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Covariate Balancing Methods for Randomized
Controlled Trials Are Not Adversarially Robust

Hossein Babaei

Abstract— The first step toward investigating the effectiveness
of a treatment via a randomized trial is to split the population
into control and treatment groups then compare the average
response of the treatment group receiving the treatment to the
control group receiving the placebo. To ensure that the difference
between the two groups is caused only by the treatment, it is cru-
cial that the control and the treatment groups have similar statis-
tics. Indeed, the validity and reliability of a trial are determined
by the similarity of two groups’ statistics. Covariate balancing
methods increase the similarity between the distributions of the
two groups’ covariates. However, often in practice, there are
not enough samples to accurately estimate the groups’ covariate
distributions. In this article, we empirically show that covari-
ate balancing with the standardized means difference (SMD)
covariate balancing measure, as well as Pocock and Simon’s
sequential treatment assignment method, are susceptible to worst
case treatment assignments. Worst case treatment assignments
are those admitted by the covariate balance measure, but result
in highest possible ATE estimation errors. We developed an
adversarial attack to find adversarial treatment assignment for
any given trial. Then, we provide an index to measure how close
the given trial is to the worst case. To this end, we provide
an optimization-based algorithm, namely adversarial treatment
assignment in treatment effect trials (ATASTREET), to find the
adversarial treatment assignments.

Index Terms— Adversarial analysis, causal effect, clinical tri-
als, covariate balancing, econometric, experimental design, pol-
icy evaluation, randomized controlled trials (RCTs), sequential
treatment assignment, treatment effect.

I. INTRODUCTION

HE standard method to measure the causal relationship

between two variables is the average treatment effect
(ATE) [1]. The term ATE refers to the average outcome change
that a certain intervention (which is called treatment) can make
in a population in contrast to not making the intervention.
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Randomized controlled trials (RCTs) are the gold standard
for conducting quantitative experimental science [2], [3], [4],
[5], [6]. RCT experimental design consists of recruiting a
study population and splitting the participants into two groups:
treatment and control.! If the treatment is assigned randomly,
the difference between the average outcomes of the two groups
is an unbiased estimator of the ATE [7]. Since the trial is only
conducted once, it is of high importance to reduce the ATE
estimation variance.

Covariate balancing methods (CBMs) are methods to mea-
sure and induce more similarity in the statistics of the two
groups. To ensure that the difference between the two groups
is caused only by the treatment, it is crucial that the control
and the treatment groups have similar statistics. The similarity
of the statistics is commonly used to evaluate the validity and
reliability of the conclusions based on the estimated ATE in
an RCT.

In this article, we perform worst case analysis of CBMs.
We define the worst case treatment assignments of a given
CBM in an RCT as the treatment assignments that would
be evaluated as sufficiently balanced by the given CBM, but
would result in the highest possible ATE estimation error.
We provide quantitative definition of sufficiently balanced later
in this article.

In this work, we perform worst case analysis on two com-
monly used CBMs, the standardized means difference (SMD)
for nonsequential treatment assignments and the sequential
assignment method of Pocock and Simon’s (P&S) [8]. In both
cases, we develop a method that finds the worst case treatment
assignments in a given RCT that we dub the Adversarial Treat-
ment ASsignment in TREatment Effect Trials (ATASTREET).
ATASTREET reduces the combinatorially large space of pos-
sible treatment assignments to efficiently find the worst case
treatment assignment.

To find worst case treatment assignments, ATASTREET
work as an oracle method with the access to both poten-
tial outcomes. As an illustrative example, we use the semi-
synthetic IHDP1000 [9], [10], [11] dataset, which provides
both potential outcomes for each participant. IHDP is widely
accepted as the standard benchmark dataset in heterogeneous
treatment effect estimation. Naturally, some would criticize
IHDP and argue that it is not a good reflection of a real-world
RCT [12]. Nevertheless, IHDP is still considered as the dataset

'In this article, we use terminology associated with medical clinical trials.
However, any argument about medical clinical trials can be generalized to
wider applications.
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that could provide the strongest evidence in heterogeneous
treatment effect estimation literature.

We empirically demonstrate the worst case vulnerability of
the investigated CBMs. The worst case treatment assignment
can get selected for the trial as a result of CBM, either unluck-
ily or by intentional deviations from a deceitful researcher.
Since it results in maximally balanced groups, it encourages
the confidence in the MATE with worst case ATE estimation
error. Since the trial is conducted only once, it is important to
ensure that the selected treatment assignments are not close to
worst case treatment assignments.

We define CBM deviation index p to identify whether these
worst cases of CBM happened in any given RCT. This index
provides a measurement on how close the selected treatment
assignment is to the worst case treatment assignments. For any
given RCT, we use counterfactual estimation methods to esti-
mate the unobserved potential outcomes. Then, ATASTREET
finds the worst case assignments. The p-index can be measured
afterward to identify the unlucky or deceitful deviations in the
trial.

To further emphasis the importance of worst case analysis
and such sanity check, we develop an adversarial attack to any
given RCT that used the mentioned CBMs, and empirically
evaluate our introduced adversarial attack on the IHDP dataset.
An adversary can exploit the adversarial vulnerability and use
adversarial treatment assignments to maximize (or minimize)
the measured ATE in the trial while having maximally bal-
anced treatment groups.

