly, the target task includes three types of parameters: free to-be-optimized
parameters, transferred parameters set fixed to values from the source task, and parameters
fixed to zeros (which in our case correspond to the elimination of input features). The mix-
ture of the parameter types defines the parameterization level (i.e., the relation between the
number of free parameters and the number of examples given) and the transfer-learning level
(i.e., the portion of transferred parameters among the solution layout).

We conduct a non-asymptotic statistical analysis of the generalization errors in this trans-
fer learning structure where the minimum ¢s-norm solutions are used when the source and/or
target tasks are overparameterized. Clearly, since the source task is solved independently, its
generalization error follows a regular (one-dimensional) double descent shape with respect to
the number of examples and free parameters available in the source task. Hence, our main
contribution and interest are in the characterization of the generalization error of the target
task that is carried out using the transfer learning approach described above. We show that
the generalization error of the target task follows a double descent trend that depends on
the double descent shape of the source task and on the transfer learning factors such as the
number of parameters transferred and the relation between the source and target tasks. We
also examine the generalization error of the target task as a function of two quantities: the
number of free parameters in the source task and the number of free parameters in the tar-
get task. This interpretation presents the generalization error of the target task as having a
two-dimensional double descent trend.

We also show how the generalization error of the target task is affected by the specific set
of transferred parameters and its delicate interplay with the forms of the true solution and the
source-target task relation. By that, we provide an analytical theory to the fragile nature of
successful transfer learning designs. We demonstrate that the practical approach of arbitrary
selection of transferred parameters signifies the fragile nature of successful parameter transfer
settings, especially when the true (unknown) parameters have a sparse form in the feature
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space.

We characterize the settings where transferring a set of parameters is more beneficial (in
the sense of improved generalization in the target task) than defining them as additional
free parameters or zeroing them. We also prove that the transfer of parameters from an
overparameterized solution of a source task is not necessarily optimal when the source task is
closer or identical to the target task.

The majority of this paper is focused on the analytical and empirical study of the mini-
mum fe-norm solution in our transfer learning setting. Yet, we also empirically examine the
utilization of the minimum ¢;-norm solution and the ridge regression approach in our transfer
learning framework. The minimum /¢;-norm (interpolating) solution also induces generaliza-
tion errors that follow a double descent shape, and can outperform the minimum /o-norm
solution especially if the true parameters are sparse. The ridge regression method includes
a regularization term that prevents interpolation and, when properly tuned, eliminates the
double descent peak. Ridge regression can outperform the interpolating solutions for a wide
range of overparameterization levels. However, at the proximity of maximal overparameter-
ization, the minimum #s-norm solution performs comparably to the ridge regression. This
demonstrates that interpolation at extreme overparameterization levels can substitute prop-
erly tuned regularization in our transfer learning setting.

1.1. Related Work. Despite the prevalence of transfer learning in contemporary practice,
there are only few analytical theories for this topic. First, Lampinen and Ganguli [14] studied
the optimization dynamics in transfer learning of multi-layer linear models, which is a different
research objective than our focus on double descent phenomena. Interestingly, when we posted
the first version of our work on arXiv in June 2020, there was no literature on double descent
phenomena and interpolating solutions in transfer learning. Later on, Dhifallah and Lu [§]
studied single-layer nonlinear models that are suitable for both regression and classification
problems, where the source task is ridge regularized and therefore prevents interpolation
and double descent phenomena. Gerace at al. [10] studied a binary classification problem
that is addressed by transfer learning of the first layer in a two-layer model that includes
nonlinearities. The learning settings in [10] include regularization on both the source and
target task and therefore attenuate some of the double descent behavior. The analysis in [10]
requires numerical optimizations and empirical estimation of covariance matrices as inputs for
their asymptotic formulations.

Remotely from overparamterized learning but related to transfer learning theory, Obst et
al. [20] studied fine-tuning (based on gradient descent) between linear regression problems in
underparameterized settings.

To summarize, each of the existing transfer learning theories employs different analytical
tools, assumptions, and accordingly presents a unique analytical perspective on the topic. We
focus on transfer learning between linear regression problems for Gaussian data and with-
out regularization. This allows us to consider the minimum #s-norm solution and explicitly
characterize the generalization error and its double descent behavior in a detailed, completely
closed-form formulation that is unavailable elsewhere. This also contributes to our discussion
on beneficial transfer learning and lets us to analytically characterize the optimal source task
to transfer from.
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1.2. Paper Organization. This paper is organized as follows. In Section 2 we define the
transfer learning architecture examined in this paper. In Section 3 we analytically characterize
the double descent phenomenon in our transfer learning setting. In Section 4 we analyze the
conditions for beneficial transfer of parameters compared to the alternatives of free and zeroed
parameters. In Section 5 we characterize the optimal source task to transfer from. Sections
3-5 are focused on the minimum #¢s-norm solution in the overparameterized regime of our
transfer learning setting; in Section 6 we examine transfer learning in conjunction with the
minimum ¢1-norm solution and the ridge regression method. Section 7 concludes the paper.
The Supplementary Materials include all of the proofs and mathematical developments as well
as additional details and results for the empirical part of the paper.

2. Transfer Learning between Linear Regression Tasks: Problem Definition.

2.1. Source Task: Data Model and Solution Form. We start with the source data
model, where a d-dimensional Gaussian input vector z ~ N (0,1;) is connected to a response
value v € R via the noisy linear model

(2.1) v=210+¢,

where £ ~ N (0, O'g) is a Gaussian noise component independent of z, o¢ > 0, and 6 € R? is
an unknown vector. The data user is unfamiliar with the distribution of (z,v), however gets
a dataset of 1 independent and identically distributed (i.i.d.) draws of (z,v) pairs denoted
~ . . n ~
as D & {(z(’), v(l))}‘ X The 7 data samples can be rearranged as Z £ [z(l) A ")] and
~ 1=
v 2 M, . o™]T that satisfy the relation v = Z6 + & where ¢ £ [¢(D ... ¢ ")] is an
unknown noise vector that its i'" component ¢ () participates in the relation v(9 = z()-7@ 4+ 3 ()
underlying the i*" data sample.
The source task is defined for a new (out of sample) data pair (z(teSt), v(teSt)) drawn from
the distribution induced by (2.1) independently of the n examples in D. For a given z(test)

the source task is to estimate the response value v(**") by the value 7 that minimizes the
corresponding out-of-sample squared error (i.e., the generalization error of the source task)

0wyl

where the second equality stems from the data model in (2.1) and the corresponding linear
form of & = 211,79 where @ estimates 6 based on D.

To address the source task based on the n examples, one should choose the number of
free parameters in the estimate 0 € R?. Consider a predetermined layout where p out of the
d components of @ are free to be optimized, whereas the remaining d — p components are
constrained to zero values. The coordinates of the free parameters are specified in the set
S £ {s1,...,s5} where 1 < 51 < --- < s5 < d and the complementary set S = {1,...,d} \'S
contains the coordinates constrained to be zero valued. We define the |S|xd matrix Qs as
the linear operator that extracts from a d-dimensional vector its |S|-dimensional subvector of
components residing at the coordinates specified in S. Specifically, the values of the (k, sg)
components (k= 1,...,|S|) of Qs are ones and the other components of Qs are zeros. The
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definition given here for Qs can be adapted also to other sets of coordinates (e.g., Qgc for
§¢) as denoted by the subscript of Q. We now turn to formulate the source task using the
linear regression form of

(2.3) 6 = argmin ||v — Zr|3 subject to Qger =0
reRd

that its minimum f3-norm solution (see details in Appendix A.1) is
(2.4) 0= QEZ}_V

where Z; is the pseudoinverse of Zg £ ZQE. Note that Zs is a 7 x p matrix that its i*" row
is formed by the p components of z() specified by the coordinates in S, namely, only p out of
the d features of the input data vectors are utilized. Hence, in the underparameterized case
of p < n the solution (2.4) almost surely reduces to the unique least squares form of

(2.5) 0 =Qk (z8zs) " Zhv.

Moreover, in both (2.4)-(2.5), 0 is a d-dimensional vector that may have nonzero values only
in the p coordinates specified in S (this can be easily observed by noting that for an arbitrary
w € RISl the vector u = ng is a d-dimensional vector that its components satisfy us, = wy,
for k=1,...,|S| and u; =0 for j ¢ S). While the specific optimization form in (2.3) was
not explicit in previous studies of non-asymptotic settings, e.g., [5, 3], the solution in (2.4)
coincides with theirs and, thus, the formulation of the generalization error of our source
task (which is a linear regression problem that, by itself, does not have any transfer learning
aspect) is available from [5, 3] and provided in Appendix A.2 in our notations for completeness
of presentation.

2.2. Target Task: Data Model and Solution using Transfer Learning. A second data
class, which is our main interest, is modeled by (x,y) € R? x R that satisfy

(2.6) y=x'B+¢

where x ~ N (0,1,) is a Gaussian input vector including d features, € ~ N/ (0, 0'52) is a Gaussian
noise component independent of x, g, > 0, and 8 € R% is an unknown vector related to the 0
from (2.1) via

(2.7) 0=HB+n

where H € R¥? is a deterministic matrix and 9 ~ N (0,0‘%Id) is a Gaussian noise vector
with o, > 0. Here 1, x, ¢, z and § are independent. The data user does not know the
distribution of (x,y) but receives a small dataset of n i.i.d. draws of (x,y) pairs denoted as

. . n
D2 { (x("), y(z)) } . The n data samples can be organized in a n X d matrix of input variables
i

X 2 xW, .. xM]T and an x 1 vector of responses y £ [y, ... y™]T that together satisfy
the relation y = X3 + € where € 2 [¢),...,eM™]T is an unknown noise vector that its it!
component € is involved in the connection y® = x("T3 + @ underlying the i*" example
pair.



6 YEHUDA DAR AND RICHARD G. BARANIUK

The target task considers a new (out of sample) data pair (x(*%), y(tet)) drawn from
the model in (2.6) independently of the training examples in D. Given x(test) the goal is to
establish an estimate J of the response value y(*st) such that the out-of-sample squared error,

i.e., the generalization error of the target task,
. R 2 ) ~ 2
(2.9 e 2B |(7-4)’| =02+ [[3- 8]

is minimized, where 7 = x(*): 73, and the second equality stems from the data model in
(2.6). N

The target task is addressed via linear regression that seeks for an estimate 8 € R? with a
layout including three disjoint sets of coordinates F, T, Z that satisfy FUT U Z ={1,...,d}
and correspond to three types of parameters:

e p parameters are free to be optimized and their coordinates are specified in F.

e { parameters are transferred from the co-located coordinates of the estimate 0 already
formed for the source task. Only the free parameters of the source task are relevant
to be transferred to the target task and, therefore, 7 C S and ¢ € {0,...,p}. The
transferred parameters are taken as is from 0 ~and set fixed in the corresponding co-
ordinates of ,8, ie, for ke T, Bk = Gk where Bk and Hk are the & components of 5
and 0 respectlvely

e ( parameters are set to zeros. Their coordinates are included in Z and effectively
correspond to ignoring features in the same coordinates of the input vectors.

