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Summary

Persistent homology is a computationally intensive and yet extremely powerful tool

for Topological Data Analysis. Applying the tool on potentially infinite sequence

of data objects is a challenging task. For this reason, persistent homology and data

stream mining have long been two important but disjoint areas of data science. The

first computational model, that was recently introduced to bridge the gap between the

two areas, is useful for detecting steady or gradual changes in data streams, such as

certain genomic modifications during the evolution of species. However, that model

is not suitable for applications that encounter abrupt changes of extremely short

duration. This paper presents another model for computing persistent homology on

streaming data that addresses the shortcoming of the previous work. The model is

validated on the important real-world application of network anomaly detection.

It is shown that in addition to detecting the occurrence of anomalies or attacks in

computer networks, the proposed model is able to visually identify several types of

traffic. Moreover, the model can accurately detect abrupt changes of extremely short

as well as longer duration in the network traffic. These capabilities are not achievable

by the previous model or by traditional data mining techniques.
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1 INTRODUCTION

Persistent homology is a powerful tool for Topological Data Analysis that is based on a robust theoretical foundation and is

capable of discovering insights from data that are not discernible by traditional data mining methodologies1,2,3,4,5,6. However,

persistent homology incurs an exponential space complexity due to its use of a combinatorial object, called the complex7, as

the foundational data structure used in its computation. The exponential memory requirement of persistent homology (due to

the size of the complex associated to the input set of data points) poses a significant challenge for its application to data stream

mining.

Data streams are generated by applications such as stock market and other financial transactions, computer network traffic,

meteorological analysis, audio and video streaming services, satellite imagery, sensor networks, and so on8. Since a data stream

is a potentially unbounded sequence of continuously arriving data objects, the entire stream cannot be stored in the memory

typically available to a computer. As random access to the data is unavailable, algorithms dealing with data streams must make

only one (or very few) pass(es) through the data9. Moreover, the data generation process can be non-stationary, resulting in a
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data stream that evolves over time. A change in the data generation process or in its underlying probability distribution is called

concept drift. Such unique challenges of data stream mining coupled with the high computational cost of persistent homology

are the main reasons why they have long been two disjoint areas of data science.

The first computational model or framework for applying persistent homology to streaming data was recently introduced10

where a bounded summary of an unbounded data stream was maintained by utilizing the concept of feature vector of micro-

clusters8. A feature vector is a data structure that consists of statistics related to the weighted sum of a small group of data

points called the microcluster. It was shown that the data summary maintained by the feature vector of microclusters captures

the topological structure of the stream and can detect the concept drifts the stream may exhibit with time.

While the computational model used in the previous work10 is capable of identifying steady or gradual concept drifts, it is

not suitable for detecting changes that occur for very short durations. This is because the size and the update sensitivity of

the data summarization model10 are not precisely configurable by the user or the application. Thus, the model is not suitable

for applications that can involve ‘sharp’ temporal changes (or, ‘spikes’) in a metric that is being monitored. Examples of such

applications include monitoring of sensor and computer networks, manufacturing equipment, and surveillance systems.

In order to address these shortcomings of the previous work and to develop a model that is suitable for a wide variety of

stream applications, this paper proposes a computational framework, henceforth referred to as the sliding-window model. The

sliding-window model is based on a new type of data summarization model that maintains a summary of the stream by a

dynamically updated complex. Consistent with the standard computational paradigm for processing data streams, the model

comprises two components, namely: (i) online and (ii) offline.

The online component maintains a summary of the stream that is designed to preserve the topological structure of the

streaming data. The summary of the stream maintained by the sliding-window model is the complex. The complex is constructed

on a set of representatives of the most recent data points from the stream. A representative is a point that has properties similar

to a large number of other points in the stream. As new points arrive from the stream, the representatives and the complex

built on them are continuously updated based on certain conditions. When a new data point qualifies to be inserted into the

set of representatives, new simplices are added to the complex. At the same time, the least relevant representative and its

corresponding simplices are deleted from the set of representatives and the complex. Thus, the complex, that represents a

topological summary of the stream, is incrementally maintained during the online component of the sliding-window model.

The offline component comprises the computation of persistence intervals (see Section 3), the final output of persistent

homology, from the complex at fixed time intervals. The persistence intervals are displayed in one of the standard output formats

such as the barcodes or persistence diagrams (Figure 1). The output from the sliding-window model can also be represented in

terms of quantitative metrics, such as the Wasserstein distance11 between pairs of consecutive persistence diagrams or between

a reference persistence diagram and subsequent diagrams. By monitoring the sequence of barcodes, persistence diagrams, or

distance values in real-time, one can visualize and detect any changes with the progress of the stream.

The sliding-window model is applied to the detection of anomalous TCP connections (or, attacks) in large streams of network

traffic. It is shown that by monitoring the Wasserstein distances between pairs of persistence diagrams, one can identify the

occurrence of short and long anomalies in computer networks. Moreover, it is possible to distinguish several types of traffic

from one another by visualizing the topological structures of those traffic through barcodes or persistence diagrams. These

capabilities are not achievable by the model described in10 or by traditional data mining methods.

The remainder of this paper is organized as follows. Section 2 briefly reviews the existing literature on the application

of persistent homology to streaming data. Section 3 provides an overview of the basic concepts and terminology related to

persistent homology. Section 4 describes the data structures and algorithms that constitute the sliding-window model. Section 5

reviews the input parameters of the sliding-window model. Section 6 provides a detailed evaluation of the sliding-window model

on the detection of anomalous traffic in computer networks. Finally, Section 7 concludes the paper and provides suggestions

for future work that may lead to advancements of this research.

2 RELATED WORK

To the best of our knowledge, there is only one existing computational framework for applying persistent homology to stream-

ing data10. It is based on the concept of feature vector of microclusters8. As indicated in Section 1, the size or number of

microclusters in the existing model10 can not be directly and precisely configured by the user or the application. As a result, it is

not straightforward to summarize a stream with a small number of microclusters and accurately detect any ‘spikes’ of changes
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in the stream. The technical details of this shortcoming of the previous work are discussed in Section 4. The sliding-window

model proposed in this paper is suitable for detecting both gradual and sharp changes in a stream.