We summarize our contributions as follows. First, we pro-
pose an optimization-based algorithm (ATASTREET) to find
worst case treatment assignments of SMD and P&S method
as CBMs. We then empirically demonstrate worst case vulner-
ability of the mentioned CBMs. Second, we provide an index
to identify if a given trial is close to the worst case assign-
ment, Third, we introduce an adversarial treatment assign-
ment method using ATASTREET. Finally, we demonstrate
the adversarial vulnerability of SMD and P&S method and
discuss some of the possible solutions to reduce the adversarial
vulnerability.

II. BACKGROUND

In this section, we first cover some of the basic defini-
tions about ATE and RCTs, then discuss some recognized
challenges. consequently, we cover how variance reduction
techniques and CBMs are discussed in the literature.

A. Background on Randomized Clinical Trails

The ATE is defined using the potential outcome framework
[1]. For each individual i in the population, we call the
potential outcomes of that individual being assigned to the
treatment Yi1 or the control group Yio. A set of covariates for
each subject is also recorded as ¥ ‘. The ATE is defined as the
average of the differences of the potential outcomes for all the
individuals over the population

1
ATE = NZ[:(Y} - (D

where N is the population size.
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In a trial to measure the ATE of a certain treat-
ment(intervention), a treatment assignment A : {1,2,...,
N} — {0, 1}V divides the population to either the treatment
group or the control group. For each individual, the Yi(Obs) is the
observed outcome based on the selected treatment assignment

ylob _ H YAl =1
A . 2
Y’, A@) =0.

The “fundamental problem of causal inference” [13] is that
each individual subject in the population can only be assigned
to either the treatment or the control group. Therefore, the
outcome of an individual subject given the treatment and that
of the same individual not given the treatment cannot be
observed in the same trial. As a result, half of the required
data for estimating the ATE is unobservable.

Can this fundamental problem be solved? Dawid et al. [14]
argued that estimating the unobserved potential outcomes can
result in erroneous or metaphysical conclusions that are not
substantiated by the data. Thus, solutions for the “fundamental
problem of causal inference” are dubious and cannot be
supported by evidence in the experiment. Pearl et al. [15]
and Shpitser and Pearl [16] argued against this paradigm by
providing a framework that, given some structural information
about the causal relationships in the system, identifies cases
where the unobserved potential outcomes can be discerned
by observations. Their arguments support the claim that the
estimation of unobserved potential outcomes is a mathemat-
ical, not metaphysical, question. Some works first learn a
causal graph over the variables with methods such as [17];
then study the ATE identifiability problem in the presence of
unobserved variables. They argue that from the causal graph
and observational data, some ATEs are nonidentifiable due to
the unmeasured confounders, and additional assumptions are
required [18], [19], [20].

In the random treatment assignment method [7], the trial is
conducted using a randomly selected treatment assignment A.
The measured average treatment effect (MATE) is then defined
as

1
Yi(obs) _ V Z Yi(ObS) (3)

1
MATEG) = — 3
0 A@)=0

U AG)=1
where Ny and N; are the number of individuals assigned to
the control and treatment groups, respectively.

Given the population, Athey and Imbens [7] demonstrated
that the introduced MATE is an unbiased estimator of the ATE.
It means that the expected value of MATE over the random
treatment assignment A is equal to the true value of ATE.

The ATE estimation error for any given treatment assign-
ment A is the error in the MATE when A is used as the
treatment assignment

¢(A) = MATE(A) — ATE. 4)

Generally, the goal is to reduce |€(.A)| as much as possible.

B. Challenges in Randomized Clinical Trials

The estimated ATE has some variance due to randomly
selected treatment assignment. The mentioned ATE variance
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Fig. 1. Empirical probability distribution of the MATE in IHDP1000 for
varying population sizes N. As the population size grows, the variance O‘KTE
decreases.

is the variance of the ATE estimation when A is selected
uniformly random

UKTE =E ge0,13¥ [62} o)

Although the MATE estimator is unbiased, it is a single
observation estimate since the trial is typically conducted only
once. As a result, there is uncertainty in the MATE. Another
possible way to control the variance in MATE is to increase
the population size used in the RCT. However, the variance
can still be undesirably large for the affordable population
size. To empirically show this issue, we measured the MATE
for 10000 different random treatment assignments in the
IHDP dataset [9], [10], [11] for different sub-population sizes.
Fig. 1 shows the empirical probability density distribution of
the MATE. Clearly, the variance shrinks as the population
size grows; however, variance might still be undesirable in
sensitive tasks for the affordable population sizes (in this case
N < 600).

Since a typical trial is conducted once, only one treatment
assignment can be used for the trial. Thus, it is of high
importance to ensure that one selected treatment assignment
is selected properly [7]. Even in the case of proper random-
ization, it may be important to check whether the selected
treatment assignment has imbalanced covariates by chance.
Furthermore, it is common in practice that some participants
dropout before the trial is finished. The drop-outs make the
trial population different from the original population which
was used in the randomization, which in turn might induce a
selection bias. For all of the mentioned reasons, it is important
to check for baseline imbalances.

Sometimes p-value based hypothesis testing is used to
check whether the treatment assignment is selected properly.
This usage has been recognized as illogical [21], [22], [23].
“Such significance tests assess the probability (i.e., P-value)
that observed baseline differences could have occurred by
chance; however, we already know that any differences are
caused by chance” [24], [25]. As a result, p-values for baseline
differences does not serve a useful purpose since it is not
testing a useful scientific hypothesis [21], [23], [26], [27].
Later in this section balancing scores are discussed as tools
that should be used to evaluate the baseline comparability.

C. MATE Variance Reduction

There have been numerous efforts to reduce the estimation
variance of the MATE. Covariate adjustment and CBMs are
two families of such efforts.

Covariate adjustment tools reduce the effects of baseline
imbalances on the estimated ATE using different regression
models.