Clearly, the layout should satisfy p+t+/¢ = d. Then, the constrained linear regression problem
for the target task is formulated as

(2.9) B = argmin [ly — Xb|
beRd
subject to Q7b = QTa
Qzb=0

where Q7 and Qz are the linear operators extracting the subvectors corresponding to the
coordinates in 7 and Z, respectively, from d-dimensional vectors. Here 0 c RY is the pre-
computed estimate for the source task and considered a constant vector for the purpose of
the target task. The examined transfer learning structure includes a single computation of
the source task (2.3), followed by a single computation of the target task (2.9) that produces
the eventual estimate of interest B using the given 6. The minimum #s-norm solution of the
target task in (2.9) is (see details in Appendix A.3)

(2.10) B=QFx} (v - X707) + QFor
where 67 = Q7—§, Xy & XQ;, and X} is the pseudoinverse of Xz £ XQ;_- In the

underparameterized case of p <n the solution (2.10) almost surely reduces to the unique
least squares form of

(2.11) B=Qk (XIXs) X% (y - XTET) +QFor.
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Note that the desired layout is indeed implemented by the 3 forms in (2.10), (2.11): the
components corresponding to Z are zeros, the components corresponding to 7 are taken as is
from 5, and only the p coordinates specified in F are adjusted for the purpose of minimizing the
in-sample error in the optimization cost of (2.9) while considering the transferred parameters.
In this paper we study the generalization ability of overparameterized solutions (i.e., when
p > n) to the target task formulated in (2.9): In Sections 3-5 we analyze the minimum ¢s-norm
solution (2.10) and in Section 6 we examine other solutions.

3. The Double Descent Phenomenon in Transfer Learning.

3.1. Analytical Characterization of the Double Descent Phenomenon. Consider an
overall layout of coordinate subsets L = {S,F,T,Z}. The following theorem formulates the
generalization error of the target task that is solved using a set of ¢ parameters that are
transferred as is from their co-located coordinates (indicated by 7") at the source task solution.

Theorem 3.1. Let L={S,F,T,Z} be a deterministic (i.e., non-random) coordinate lay-
out. Then, the out-of-sample error of the target task has the form of

(3.1)
n— T.S
( n—pil (HIBZH% + 02+ Et(ransﬁer> forp<n-—2,
£ = o0 forn—1<p<n+1,
— T,S
Pfﬁ (H’BZHg + 052 + 6t(ranszer> + (1 - %) ||/3]:||§ fOTp >n+ 2,
where
7.8 ~ 2 ~ ~ 2
(32) itk 2 [ [br] - 8]+ |[or 2 [ar]

Vv
transfer bias transfer variance

s the error in the transferred coordinates in the target task solution.

The last theorem is proved using non-asymptotic properties of Wishart matrices (see Appendix
B).

The error formulation in (3.1) expresses a double descent form in terms of p and n, similarly
to the formulation given in [3] for a linear regression task without transfer learning. However,
here (3.1) introduces a new term, 5§Z;i§er,
our setting.

The formulation of the transfer error term in (3.2) demonstrates a bias-variance decom-
position where the bias in the transferred parameters is measured with respect to the true
parameters of the target task, and the variance depends only on the source task. This bias-
variance decomposition is affected by the coordinates of the transferred parameters (ie., T)
and also indirectly (through 67) by the coordinates of the free parameters in the source task
(i.e., S), as we will see next.

The following corollary explicitly formulates the transfer bias and variance terms and their
detailed dependency on the parameterization level of the source task, i.e., the p,n pair, and
the set S of free parameters in the source task (see proof in Appendix B.3).

that encapsulates the transfer learning aspect of
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Corollary 3.2. The transfer bias term from (3.2) can be written as

N 2 1 orp <n,
(3.3) Bias> 2 HE [97-} - ,BTH = |Qr (FH —1,) 8|3 where 724 J Ii_ ~
2 % forp>n.
The transfer variance term from (3.2) can be formulated as
N ~ 12
Varrs 2 E [HGT _E [97} u
c+(d—p)o2+o2 ~ o~
t(cr%—l—W) for1<p<n-2,
_Joo form—1<p<mn+1,
~ [ G-n)tCs\7+((B-)t—1+2 )¢ c+(d—p)o2+a? o~
g( au 52_1 ”>T+t<a,%+cs e UL f)) forp>7+2,

(3.4)

2
where ¢ 2 |QTHB|3, Cs\7 2 ||Qs\7HA|S, and (se 2 [|Qs-HAJ5.

Note that the out-of-sample error formulation in (3.1) depends on the parameterization level
of the target task (i.e., the p,n pair) and also on the parameterization level of the source task
(i.e., the p,n pair) via the transfer bias and variance terms that are formulated in (3.3)-(3.4).
The formulations in Corollary 3.2 imply that the target error peaks not only around p = n,
but also around p = n when transfer learning is applied (¢ > 0). This induces the double
double descent behavior that will be demonstrated in the next subsection. Later, in Sections
4-5 we will analyze the formulations in Theorem 3.1 and Corollary 3.2 in more detail and
characterize the conditions for beneficial transfer learning.

3.2. On-Average Analysis of Arbitrarily Selected Parameters. In this subsection, we
consider the overall layout of coordinate subsets L= {S,F,T,Z} as a random structure.
This will let us to formulate the expected value (with respect to £) of the generalization error
of interest. The simplified setting in this subsection provides useful insights towards Section
3.3 where we return to analyze the transfer of a set of parameters which is induced by a single
layout L (i.e., in Section 3.3 we will return to use Theorem 3.1 and Corollary 3.2 where there
is no expectation over a random L).

For given d, p, p, and ¢, we consider a uniform distribution of the coordinate layout £
which is defined as follows.

Definition 3.3. A coordinate subset layout L ={S,F,T,Z} that is {p,p, t}-uniformly dis-
tributed, forp € {1,...,d} and (p,t) € {0,...,d} x {0,...,p} such that p +t < d, satisfies: S
is uniformly chosen at random from all the subsets of p unique coordinates of {1,...,d}. Given
S, the target-task coordinate layout {F, T, Z} is uniformly chosen at random from all the lay-
outs where F, T, Z are three disjoint sets of coordinates that satisfy FUT U Z ={1,...,d}
such that |F|l=p, |T|=t and T C S, and |Z|=d —p —t.
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Then, the following formulates the out-of-sample error of the target task under expectation
with respect to a uniformly distributed £ (more details are provided in Appendix B.4).

Corollary 3.4. Let L ={S,F,T,Z} be a coordinate subset layout that is {p, p, t}-uniformly
distributed. Then, the expected out-of-sample error of the target task has the form of

(3.5)

nﬁgil ((1 - pT—H) Hﬂ”g + 0-52 + gtransfer) fOT'p <n-— 2,
Ez [Eout] = { 00 form—1<p<n+1,
pfgil ((1 - pT—H) Hﬁ”% + 052 + gtransfer) + % Hﬂ”g fOT’p >n+ 2,

where
T,8 .
(36) Eiransfer = Eg |:gt(rans%er:| =E¢ [Blasgl'] +E. [VarT,S]
/ 1 <7,
(3.7) Ec [Biast] = -~ |PH L) Bl where r 2 {ﬁ Jorp<n
7 for p >n.
(3.8)
_b —P)o2402 o
t<0,27+(1 d)gg_(;_? nt §> for1<p<n-2,
E. [Vary s = ¢ o0 form—1<p<mn+1,
5 p—)p+ 2 —1 1-B d—p)o2+c? — -
5t ((p d?jg—ff) (+op+ ( d)i;r_(ﬁ_? s 5) forp>n+2,
and ¢ £ |HB| 3.

Figure 1 presents the curves of E [Eoye] with respect to the number of free parameters
p in the target task, whereas the source task has p = d free parameters. In Fig. 1, the
solid-line curves correspond to analytical values induced by Corollary 3.4, and the respective
empirically computed values are denoted by circles (all the presented results are for d = 120,
n =20, n =50, [|Bl5 =d, 0 = 0.05-d, 0f = 0.025 - d. See additional details in Appendix
C. The number of free parameters p is upper bounded by d — ¢ that gets smaller for a larger
number of transferred parameters ¢ (see, in Fig. 1, the earlier stopping of the curves when ¢ is
larger). Observe that the generalization error peaks at p = n and, then, decreases as p grows
in the overparameterized range of p > n + 1. We identify this behavior as a double descent
phenomenon, but without the first descent in the underparameterized range (double descent
curves without the first descent are common when the parameters are selected arbitrarily, for
example, see the results in [3, 7]). R

The error of a trivial solution in the form of the null estimate, i.e., the estimate 3 is all
zeros, is presented as black dotted horizontal lines in the figures. In various settings where the
source and target tasks are sufficiently related and the number of parameters is sufficiently
far from the peak of the double descent error curve, the examined transfer learning method
(with ¢ > 0 arbitrarily selected parameters) outperforms the null estimate.
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Figure 1: The expected generalization error of the target task, Er [Eout], with respect to the
number of free parameters (in the target task). The analytical values, computed using Corol-
lary 3.4, are presented using solid-line curves, and the respective empirical results obtained
from averaging over 250 experiments are denoted by circle markers. The horizontal dotted
lines denote the error level of the null estimate. Each subfigure considers a different case of
the source-target task relation (2.7) with a different pair of 0727 and H. The second row of
subfigures corresponds to H operators that perform local averaging, each subfigure (e)-(h) is
w.r.t. a different size of local averaging neighborhood. Each curve color refers to a different
number of transferred parameters.

Each subfigure in Fig. 1 considers a different task relation with a different pair of noise
level 0727 and operator H. The first row of subfigures in Fig. 1 emphasizes the effect of the
noise variance 072] in the task relation model on the generalization errors in the target task.
The second row of subfigures in Fig. 1 emphasizes the effect of the linear operator H in the
task relation model on the generalization errors in the target task.

We can interpret the results in Figure 1 as examples for important cases of transfer learning
settings. Figs. 1a,le correspond to transfer learning between two highly related tasks, therefore,
transfer learning is beneficial in the sense that for a given p ¢ {n—1,n,n+1} the error decreases
as t increases (i.e., as more parameters are transferred instead of being omitted). Figs. 1b,1f
correspond to transfer learning between two moderately related tasks, hence, transfer learning is
still beneficial, but less than in the former case of highly related tasks. Figs. 1c,1g correspond
to transfer learning between two unrelated tasks (although not extremely different), hence,
transfer learning is wuseless, but not harmful (i.e., for a given p, the number of transferred
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Figure 2: The concentration of the generalization error at three proportional scales of the
same problem. The empirical standard deviations are denoted as shaded areas in colors
corresponding to the on-average error curves (solid lines and markers denote the analytical
and empirical evaluations of the expected error, respectively). Subfigure (a) corresponds
to the setting of Fig. 1b. Subfigure (b) corresponds to a setting where all the dimensions
and dimension-dependent quantities are 3 times their values in Fig. 1b (see a more detailed
explanation in the text). Subfigure (c¢) corresponds to a setting where all dimensions and
dimension-dependent quantities are 5 times their values in Fig. 1b. Lines, markers and areas
in red correspond to ¢t = 0 (no parameters are transferred); orange corresponds to transferring

t =16 x ﬁ‘lo parameters; blue corresponds to t = 32 x ﬁ‘lo; green corresponds to t = 48 x ﬁ‘lo.
Note that % equals to 1, 3, 5, in (a), (b), (c), respectively. The axes in this figure are

normalized to be dimension-independent.

parameters ¢t does not affect the out-of-sample error). Figs. 1d,1h correspond to transfer
learning between two wery different tasks and, accordingly, transfer learning degrades the
generalization performance (namely, for a given p, transferring more parameters increases the
out-of-sample error).

Figure 2 demonstrates the empirical standard deviations of the generalization errors (de-
noted as shaded areas around the curves and markers that denote the average errors). The
results show that the empirical errors are more concentrated around their (theoretical and
empirical) expectations as the dimensions of the problem (e.g., input dimension, number of
data examples and parameters) are proportionally increased. For this example, we consider
the setting of Fig. 1b in three proportional scales of the dimensions and dimension-dependent
quantities:

e Fig. 2a corresponds to the same dimensions as in Fig. 1b: d = 120, n = 20, n = 50,
t € {0,16, 32,48}, and local averaging with neighborhood size 5.

e Fig. 2b corresponds to dimensions that are proportionally increased 3 times: d = 360,
n =60, n = 150, t € {0,48,96, 144}, and local averaging with neighborhood size 15.

e Fig. 2¢ corresponds to dimensions that are proportionally increased 5 times: d = 600,
n = 100, n = 250, t € {0, 80, 160, 240}, and local averaging with neighborhood size 25.