It is worth mentioning that the challenges of data stream mining received adequate attention over the last two decades. Several

approaches were introduced to address those challenges by adapting the batch processing algorithms to data streams for both

supervised and unsupervised learning8,12. In addition, there are several studies on time series data (which are akin to streaming

data) using persistent homology13,14,15,16 that “batch process” either the entire time series or predefined partitions thereof. In

other words, existing studies on time series data using persistent homology generally assume the entire data are available a

priori. However, there is no existing work that accomplishes the following at the same time:

• Applies persistent homology on potentially infinite streaming data, where at any given time we cannot store all the

previous data objects and do not have any information on future data objects;

• Detects the occurrences of concept drifts and also visually identifies the various types of segments or clusters that cause

the concept drifts in a data stream; and

• Detects both gradual changes and sharp ‘spikes’ in a stream.

Being able to achieve the above objectives in a single computational model is the primary contribution of the current work.

3 BACKGROUND

This section briefly explains the introductory ideas of persistent homology; an intuitive visual presentation of the basic concepts

is available at17. The reader may refer to11,18,19 for a formal exposition of the subject.

Homology is a way of counting the topological features of a space, such as connected components, holes or loops, voids, and

their higher dimensional analogs11. Persistent homology extends homology by computing the lifespans of topological features

through increasing spatial resolutions.

3.1 Simplicial Complex

A set of data points equipped with a distance function is called a point cloud, which is assumed to be sampled from an underlying

topological space S. For most practical applications, the probability distribution of S is unknown. Computing the homology

of such arbitrary topological spaces is difficult. To overcome this obstacle, the topology of S is approximated by constructing

a structure, called a complex, on the given set of data points that homology can be computed20. Simplicial, cubical, and CW

complexes20,21 are some of the commonly used complexes. Since the simplicial complex is the most widely used with a richer

theoretical foundation than others20, persistent homology computed from simplicial complexes is examined in this paper.

A simplicial complex K is a generalization of triangular geometric structures. In particular, a simplicial complex is a set

of points, edges, and triangular objects such triangles, tetrahedrons and so on. K comprises all possible subsets that can be

constructed from the distinct points in K . More precisely, a simplicial complex is a set K of finite sets such that if � ∈ K and

� ⊆ �, then � ∈ K 7. In other words, every subset of the constituent sets of K is also a subset of K . For example, a geometric

△abc, formed by the points a, b and c, constitutes a simplicial complex K =
{

∅, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}
}

.

3.2 Vietoris–Rips Complex

One of the most widely used approaches to building a simplicial complex on a point cloud is the construction of a Vietoris–

Rips complex11 (also called a Rips complex). If the simplicial complex is built by connecting any two points within a distance

" ≥ 0 by an edge, a Vietoris–Rips complex V is obtained. In other words, in a Vietoris–Rips complex any two points within a

distance " ≥ 0 are connected by an edge. Formally, a Vietoris–Rips complex V (P , ") at scale " is defined as:

V (P , ") =
{

� ⊂ P ∣ dist (x, y) ≤ " for all x, y ∈ �

}

.
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FIGURE 1 Illustration of the input and output of persis-

tent homology

The concepts, algorithms, and implementations

described in the remainder of this paper are based on

the Vietoris–Rips complex, the most widely used com-

plex due to its fast construction on higher dimensional

data7. However, the computation of persistent homol-

ogy on streaming data using the sliding-window model

described in this paper is not tied to the Vietoris–Rips

complex and is generalizable to any type of complex.

3.3 Filtration

A subset Ki ⊆ K is called a subcomplex if Ki itself is

a simplicial complex. A filtration of a complex K is a

sequence of nested subcomplexes ∅ = K0 ⊆ K1 ⊆ K2 ⊆

... ⊆ Kn = K . A complex with a filtration is called a

filtered complex.

3.4 Homology Groups

Each topological feature of a simplicial complex is

assumed to have a dimension p. For example, each con-

nected component has a dimension p = 0, each loop

or cycle has p = 1, each void has p = 2, and so

on. The maximal dimension that the topological features

are examined is a required input for the computation of

persistent homology. The set of p-dimensional features

forms a group, called the p-th homology group Hp. The

rank of Hp is the p-th Betti number �p that represents

the count of the p-dimensional topological features. For

example, �0, �1 and �2 denote, respectively, the number

of connected components, the number of holes, and the

number of voids in a simplicial complex.

3.5 Persistent Homology

The homology of a simplicial complex, through Betti numbers, provides the count of p-dimensional topological features for

each dimension p specified by the user. Persistent homology is a mechanism of computing the homology on a sequence of

simplicial complexes. In particular, persistent homology computes the homology of each subcomplex in the filtration of a

simplicial complex K . Since the subcomplexes in the filtration represent a sequence of increasingly connected and nested

topological spaces, constructing those subcomplexes can be considered as the process of increasing the spatial resolution of the

underlying space S. By computing the homology of each subcomplex in the filtration, persistent homology tracks the lifespan

of each topological feature of S as it appears and subsequently disappears while the space is increasingly ‘magnified’.

For most practical applications, the input for persistent homology is a set of data points X = {x1, x2, x3, ...}, xi ∈ ℝ
d . The

computation of persistent homology begins by constructing a simplicial complex on X. If two different Rips complexes, V1

and V2, are constructed on the same set of points with different scale parameters, "1 and "2, respectively, then for "1 ≤ "2,

we have V1 ⊆ V2. Therefore, constructing a sequence of Rips complexes with increasing values of the scale parameter "

generates a filtration. This property of the complex is central to the idea of computing persistent homology with increasing

spatial resolutions.

In practice, instead of building multiple simplicial complexes by varying the scale parameter " between 0 and some user

specified maximum "max, only one maximal Vietoris–Rips complex K is constructed at " = "max. Then, a nested sequence of

subcomplexes, or the filtration of K , is extracted from the complex K at certain values of ". In order to do so, every simplex �
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of K is defined to have a weight ! that is the maximum of the lengths of all the edges in �. A 0-simplex {x} has ! = 0, and a

1-simplex {x, y} has ! = dist(x, y), the distance between the points x and y. The weight ! of a simplex � can be interpreted

as the minimum " at which � is born in the Vietoris–Rips complex K . Thus, by sorting the simplices of K by their weights, a

nested sequence of simplicial complexes is obtained, that would otherwise result from varying " in [0, "max]. In other words,

by assigning weights to the simplices of K and sorting them by their weights, the filtration of K is extracted. The simplicial

complex K is then called a weight-filtered complex7.