Some believe that any dissimilarity in the statistics of the
two groups can be compensated using covariate adjustment
methods, such as ANCOVA [28], [29], [30], [31], [32], [33].
Thus, it is of no interest to test for similarity of statistics in
the two groups, or try to use treatment assignments with more
similar statistics [21].

Several authors have argued against this belief in four main
arguments.

1) Covariate adjustment tools have complex statistical prop-
erties. Thus, unadjusted findings are preferred by authors and
readers because such findings are simpler and have more
clarity [27]. It explains why even when deployed, covariate
adjusted findings are mostly used as the backup for the
unadjusted findings [27].

2) It has been shown that different models can lead to
various estimates and maybe even different clinical impli-
cations. Potential biased choices out of numerous different
model families and parameter settings are one of the rea-
sons of suspicion regarding the potential manipulations of
covariate adjustment methods which ultimately make them less
credible [27].

3) In some trials, covariate adjustment methods need more
than affordable population size to adjust for all the covariates.
As a result, those covariates that are expected to be more prog-
nostic would be adjusted. In some trials, there is insufficient
clinical agreement or there is lack of confidence on which
covariates should be adjusted for [27].

4) Mokhtarian et al. [19], Pearl [34], Huang and Valtorta
[35] have also studied the ATE identifiability problem and
argued that in some cases, it is not possible to identify ATE
in the presence of biases as they introduces some unmeasured
confounders to the underlying causal graph.

Pocock et al. [27] have summarized these arguments as:
“The scope for judgments in an ill-defined strategy, and biased
(for example, most favorable) choices out of a multiplicity of
possible analyses, means that covariate adjusted analyses may
rightly be viewed with some suspicion, often leaving primary
emphasis on the unadjusted analysis.”

A common practice in trial reports is to devote “Table I”
(also known as patient cohort) to compare the distributions of
baseline variables among different treatment groups. In addi-
tion to the fact that it helps the reader to decide whether
this study can be generalized to another population, there
are two main goals in having separate columns for different
treatment groups rather than just a single column for the
whole population. First, it demonstrates that the randomization
worked well, or it can identify any unlucky imbalances.
Second, having balanced baseline variables adds credibility to
the trial, especially encouraging confidence in the unadjusted
analysis [27].



Can covariate adjustment substitute the need for base-
line comparability? Although covariate adjustment tools have
numerous benefits, following previous paragraphs, they cannot
substitute the need for baseline comparability and balanced
covariates.

D. Covariate Balancing Methods

CBMs are a family of methods in which treatment assign-
ments with more similarity in the statistics of two groups have
a higher chance to be selected for the trial. In CBMs, all of
the variables that are expected to be related to the outcome
are recorded for the population as the covariates. CBMs try to
favor treatment assignments that have more similarity between
the covariates’ distributions in the two groups. Since the
treatment and the control group are “similar” in such balanced
treatment assignments, selection bias can thereby be reduced.

In practice, clinical researchers are required to leverage their
expertise to ensure that all of the variables that can possibly
have an effect on the outcome are recorded as covariates.
Therefore, following this standard practice, we assume that
there are not important unobserved covariates.

CBMs require a balancing score (also referred to as the
covariate balance measure) that evaluates the similarity of the
covariate distributions of the control and treatment groups.

The common motivation behind all of the CBMs is to pro-
mote similarity of the joint distribution of covariates between
the two groups. In the mathematical language, if covariates of
each subject are recorded as X' then P(¥) for the treatment
and the control groups should be similar. With the limited
population size and high number of covariates, promoting and
measuring this similarity becomes intractable in practice. That
is where different CBMs relax the problem in different ways.

There are two main categories of RCTs: the nonsequential
RCTs where covariates of the whole population are assumed
to be accessible before the conductance of the trial and the
sequential RCTs where subjects become available sequentially.
Sequential and nonsequential CBMs are targeted toward the
sequential and nonsequential RCTs, respectively.

1) Nonsequential CBMs: The first step of nonsequential
CBM in RCTs includes recording the covariates for the
population. Then, balanced treatment assignments are found
by minimizing the covariate imbalance among the two groups.
In the next stage, the trial is conducted according to the
obtained balanced treatment assignment. The MATE, then,
is calculated afterward.

There are different implementations for a given CBM.
An initial treatment assignment can be selected randomly and
then a greedy minimization modifies the treatment assignment
until it reaches a desirable balancing score [36]. Alternatively,
the whole randomization process can be repeated until a
treatment assignment with a desired balance is reached [36].
Another option is that one exhaustively checks all possible
treatment assignments to find the treatment assignment that
is maximally balanced. Alternatively, one can find a set of
acceptable treatment assignments, and then select one of them
randomly.

One of the most commonly used CBMs is SMD, the differ-
ence of the means of each covariate between the treatment
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and the control group. To avoid scaling issues, this CBM
standardizes the difference of the means of each covariate by
the variance of that covariate [36], [37].

The balancing score for SMD is defined as

Zif—NLOZEi , pef{l,oo} (6)

treatment control P

1

U, =

where N; and N, are the size of the treatment and control
group, respectively. And ¥/ is a vector containing the covari-
ates of the ith subject. Both £; and ¢, can be used for vector
norms in cases with more than one covariate.

We assume that all of the covariates have the same variance
without loss of generality. If that is not the case, one can
simply normalize each covariate by its standard deviation.