In all the settings in Figure 2, ||B3]|5 = d and the noise levels are 02 = 0.05 x d, 0’? =0.025 x d,
2 _

7 = 0.2. More examples are provided in Fig. 12.

g
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Analytical: (7;2, =0.2 t=0 Analytical: 0,27 =0.2 t=16 Analytical: (7,27 =0.2 t=32 Analytical: n'% =0.2 t=48
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100 100
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200 — 200 200
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0 0 0 0
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P p P r

(a) (b) (c) (d)

Figure 3: Analytical evaluation of the expected generalization error of the target task,
Er [Eout], with respect to the number of free parameters p and p (in the source and target
tasks, respectively). Each subfigure considers a different number of transferred parameters
t. The white regions correspond to (p,p) settings eliminated by the value of ¢ in the specific
subfigure. The yellow-colored areas correspond to values greater or equal to 800. All of the
subfigures are for 03] = 0.2, H a local averaging operator with neighborhood of 5 samples, and
(3 that has a piecewise-constant form (Fig. 15). See Fig. 10 for settings with additional values
of 03]. See Fig. 11 for the corresponding empirical evaluation.

By considering the generalization error formula from Theorem 3.1 as a function of p and
p (i.e., the number of free parameters in the source and target tasks, respectively) we receive
a two-dimensional double descent behavior as presented in Fig. 3 and its extended version
Fig. 10 in Appendix C.1 that presents results for additional pairs of ¢ and 0,27. The results
show a double descent trend along the p axis (with a peak at p = n) and also, when parameter
transfer is applied (i.e., ¢ > 0), a double descent trend along the p axis (with a peak at p = n).
Our solution structure implies that p € {¢,...,d} and p € {0,...,d — t}, hence, a larger
number of transferred parameters ¢ eliminates a larger portion of the underparameterized
range of the source task and also eliminates a larger portion of the overparameterized range
of the target task (see in Fig. 3 the white eliminated regions that grow with ¢). When ¢ is
high, the wide elimination of portions from the (p, p)-plane hinders the complete form of the
two-dimensional double descent phenomenon (see, e.g., Fig. 3d).

Conceptually, we can observe a tradeoff between overparamterized learning and transfer
learning where parameters are transferred as is from their co-located coordinates of the source
task solution: an increased transfer of parameters limits the level of overparameterization
applicable in the target task and, in turn, this may limit the overall potential gains from the
transfer learning. Yet, when the source task is sufficiently related to the target task (see,
e.g., Figs. 1la,1b), the parameter transfer can compensate (sometimes only partially) for an
insufficient number of free parameters (in the target task). The last claim is also evident in
Figs. 1a,1b,1e,1f where, for p > n + 1, there is a range of generalization error values that is
achievable by several settings of (p,t) pairs (i.e., specific error levels can be attained by curves
of different colors in the same subfigure). E.g., in Fig. 1b the error achieved by p = 112 free
parameters and no parameter transfer can be also achieved using p = 70 free parameters and
t = 48 parameters transferred from the source task.
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3.3. The Fragile Nature of Transfer Learning: Analysis of a Single Layout of Arbitrarily
Selected Parameters. Section 3.2 considers an on-average error for a random coordinate
layout. We now turn to discuss the generalization behavior of a single coordinate layout that
was formed arbitrarily (i.e., without using any knowledge on the problem setting). Hence, we

return to consider the generalization error & “)

out for a given layout £ using Theorem 3.1 and
Corollary 3.2 from Section 3.1.

Figure 4 shows the curves of E(Eft) for specific coordinate layouts £ that evolve with respect
to the number of free parameters p in the target task (for more examples see Figures 13-14 in
the Appendices). The excellent fit of the analytical results (that were computed using Theorem
3.1 and Corollary 3.2) to the empirical values (computed by averaging over 250 experiments
with the same evolution of £) is evident. The effect of the specific coordinate layout is clearly
visible by the less-smooth curves (compared to the on-average results in Fig. 1). We examine
two different cases for the true B: a linearly-increasing (Fig. 4a) and a sparse (Fig. 4e) layout
of values, both have the same ¢5 norm. The difference in the true 3 forms yields error curves
that significantly differ despite the use of the same sequential construction of the coordinate
layouts with respect to p (e.g., compare Figs. 4f and 4b). The operator H in the task relation
model greatly affects the generalization error curves as evident from comparing our results for
different types of H: an identity, local averaging (with neighborhood size 11), and discrete
derivative operators (e.g., compare subfigures within the first row of Fig. 4). The results
clearly show that the interplay among the structures of H, 3, and the coordinate layout
significantly affects the generalization performance.

Our results also exhibit that an arbitrarily selected set T of ¢ transferred parameters can
be the best setting for a given set F of p free parameters but not necessarily for an extended
set F/ O F of p’ > p free parameters. This is especially evident when the true parameters have
a sparse form over an unknown support in the feature domain (i.e., true parameters with non-
zero values are scarce and their coordinates are unknown). For example, see Fig. 4g where the
green colored curve does not consistently maintain its relative vertical order with the red color
curve at the overparameterized range of solutions; as a second example see Fig. 4h and observe
that the blue and red curves do not maintain their vertical order in the overparameterized
range. This exemplifies that, when arbitrary selection of parameters is employed due to
unknown task relation, transfer learning settings can be fragile and hence finding a successful
setting may require delicate, trial and error engineering. Therefore, our theory qualitatively
explains similar practical aspects in deep neural networks (see, for example, [22]).

4. When is Transfer Learning Beneficial?. The formulation of the generalization error
in the target task (Theorem 3.1 and Corollary 3.2) shows that the benefits from parameter
transfer depend on various aspects of the learning setting. In this section we characterize the
conditions for beneficial transfer from the viewpoint of the following question: Given a setting
where T is the intended set of coordinates for parameter transfer, can avoiding this parameter
transfer improve generalization?

4.1. Benefits in Transferred versus Zeroed Parameters. To accurately evaluate the dif-
ference in the out-of-sample error of the target task, consider the following definitions. First,
recall the coordinate layout £ = {S,F,T,Z} where |S| = p, |F| = p, |T| = t. Second, we
define a coordinate layout £’ = {S,F,T’, Z'} which is a modified version of £ without trans-
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Figure 4: Analytical (solid lines) and empirical (circle markers) values of Séut) for an arbitrary
coordinate layout L. In the first row of subfigures the true 3 has feature-domain values that
follow a linear form , see (a). In the second row of subfigures the true B has a sparse form
in the feature domain with non-zero values at 30 coordinates selected randomly out of the
d = 120, see (e). In each row there are three error plots for different circulant forms of the
operator H (here the local averaging is defined for a neighborhood of 11 samples). Here
op = 0.2, d =120, n = 20, n = 50, ||B|j3 = d, 02 = 0.05-d, o = 0.025 - d, and p = d for all
settings.

ferred parameters, specifically, 7/ = () and Z' = Z U T. Namely, £’ is obtained by zeroing all
the parameters that are transferred in £. Then, we define the following error difference due
to transferring the parameters in 7 instead of zeroing them:

) el 2 215 )

out out

where ECEut) and 5(§ut) are the out-of-sample errors in the target task for the coordinate layouts

L and L', respectively. Using Theorem 3.1 we can write (4.1) as

=1 forp<n—2

19 AL ( ) Amp-1 = ;

( ) TvsZ — transfer ||'8T|| = ;1 1 for p >n+ 27
where Et(l;nszer was defined and formulated in Theorem 3.1 and Corollary 3.2. Note that A&}V)SZ

is undefined for p € {n — 1,n,n + 1}. The definition in (4.1) implies that transferring the
parameters in 7 is beneficial (over zeroing these coordinates in addition to the coordinates in

Z) if Aé’éf,)sz < 0. We define

T,S
(43) Ag( ) = transfer - ||'BTH2

transfer
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Figure 5: The analytical values of A& ansfer (here normalized by t) as a function of p and
072]. The positive and negative values of A& anster appear in color scales of red and blue,
respectively. The regions of negative values (appear in shades of blue) correspond to beneficial
transfer of parameters (compared to zeroing them). The positive values were truncated at
the value of 2 for the clarity of visualization. Each subfigure corresponds to a different task
relation model induced by the definitions of H as: (a)-(c) different scalings of the identity
matrix, (d)-(f) circulant matrices that correspond to local averaging operators with different
neighborhood sizes. For all the subfigures, d = 80, n = 50, og =0.025-d, ||B||3 = d. The
components of 3 have a linear form (see Fig. 4a) in (a)-(c) and a piecewise-constant form (see

Fig. 15) in (d)-(f). See corresponding empirical results in Figs. 16-17.

Then, according to (4.2), éf,)sz < 0 occurs when p ¢ {n —1,n,n+ 1} and AEEZ;SEEM

The examples in Fig. 5 show the values of A& anster = Er [Aé’,gizer

< 0.
] due to transferring

an arbitrarily selected parameter. The error difference is presented with respect to the number
p of free parameters in the source task and the variance 0127 of the noise in the task relation
model. Each subfigure in Fig. 5 shows results for a different definition of H. All the subfigures
demonstrate that transferring an arbitrarily selected parameter is more beneficial when the
solution to the source task is highly overparameterized; indeed, then the generalization error
in the source task itself is lower due to its own double descent phenomena (e.g., recall the
behavior of the error along the vertical axis in Fig. 3b-3d). As expected, a low level of noise
in the task relation is also important for beneficial transfer.

The examples in Fig. 5 also show a somewhat unexpected behavior: parameter transfer
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from an underparameterized source task can be more beneficial as the tasks are less related,
e.g., compare the lower left corners in Figures 5a and 5b. To understand this observation
mathematically one may recall the transfer bias and variance formulations in Corollary 3.2
and notice the following effects of H, which in Figs. 5a-5b has the form of H = cI; where
c € (0,1). First, the transfer bias increases as ¢ € (0, 1) gets smaller; also note that the transfer
bias sums only over the |T| = ¢ transferred coordinates. Second, the (underparameterized)
transfer variance decreases as ¢ € (0,1) gets smaller; here note that the transfer variance is
affected by |S¢| = d — p coordinates of H = ¢l in addition to the number ¢ of transferred
parameters. In the experiment setting of Fig. 5a, the source task is underparameterized with
a sufficiently large d — p value such that the reduction in the transfer variance dominates the
increase in the transfer bias, resulting in beneficial transfer.

More generally, the lesson here is that beneficial transfer learning can be achieved also in
non-intuitive settings where the tasks are not necessarily highly related. In Section 5 we will
provide additional insights into counter-intuitive beneficial cases.

4.2. Benefits in Transferred versus Free Parameters. Now we turn to discuss the ques-
tion of when the transfer of the parameters in 7 is more beneficial than defining them as free
for optimization.

Consider the coordinate layout £ = {S,F,T,Z} where, as usual, |S| = p, |F| = p,
|7T| = t. Here we also define a second coordinate layout £ = {S, F", 7", Z} which is a
modified version of £ without transferred parameters, specifically, 7" = () and 7’ = FUT.
Hence, the consideration of £” reflects the case where all the transferred parameters in £
are replaced by free parameters. Then, we define the following error difference term due to
transferring the parameters in 7 instead of allocating them as free parameters:

(4‘4) AE(L) A g(ﬁ) _ g(ﬁﬁ)

TvsF = “out out

where Séft) and Eéft”) are the out-of-sample errors in the target task (recall Theorem 3.1) for
the coordinate layouts £ and £, respectively. The definition in (4.4) implies that transferring
the parameters in T is beneficial (over allocating these coordinates as t free parameters in
addition to the p free parameters in F) if AS%:,)SF < 0.