TABLE 1 Persistence intervals or lifespans of topological

features shown as pairs of real numbers

Dimension p Birth time "birtℎ Death time "deatℎ

0 0.0000 4.0000

0 0.0000 1.1468

0 0.0000 1.0488

0 0.0000 0.9176

0 0.0000 0.8156

0 0.0000 0.7996

0 0.0000 0.6932

0 0.0000 0.6783

0 0.0000 0.6770

0 0.0000 0.6564

0 0.0000 0.6217

0 0.0000 0.5158

0 0.0000 0.4756

0 0.0000 0.4374

0 0.0000 0.3067

0 0.0000 0.2808

0 0.0000 0.2301

0 0.0000 0.1973

0 0.0000 0.1491

0 0.0000 0.1430

0 0.0000 0.1178

0 0.0000 0.1118

0 0.0000 0.0799

0 0.0000 0.0749

0 0.0000 0.0403

1 1.2609 3.5001

Each subcomplex in the filtration is associated to a

distinct value of ". Since the topological structure of

each subcomplex is usually different from those of other

complexes in the filtration, it is said that the topology

of a simplicial complex changes with the scale parame-

ter ". For example, at " = 0, the simplicial complex is

a set of disconnected points. As " increases, the points

start becoming connected to one another by edges, and

the corresponding simplicial complexes contain sets of

points, edges, triangular faces, tetrahedrons, and so on.

As additional points are connected with increasing ":

the connected components become longer; existing con-

nected components are merged into one another; holes

and voids appear (or, are born) and eventually get filled

(or, die). Persistent homology provides a mechanism to

track these changes in the topological properties of the

simplicial complex as " increases from 0 to the user-

specified threshold "max. Persistent homology computes

the birth and death times of the topological features,

such as connected components, holes, and voids, as they

appear and disappear with increasing ". The output of

persistent homology is a set of pairs of real numbers

("birtℎ, "deatℎ). A topological feature is born at " = "birtℎ,

and dies at " = "deatℎ. The difference between the death

and birth times is called the lifespan, or persistence of

a topological feature. The lifespans of significant topo-

logical features are much longer than those of trivial or

insignificant features22,19. Thus, one can segregate impor-

tant topological features from the trivial ones by the

lifespans computed by persistent homology.

The set of lifespans ("birtℎ, "deatℎ) is displayed in a vari-

ety of visual formats such as the barcodes, persistence

diagrams, or persistence landscapes23. In a barcode, the lifespans or persistence intervals are shown as bars or lines, where the

length of a bar or line represents the lifespan of the corresponding topological feature (bottom graphic of Figure 1). A persis-

tence diagram is a 2-dimensional scatter plot of the set of lifespans, with the birth and death times plotted along the horizontal

and vertical axes, respectively (top right graphic of Figure 1). Since significant features have longer lifespans, their death times

are substantially greater than birth times. Therefore, the points that represent significant features lie far away from the 45° line

that passes through the origin of the persistence diagram. Noise points, on the other hand, reside close to or on the 45° line.

A demonstration of the output of persistent homology computed on a point cloud of 25 data points sampled from a circle in

a plane is shown in Figure 1 and Table 1. Since the data points form a 1-dimensional loop, persistence intervals are computed

for dimensions p = 0 and p = 1, and are shown as pairs of real numbers in Table 1. In Figure 1, those persistence intervals

are displayed as the barcode and as persistence diagram. Since the death time "deatℎ of the 1-dimensional loop is substantially

greater than its birth time "birtℎ, the loop is a significant topological feature in the given point cloud. This topological feature is

displayed as a long red line in the barcode, and as a red triangle lying far away from the diagonal in the persistence diagram.
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4 SLIDING-WINDOW MODEL: DATA SUMMARIZATION BY COMPLEX

4.1 Shortcomings of the Previous Work

In the previously developed microcluster-based model10, the data summarization is performed using feature vectors of the

microclusters24,25,26,8. There are two input parameters, rmax and wmin, that control the size and update frequency of the summary

of the stream. These two input parameters are discussed below.

4.1.1 Maximum Radius of the Microcluster rmax
Each microcluster is assumed to have a maximum radius rmax that determines whether a new data point x from the stream

can be added to its nearest microcluster c. If x cannot be added to c, a new microcluster is created with only x in it. A larger

value of rmax increases the probability of x being added to c. In other words, rmax controls the creation of new microclusters.

Thus, it is one of the parameters that impacts the number of microclusters in the memory. A large value of rmax results in fewer

microclusters, each of which is large in size. On the other hand, a small value of rmax results in a large number of small-sized

microclusters.

4.1.2 Minimum Weight of the Microcluster wmin

Each microcluster is assumed to have a minimum threshold of weight wmin. If the weight of a microcluster falls below wmin, it is

considered outdated and is deleted from memory. The parameter wmin affects the number of microclusters stored in the memory.

A larger value of wmin leads to fewer microclusters, and vice versa. For a fixed value of rmax, the number of microclusters

controlled by wmin (together with a decay parameter �) impacts the length of ‘history’ (or, the number of topological features)

retained in the memory. A higher value of wmin shortens the history, whereas a smaller value of wmin expands the history.

For rapidly evolving streams, one should choose a small rmax and large wmin, which facilitate faster creation and removal

of the microclusters. The opposites are preferred for streams with more gradual concept drifts. The microcluster-based frame-

work10 only provides indirect control over the size and the update frequency of the data summary through the input parameters

rmax and wmin. As a result, it is difficult to configure the summary to accurately represent a small number of data objects from

the stream. This, in turn, renders the microcluster model inaccurate for applications that can involve ‘sharp’ temporal changes

(or, ‘spikes’) in the metric that is being monitored.

The choice of values for rmax and wmin depends on the problem and the nature of the stream, and so does the choice of

values for the sliding-window model. However, the sliding-window model provides direct control over the size and the update

frequency of the data summary (as will be seen in Sections 4.3.2, 6 and 5) and is highly accurate for detecting ‘spikes’ in the

stream. This is the primary drawback of the microcluster-based framework that the model of this paper addresses.

4.2 Overview of the Sliding-Window Model

The sliding-window model advances the online component of the microcluster-based framework10 by incorporating the con-

struction of the complex within the data summarization phase. Thus, the data summary maintained by the online component

of the sliding-window model is the complex built on a set of data points that represent the current ‘state’ of the stream. The

offline component in the sliding-window model then consists only of the computation of persistence intervals from the complex

maintained during the online component. The two principal components of the sliding-window model are summarized below.