Some other nonsequential CBMs has also been proposed.
In [38], three different CBMs are proposed based on the
propensity score as a scalar representation for the covariates
of each individual. Using the propensity score concept, the
three proposed CBMs are: 1) the difference of means of the
propensity scores normalized to the variances; 2) the ratio of
the variance of the propensity scores in the control and the
treatment group; and finally, 3) the ratio of the variance of each
covariate orthogonal to the propensity score in the treatment
and the control group.

2) Sequential CBMs: Another recognized category of
CBMs is sequential treatment assignment. In many of the
trials, especially in the medical trials, the whole population
is not accessible at once, and the population recruitment
is performed sequentially. Even if the whole population is
available at the beginning of the trial, there is always a
possibility that some of them dropout from the trial or more
subjects get added to the trial to increase quality of the results.
The sequential treatment assignment can handle the mentioned
situations.

One of the most popular sequential treatment assignment
methods is proposed by Pocock and Simon [8]. We highly
encourage the reader to study this method from the original
source but we include a simplified executive summary of its
binary version as Algorithm 2 in the Appendix for the ease of
convenience.

Several other sequential treatment assignment methods have
also been proposed to promote covariate balance [8], [39],
[40]. P&S admits only categorical covariates. Alternative
methods such as [41], [42] can be used in the presence of
continuous covariates. Another alternative would be to use
data-clustering methods such as K-means [43] to categorize
continuous variables. A larger number of clusters will result
in a finer categorization and thus less information loss. In this
article, we assume that the continuous covariates are all
categorized before any further analysis.

In this article, we investigate worst case vulnerability of
one of the most used CBMs in each category of sequential
and nonsequential treatment assignment. SMD is one of the
most used nonsequential CBMs [7], [36], [44] [45], [46], [47],
[48], [49], [50], [51], [52]. We also investigate P&S sequen-
tial assignment method as one of the well-known sequential
CBMs.
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SMD compares the means of the two joint distributions and
forces covariates in different groups to have similar means.
On the other hand, P&S sequential treatment assignment
method promotes similarity in the marginal distributions of
different covariates, which is a stronger similarity than the
SMD. In the next sections, we provide arguments on the
effects of promoting stronger similarity on the adversarial
vulnerability.

III. WORST CASE TREATMENT ASSIGNMENTS

In this article, for the first time, we empirically find worst
case treatment assignments for the SMD and P&S sequential
assignment method. Then we analyze the empirical results to
study worst case behaviors of the given CBMs.

A. Definitions

To formally define worst case treatment assignments, some
concepts should be defined beforehand.

The covariate balancing score U (also referred to as the
balancing measure) is a scalar function that returns the amount
of covariate imbalance of a given treatment assignment. It is
noted that a higher covariate balancing score means that
the treatment assignment is more imbalanced. The expected
imbalance U is the expected value of the covariate balance
measurement U/ over all the possible treatment assignments in
the trial. The minimum imbalance Uy, is the minimum value
of U over all the possible treatment assignments in the trial.

The admissible treatment assignment set A is defined as the
set of all the treatment assignments

U—(A) __U(A/) <« } @)
u a

where o, < 1 is a parameter that controls the amount of
balance induced by the CBM. Larger «, relaxes the covariate
balancing and allows for more treatment assignments to be
admissible.

To quantify the vulnerability of a given RCT to worst case
treatment assignments, we measure the maximum possible
deviation of MATE in the admissible treatment assignments’
set.

We define worst case deviation factor & as the range of the
measured ATE by different admissible treatment assignments,
normalized by the standard deviation of the measured ATE
over random treatment assignments

_ Range [MATE (fl) ] .

20ATE

A:IAWA/,

(®)

B. Worst Case Assignments for SMD in Nonsequential Trials

We are interested in finding worst case treatment assign-
ments of the SMD as CBM in the trial.

1) Worst Case Treatment Assignment for SMD: Assume
that the potential outcomes of assigning each subject to the
treatment or the control group are provided for a population
size of N. The potential outcome for the subject i being
assigned to the treatment group or the control group is yi1 and
y?, respectively. For each subject in the population, covariates

are provided as an M-dimensional vector X’. The goal is to
find the treatment assignment A* : {1,2,..., N} — {0, ny
dividing the population into two groups with equal sizes such
that it maximizes the MATE and minimizes the covariate
balancing score U/,. We use Lagrange multipliers to formulate
a combinatorial optimization problem over the space of all
possible treatment assignments

Aj = argmax 4 (A\MATE(A) — U, (A)), p={1,00}. (9)

The above problem is a combinatorial optimization problem
over the space of all possible treatment assignments. ATAS-
TREET converts the above problem to a constrained linear
programming problem and solves it using mixed integer linear
programming tools in an acceptable time [53], [54], [55], [56],
[57], [58], [59]. More details are provided in the Appendix.

C. Worst Case Treatment Assignments for Sequential Trials

Finding worst case treatment assignments of the sequential
CBMs is even more challenging since the treatment assign-
ment of one subject affects the treatment assignment of the
next subjects. We approach this challenge by providing a
nonsequential balancing score

m N;

Upgs = D D i Nloiror (1) = Nscament ()]

i=1 j=1

(10)

where m is the number of covariates, NN; is the total number of
categories for ith covariate,” and Néonlrol( J) is the total number
of subjects in the control group with their ith covariate having
the value of jth category, and N, (j) is the same for the
treatment group. Then, we provide a theorem that tightly links
our proposed balancing score to P&S sequential treatment
assignment method (Algorithm 2).

Theorem 1: In P&S sequential treatment assignment
method, using Upgs instead of G in P&S method (Algorithm 2)
results in the same decision rule.

For the proof, see the Appendix.