We now turn to examine the effects of p and t on beneficial transfer in the sense of
AE%:,)SF < 0. For this, note that £” includes p”’ = p + t free parameters and hence is not
necessarily in the same parameterization regime as £ that includes p free parameters. The
parameterization regimes of £ and L” affect the behavior of the benefits from parameter
transfer, as described by the following corollaries of Theorem 3.1 (these corollaries are simply

proved by setting Eq. (3.1) in (4.4) and reorganizing the formulations).

Corollary 4.1. For p+t < n — 2, namely, when both L and L" correspond to underparam-
eterized settings, the error difference due to transferred versus free parameters is

0 _ n—1 (T.5) ¢ 2, 2
(45) ASTVSF - n—p— 1 (gtransfer n—p—t— 1 (H/BZ‘Z—FO—G)) .

Accordingly, the transfer of the t > 0 parameters in T C S is more beneficial than allocating



DOUBLE DOUBLE DESCENT 17

them as free parameters (i.e., AS%Z;‘;) <0)if

(T,S) t 2 2
(4.6) g0 < P — (IIBZHQ + o€> .

Corollary 4.2. For p +t > n + 2, namely, when L" corresponds to an overparameterized
setting, the error difference due to transferred versus free parameters is

L T.S
(4.7) AED e = 108 Tusher + 1 1BFI3 + 218715 + 3 (18213 + 0?)

where the coefficients vo,71,7v2,Y3 depend on the parameterization level of L:
o For an underparameterized L with p < n — 2:
o = n—1 = (1 o L) o = — (1 _ L) 3= — n(n—1)—p(p+t—1) )
n—p—1’ p+t )’ p+t )’ (p+t—n—1)(n—p-1)
e For an overparameterized L with p > n + 2:

— _p-1 _ t _ _ t
0= g2k = gy 2=~ (1= ) W = R

Accordingly, the transfer of the t > 0 parameters in T C S is more beneficial than allocating
them as free parameters (i.e., AE%:/)SF <0)if

4.8 5(775) <_ﬂ 2 2 2_&( 2_{_0_2).
( ) transfer "% ”,3]:”2 "% HIBTHQ "% ”IBZH2 €

Clearly, the formulation of A&}?SF is more intricate in the case of overparameterized £” in
Corollary 4.2 than in the case of underparameterized £ and £” in Corollary 4.1. Specifically,
the set of free parameters F appears in (4.7)-(4.8) in addition to the sets 7 and Z.

To intuitively understand the behavior of AS%?SF, consider expectation over coordinates

that are selected uniformly at random (recall Definition 3.3). Specifically, we define AEpysp £
E, AS}QF} while noting that £” is deterministically related to £ and hence it is sufficient

to consider the expectation over L. Figure 6 shows the value of A&ty as a function of p
and t for several operators H in the task relation. Figure 6 demonstrates the following typical
behaviors:

e For underparameterized L and L” (i.e., p+t < n — 2, which corresponds to the region
to the left of the dotted black lines in the bottom subfigures in Fig. 6): Parameter
transfer is more likely to be beneficial, and with larger gains, as p+1t increases towards
n — 2. Moreover, when (4.6) is satisfied, it is beneficial to have more transferred than
free parameters (i.e., having ¢ > p for a fixed sum of p +¢). The intuition here is that,
when we are constrained to the underparameterized regime in both options (i.e., £
and L"), transferring parameters instead of having more free parameters can keep the
error farther away from the peak of the double descent curve, which yields a beneficial
transfer. Interestingly, due to the significant peak of the generalization error around
the interpolation threshold, this behavior also occurs when the source and target tasks
are quite different (see Fig. 6¢).

e For underparameterized L and overparameterized L” (i.e.,p <n—2and p+t > n+2,
which correspond to the region to the right of the dotted black lines in the bottom
subfigures in Fig. 6): Parameter transfer is more likely to degrade as p increases
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Figure 6: The analytical values of A&y (namely, the expected error difference due to
transfer of an arbitrarily-selected set of ¢ parameters versus setting them as free parameters)
as a function of £ and p. The positive and negative values of A€y appear in color scales of red
and blue, respectively. The regions of negative values (appear in shades of blue) correspond
to beneficial transfer of parameters (compared to defining them as free parameters). The
gray regions correspond to p + ¢t > d where parameter transfer cannot be performed. For
better visual clarity, the underparameterized and overparameterized cases of £ are shown in
different subfigures with significantly different range of values. Also, the positive values were
truncated at the values of 1 and 200 in the overparameterized and underparameterized cases,
respectively. Corresponding truncations are applied on the negative values at the values of -1
and -200. The dotted black line corresponds to p+t¢ = n, which is the interpolation threshold
of the auxiliary layout £”. Each column of subfigures corresponds to a different task relation
model induced by the definitions of H. For all the subfigures, d = 120, p = d, n = 50,
02 =0.025-d, n =20, 02 = 0.05-d, ||3||3 = d where 3 components have a piecewise-constant
form (see Fig. 15). See corresponding empirical results in Fig. 19 in Appendix D.4.

towards n — 2 while p + ¢ > n + 2. Moreover, increasing the number ¢ of transferred
parameters degrades the benefits from transfer learning. The intuition here is that,
when the transfer option £ is underparameterized and the no-transfer option £” is
overparameterized, any increase in p +t makes £” more overparameterized and hence
farther away from the double descent peak (hence having an improved generalization
ability).

e For overparameterized £ and L” (i.e., p > n + 2, which corresponds to the upper
subfigures in Fig. 6): Here, the important behavior is that, for a given 7, parameter
transfer improves as the number of free parameters p increases. Of course that this
improvement becomes beneficial (at high overparameterization levels) only when the
source task is sufficiently related to the target task (see, e.g., Figures 6a and 6b). The
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intuition here is that, when both options (i.e., £ and £”) are in the overparameterized
regime then the increase in p moves both £ and £” away from the peak of the double
descent. The transfer learning option L is closer to the double descent peak and hence
typically improves more (due to the steeper slope at the corresponding part of the
generalization error curve, e.g., see in Fig. 1) than the no-transfer case L.

5. The Optimal H in a Componentwise Task Relation. Theorem 3.1 shows that the task

relation aspect is encapsulated in the term & (87)

ransfer CONsequently, we demonstrated in Section

4 that St(S’T) greatly affects the potential benefits from parameter transfer compared to both

ransfer
zero and free parameters. Specifically, AS%)SZ and AS(T?SF both decrease as £577)  decreases.

transfer
This motivates us to characterize the optimal task relation in the sense of minimum Et(i’r?;zer
for a given coordinate layout £. Namely, we characterize the best source task to transfer from
when the other aspects of the parameter transfer are fixed.

Consider an operator H that has the diagonal form of
. 1 d
(5.1) H = diag{\{Y, ..., AP}

where {)\(}jl) ;-l:l € R. We refer to {)‘(}JI) ;;:1 as the eigenvalues of H due to the fact that
applying the same orthonormal rotation on the feature spaces of the source and target tasks
can induce a non-diagonal H that its eigenvalues are the same {)‘(}JI) ?:1 as in (5.1). The
diagonal form in (5.1) implies that the task relation in Eq. (2.7) reduces to the componentwise

form of
(5.2) 00) = 2Dl 4 ) =1, d

where #U) and BY) are the j*™ components of the true parameter vectors of the source and
target tasks, respectively, and 1) is the j*® noise component in 7. Then, we can further
develop the expressions from Corollary 3.2. First, the transfer bias term from (3.3) can be
written as

. 2 N\ 2 1 forp<n
5.3 Bias3 = A — 1) (B9 here 2 =
(5.3) ias7 ; (7’ H ) (ﬁ ) where r for 7> 7.

RSN

Second, the transfer variance term Vary s from (3.4) can be also rewritten using

Ga) =3 (W89), Gr= 3 (WD), =Y (e

JjeT JES\T jese

Consequently, we get the following result (proof is provided in Appendix E.1).

Theorem 5.1. Consider a task relation operator of the form H = diag{Ag), ceey )\g)}. Also,
p ¢ {n—1,n,n+1}. Then, for given coordinate sets S (of size p) and T C S (of sizet < p),

the transfer error term &, (7.5)

iransfer 0ttains its minimal value with respect to the eigenvalues of H
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at

. ,[1 F<ii—2
(55)  forjeT, B9 £0: AY) :{ A1 forpsn=2,

ot Jorp=n+2,
. . ; lue forp<mn-—2

5.6 eS\T, B9 £0: AP = e !
G55)  forjeS\T, 0 2 W=1 S,
5.7 orj eS8, U £0: AW — .
(5.7) for j o

Forj € {1,...,d} where BY) =0, )\g) can have any value.

Let us interpret the meaning of Theorem 5.1 for the case of fU) # 0 for j € {1,...,d}.
The theorem shows that the linear operator in the optimal task relation has two different
characterizations depending on whether the source task is under or over parameterized:

o For an underparameterized source task it is best that the true parameters in the
transferred coordinates of the source task are the same (up to the additive noise terms

from m) as the corresponding true parameters of the target task (see (5.5) and recall

(5.2)).
e For an overparameterized source task it is best that the true parameters in thg trans-
L)
(see (5.5)) of the corresponding true parameters of the target task. This amplification
intends to partially compensate for the increased transfer bias in the case of overpa-
rameterized source task (see the p > 7 case in (5.3)). Indeed, the optimal amplification
increases as the source task is more overparameterized (i.e., as p increases towards d).
While this amplification reduces the transfer bias, it increases the transfer variance

(see (3.4) and (5.4)) and hence the amplification is somewhat restrained. Also, the
pi—1
np—1+t(p—n) _
increases. Specifically, when ¢t = p (i.e., all the free parameters of the source task are

transferred to the target task) the optimal )\g)

is no amplification.

Eq. (5.6) considers the coordinates of the free parameters of the source task that are not
transferred (i.e., S\ 7) and shows that the optimal true parameters of the source task in
these coordinates are zeros in the overparameterized regime due to the dependency of the
transfer variance on the true parameters of the source task at S\ T (see (3.4) and (5.4)).
In the underparameterized regime of the source task, there is no such dependency on s\ 7

and hence these true parameters may have any value without affecting the minimization of
(T.,S)
transfer*
According to Eq. (5.7), in both the under and over parameterized cases, it is best that

the true parameters of the source task are all zeros in the coordinates that do not participate
in the source task solution (i.e., §¢). This optimal form reduces the misspecification in the
solution of the source task to originate only in the task relation noise ng.. Avoiding these
misspecifications makes the estimate of each free source parameter closer to its true value
(i.e., instead of also trying to compensate for omitted parameters that are informative) and,
hence, this improves the relevance of the parameters 6+ that are transferred “as is” to the

ferred coordinates of the source task are amplified versions by a factor of

optimal amplification decreases as the number ¢ of transferred parameters

values for j € T become 1 and there
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Figure 7: The analytical values of Aé’t(ranszer as a function of p and a value that determines the

eigenvalues of H in 7. Here 7 = {1,...,8}. The operator H is diagonal with a main diagonal
in the form described in subfigure (d). In subfigures (a)-(c), the positive and negative values
of Ac‘,’t(:;iger appear in color scales of red and blue, respectively. The color scales are the
same for all the subfigures in the first row. The regions of negative values (appear in shades
of blue) correspond to beneficial transfer of parameters. The positive values were truncated
at the value of 6 for the clarity of visualization. The gray regions correspond to p < t
where parameter transfer cannot be performed. The dashed green lines (in all subfigures)
denote the optimal eigenvalues (corresponding to 7) as formulated in Theorem 5.1. Here,
d = 120, n = 50, ag = 0.025 - d. Subfigure (e) shows the form of 3 in the experiments of
subfigures (a),(b). Subfigure (f) shows the form of 3 in the experiments of subfigure (¢). The
corresponding empirical evaluations are provided in Fig. 20 in Appendix E.2.

target task from the co-located coordinates in the source task.