1. Online: Continuous summarization of the data stream into a complex of bounded size.

2. Offline: Computation of persistence intervals from the complex.

The online component of the sliding-window model maintains a set of representatives (henceforth referred to as the window)

 of the most recent data points from the stream. The representative points in the window are ordered according to when

they were inserted into the window. The maximum size of the window, m, is specified by the user in terms of the maximum

number of representative data points the window may contain. When a new data point x arrives, several conditions are checked

to determine if x should be inserted into  . If x is inserted into  , and if as a result of this insertion the size of  exceeds

that specified by the user, the least relevant representative is removed from  . A simplicial complex K , built on the current set

of data points in  , is incrementally maintained during the online component. Whenever a data point is inserted into and/or
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removed from  , the corresponding simplices are added to and/or deleted from K . Thus, the simplicial complex K is the data

summary maintained by the online component of the sliding-window model.

From the above description, the online component of the sliding-window model can be divided into two stages, namely:

1. the incremental maintenance of the window, and

2. the incremental maintenance of the complex.

These two stages are described separately in the subsections below.

The offline component involves the computation of persistence intervals from the complex K at fixed intervals. The per-

sistence intervals are displayed in one of the standard output formats such as the barcodes or persistence diagrams. Thus, by

monitoring the sequence of barcodes or persistence diagrams in real-time, one can visualize the current state of the stream

and detect any changes. The changes in the output of persistent homology with the progress of the stream can also be rep-

resented in terms of distance values (such as the Wasserstein distance) between pairs of consecutive persistence diagrams or

between a reference persistence diagram and subsequent diagrams. The sliding-window model is suitable for developing change

detection mechanisms in continuously evolving data streams. Examples of such applications include real-time surveillance sys-

tems, continuous and real-time monitoring of network traffic, telecommunication systems, sensor networks, and other dynamic

environments.

In Section 6, the sliding-window model is applied to detect anomalous TCP connections in large streams of network traffic.

It is shown that by monitoring the Wasserstein distances between pairs of persistence diagrams, one can identify the occurrence

of anomalies or attacks in computer networks. Moreover, it is possible to distinguish several types of traffic from one another

by visualizing the topological structures of the traffic through barcodes or persistence diagrams.

4.3 Incremental Maintenance of the Window

This section describes the first stage of the online component that involves maintaining a set of representatives of the most

recent data points from the stream. The second stage in the online component, that incrementally updates a complex constructed

on the representatives, is explained in Section 4.4.

4.3.1 Basic Principles

In order to enable faster processing of the stream, the sliding-window model aims to minimize the number of addition and

deletion operations on the complex K . Addition and deletion of simplices are associated with insertion and removal of data

points in a window  . Hence, in order to minimize the number of updates to the complex K , the window employs a selection

mechanism that only accepts certain new data points from the stream for insertion into  if specific conditions are met. In

other words, the window uses a set of filtering criteria that attempts to reject as many new points as possible under certain

circumstances.

The data points in the window are partitioned into groups such that the points within the same group or partition are similar1 to

one another while points in the different partitions are distant from one another. The partition membership of each representative

data point is marked by a partition label associated to the point.

 

 

 
 

 

 

 
 

 
 

 
 

  

(a) (b) 

 

FIGURE 2 The basic design principle of the window

The basic design principle of the sliding-window

model is that it applies a light-weight clustering mecha-

nism (Section 4.3.2) to the incoming data points that are

accepted for insertion into the window. In other words,

the window maintains a set of partitions or clusters of

data points within it. When the window contains only

one partition 1 (Figure 2.a) during a steady state of the

stream, or in the absence of a concept drift, it rejects any

incoming data point that is similar to the existing points

1The similarity is commonly measured in terms of some distance function, such as the Euclidean distance.
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in the window. On the other hand, when the window con-

tains multiple partitions (Figure 2.b) due to a change or concept drift in the stream, it accepts all incoming data points until the

window has only one partition (i.e., until the stream reaches a steady state again).

One of the differences between the maintenance of the window and that of the microclusters10 is that the set of microclusters

is updated with the arrival of every new data point from the stream. In contrast the window is updated only in the event of

a concept drift (i.e., when the window contains multiple partitions or when a new data point is significantly dissimilar to the

existing ones in the window). Another difference is that each microcluster is the mean or cluster center of a small group of

similar data points, whereas each partition in the window is a cluster of actual data points. The remainder of this section details

the conditions and procedures for the incremental maintenance of the window.

4.3.2 Detailed Description

In the sliding-window model, the topological properties of the complex K constructed on the data points in  are monitored

with the progress of the stream. Any changes to the underlying distribution of the stream (called the concept drift) triggers

changes in the topological structure of K . To help visualize the current state of the stream and promptly detect any concept

drift, the sliding-window model aims to maintain only one partition in the window as long as possible. If there is more than

one partition in the window, it admits every new data point and removes the least relevant existing point until the window has

only one partition. Once the window consists of only one partition, it begins rejecting any new data point that is similar to the

existing set of representatives in the window.

At all times, the window maintains the average nearest neighbor distance davg of each partition, which is the mean of the

nearest neighbor distances of all points within the partition. When a new point x arrives, the distance � from x to its nearest

data point y in the window is computed. If the window consists of only one partition and if �∕davg > f (where f is a user

specified input parameter), there is an indication that the new data point x has properties not represented by the set of points

in the existing partition. Therefore, x qualifies to be inserted into the window. In this case, a new partition is created with only

x in it. The average nearest neighbor distance of the new partition is set to −1 to indicate that davg for the new partition is

undefined. The smaller the value of f , the higher the probability of x being added to the window. In other words, f represents

the update sensitivity (or equivalently, the sliding speed) of the window that has only one partition in it, with smaller values of

f corresponding to higher frequency of updates (or, higher speed of sliding). If the addition of x results in a size of the window

that exceeds its maximum size, the first added (i.e., the oldest) representative point is removed from the window. On the other

hand, if �∕davg ≤ f , and if the window consists of only one partition, the new data point x is discarded, implying x already has

a representative in the window.

If the window  has more than one existing partition, the partition  nearest to the new data point x is determined. The

partition nearest to x is defined as the partition that y belongs to, where y ∈  is the point nearest to x in the window. Let

� be the distance between x and y, and davg be the average nearest neighbor distance of the partition  that is nearest to x. If

�∕davg ≤ f , the new point x is assigned to  . Otherwise, if �∕davg > f , a new partition is created with only x in it. As before,

the average nearest neighbor distance of this new partition is set to −1. The insertion of x is accompanied by the removal of the

least relevant point from  . Below are the sequence of steps used to determine the least relevant data point in the window.