The above theorem suggests that P&S sequential method is
in fact a sequential greedy probabilistic minimization over a
nonsequential CBM with Upgs as its balancing score. Putting
the randomnesses aside, P&S sequential method favors treat-
ment assignments with smaller Upgs. The goal of our worst
case analysis of P&S method would be to find treatment
assignments that are favored by P&S method the most, and
have maximum possible ATE estimation error.

Arguments in the previous paragraph motivate us to find
the adversarial treatment assignments of the mentioned nonse-
quential CBM. Then, each of the resulting worst case treatment
assignments should carefully be analyzed to see whether they
are feasible to get selected by P&S sequential method.

1) Worst Case Treatment Assignment for P&S CBM:
Assume that y!, y?, and ¥ are given similar to worst case
analysis for SMD. The goal is to find the treatment assignment
A* : {1,2,...,N} — {0,1}" dividing the population into
two groups with equal sizes such that it maximizes the

ZRecall that the covariates are assumed to be categorical in P&S sequential
assignment method in Algorithm 2.
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Fig. 2. We visualize ATASTREET results for different As on the IHDP1000 dataset (black points). A reference set of randomly selected treatment assignments
of IHDP is also visualized as blue dots. The U/, axis is normalized to U. This plot shows ATASTREET solutions in comparison to the reference set (blue
points). The marked red circled points could have been selected in the IHDP trial. The perfect balance of covariates would encourage confidence in the trial
with a large ATE estimation error. This plot shows vulnerability of the mentioned CBMs to worst case treatment assignment. (a) SMD with U. (b) SMD

with U. (c) U.

MATE and minimizes the covariate balancing score Upgs.
We use Lagrange multipliers to formulate a combinatorial
optimization problem over the space of all possible treatment
assignments

Apgs = argmax 4 (A MATE(A) — Upes(A)).  (11)

Similar to the previous case where we covered SMD for
nonsequential RCTs, we obtain ATASTREET solution using
mixed linear integer programming [53], [54], [55], [56], [57],
[58], [59]. More details are provided in the Appendix.

D. Empirical Results of Worst Case Analysis

To provide a better understanding of worst case treatment
assignments, we introduce a new visualization technique for
different possible treatment assignments in the same trials.
Each treatment assignment is visualized as a single point
with its corresponding U as the horizontal coordinate, and its
corresponding MATE as the vertical coordinate.

We used our introduced visualization technique to visualize
ATASTREET’s resulting treatment assignments for different
parameter A (Shown as black point in Fig. 2). A set of random
treatment assignments with no CBM is also shown in each plot
with blue points to act as a reference.

Several remarks follow from these results.

The CBMs in both our cases, the SMD for nonsequen-
tial case and P&S method for sequential case, are vulnera-
ble against worst case treatment assignments. Analyzing the
ATASTREET’s resulting treatment assignments for different
values of A reveals some of the worst case treatment assign-
ments (see Fig. 2). According to the results of our experiments,
& > 6. In another language, it is possible to find admissible
treatment assignments where groups are well-balanced, but the
MATE has error higher than 60rE.

Following the previous argument, both analyzed CBMs are
vulnerable against worst case assignments. This vulnerability
opens up unwanted potentials for deviations (intended or
unintended) with considerable effects on the MATE. Restrict-
ing such potentials is very important in some applications
like medical trials. In Fig. 2, the corresponding treatment

assignment of the black point marked with the red circle is
admissible with regards to having balanced covariates, yet
yields a larger ATE estimation error than all the 10° random
treatment assignment shown as blue points.

In the sequential case, it is not clear whether the worst case
treatment assignments associated with Upgs are feasible to
get selected by P&S sequential method. To demonstrate their
feasibility, we considered different orders of subjects coming
into the trial, and we set Py = 1 (Algorithm 2) to ensure that
P&S sequential method would never go toward the unlikely
path. We found several different subject ordering where the
evolution path goes to any of the predetermined assignments
in ATASTREET results (11). Although we do not provide
any theoretical proof that ATASTREET solutions are always
feasible for selection by P&S method with Py = 1, we have
empirically provided several different paths for each of the
resulting ATASTREET’s assignments (Fig. 3). Furthermore,
oftentimes, Py < 1 in practice. It means that any treatment
assignment is now possible to get selected by P&S sequential
method. Arguments regarding posterior probability of worst
case assignments getting selected is out of the scope of this
article. To summarize arguments in this section, we have
empirically found treatment assignment evolution paths that
P&S sequential assignment method ends up in each of the
worst case assignments (Fig. 3).

Many RCT applications use an unequal allocation of the
control and treatment groups. For simplicity of explanation,
in this article, we have assumed equal population sizes for
these groups. However, ATASTREET can easily handle arbi-
trary allocation ratios, as we detail in the Appendix. Our
empirical results suggest no significant difference in the MATE
error of adversarial assignments for different allocation ratios.

Our empirical results for different choices of U} and Uy, as
different versions of SMD suggests that our arguments do not
depend on the vector norm used in the SMD (6). We infer that
the observed vulnerability is inherent in the SMD, and not the
deployed vector norm.

P&S method is slightly better than SMD (Fig. 4). Even
though P&S method has smaller worst case deviation factor &,
it is still vulnerable and more CBMs should be investigated to
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Fig. 3.  Evolution of the treatment assignment sequence as new subjects
are introduced to the trial. The U/ axis here represents the expected value
of final U if the next subjects are to be assigned randomly (the expected
value is approximated using Monte-Carlo method). This plot shows how P&S
sequential assignment method reaches the worst case treatment assignments
found using ATASTREET (11).

find CBMs with smaller £s. One can modify ATASTREET for
different CBMs to find their worst case treatment assignments
and compare their worst case deviation factors £. Ultimately,
the most worst case robust CBM could be identified. Such
CBM is ideal in cases where the clinical implications of the
RCT is important and large errors in ATE estimation would
inflict intolerable losses to health or financial resources.