Theorem 5.1 describes the eigenvalues of H that minimize st(f;;;'j}er. However, Eéz;izer
also depends on additional factors such as the noise level in the task relation and the true
parameters 3 of the target task, which determine whether transferring the parameters in 7
is preferred, e.g., over zeroing them. Thus, evaluation of the sign of AE%,)SZ is required for
understanding whether the optimal eigenvalues of H induce beneficial transfer and, if so, how
much can the eigenvalues deviate from their optimal values while still having a beneficial

transfer.



22 YEHUDA DAR AND RICHARD G. BARANIUK

In Fig. 7 we show the analytical values of Aé’t(lﬁzer (recall the definition in (4.3)) as
a function of p and the eigenvalues of H that correspond to the transferred parameters (see
Fig. 20 in Appendix E.2 for the corresponding empirical evaluations). Specifically, we consider
a family of H operators that are diagonal in the feature domain and have the following step-
shaped structure for their eigenvalues (see Fig. 7d): the first 8 eigenvalues are all equal to a
value that varies among the H operators in this family; the next 112 eigenvalues are 0.1 for
any H operator in this family. Here we consider transfer of the first eight parameters, i.e., 7 =
{1,...,8} that correspond to the eigenvalues with a tunable value in our evaluations (this is
reflected by the horizontal axes in Figs. 7a-7c¢). The results in Fig. 7 demonstrate that the range
of eigenvalues that induce beneficial transfer increases together with overparameterization (see
the wider blue regions around the green dashed line that denotes the optimal eigenvalue from
Theorem 5.1). Fig. 7a shows that benefits can be also obtained in underparameterized settings
where the eigenvalues (in 7") are around 1, however, these eigenvalue regions are smaller and
produce lower benefits than their overparameterized alternatives. The effect of the noise in
the task model is also apparent by comparing Fig. 7a to Fig. 7b that shows results for the
same settings but with a higher ag. Specifically, the higher noise level in the task relation
reduces the size of the beneficial regions and their gains in the overparameterized range, and
leaves the underparameterized range without any beneficial regions. Next, compare Fig. 7a to
Fig. 7c that shows results for the same settings but with 8 of the less favorable structure in
Fig. 7f instead of the structure in Fig. 7Te. This shows how the structure of the true parameters

in 3 can also affect the parameter transfer performance.

6. Additional Linear Regression Methods. The previous sections presented analytical
and empirical results on transfer learning between two least squares solutions that take their
minimum fe-norm forms (2.4), (2.10) in the overparameterized regime. In this section we
examine the same transfer learning mechanism (i.e., transferring co-located parameters from
the already-learned source model to the to-be-learned target model) for two more kinds of
solutions to linear regression: least squares with the minimum ¢;-norm form in the overpa-
rameterized regime, and ridge regression.

6.1. The Minimum /;-Norm Interpolator. This setting also emerges from the optimiza-
tion problems formulated in (2.3) and (2.9) for the source and target tasks, respectively. In
the underparameterized regime, the source and target tasks almost surely have the unique
least squares solutions as provided in (2.5) and (2.11).

For an overparameterized source task, i.e., p > n, the problem (2.3) has infinite interpo-
lating solutions among which we choose here the minimum ¢;-norm solution:

(6.1) 6 = argmin 714
reRd
subject to Qger =0
Zr =v.

This solution equals to @ where s = 0 and 6 = arg miny g5 || k||; subject to Zsk = v,
which is a basis pursuit problem [6] that can be addressed via linear programming methods.
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For an overparameterized target task, i.e., p > n, the problem (2.9) has infinite interpo-
lating solutions, from which we choose here the minimum #¢;-norm solution

(6.2) B = argmin ||bl|,
beR4
subject to Q7b = Q7-§
Qzb=0
Xb=y

that can be formulated also as ,B where B z=0, /@T = 57— and
(6.3) B = argmin |f]
feRp
subject to Xrf =y — XTaT,

which is a basis pursuit problem that can be solved via linear programming.

The empirical out-of-sample errors of the minimum #1-norm transfer learning are shown in
Figure 8 as blue curves where the shade of blue denotes the number of transferred parameters.
The results demonstrate that the double descent behavior occurs also for the minimum #1-
norm solution. Double descent phenomena for minimum #;-norm solutions to linear regression
(without transfer learning) were studied in [19, 18]. The asymptotic analyses in [15, 27] show
that a triple descent can be observed if the true parameters are sufficiently sparse. Here we
do not clearly observe an additional error peak in the overparameterized regime, which could
possibly be due to the misspecification strategy (i.e., zeroing parameters in predetermined
coordinates) that we use for controlling the parameterization levels in our non-asymptotic
setting. For B of a linear shape the minimum #s-norm solution is better than the minimum
¢1-norm solution in the entire overparameterized range (see Figs. 8a-8c). Nevertheless, for
a sparse 3 the minimum #;-norm solution can provide the best performance in the high
overparameterization levels due to its sparsity-promoting nature (see Figs. 8d, 8g-8i).

6.2. Ridge Regression. Now we turn to formulate our transfer learning approach for ridge
regression. So far we considered the optimization problems (2.3) and (2.9) that do not include
explicit regularization terms in their cost functions. Hence, the ridge regression extension of
(2.3) is

(6.4) 6 = argmin ||v — Zr|5 +a@|r|3 subject to Qser =0,
reRd

where & > 0 determines the level of ridge regularization. The formulation in (6.4) is equivalent
to @ where 8sc = 0 and

(6.5) 0s = argmin |v — Zsk|3 + & k3.
keRP

The optimization in (6.5) has a standard ridge regression form and, thus, its closed-form
solution is

(6.6) 0s = (257s +at;) ' Z%v.
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Figure 8: The expected generalization error of the target task, Er [Eout], compared for min-
imum fs-norm, minimum #;-norm, and ridge solutions. In this figure all the errors are em-
pirically evaluated. The errors of the minimum /¢;-norm solution are shown in curves of blue
shades. The errors of the ridge regression are shown in curves of red shades. The errors of
the minimum /2-norm solution are shown in dashed curves of gray shades. For each of the
solution types the darkest shade corresponds to no transfer (¢ = 0), a lighter shade denotes
more transferred parameters (larger ¢), and the lightest shade corresponds to t = 48. In the
first row of subfigures the true B has values that follow a linear form. In the second row
of subfigures the true (3 has a sparse form with non-zero values at 25% of the coordinates
(selected randomly out of the d = 240). In the third row of subfigures the true 3 is sparse
with only 5% non-zero values. Examples for linear and sparse 3 of a smaller dimension are
provided in Figs. 4a, 4e. In each row there are three error plots for different circulant forms of
the operator H (here the local averaging is defined for a neighborhood of 11 samples). Here
o5 = 0.2, d = 240, n = 40, 7 = 100, ||B|l5 = d, 02 = 0.05 - d, 07 = 0.025 - d, and p = d for all
settings.

In appendix F.1 we formulate the out-of-sample error of the ridge regression solution to the
P(o2+0s¢ll3)

source task, and show that optimal tuning is provided by a = TEAE
2

. In our experiments
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we assume that ||6s]|3,||@sc||5 are unknown and only |8][3, O'g are known about the source

task. Thus, we assume [|6s]3 ~ g||0”§ 10se 5 ~ (1 - g) 10|15 that let us to approximate

the optimal tuning using a = % +d—p.
Proceeding to the target task, the ridge regression extension of (2.9) is
(6.7) B = argmin [ly — Xb|3 + o [[b]]3
beRd
subject to Q7b = QT/O\
Qzb =0,

for aw > 0. The solution of (6.7) has the closed form of ,[Ai where ,@ 2=0, ,BT = 57—, and
~ _1 ~
(6.8) Br = (XEXr+al,) XL <y - XToT) .

In appendix F.2 we provide further details on (6.8), the corresponding out-of-sample error,
2 2 a2
p(o2+BzI3+E[ || 87-87]|3])
1B7II5

do?
dos g p—t+t
iz TP EE

assumes the knowledge of ||8[3, ||(I; — H) 8|3, 0, 0c. See Appendix F.2 for more details.

The empirical out-of-sample errors for the ridge regression transfer learning appear in
Figure 8 as red curves where the shade of red denotes the number of transferred parameters.
As expected, the ridge regularization (which is approximately optimally tuned) resolves the
error peak and eliminates the double descent shape of the minimum norm interpolating so-
lutions. In the case of suboptimally tuned ridge regularization the double descent peak may
not be fully resolved (see Fig. 9). For B with a linear shape, the ridge regularization suits
best among the examined methods at any parameterization level, except for the maximal
overparameterization levels where the minimum /3-norm solution performs comparably (see
Figs. 8a-8c). However, for a sparse B the minimum ¢;-norm outperforms the ridge solution
for high overparameterization levels (see Figs. 8d-8f).

and show that optimal tuning is given by a = . In our experiments

l|(La—H)B||3+do?

we approximate the optimal tuning by setting o = 1 that

7. Conclusions. In this work we have established an analytical framework for the fun-
damental study of transfer learning in conjunction with overparameterized models. We used
least squares solutions to linear regression problems for shedding clarifying light on the gener-
alization performance induced for a target task addressed using parameters transferred from
an already completed source task. We formulated the generalization error of the target task
and presented its two-dimensional double descent shape as a function of the number of free
parameters individually available in the source and target tasks. We characterized the con-
ditions for a beneficial transfer of parameters and demonstrated its high sensitivity to the
delicate interaction among crucial aspects such as the source-target task relation, the specific
choice of transferred parameters, and the form of the true solution. We importantly showed
that overparameterized transfer learning is not necessarily improved by using a source task
which is closer or identical to the target task. Our focus was mainly on the analytical and
empirical study of the minimum #2-norm solution to overparameterized transfer learning. We
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Figure 9: The expected generalization error of the target task, E, [Eoyt], for transfer learning
with suboptimally tuned ridge regularization. Each of the subfigures corresponds to a different
number of transferred parameters ¢, and shows the error curves for four suboptimal ridge
tunings where the parameters o and « are x times their (approximately) optimal values. Here
B has linear shape, H is a local averaging operator (over a neighborhood size 11), 0727 = 0.2,
d = 240, n = 40, 7 = 100, || 8|5 = d, 02 = 0.05 - d, ¢ = 0.025 - d, and p = d.

also empirically examined the performance of the minimum /¢;-norm solution and ridge re-
gression in our transfer learning framework. We believe that our work opens a new research
direction for the fundamental understanding of the generalization ability of transfer learning
designs. Future work may study the theory and practice of additional transfer learning layouts
such as fine tuning of the transferred parameters, inclusion of various regularization methods,
well-specified and other settings where the task relation model is known (to some extent) and
utilized in the actual learning process.
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Appendices. The following appendices support the main paper as follows. Appendix
A provides additional details on the mathematical developments leading to the formulations
in Section 2 of the main paper. In Appendix B we present the proofs of Theorem 3.1 and
Corollaries 3.2, 3.4 from Section 3, which formulate the generalization error of the target task.
Appendix C provides additional empirical results and details for Section 3 of the main paper.
In Appendices D, E we provide analytical proofs and empirical results for Sections 4, 5 of
the main paper. In Appendix F we provide the mathematical developments for the ridge
regression setting of our transfer learning problem from Section 6.2 of the main paper.