1. Check if the window has any outdated partition. A partition is considered outdated if no new point was assigned to it

during the last no insertions into the window. For the experiments described in Section 6, no is set to 10; in general,

however, this can be a user controlled value.

2. If the window has only one outdated partition, remove the oldest data point from that partition. If the window has more

than one outdated partition, find the smallest one (i.e., the one with the fewest data points in it) among them, and remove

the oldest point from the smallest outdated partition. The reason behind using the size of the outdated partitions in the

selection of the point to be removed is that a smaller outdated partition is more probable to consist of outliers than a

larger partition.

3. If the window has no outdated partition, the partition that the new point x was assigned to is taken under consideration.

If x was assigned a new partition (i.e., if a new partition was created with only x in it), the oldest point in the window

is removed. If x was assigned to one of the existing partitions  , the oldest point from any other partition o ≠  is

removed.
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FIGURE 3 The incremental maintenance of the complex

At the beginning of the stream, the sliding-window model is initialized by inserting the first m data points into  , and by

adding the corresponding simplices to K . During the initialization phase, no data points or simplices are removed from  or K ,

respectively. The window  is implemented by a container in which the data points are ordered according to when they were

inserted into  . The function INSERT(x) inserts a point x into the container. The function REMOVE(u) removes and returns a

point u from the container.

Figure 3 illustrates the incremental maintenance of the window and the associated complex. Figure 3.a shows a typical

instance of the window  and the complex K during the progress of the stream. It is assumed that  contains m data points

in this instance. The next data point from the stream, x, needs to be inserted into the window. As  is already at its maximum

capacity, the least relevant representative u is removed from  , and the simplices corresponding to u are deleted from K (Figure

3.b). After that, x is inserted into the window  , and the simplices corresponding to x are added to the complex K (Figure 3.c).

The computation of persistent homology on streaming data using the sliding-window model is summarized in Algorithm

1. In the online component of Algorithm 1, the incremental maintenance of the window is accompanied by additions and

deletions of simplices on the simplicial complex K . When a new data point x is inserted into the window  , the algorithm

ADDSIMPLICES( , K, x, p, ") (Algorithm 2) adds the corresponding simplices of up to dimension p to the simplicial complex

K associated to  . When a representative point u is removed from  , the algorithm DELETESIMPLICES(K,u) (Algorithm 3)

deletes the simplices corresponding to u from K . The algorithms ADDSIMPLICES( , K, x, p, ") and DELETESIMPLICES(K,u)

are detailed in Section 4.4.

The function COMPUTEPERSISTENCE(K), described in Section 4.5, computes the persistence intervals from the simplicial

complex K during the offline component. The offline component is invoked at fixed intervals of Δn data points, i.e., with the

arrival of every new Δn points from the stream. It is worth noting that the offline computation could also be invoked by other

triggers such as the requests from the user. The variable pointCounter of Algorithm 1 records the total number of data points

that have arrived and been processed from the stream at any given time.

Since the window  maintains a maximum of m points in memory, the computation of persistent homology of a Vietoris–

Rips complex using the sliding-window model can take up to 2(m) space in the worst case. Although not shown explicitly in

Algorithm 1, an m × m distance matrix Dm is incrementally maintained in memory that contains all the pairwise distances for

the points in  . The matrix Dm is used to look up the points in the "-neighborhood of any given data point x, and thus generates

the set of simplices corresponding to x (see Section 4.4 for details). Additionally, Dm is utilized to update the average nearest

neighbor distances of the partitions whenever a point is inserted into or removed from  . Thus, the insertion of a new point

x and the removal of an existing point u takes (m2) time, the time required to update the distance matrix Dm. On the other

hand, it takes (m) time, the maximum time required to find the distance �, when a new point from the stream is not accepted

for insertion into  . Thus, the run time and the memory usage of the sliding-window model largely depend on the maximum

size of the window, m. In Section 6, it is shown that a small to moderate size (typically up to m = 100) of the window is often

preferred for practical applications, a fact that makes the sliding-window model fast and memory efficient.
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Algorithm 1 Streaming Persistent Homology using Sliding-Window Model

Given: stream,m, f , p, ",Δn

1: Initialize  as an empty container
2: K ← ∅
3: pointCounter ← 0
4: while new data points arrive from stream do
5: Read the next point x from stream
6: pointCounter ← pointCounter + 1
7: if  .SIZE( ) < m then
8:  .INSERT(x)
9: K ← ADDSIMPLICES( , K, x, p, ")

10: else
11: y ← NEARESTNEIGHBOR(x,) ⊳ Return the data point nearest to x in 
12: � ← dist(x, y)
13: if  has only one partition then

14: if
�

davg
> f then ⊳ davg is the average nearest neighbor distance of the partition in 

15: u1 ←  .REMOVE(u1) ⊳ Remove and return the oldest point u1 from 
16: K ← DELETESIMPLICES(K,u1)
17: Assign x to a new partition new

18:  .INSERT(x)
19: K ← ADDSIMPLICES( , K, x, p, ")
20: end if
21: else ⊳ has more than one partition
22: Find the partition  nearest to x such that y ∈ 

23: if
�

davg
≤ f then ⊳ davg is the average nearest neighbor distance of 

24: Assign x to 
25: else
26: Assign x to a new partition new

27: end if
28: if there are one or more outdated partitions in  then
29: Find the oldest point uso in the smallest outdated partition
30: uso ←  .REMOVE(uso)
31: K ← DELETESIMPLICES(K,uso)
32: else ⊳ There is no outdated partition in 
33: if x was assigned to a new partition new then
34: u1 ←  .REMOVE(u1) ⊳ u1 is the oldest point in 
35: K ← DELETESIMPLICES(K,u1)
36: else ⊳ x was assigned to the existing partition 
37: Find the oldest point uo ∈  from any partition o ≠ 
38: uo ←  .REMOVE(uo)
39: K ← DELETESIMPLICES(K,uo)
40: end if
41: end if
42:  .INSERT(x)
43: K ← ADDSIMPLICES( , K, x, p, ")
44: end if
45: end if
46: if (pointCounter modulo Δn) = 0 then
47: COMPUTEPERSISTENCE(K)
48: end if
49: end while

4.4 Incremental Maintenance of the Complex

Along with the incremental maintenance of the window  , a weight-filtered simplicial complex K is maintained in memory,

whose vertices or 0-simplices correspond to the set of data points in  . The algorithm ADDSIMPLICES( , K, x, p, ") is based

on the incremental Vietoris–Rips expansion2 procedure given by Zomorodian7. It adds the simplices (corresponding to a new

point x) of up to dimension p to K . The algorithm requires an arbitrary but total ordering of the data points on which the

simplicial complex K is constructed. Since points are inserted sequentially into  and are then maintained in the order in

which they were inserted, such a total ordering is satisfied by the points in  . It is assumed that the later a point is inserted into

 , the higher the point is in the ordering. The algorithm is given in Algorithm 2.