IV. How CLOSE Is A TRIAL TO WORSE CASE?

In Section III, we have empirically demonstrated that the
two investigated CBMs are vulnerable to worst case assign-
ments. It brings up an important question. How to ensure a
trial is not close to the worst case? We answer this question
by providing the CBM deviation index p.

A variety of ITE estimation tools can be used to assess
the estimated ATE error for a given RCT [60], [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73],
[74], [75], [76]. Once the error interval is acquired, one can
simply compare it to oarg to interpret it as a unit-less number.
In that case, the deployed treatment assignment is compared to
random treatment assignments without CBM. To interpret the
ATE estimation error in RCTs where CBM is used, we suggest
comparing the ATE estimation error to the worst case error in
the similar balancing scores.

We define the CBM deviation index p as the ratio of ATE
estimation error to the worst case error in the similar balancing
score. The actionable summary on how to measure p in any
given trial without having access to unobserved counterfactual
outcome is provided as Algorithm 1.

ITE estimation methods provide noisy imperfect estimates
of the ITE as well as the unobserved potential outcomes for
each subject. Using these methods to estimate the unobserved
counterfactual outcomes compromises the efficiency of worst
case assignments found by ATASTREET.

To investigate this, we formed a reconstructed version
of THDP by picking a realization of IHDP, then picked
a treatment assignment at random and gave only the
observed outcomes and deployed treatment assignment to

Algorithm 1 CBM Deviation Index p

1: Using the state-of-the-art ITE estimation method, esti-
mate the unobserved counterfactual outcomes for all the
subjects.

2: Approximate the ATE estimation error |€(A)| in the RCT
using the estimated potential outcomes.

3: Run ATASTREET on the resulting RCT table. Use a set
of different parameter A In ATASTREET.

4: Make a plot similar to Fig. 2.

5: Connect the resulting ATASTREET treatment assignments
so that they form a continuous contour. For this purpose,
the finer sweep for parameter \ results in a better approx-
imation of the mentioned contour.

6: Using the deployed treatment assignment in the RCT,
calculate the balancing score.

7: In ATASTREET contour, find a point with a balancing
score equal to the balancing score of the deployed treat-
ment assignment in the trial. This €, is the maximum
possible ATE estimation error in treatment assignments
with similar balancing scores.

o €A
8: Report the CBM deviation index p = .

6l‘l‘la)(

GANITE [60]. Then, the estimated unobserved potential out-
comes and the observed outcomes would form our recon-
structed version of IHDP.

To investigate the effect of using noisy estimates of unob-
served potential outcomes, we took 15 random realizations
of the reconstructed version of IHDP and found worst case
treatment assignments using ATASTREET. Then we used
ground truth from IHDP and measured the ground truth for
ATE of the resulting assignments, Our results suggest that this
imperfection resulted in estimating the worst case deviation
factor & as five times smaller than it is true value. Indeed,
using better ITE estimators results in better measurements of
the worst case deviation factor £ as well as the CBM deviation
index p.

V. TOWARD ADVERSARIAL ATTACKS
OF CLINICAL TRIALS

In this section, we develop an adversarial attack to RCTs
with mentioned CBMs. To do this, we provide an actionable
summary of how to find adversarial treatment assignments for
any given trial using ATASTREET.

In the previous sections, we empirically demonstrated that
the mentioned CBMs are vulnerable to worst case treatment
assignments. We then provided an index to check whether a
given RCT is close to the worst case. To further emphasize
the importance of such sanity check, we develop an adversarial
attack to any given RCT and demonstrate that an adversary can
use such attack to deceitfully deviate the MATE while having
maximally balanced groups.

Can someone exploit this vulnerability and find adversarial
treatment assignment in a given RCT? We uncovered the worst
case assignments of the given CBMs using ATASTREET as
an oracle method which has access to the ground truth values



TABLE I
P&S METHOD
| | gadv £ 14 ‘
Mean 1.50 7.87 0.20
Std 1.25 6.34 0.08
Max 5.33 24.05 0.37

of the unobserved counterfactual outcomes. In this section,
we provide an actionable summary on how to find adversarial
treatment assignments in any given RCT.

For any given RCT, pick the state-of-the-art ITE estima-
tion method, and use the observed outcomes as well as the
deployed treatment assignment to estimate the unobserved
counterfactual outcomes for all the subjects, then form the
reconstructed version of the given trial. We argue that the
worst case assignments of the reconstructed version serve as
adversarial assignments for the given RCT.

To empirically demonstrate this argument, we took 15 ran-
dom realizations of IHDP1000, then formed the reconstructed
version similar to the previous section by removing half of
the observed potential outcomes and estimating them using
GANITE. We found worst case assignments of the recon-
structed version, and used the ground-truth values of potential
outcomes in IHDP1000 to evaluate the resulting MATE of the
adversarial treatment assignments. In Tables I and II, €,4y is
the resulting ATE estimation error of our adversarial attack
normalized to oarg, & is the worst case deviation factor in
IHDP, and p is the efficiency of our introduced attack. As our
result suggest, our introduced adversarial attack results in
p = 0.2, which means that our introduced adversarial attack
has the ATE estimation error five times smaller than the worst
case assignment.