Appendix A. Mathematical Developments for Section 2.
A.1. The Estimate 0 in Eq. (2.4). Let us solve the optimization problem provided in
2.3). Using the relation QLQs + QL. Qsc = I; we can rewrite (2.3) as
S S

(A1) 6 = argmin ||v — ZsQsr — ZgeQser||?
rcRd

subject to Qger =0
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where Zgs £ ZQg and Zge £ ZQgC. By setting the equality constraint in the optimization
cost, the problem in (A.1) becomes
(A.2) 6 = argmin ||v — ZsQsr|?
reRd
subject to Qger = 0.

Without the equality constraint, (A.2) is just an unconstrained least squares problem that its
minimum #s-norm solution is

(A.3) 0 =QLziv

where Z; is the Moore-Penrose pseudoinverse of Zs. Note that 0in (A.3) satisfies the equality
constraint in (A.1) and, therefore, (A.3) is also the solution for the constrained optimization
problems in (A.1), (A.2), and (2.3).

A.2. The Double Descent Formulation for the Generalization Error of the Source
Task. The generalization error of a single linear regression problem (that includes noise) in
non-asymptotic settings is provided in [3] for a given coordinate subset (i.e., deterministic S
in our terms). The result from [3] can be written in our notations as

2511 (118se113 + 02) for <72,
(A4) Eout = { 0 forii —1<p<m+l,
Ztr (10515 +02) + B2 10sl3 for =2

In case that the coordinate subset S is uniformly chosen at random from all the subsets
of p € {1,...,d} unique coordinates of {1,...,d}, then we get that Eg {HOSHQ =L 10|13 and

Es [HGSCHS} = %ﬁ HGH% Accordingly, the expectation over S of the generalization error of
the source task leads to the following result
- - 9 .
2L ((1-2) 1013 + 02) for p<7—2,
(A5) Es [sout} —{x for i —1<p<ii4l,
2 (1-2) 1615 +02) + ZZ 1013 for 5=+ 2.

The formulation in (A.5) considers 8 as a deterministic vector. For the analysis of the
target task, where the task relation model (2.7) is assumed to hold, it is also useful to formulate
the expectation of the out-of-sample error of the source task with respect to both S and the
noise vector 7 from the task relation model. This leads us to to consider € as a random vector
and to formulate the following expectation.

- {_l%il <<1—%)/@+0§> forp<n-—2,
(A6) Esy |Eout| = 4 o0 fori—1<p<m+l,
=L ((1—§)n+a§)+¥ﬂ for > 71 + 2.

where 1 £ B, [|0]3] = [HBJ3 + dor2
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A.3. The Estimate ,[Ai in Eq. (2.10). The optimization problem in (2.9), given for the
target task, can be addressed using the relation ijj-Q F+ QTrQT + Qg Qz =1, and rewritten
as

B =argmin |y — X7Qrb — X7Qrb -~ XzQzbl[;
beR
subject to Q7b = QTa
(A7) Qzb=0

where X5 £ XQ;, Xy & XQ;, and Xz £ XQ%. By setting the equality constraints of
(A.7) in its optimization cost, the problem (A.7) can be translated into the form of

~

—~ 2
B = argmin||y — X7Q70 — X7Qub|
beRd 2

subject to Q7b = Q7—§
(A.8) Qzb = 0.

The last optimization is a restricted least squares problem that can be solved using the method
of Lagrange multipliers to show that

(A.9) B =QrX; <y - XTaT) +QFor

where 57- = QTa and X} is the Moore-Penrose pseudoinverse of X .

Appendix B. Proofs for Section 3.

In this section we outline the proof of Theorem 3.1 for the generalization error of the target
task in the setting where a specific coordinate subset layout £ determines the transferred set
of parameters. We start in Section B.1 by providing auxiliary results that use non-asymptotic
properties of Gaussian and Wishart matrices. Then, in Section B.2 we prove Theorem 3.1, in
Section B.3 we prove Corollary 3.2, and in Section B.4 we prove Corollary 3.4.

B.1. Auxiliary Results using Non-Asymptotic Properties of Gaussian and Wishart Ma-
trices. The random matrix X7 £ XQ; is of size nxp and all its components are i.i.d. standard
Gaussian variables. Then, almost surely,

1 forp<n,

B.1 E[XEX~| =1, x
(B-1) [f f] P { for p > n,

n
p

where X}X F is the p x p projection operator onto the range of X . Accordingly, let a € RP
be a random vector independent of the matrix X and, then,

1 for p <n,

(B.2) E || X$Xral3y] = E [fall3] x { for p > .

n
p

The components of Xz are i.i.d. standard Gaussian variables, hence X;X F~W, (I, n)
is a p X p Wishart matrix with n degrees of freedom, and X]:Xg ~W, (I,,p) is an xn
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Wishart matrix with p degrees of freedom. The pseudoinverse of the n x n Wishart matrix
(almost surely) satisfies

N n_;_l'% for p<n—2,
(B.3) E [(X;X};) } ) [X;TXH . forn—1<p<n+1,
P for p > n+2,

where the result for p > n + 2 corresponds to the common case of inverse Wishart matrix
with more degrees of freedom than its dimension, and the result for p < n — 2 is based on
constructions provided in the proof of Theorem 1.3 in [5].

Following (B.3), let u € R™ be a random vector independent of X z. Then,

) nf;il for p<n -2,
(B.4) E [HX}uHﬂ = —E [Hqu} X ¢ 00 forn—1<p<n+1,
p—Z—l for p > n + 2,
that specifically for u = X zc3 . becomes
n_’;_l for p<n—2,
2
(B.5) E[Hx;xfcﬁp 2} :E{Hﬁpug} x{oo  form—1<p<n+l,
pizil for p > n+ 2.

The results in (B.1)-(B.5) are presented using notions of the target task, specifically, using
the data matrix X and the coordinate subset 7. One can obtain the corresponding results
for the source task by updating (B.1)-(B.5) by replacing X, 7, n and p with Z, S, n and p,
respectively. For example, the result corresponding to (B.1) is

1 for p <m,

B.6 E([ZtZs] = I x
(B-6) 252s] =15 { for § > 7,

[N

where Z§Z5 is the p x p projection operator onto the range of Zgs.

The next auxiliary results consider a coordinate subset layout £ = {S,F,T, Z} which is
specific, i.e., non random, and therefore the induced operators such as Qs, Qr, Q7, Qz are
also fixed and do not have any random aspect. Recall that Qng is a d x d diagonal matrix
with its j*" diagonal component equals 1 if j € S and 0 otherwise. Similarly holds for the
other coordinate subsets. Accordingly, here the norms of vector forms such as B+ 2 Q7B,

Br 2 QrB, and Bz 2 Qz03, are directly referred to as |83, |83, |8zI3, respectively.
Recall that 7 C S. Then, for a deterministic vector w € R¢,

(B.7)
|]W7~H§ for p <m,

e [larazzszsas] - {5

_ 2 = 2 o~ o~
o+ pfi) ||WTH2 + (1 - gfi) tHWSHz) for p > n.




30 YEHUDA DAR AND RICHARD G. BARANIUK

; 1 for p <n — 2,
2 _ .
(B.8) E [HQTQEZ;ZSCQ&WHJ = ;7”“’86”3 X < 00 forn—1<p<n+1,

57,%, forp>n+2.

For two deterministic vectors w,a € RY,

1 for p <n,
(B.9) E [(Qra, QrQ5Z5ZsQsw)] = (ar, wr) x < - I
5 for p > n.
For a deterministic vector r € R”,
, . ) ﬁf%fl forp<n-—2,
(B.10) E [“QTQEZ;I‘HQ} =7 r]]5 % § oo forn—1<p<n-+1,
57%71 forp>n+2.

In our case we have the n x p matrix Zs that its components are i.i.d. standard Gauss-
ian variables, thus, Zs can be decomposed into a form that involves an independent Haar-
distributed matrix, i.e., a random orthonormal matrix that is uniformly distributed over the
set of orthonormal matrices of the relevant size. This lets us to prove the results in (B.7)-(B.10)
using some algebra and the non-asymptotic properties of random Haar-distributed matrices,
see examples for such properties in Lemma 2.5 in [26] and also in Proposition 1.2 in [12].

B.2. Proof Outline of Theorem 3.1. The generalization error £,y of the target task was
expressed in its basic form in Eq. (2.8) for a specific coordinate subset layout £ = {S, F, T, Z}.
Please note that the expectations below do not include any expectation with respect to £ or
its components, which are non-random here.

We start with the relevant decomposition of the error expression, namely,

=7 +2 |3 - 5[]

®1) =8zl + B X2 (v - XrBr) - 8[| + B[ [or - 6r]f].

Then, we use the expression for the estimate 0 given in (2.4) and the relation y = X3 + €, to
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decompose the third term in (B.11) as follows

e [Jpcs (v -xrdr) -
=5t o -7 or]) -] + & e 5o -2 o) ]

—F HX} (XTﬁTJFXTCfBTC +te—X7E [5TD N ﬁf”j e {HX;XT <5T -k PTDHz]

= 2 I 07+ - 3] 8 e (3 2 o)) ]

s (or 2o

(B.12)

We further develop the last expression using the result in (B.4) and that XXX ~ W; (I, n)
is a Wishart matrix with mean E [X?—XT] = nl;, and get

[ (v - x78r) - 7]

=K [HX; (X7eBre +€) — 5?”3}

for p <mn—2,

~ 2 ~ ~ 2
(a2 2 fer-2 ) < {5 <o
n for p > n+ 2.

(B.13)

We proceed to the fourth error term in (B.11), i.e., the error in the subvector induced by
the specific T of interest, and develop its formulation as follows:

&=

R
S R R [ e (OS]

o~

- |l or] - o[ 2 o - 2 o] ]

2
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Then, setting (B.13) and (B.14) in (B.11) gives

2
Eon = 02 + 18213+ E [|XF (X7eBr< +€) - B3]
for p<n-—2,

~ 2 ~ ~ 2
([e[er] - oo+ |for e o)) ) [1+4 Trn-1<psnsn
n for p > n + 2.

(B.15)

Also,
(B.16)

B [|XE (XreBre +0) - B2] = E [|IXEX 285 - B[2] + B [|XE (X282 + ]
where the first term can be developed using (B.2) into

0 for p <mn,
1

(B.17) E [HX}Xfﬂf - 5?”1 = 1815 x { ~ 2 forp>n,

and the second term in (B.16) can be rewritten using the result in (B.4) and that X5X z ~ Wa_p—t (Ta—p—1, 1)
is a Wishart matrix with mean E [XgX g] =nlg_p_:

n_g_l for p<n—2,
2
(B.18) E [Hx; (X285 + e)H2] - (ngug v 03) x{oo  form—1<p<n+l,
P for p > n+ 2.

Hence, (B.16)-(B.18) let us write (B.15) in the form which is provided in Theorem 3.1.

B.3. Proof of Corollary 3.2. To prove Corollary 3.2 we first formulate the expectation of
the transferred parameters:

E [57'} =E[QrQ5Z{ZHB] = E [QrQ§Z$ZsQsHA]
1 forp<n,
for p > n,

(B.19) = Q7HS x {

[N

where the last equality stems from (B.6). Consequently, we use (B.19) to formulate the
transfer bias term from Theorem 3.1 as

P 2 1 forp<n,
(B.20) Biask = HE [97} - BTH = |Qr (FH — 1) B2 where r 2 {ﬁ op=n
2 5 for p > n,

which corresponds to the formulation in Corollary 3.2.
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Now we turn to prove the transfer variance formulation from Corollary 3.2. For a start,
note that

wers = for—e o) ] =[] - = o)
for p <7,

for p > n.