2The construction of 2- (and higher-dimensional) simplices from a graph is called the expansion.
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Algorithm 2 The addition of new simplices during the online component

1: procedure ADDSIMPLICES(( , K, x, p, "))

2: L ← FINDNEIGHBORS(x, , ")

3: ADDCOFACES( , K, {x}, L, p)

4: return K

5: end procedure

6: procedure FINDNEIGHBORS (x, , ")

7: return
{

y ∈  ∣ x > y, dist(x, y) ≤ "
}

8: end procedure

9: procedure ADDCOFACES ( , K, �, L, p)

10: K ← K ∪ �

11: if dim(�) ≥ p then

12: return

13: else

14: for each y ∈ L do

15: � ← � ∪ {y}

16: M ← L ∩ FINDNEIGHBORS(y, , ")

17: ADDCOFACES( , K, �,M, p)

18: end for

19: end if

20: end procedure

Algorithm 3 The removal of simplices during the online component

1: procedure DELETESIMPLICES((K,u))

2: R ←

{

�R ∈ K ∣ {u} ∩ � ≠ ∅
}

3: K ← K ⧵ R

4: return K

5: end procedure

Algorithm 4 The standard algorithm

1: for j = 1 to nK do

2: while there exists j0 < j with low(j0) = low(j) do

3: add column j0 to column j

4: end while

5: end for

When a new point x is inserted into  , the procedure FINDNEIGHBORS(x, , ") returns the points in the "-neighborhood

of x by looking up the distances from x to other points in  from the distance matrix Dm. ADDCOFACES( , K, {x}, L, p)

recursively adds all the simplices whose maximal vertex is x according to the total ordering of the data points in  . Since x

is a simplex in K , every � computed by ADDCOFACES will also be a simplex in K . Therefore, M is the set of points shared

by the " neighborhoods of all the vertices of � whose cofaces are recursively added to K . The computation of the weights of

simplices, though not shown explicitly, is done along with the creation of simplices by the procedure ADDCOFACES.

When a point u is removed from  , the algorithm for deletion of the corresponding simplices from K is given in Algorithm

3. R is a set of simplices such that {u} is a face of any simplex �R ∈ R. Then the simplices in R are removed from K by the

set difference K ⧵ R =
{

� ∈ K ∣ � ∉ R
}

.
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4.5 Offline Component: Computation of Persistence Intervals

When the function COMPUTEPERSISTENCE(K) is called in Algorithm 1, a total ordering is imposed on the simplices of the

weight-filtered complex K such that:

• the simplices are sorted according to their weights, and

• a face of a simplex precedes the simplex.

Let nK be the total number of simplices in the weight-filtered complex K . The simplices with the total ordering imposed on

them are denoted by �1, �2, ..., �nK . A square matrix ), called the boundary matrix, of order nK is constructed as below:

)[i, j] =

{

1, if �i is a co-dimension one face of �j

0, otherwise.

The columns and rows of ) represent the simplices of the filtration arranged according to the total order. The boundary (or,

co-dimension one face) of a simplex is recorded in its column (by a 1 in the corresponding row).

The boundary matrix ) is reduced to another 0 − 1 matrix )R by Algorithm 4, called the standard algorithm22,19. Let low(j)

be the row index of the lowest 1 (i.e., the highest row index of a 1) in column j. If the entire column is zero, then low(j) is

undefined. The columns of ) are scanned from left to right, and when a column j is reached such that there is another column

j0 < j with low(j0) = low(j), the column j0 is added to j. The boundary matrix is reduced when low(j0) ≠ low(j) for any two

non-zero columns j0 ≠ j. After the boundary matrix ) is reduced to )R, the birth and death times of topological features are

recorded from the reduced matrix )R.

The worst case run time of the standard algorithm is cubic in the number of simplices nK . In practice, the standard algorithm

has displayed a quasi-linear behavior on real-world data27. A number of solutions have been designed to improve the worst

case run time20,27.

Once the birth and death times ("birtℎ, "deatℎ), or the persistence intervals, of topological features are recorded from the

reduced matrix )R, they can be plotted as barcodes or persistence diagrams. The sequence of barcodes, persistence diagrams

or their distance values, displayed at fixed time intervals during the progress of the stream, is the final outcome of the sliding-

window model.

It is worth clarifying that even though simplices are incrementally added to and deleted from K during the online component,

the computation of zigzag persistent homology28 is not required during the offline component. This is because when the

function COMPUTEPERSISTENCE(K) is invoked, the simplicial complex K that exists in memory at that time, is used for the

construction of the boundary matrix ). Thus, the persistence intervals can be computed from the filtration of K itself by utilizing

the standard algorithm.

5 INPUT PARAMETERS

This section provides a detailed discussion of the input parameters of the sliding-window model. The maximum dimension

p for the computation of homology, and the maximum value of the scale parameter " are the input parameters for persistent

homology itself, and are described in Section 3.

5.1 The Maximum Size of the Window: m

The maximum size of the window, m, is the maximum number of data points the window may contain. The higher the value

of m, the larger the simplicial complex K maintained in memory. And the larger the complex K , the higher the run time and

memory requirements of the model.

The choice of the value of m should depend on the requirements of the application. If the user is concerned only about the

detection of changes (i.e., the binary categorization of data objects) in a stream, the user can choose a small value of m that

enables faster processing, lower memory usage and the ability to detect changes of both shorter and longer duration. On the

other hand, if the user is primarily concerned about changes of longer duration and wants the additional capability of visually

identifying the different types of data objects in the stream, the user should choose a window size m that is sufficiently large

(typically between 50 and 100 data points) to form visually identifiable topological structures.
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5.2 Update Sensitivity of the Window: f

The parameter f determines the rate of acceptance of the new data points for insertion into the window. The smaller the

value of f , the higher the probability of a new data point x being inserted into the window. In other words, f represents the

update sensitivity (or equivalently, the sliding speed) of the window (that has only one partition in it), with smaller values of f

corresponding to higher frequency of updates (or, higher speed of sliding).