Using ITE estimators with better accuracy results in less
estimation error in reconstruction of the RCTs. Counterfactual
outcome estimation and ITE estimation are active research
areas [60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [711, [72], [73], [74], [75], [76]. Introducing methods
with higher accuracy results in adversarial treatment assign-
ments closer to the worst case assignments (bigger p). Note
that none of the ITE estimation methods outperforms all others
in all settings. Therefore, depending on the application, data
setting, and model assumptions, researchers and practitioners
should carefully choose an appropriate ITE estimation method
for their specific application.

Using ITE estimators with better accuracy results in less
estimation error in reconstruction of the RCTs. Counterfactual
outcome estimation and ITE estimation are active research
areas and introducing methods with higher accuracy, results
in adversarial treatment assignments closer to the worst case
assignments (bigger p).

We investigated the effect of population size on the adver-
sarial vulnerability of the analyzed CBMs. To do this, we ran-
domly sub-sampled a population from the original population
and found ATASTREET solutions, then plotted the resulting
adversarial vulnerability factor £ for different population sizes
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TABLE II
SMD WITH £
| | gadv £ 4 ‘
Mean 1.51 5.93 0.21
Std 1.63 2.33 0.13
Max 6.25 11.89 0.52
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Fig. 4. Worst case deviation factor & for different population sizes measured
for oy, = 0.02 (7), (8). (a) P&S method. (b) SMD with /.

in Fig. 4. Unlike the MATE variance that shrinks with increas-
ing population size, the MATE estimation error in adver-
sarial cases would not shrink by increasing population size.
As a result, the worst case deviation factor £ increases with
larger population sizes. Therefore, increasing the population
size does not alleviate the adversarial vulnerability problem.
It makes it even worse. However, increasing the population
size is beneficial in another aspect and that is, matching the
distributions of covariates in the control and the treatment
group becomes more tractable, and higher quality CBMs can
be used. It is still worth mentioning that increasing the popu-
lation size would not alleviate the adversarial vulnerability in
any of the given CBMs.

One might naturally think that by introducing randomness,
or changing the stop criteria in the CBM procedure, the
mentioned adversarial treatment assignments would be less
likely to get selected. Examples of this would be to limit the
number of iterations in SMD minimization in nonsequential
cases, or to select a smaller py in P&S method. However,
it is rather running away from the problem instead of solving
it. The gap between the black and blue points in the Fig. 2
is filled with other possible treatment assignments. Limiting
the extent of using CBM would make it impossible for the
current adversarial treatment assignments to be selected, but
introduces even worse adversarial assignments. Note that the
MATE of black points increases as more imbalance U is
allowed.

VI. CONCLUSION

In this work, we have provided arguments to demonstrate
that the SMD CBM and P&S sequential assignment method,
two of the most used approaches to reduce selection bias
in RCTs, are vulnerable to worst case treatment assignments
(Fig. 2). To demonstrate these vulnerabilities, we proposed
ATASTREET to find well-balanced treatment assignments
where the studied CBMs fail in preventing large errors in the
MATE. It uncovers a drawback for these CBMs and suggests
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that these CBMs should not be used to evaluate reliability
of the results in RCTs. The worst case vulnerability opens
up opportunities for deceitful activities to exploit adversarial
treatment assignments to deviate the MATE toward a desired
ATE.

We provided an index to check whether a given RCT
that used CBM is close to worst case treatment assignments.
We also developed adversarial attacks to any given RCT to
show that a deceitful researcher can take advantage of worst
case vulnerability.

Our work suggests interesting future research directions.
One direction is to assess the adversarial robustness of addi-
tional CBMs so that they could be ranked based on their poten-
tial for adversarial robustness. A complementary direction is
identifying the CBM with the best adversarial robustness. Such
a method would be highly desirable in cases where the nature
of the trial has a high importance level that brings the need
to use a method that is robust against any deceitful action
(e.g., clinical trials during deadly pandemics).

APPENDIX

An executive summary of P&S sequential treatment assign-
ment method is given as Algorithm 2.

A. P&S Sequential Assignment Method

B. Proof of Theorem 1

Theorem 2: In P&S sequential treatment assignment
method, the way a new subject is assigned to a group,
minimizes Upgs with the probability of py. In other words,
Upgs can be used instead of G in P&S method (Algorithm 2).

Proof: The goal is to prove Upgs with

m N;
= Z Z 7] | control(J)

i=1 j=1

Upgs N cament ()|

instead of G in Algorithm 2 results in same probability of
assigning the subject to each of the treatment or control
groups. Assume that the current subject has the value of c;
for the i" covariate. Then immediately by the definition of G
we have

G = Z aid; = Z o | control(cl

By adding and subtracting a term, we can write it as

lreatmem (C, ) |

m N;

= Z Z o control(])

i=1 j=I1

reatment (j) |
realment(]) |

o | control (])

Qi |NCiOntr01(j) - Ntirealment(j) |

Algorithm 2 P&S Sequential Binary Treatment Assignment.

1: For the few initial subjects, it does not matter how to

assign them. Randomly assign the few first subjects to the
treatment or the control group.

2: A new subject comes to the clinic and the goal is to assign
them to one of the groups.

3: Assume the new subject is assigned to either of the groups,
e.g. the treatment group.

In P&S method, covariates are assumed to be categorical.
In case some of the covariates are continuous-valued, they
should be discretized to different categories.

4: For each of the covariates, namely the i"" covariate, The
new subject has the value of the j* category for the i’
covariate. Count Number of subjects in the control and in
the treatment group having the value of the j* category
for the i covariate. Define d; = d(Nieatment> Neontrol)
where d(x,y) is a distance function. The most natural
case for the binary treatment case is d(x, y) = |x — y|.