(B.21) =E U\%Hj ~ |QrHB)3 x 1()

~ 2
To further develop the last expression, we will now explicitly formulate E [HBTHJ . Using the

auxiliary notation B(H) £ HA we get
~ 2
(B.22) E [HOT‘H _E {HQTngg (ZH5+zn+§)Hﬂ

2 [Jaratziz (48 ns)]

+5[|aratzizs (980 ) [[] + [laratzzel:]

that using (B.7)-(B.8), (B.10) leads to

E||6,]
lorl) -
2
HB%!{)H +toy for p < 7,
- i ~ | A- H) |2 e H)|?  ~ .
5(511) (n + %) (HBEF )H2 —|—ta,27> + (1 - %) t <Hﬂf§ )H2 +p0,27>> for p > n,
. . —L . forp<i-2,
+ﬁ<“ﬂgc)‘2+(d—@ag+0§>x 00 forn—1<p<n+1,
ﬁ_g_l for p>n+2,
c+(d—p)o2+o? o~ _ ~
47”"3“'% for p <7 — 2,
_ J oo forn—1<p<n+1,
n p—n po? np—1 o2 c+(d—p)o2+o? o
2 <(p QU(SE "ﬁ)i(?p erton) 4 4. s e UL 5) for p > 7i + 2.
(B.23)

where (7 2 ||QTHB|3, (sc 2 |Qs-HB|3 and (s 2 ||QsHA||5. Then, we set (B.23) in (B.21)
and using some algebra obtain the transfer variance formulation in Corollary 3.2.

B.4. Proof of Corollary 3.4. Corollary 3.4 formulates the generalization error of the
target task under the expectation over a coordinate layout £ which is chosen uniformly at
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random. Recall Definition 3.3 in the main text that characterizes a coordinate subset lay-
out L={S,F,T,Z} that is {p,p,t}-uniformly distributed, for p € {1,...,d} and (p,t) €
{0,...,d} x{0,...,p} such that p+ ¢ < d. Here we provide several auxiliary results that are
induced by this random structure and utilized in the proof of Corollary 3.4.

For S that is uniformly chosen at random from all the subsets of p unique coordinates of
{1,...,d}, we get that the mean of the projection operator QEQS is

G, 7
p—1
I,==1
(~) d= gld
P
where we used the structure of QEQS that is a d x d diagonal matrix with its j* diagonal
component equals 1 if j € S and 0 otherwise.
Definition 3.3 also specifies that, given S, the target-task coordinate layout {F,7T,Z} is
uniformly chosen at random from all the layouts where F, T, and Z are three disjoint sets

of coordinates that satisfy F UT U Z = {1,...,d} such that |F|=p, |T|=t and T C S, and
|Z|=d — p —t. Accordingly,

Ez [QTQ7] =Es [Egis [QTQ7]]
()

(B.24) E; [Q5Qs] =Es [Q5Qs] =

=—="Es [Q5Qs]
()
= ;Es (Q5Qs]
(B.25) _ gxd,
and similarly
(B.26) E; [QFQs] = L1,
(B.27) Ec [Q£Qz] = %Id-

Another useful auxiliary result, based on the relation Qg Qg = I (carefully note the transpose
appearance), is provided by

E; [QsQ7QrQS] = Es [QsErs [QTQ7] QF]
= ;Es [QsQEQsQE]

(B.28) _ ;Iﬁ.
The results in (B.25)—(B.27) imply that
(B.29) Ee [18713] = 678 [QFQr] 8= < 1813
(B.30) Ec [18713] = BTE: [QFQr] 8 = HﬁHz ,
(B.31) Ec [18212] = 7E: [QEQz] 8= 21 |2,
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where B+ £ Q73, Br £ Q#B, and Bz = QzB. Note that the expressions in (B.29)-(B.31)
hold also for d-dimensional deterministic vectors other than 3, e.g., (B.29)-(B.31) hold for
BgH) 2 Hg.

Then, the auxiliary results in (B.24)-(B.31) can be utilized to formulate the expectation
over L of the analytical results in Theorem 3.1 and, by that, proving Corollary 3.4.

Appendix C. Additional Results for Section 3.

C.1. Additional Results for the On-Average Analysis in Section 3.2. In Fig. 11 we
present the empirically computed values of the out-of-sample squared error of the target task,
E/ [Eout], with respect to the number of free parameters p and p (in the source and target tasks,
respectively). The empirical values in Fig. 11 (and also the values denoted by circle markers in
Fig. 1 in Section 3.2) were obtained by averaging over 250 experiments where each experiment
was carried out based on new realizations of the data matrices, noise components, and the
sequential order of adding coordinates to subsets (such as S) for the gradual increase of p and
p within each experiment. Note that the results in Fig. 4 do not include averaging over the
sequential order of adding coordinates to subsets. Each single evaluation of the expectation
of the squared error for an out-of-sample data pair (X(te“),y(te“)) was empirically carried
out by averaging over a set of 1000 out-of-sample realizations of data pairs. Here d = 120,
n =50, n =20, |B]3 = d, 2 = 0.05-d, o = 0.025 - d. The deterministic 3 € R? used in the
experiments satisfies ||3]|3 = d.

One can observe the excellent match between the empirical results in Fig. 11 and the
analytical results provided in Fig. 10. This further establishes the formulations given in
Corollary 3.4.

C.2. Additional Results for the Single-Layout Analysis in Section 3.3. The following
results are for two different forms of the true solution 3: the first is a form with linearly in-
creasing values (Fig. 4a), the second is a form with sparse values where only 25% of coordinates
have non-zero value (Fig. 4¢). Note that both forms satisty || 3|5 = d.

The three types of linear operator H in the evaluations in Section 3.3 are as follows. First,
H = I,; that is the identity operator. Second, is the circulant matrix H that corresponds to a
shift-invariant local averaging operator that uniformly considers 11-coordinates neighborhood
around the computed coordinate (note that in other parts of this paper we consider also
averaging operators with neighborhood sizes other than 11). Third, is the circulant matrix H
that corresponds to discrete derivative operator based on the convolution kernel [—0.5,0.5].

Figures 13-14 present the analytical and empirical values of the generalization error of
the target task with respect to specific coordinate layouts £ that evolve with respect to the
value of p (this evolution of £ is the same in each of the subfigures and it is not particularly
designed to any of the combinations of the true 8, H, and 0727). It is clear from Figures 13-14
that the increase in JTQI, which by its definition corresponds to less related source and target
tasks, reduces the benefits or even increases the harm due to transfer of parameters (one can
observe that in Figs. 13-14 by comparing the error curves among subfigures in the same row).

The effect of H with respect to the true 3 is also evident. First, the identity operator
H = I; does not reduce the relation between the source and target tasks and therefore
does not degrade the parameter transfer performance by itself (i.e., for H = I, only the
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additive noise level U% can reduce the relation between the tasks). Second, when H is a local
averaging operator it does not reduce the benefits from transfer learning (e.g., compare second
to first row of subfigures in Figs. 13-14) in the case of linearly-increasing 3 shape (because
local averaging does not affect a linear function, except to the few first and last coordinates
where the periodic averaging is applied), in contrast, the local averaging operator significantly
degrades the parameter transfer performance in the case of the sparse 3 form. Lastly, when
H is a discrete derivative operator it renders transfer learning harmful in the case of linearly-
increasing 3 shape (e.g., compare third to first row of subfigures in Fig. 13). In the case of the
sparse B form the discrete derivative reduces the potential benefits of the parameter transfer
but does not eliminate them completely in case these benefits exist for H = I (e.g., compare
third to first row of subfigures in Fig. 14).

Appendix D. Additional Empirical Results on Parameter Transfer Usefulness.

D.1. Details on the Empirical Evaluation of A& . uster- The analytical formula for A& ansfer 2]
E. [Ag (7.5) ] , which is based on (4.3) and Corollary 3.4, measures the (normalized) expected

transfer
difference in the generalization error (of the target task) due to transferring parameters in-
stead of setting them to zero. Accordingly, the empirical evaluation of A& ansfer for a given p
can be computed by

o1 Ac IS S i G
. transfer — 5 o5
d—3 p=1,...n—2n+2,....d m: Oé(p)
where
1+ L f <n-—2,
(D.2) a(p) £ n—p—1 OPP=T
1+p_Z_1 forp>n+2

is a normalization factor required for independence from p. The value measured in (D.1) is

also normalized by the number of transferred parameters. Here IAEL{Ség’tp ’t:m)} is the out-of-
sample error of the target task that is empirically computed for m transferred parameters, p

free parameters in the target task, and p free parameters in the source task. Correspondingly,

- ~, 7:0
Eg ‘S’cgﬁtpt )

} is the empirically computed error induced by avoiding parameter transfer.
Therefore, the formula in (D.1) empirically measures the average error difference for a single
transferred parameter by averaging over the various settings induced by different values of p
while p is kept fixed. To obtain a good numerical accuracy with averaging over a moderate

number of experiments we use the value m = 5.

Each empirical evaluation of I/F:L{S é’j ’tp’t)

}, for a specific set of values p, p,t corresponds to
averaging over 500 experiments where each experiment was conducted for new realizations of
the data matrices, noise components, and the sequential order of adding coordinates to subsets.
Each single evaluation of the expectation of the squared error for an out-of-sample data pair
(X(teSt), y(teSt)) was empirically computed by averaging over 1000 out-of-sample realizations of

data pairs.
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D.2. Results for n < d. In Figures 16-17 we present analytical and empirical values of
%Agtransfer induced by settings where 1 < d (specifically, n = 50 and d = 80), which naturally
enable the corresponding overparameterized (i.e., 7 < p < d) and underparameterized (i.e.,
p < n < d) settings of the source task. In Fig. 16 we provide the analytical and empirical
results for cases where H is local averaging and discrete derivative operators. In the main text
only the analytical results were provided and here we show them again near their empirical
counterparts that excellently match them (up to the resolution of the empirical settings).

In Figure 17 we provide additional results for cases where the operator H is a scaled
identity matrix.

D.3. Results for . > d. Here we provide in Fig. 18 the analytical and empirical evalua-
tions of A& ansfer that correspond to settings where n > d, we specifically consider n = 150
and d = 80. Note that n > d implies that, by the definition of p, the corresponding settings
(of the source task) are underparameterized with p < d < n. Like in Fig. 17, the results in
Fig. 18 show the excellent match between the analytical and empirical results.

D.4. Empirical Results for Benefits in Transferred versus Free Parameters. We provide
in Figure 19 the empirical evaluation of Afysr that corresponds to the analytical evaluation
in Figure 6 in the main text. The empirical evaluation was conducted by averaging over 750
experiments where, in each of them, A€y, was evaluated based on its definition in (4.4)
and using a different realization of £ (from the uniform distribution that we use) and its
corresponding L.

Appendix E. The Optimal Componentwise Task Relation: Additional Analytical and
Empirical Details.

E.1. Proof of Theorem 5.1. The proof outline for Theorem 5.1, which characterizes the
optimal H in a componentwise task relation, is as follows. Recall that in this theorem we
consider H = diag{/\%), ey )\g)}. The proof starts by setting the expressions from (5.3)-(5.4)
in the formulations of the transfer bias and variance from Corollary 3.2, then we can also

reformulate the expression of Séz;ﬁzer from Theorem 3.1.