For a given data stream, f represents a trade-off between the run time and the guarantee of change detection. A sufficiently

small value of f forces the window to accept every new data point from the stream, and hence, guarantees that every change in

the stream is detected (for appropriate values of the window size m and offline interval Δn). However, such a guarantee comes

at the cost of run time that can increase significantly due to frequent updates to the simplicial complex. On the other hand, a

high value of f reduces the run time of the model (due to reduced acceptance of new data points and consequently infrequent

updates to the complex), but can lead to missing concept drifts in the stream.

5.3 Frequency of Offline Computation: Δn

The parameter Δn determines how often the offline component is invoked. The value of Δn represents a trade-off between the

run time and the guarantee of change detection. If Δn = 1, i.e., if the offline computation is done with the arrival of every

new data point from the stream, the sliding-window model is guaranteed to detect every change in the stream (for appropriate

values of m and f ). However, invoking the offline component too often increases the overall run time (i.e., reduces the speed of

processing the stream). On the other hand, performing the offline computation too infrequently decreases the overall run time,

but may lead to some of the changes in the stream getting undetected.

5.4 The Rate at which Existing Partitions in the Window Are Outdated: no

A partition is considered outdated if no new data point was assigned to it during the last no insertions into the window. A smaller

value of no quickly outdates existing partitions that, in turn, are removed from the window. For rapidly evolving streams, a

small value of no should be chosen.

In general, the optimal values of m, f , Δn and no depend on the application. If the user expects frequent changes of short

duration in the stream, then small values of m and Δn commensurate with the duration of changes should be chosen. If the user

has no prior knowledge about the properties of the stream, then, as a rule of thumb, the user should begin with small values

of m, f , Δn and no, and then configure those values to obtain an optimal trade off between the run time, memory usage, and

parameter values.

6 APPLICATION

This section describes the application of the sliding-window model in the detection of anomalous connections in large streams

of network traffic. In an usual real-world scenario, most of the TCP connections in a local area network of computers are normal

connections. However, there can be occasional bursts of attacks at certain times. It is shown that whenever an attack or a set of

anomalous connections occurs, the topological structures of the output from the sliding-window model change to indicate the

occurrence of the event. In addition, the user can identify the types of several attacks by visualizing their topological properties

through barcodes or persistence diagrams. In the following subsections, the sliding-window model is evaluated on two of the

data sets most widely used to benchmark the performance of network intrusion detection systems: (i) KDD Cup 199929, and

(ii) NSL-KDD30 data sets.

The sliding-window model is implemented in C++ as part of the Lightweight Homology Framework (LHF)31 that signifi-

cantly speeds up the computation of persistent homology. The execution times reported in the following subsections are captured

on a computer with an Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz and 8 GB of memory, and are averaged over 5 runs.

The data sets used for the experiments were stored in the hard disk of the computer, and were read as file streams (i.e., one data

point at a time). The accuracy and effectiveness of the model are demonstrated by its ability to promptly and correctly identify

anomalous connections in the streams of TCP traffic in computer networks.
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6.1 KDD Cup 1999 Data Set

The KDD Cup 1999 data set is one of the most widely used real data for the evaluation of network intrusion detection systems

and stream clustering algorithms32,8. The data set represents the important problem of automatic and real-time detection of

cyber attacks, and consists of a series of TCP connection records from two weeks of network traffic managed within a military

local area network24,33. Each record corresponds to either a normal connection, or an intrusion/attack. Most of the connections

in this data set are normal, but occasionally there could be a burst of attacks at certain times.

In the data set, there are a total of 22 types of intrusions that fall into four main categories29:

• Denial of Service (DoS): For example, syn flood (‘neptune’, ‘smurf’);

• Probing: Surveillance and other probing (e.g., ‘ipsweep’, ‘satan’);

• Remote to Local (R2L): Unauthorized access from a remote machine (e.g., guessing password, ‘warezmaster’); and

• User to Root (U2R): Unauthorized access to local superuser (root) privileges (e.g., various buffer overflow attacks).

The data is available both as a complete set that contains approximately 4.9 million records and as a 10% sub-sampled set

containing 494, 021 points. Each connection record consists of 41 features plus a class ID.

As in almost all the previous papers using the data set, the evaluations performed in this section consider the sub-sampled set

and retain 34 continuous valued features, pruning out the remaining discrete or categorical attributes34,24,33,35,36,37. The resulting

data is normalized by dividing each value of a data vector by the standard deviation of the corresponding attribute33,37.

Each of the four main categories of intrusions in the KDD Cup 1999 data set belongs to one of the three types of anomalies32:

1. Collective anomaly: When a group of similar data objects behave anomalously with respect to the entire data set, but a

single data object from that group is not anomalous by itself, the group is called a collective anomaly. DoS attacks are

categorized as the collective anomaly. For example, a DoS attack consisting of numerous connection requests to a web

service within a very short period of time is a collective anomaly, but a single request can be legitimate.

2. Contextual anomaly: When data objects behave anomalously in a particular context, they are called a contextual anomaly.

A probing attack that is launched to gather information about a targeted network or host is an example of a contextual

anomaly.

3. Point anomaly: When a certain data object or a small set of data objects deviates from the normal pattern of other data

objects, it is called a point anomaly. R2L and U2R attacks aimed at gaining unauthorized user or administrative access to

a machine or an account are considered point anomalies.

Thus, the intrusions or attacks present in the KDD Cup 1999 data set vary widely in their properties, purposes and mech-

anisms of launching the attacks. Accordingly, the topological structures of the connections corresponding to those attacks are

different from one another. In order to demonstrate and visualize the different capabilities of the sliding-window model and

its effectiveness in identifying different types of traffics, two separate subsets, called Subset 1 and Subset 2, are constructed

from the 10% sub-sampled data set. Subset 1 consists of those intrusions that are launched using large number (typically from

hundreds to thousands) of connections, namely, DoS and probing attacks. It is worth noting that a DoS attack requires no prior

access to the target, and hence, is relatively easier to launch than other attacks. For these reasons, the DoS attack is often con-

sidered the most dreaded attack and receives the highest priority for attack detection in intrusion detection systems32. On the

other hand, Subset 2 contains those attacks that are carried out using small number (typically from a few to tens) of connections,

namely R2L and U2R attacks.