5: Define G as a (weighted) sum of d;js. G = Z 1 od;.
The weights «; could be arbitrarily selected to emphasize
balancedness in some of the covariates.

6: Go back to step 3 and this time, assign the new subject
to the other group.

7: Sort two different resulting Gs for assigning the new sub-
ject to each of the groups. Flip a coin with the probability
of being head equal to a pre-specified probability of P;.
If the coin was head, assign the subject to the group
resulting in the smaller G; And if it was tail, assign it to
the group resulting in the bigger G (Note that P, should
be bigger than 0.5 )

8: For the next subject, go back to step 2 and repeat the same
procedure.

Now note that the second term is a positive number that
would remain constant for different assignments of the current
subject

Gy — Gy = Upgs,» — Upgs, 1-

Thus, Upgs could be used instead of G in Algorithm 2 and
result in the same decision.

We have introduced the adversarial attack to find adver-
sarial treatment assignments in the manuscript, but did not
provide details on how ATASTREET incorporates mixed linear
programming to solve the given combinatorial optimization
problems. Here, mathematical details for different versions of
ATASTREET are provided.

C. ATASTREET for SMD With ¢,

To find adversarial attacks of the SMD with £, one has to
solve the optimization problem in (9)
1

IR

treatment control

2
argmax 4 ()\ MATE(A) — N

argmax 4 ()\ Z(Aiy,-l — (1= A)yy)
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1

)

Then, by throwing away a term that does not depend on the
A, we can write down the argmax problem as
])

> QA - DX
i
By introducing auxiliary variables t;r, t;, this argmax prob-
lem can then be written as an argmin problem and then be
solved using mixed integer linear programming tools

> (i +17)

j=1

argmax 4 ()\ ZAi (y,-1 + y(}) —

argminA’,ﬁ,f - ZAI (yil + yé) +

vj,

l‘;_ — tj_ = E (.A, — %)f;
N
Sa-|3)

0<A <1, 0<t,1;, Ael

As discussed in the article, ATASTREET can also handle
unequal allocation ratios. Assuming that the ratio for treat-
ment:control is 1 : ¥, and with some math, it can be shown
that the general case of ATASTREET for unequal allocation

ratio is

j=1
Vi, tT—t —Z A; L )z
Js J j_,' t N Xj
N
Zi:Ai_{—W+1J
0<A; <1, 0<t,t7, A el

D. ATASTREET for SMD With £,

To find adversarial attacks of the SMD with ¢, one has to
solve the optimization problem in (9)

2 H-2

treatment control

2
argmax 4 ()\ MATE(A) — v

1

argmax 4 ()\ Z(Aiyi] + (1 = A)yp)

> QA - Dx

1

)
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Then, by throwing away a term that doesn’t depend on the A,
we can write down the argmax problem as
oo)

By introducing auxiliary variables tf, t;, T, this argmax
problem can then be written as an argmin problem and then
be solved using mixed integer linear programming tools

> @A - DI

1

argmax 4 (/\ ZA,- (yi1 + yé) —

argmin 4 7+ - (—/\ ZAz‘ (v +0) + T)
_ A
oo (D)
N
>a=|5]

vj,

Vj, i 417 <T
0< A <1, Ogtj*,tj‘,T, A; e N.

As discussed in the article, ATASTREET can also handle
unequal allocation ratios. Assuming that the ratio for treat-
ment:control is 1 : ¥, and with some math, it can be shown
that the general case of ATASTREET for unequal allocation
ratio is

argminA’T’t/t,j— (—A zAi (\ijil + )’(%) + T)

th 41 <T
0<A4 <1, Ogtj,t;,T, A; e N.

E. ATASTREET for Upgs

To find adversarial attacks of the P&S assignment method,
one has to solve the optimization problem in (11)

m N,’
argmax 4 [ A MATE(A) — z Zai | Neontor ()

i=1 j=I

- N tlrealmenl (-] )|

To implement Upgs in a linear format, we write it as

Upgs = ||X'(2.,Zl— 1)”1
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where X is a matrix formed as below

Cdi()  di(2) d;(N) 7
dy(1)  dy(2) d; (N)
dy, (1) dy,(2) dy, (N)
a1y  d}2) d*(N)
() d;(2) d3(N)
X=| , : 12
&) B aw | 12
dai'(ly  dy'(2) di'(N)
aray  drQ) d7(N)
Ldy, (1) dy (2 dy (N)_
where d’ (k) = 1 <= kth subject has the jth category for
i thcovarlate

Similar to previous section, by introducing auxiliary vari-
ables t;-’, tj_, this argmax problem can then be written as an
argmin problem and then be solved using mixed integer linear
programming tools

No+++Np

A DAL )+ X ()

j=1

argmin 4 ,+ -
VAR
1 <Vj,<No+---

2o

0<Ai<l, 0<tf,1,

+No 1] =17 =2 A = DXL

.A,'EN.

As discussed in the article, ATASTREET can also handle
unequal allocation ratios. Assuming that the ratio for treat-
ment:control is 1 : ¥, and with some math, it can be shown
that the general case of ATASTREET for unequal allocation
ratio is

N+ Ny

argmin g+ - | =A ZA,- (Wy! + i)+ Z (t;r + t;)
i =1
1<Vj,§No+~-+Nm th =1t
_ X(j,
=3 (4 R0
N
ZI,:A" B LIJ + 1J
05./4,‘51, 0<l‘j+,tj, AiGN.
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