In the case of an underparameterized source task where 1 < p <n — 2, we get
(E.1)

ST =13+ 3 (0 1) (99) 4 sy (@Dt e X (W89) ot

JET jeSc

Recall that 7 C S and hence 7 N 8¢ = ). Accordingly, the two sums in (E.1) include

distinct sets of coordinates, which simplify the derivative of & (ranszer with respect to )\g) for

a particular k. Hence, in this case of an underparameterized source task and %) #£ 0, the
(T,S)

condition % = 0 is satisfied by )\(k) 1 for k£ € 7 and by )\(k) 0 for k € S§¢, which

H
)

minimize & eransfer

due to convexity. Note that the eigenvalues {)\H }res\7 do not appear in
)

ransfer for

(E.1) and hence they can have any value without affecting the minimization of &
p<n-—2.
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In the case of an overparameterized source task where p > n + 2, we get

T8 _nf, o pP—n @) 5G) )2
(E.2) Ebvanter = 5 | 107+ 1t 'Z ()\H 5@))
JES\T
t 1 . N\ 2
+Z<P N) —i—np )\()_2> )\gl) (B(]))
JET p

t NN 2
+m (d—ﬁ)di-ﬁ- Z (Ag)ﬁ(])> +(72
JES*®
where the three sums refer to disjoint sets of coordinates. Accordingly, in this case of an
(T,S)
overparameterized source task and ) = 0, the condition % = 0 is satisfied by )\(k)
“Q -1 H
np— 1+t(p n)
In both cases (E.1) and (E.2), if k € {1,...,d} corresponds to 3*) = 0 then )\%C) may
79

transfer*

for k € T and by )\(k) 0 for k € 7€, which minimize & (75 " due to convexity.

transfer

have any value without affecting the minimization of
outline for Theorem 5.1.

By this we complete the proof

E.2. Empirical Results for The Optimal H in a Componentwise Task Relation. In
Figure 20 we provide the empirical evaluations that correspond to the analytical results in
Figure 7. The empirical values were computed by averaging over 500 experiments.

Appendix F. Additional Details and Results for Section 6.

F.1. Ridge Regression: Error Expression and Optimal Tuning for the Source Task. The
out-of-sample error of the ridge solution (6.5)-(6.6) to the source task is developed as follows.
First, due to the layout of free parameters in 0 we get that

~ ~ 2
Eous = 0 +E [Ha - 0”2]
~ 2
(F.1) _a§+HOSCH§+E[ OS_BSHQ]'

Now we set the closed-form ridge solution from (6.6) to develop the third term in (F.1):

—~ 2 _ 2
E [HOS—HSHQ] ) [H(zgngrazIﬁ) "7Lyv — 0 2]

_E [H (23Zs + aX;) ' 25 (Zse0se + 5)“2] +E { ((z8zs +at;) "' 2825 - 1;) OSHz] .

(F.2)

Next, note that
(F.3)

E [H (23Zs + aLy) "' 25 (Zs-0se + g)”i] = (o2 + 105 3) B [1{ (2525 + aT;) * 2825 )]
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Also, we use the eigendecomposition ZEZS =®z . Az, @gs where @7 is a p x p orthonormal

matrix and Azg £ diag{\zs 1, ..,z 5,7 is the pxp diagonal matrix formed by the eigenvalues
of ZLZs. By using this eigendecomposition and (F.3), we develop (F.2) into the form of

ool -
= (o2 +16s:13) B | Tr { (Az +aT5) * Agg }| + HOSH%QE[ Tr { (Azs + ;) "}

b
- 0?2 ~
E zp: (O'g + ||03c”§) )\Zs,k + %O&Q
= ~—\2
k=1 ()‘Z&k +a)

(F.4)

The optimal tuning is achieved by the a value that satisfies % = 0, which by using (F.1)

.~ PoF+ll0sel3)
and (F.4) is a = 1052

« in our experiments.

. In the main text we explain how we approximate the optimal

F.2. Ridge Regression: Error Expression and Optimal Tuning for the Target Task.
Let us start by explaining in more detail the ridge solution in (6.8). For this, note that the

optimization constraints in (6.7) imply |y — Xb||2 = Hy Xrbr — X7~97~H Hence, the
solution of (6.7) is equivalent to ,6 where ,8 =z =0, ,67— 97—, and

~ ~ 2
(F.5) ,Bf:argminH(y—X7—07—> —X]-‘fH +oz||f||g.
feRp 2

The optimization in (F.5) has a standard ridge regression form and, accordingly, its closed-
form solution is provided in (6.8).

Let us develop the out-of-sample error expression of the target task. Based on the layout
of free, transferred, and zeroed parameters in ,@ we have

b =2+ |3 ]

(F.6) — o+ 18218+ £ |6 - o] + |85 - 5[]
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Then, similar to the proof given for the source task in Section F.1, we get that
—~ 2
s 3= s5], -
~ 2
— (a2 418218+ |7~ or ] ) E[1r {(Axs + a1) 2 Ax, }]
2
1872

+ TQQE {Tr {(AXF + ozIp)_QH .

2 .
p <0.62 + Hﬂz”% +E [HﬁT — 07“2]) AX 2k + @Oﬂ

=E

k=1 (Ax ok + 04)2 ’
(F.7)
where we use the eigendecomposition X;_-X F=®x, Ax, @%;f where ®x . is a p X p orthonor-
mal matrix and Ax . = diag{Ax .1, .-, AX,p} is the p x p diagonal matrix of the eigenvalues
of XEX 7.

Here, the optimal tuning is obtained by the « value that provides % = 0. Then, (F.6)
and (F.7) imply that the optimal tuning is given by

2
(o2 + 18215+ 2 |3~ o7
18512 |

In our experiments we assume that only HﬁHg, I8 — 0H§, oe, p, t, and d are known; thus, we
use the approximations |87 ~ 5 118Il3, 18zl ~ (1 — &%) [|8]3, and

(F.8) o=

e |or - ar|) ~ & (16 - 018] = & 15 - 6 + miE] = Nt - 20 13 + 102

2 1,-H 2 d 2 . )
||dﬁo-ﬁ2 + d —p- t + t% m our experlments.
2 2

to approximate (F.8) as o =
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Figure 10: Analytical evaluation of the expected out-of-sample squared error of the target
task, Er [Eout], with respect to the number of free parameters p and p (in the source and
target tasks, respectively). Each row of subfigures considers a different case of the relation
(2.7) between the source and target tasks in the form of a different noise variance 03] whereas
H is a local averaging operator with neighborhood size 5 for all. Each column of subfigures
considers a different number of transferred parameters t. Here d = 120, n = 50, n = 20,
1813 = d, 02 = 0.05 - d, ag = 0.025 - d. The white regions correspond to (p,p) settings
eliminated by the value of ¢ in the specific subfigure. The yellow-colored areas correspond to
values greater or equal to 800. See Fig. 11 for the corresponding empirical evaluation.
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Figure 11: Empirical evaluation of the expected out-of-sample squared error of the target
task, Er [Eout], with respect to the number of free parameters p and p (in the source and
target tasks, respectively). The presented values obtained by averaging over 250 experiments.
The figures here have settings as in the corresponding figures in the analytical evaluation in
Fig. 10.
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Figure 12: Demonstration of error concentration. Each row of subfigures corresponds to
the settings of Figures la-1d but with a different proportional increase of dimensions and
dimension-dependent quantities (see explanation in Section 3.2 in the main text). The empir-
ical standard deviations are denoted as shaded areas in colors corresponding to the on-average
error curves (solid lines and markers denote the analytical and empirical evaluations of the
expected error, respectively). Lines, markers and areas in red correspond to t = 0 (no pa-
rameters are transferred); orange corresponds to transferring ¢ = 16 x % parameters; blue
corresponds to t = 32 x %; green corresponds to t = 48 x %. Note that %
3, 5, in the first, second, third rows of subfigures, respectively. The axes in this figure are

normalized to be dimension-independent.

equals to 1,
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Figure 13: Analytical (solid lines) and empirical (circle markers) values of Séﬁt) for specific,
non-random coordinate layouts. The true solution 3 has linearly-increasing values. All
subfigures use the same sequential evolution of £ with p. Each subfigure considers a different
case of the relation (2.7) between the source and target tasks: each column of subfigures has
a different O’% value, and each row of subfigures corresponds to a different linear operator H.
The analytical values, computed using Theorem 3.1, are presented using solid-line curves, and
the respective empirical results obtained from averaging over 250 experiments are denoted by

circle markers. Each curve color refers to a different number of transferred parameters.
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Figure 14: Analytical (solid lines) and empirical (circle markers) values of & (£

)

for specific,

non-random coordinate layouts. The true solution 3 has a sparse form of values. All
subfigures use the same sequential evolution of £ with p. Each subfigure considers a different
case of the relation (2.7) between the source and target tasks: each column of subfigures has
a different a,% value, and each row of subfigures corresponds to a different linear operator H.
The analytical values, computed using Theorem 3.1, are presented using solid-line curves, and
the respective empirical results obtained from averaging over 250 experiments are denoted by
circle markers. Each curve color refers to a different number of transferred parameters.

Figure 15: The piecewise-constant

piecewise constant structure of values

3 component value

Coordinate

structure of B that was used in part of the experiments.
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Figure 16: The analytical and empirical values of A anster defined in Corollary 3.4 (here,
normalized by ¢, namely, the expected error difference due to transfer of a parameter from
the source to target task) as a function of p and 0727. The positive and negative values of
%Agtransfer appear in color scales of red and blue, respectively. The regions of negative values
(appear in shades of blue) correspond to beneficial transfer of parameters. The positive values
were truncated in the value of 2 for the clarity of visualization. Each subfigure corresponds
to a different task relation model induced by the definitions of H as: (a)-(c),(e)-(g) local
averaging operators with different neighborhood sizes, (d),(h) discrete derivative. For all the
subfigures, d = 80, n = 50, ||B||3 = d, 02 = 0.025 - d. Here, all the subfigures correspond to a
B vector with a piecewise-constant form (see Fig. 15).
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Figure 17: The analytical and empirical values of A& anster defined in Corollary 3.4 (here,
normalized by ¢, namely, the expected error difference due to transfer of a parameter from
the source to target task) as a function of p and 0%. The positive and negative values of
%Agtransfer appear in color scales of red and blue, respectively. The regions of negative values
(appear in shades of blue) correspond to beneficial transfer of parameters. The positive values
were truncated in the value of 2 for the clarity of visualization. Each subfigure corresponds
to a different task relation model induced by the definitions of H as H = %Id, H =1, and
H = %Id. For all the subfigures, d = 80, n = 50, ||3]|3 = d, ag = 0.025 - d. Here, all the
subfigures correspond to a 3 vector with a linear form (see Fig. 4a).
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Figure 18: The analytical (top row of subfigures) and empirical (bottom row of subfigures)
values of A anster defined in Corollary 3.4 (here, normalized by ¢, namely, the expected error
difference due to transfer of a parameter from the source to target task) as a function of p
and 0%. The positive and negative values of %Agtransfer appear in color scales of red and blue,
respectively. The regions of negative values (appear in shades of blue) correspond to beneficial
transfer of parameters. The positive values were truncated in the value of 2 for the clarity of
visualization. Each column of subfigures correspond to a different task relation model induced
by the definitions of H as H = %Id, H=1; and H = %Id. For all the subfigures, d = 80,
n = 150, ||8|13 = d, ag = 0.025 - d. Here, all the subfigures correspond to a B vector with a
linear form (see Fig. 4a). Note that the results in this figure are for n > d.
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Figure 19: The empirical values of A€ysr (namely, the average error difference due to transfer
of an arbitrarily-selected set of ¢ parameters versus setting them as free parameters) as a
function of ¢ and p. The settings and visualization of results are as in the corresponding
analytical results in Fig. 6.
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Figure 20: The empirical evaluation of Agt(:;ﬁzer as a function of p and a value that determines
the eigenvalues of H in 7. The settings and visualization of results are as in the corresponding

analytical results in Fig. 7.
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