6.1.1 Subset 1: Attack Types with Large Number of Connections

Subset 1 contains of a total of 25, 800 connection records. The occurrence of different types of traffic with the progress of

the stream is shown in Table 2. Figures 4 and 5 show the detection of attacks with the help of the sliding-window model for

the Subset 1 data stream. Figure 4 displays the distances between pairs of consecutive persistence diagrams generated by the

sliding-window model with the progress of the stream. On the other hand, Figure 5 shows the distances from the persistence

diagram of a reference normal traffic to all other persistence diagrams generated by the model. The distance between two
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Wasserstein Distances between Pairs of Consecutive Persistence Diagrams

FIGURE 4 Detection of attacks using Wasserstein distances between pairs of consecutive persistence diagrams for Subset 1

data stream. The dashed horizontal line at W2 = 5.5 represents the threshold for ‘spike’ detection.

persistence diagrams is measured using a metric called the 0-dimensional 2nd Wasserstein distance, or W2 for short. The

2nd Wasserstein distance is commonly used to quantify the difference between two persistence diagrams. The 0-dimensional

distance is used due to the lack of consistent 1-dimensional features across different types of connections in the KDD Cup 1999

data set. The interpretations of these figures are more thoroughly discussed below.

TABLE 2 The occurrence of different types of connections with the

progress of Subset 1 data stream

Type No. of Connections Progress of Stream

Normal 2600 2600

smurf (DoS) 1800 4400

Normal 2400 6800

neptune (DoS) 2200 9000

Normal 2403 11403

neptune (DoS) 1802 13205

Normal 2000 15205

smurf (DoS) 1604 16809

Normal 2041 18850

ipsweep (Probing) 1153 20003

Normal 2402 22405

satan (Probing) 1404 23809

Normal 1991 25800

Figure 4 shows the plot of W2 between pairs of

consecutive persistence diagrams with the progress of

the stream. For Subset 1, the sliding-window model is

configured with m = 100, f = 6, and Δn = 200.

Each type of traffic has its own topological structure

that is usually distinct from other types. Therefore, the

distance W2 between a pair of persistence diagrams

obtained from the same type of traffic is much smaller

than that obtained from different types of traffics.

For example, W2 between two persistence diagrams

obtained from the normal connection is smaller than

that obtained from the normal connection and ‘nep-

tune’ attack. Thus, whenever the type of traffic changes

in the data stream (for example, an attack is launched

or ended), W2 between the current and previous per-

sistence diagrams increases substantially. A ‘spike’ in

Figure 4, therefore, represents a transition from one

type of traffic to another, or more specifically, either

the launch or the end of an attack.

For Figure 5, the persistence diagram obtained after

the first 200 normal connections from the stream is

considered as a reference. The figure shows the plot of W2 between the reference persistence diagram and that obtained from

each subsequent computation of persistence intervals. Since the normal connections have similar topological properties, the dis-

tance W2 between the reference persistence diagram and the diagram obtained from each set of subsequent normal connections

is small. Thus, the ‘troughs’ in Figure 5 represent normal connections. On the other hand, the attacks are topologically dissimi-

lar to the normal connections. The distance W2 between the reference persistence diagram and the diagram obtained from a set

of anomalous connections is large. Therefore, the ‘plateaus’ in Figure 5 represent attacks. Thus, by continuously monitoring
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FIGURE 5 Detection of attacks using Wasserstein distances between persistence diagrams of reference normal connection and

subsequent connections for Subset 1 data stream

the distance between persistence diagrams generated by the sliding-window model, one can identify attacks in a data stream of

network traffic.

In addition to the detection of attacks, the persistence intervals generated by the sliding-window model can help identify the

types of several attacks. Figure 6 shows a visual representation (using barcodes) of the topological structures of different types

of traffics in Subset 1 data stream. The figure consists of two instances of the barcodes for each type of traffic that occurs at

different times during the progress of the stream. In Appendix A, the topological structures of the same instances of traffic as

in Figure 6 are shown using persistence diagrams.

It is evident that the topological structure of each type of traffic is distinct from that of other types of traffics. For example, the

H0 barcodes have similar shapes and structures for the two instances of normal traffic. The H1 features, while not significant,

appear sporadically on both examples of normal connections. The smurf attacks show mostly insignificant H0 features, and they

do not form any H1 loops at all. On the other hand, neptune attacks display dense but insignificant H0 and H1 features on both

the instances examined in Figure 6. Thus, in addition to the detection of attacks, it is possible to visually identify the types of

several traffics from the output of the sliding-window model.

TABLE 3 Confusion matrix for Subset 1 data stream

Actual

Positive Negative

Positive TP = 12 FP = 5

Detected

Negative FN = 0 TN = 111

It can be noted that most other network anomaly detec-

tion systems based on traditional data mining techniques

such as classification, clustering or information theory can

categorize the connections either as attacks or as normal

traffic32. Even when multiple (i.e, more than two) clusters

or groups of connections are discovered, classification or

clustering based methods cannot directly identify the types

of those groups. In contrast, however, persistent homol-

ogy provides the capability for the identification of several

types of connections in addition to the binary categoriza-

tion of network traffic into attacks and normal connections.

Moreover, due to some variations within an individual type

of traffic, clustering based anomaly detection systems often create multiple groups for the same type of traffic. However, since

each individual type of traffic maintains a consistent topological structure through the stream, analyzing the topology of different

types of connections results in more accurate identification of the number of clusters or groups of traffic in the stream38.

In the following, a detailed analysis of the accuracy and abilities of the sliding-window model to correctly profile different

types of network traffic is presented. Based on the distribution of values of W2 between pairs of consecutive persistence dia-

grams, a ‘spike’ in Figure 4 is empirically defined as W2 ≥ 5.5. The components related to the accuracy of the sliding-window

model are computed based on the numbers described below:
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FIGURE 6 Identification of types of traffic in Subset 1 data stream using barcodes
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TABLE 4 Performance of the sliding-window model on

Subset 1 and Subset 2 data streams

Metric Subset 1 Subset 2

m 100 10

Accuracy 0.961 0.890

Precision 0.706 0.474

TPR 1.000 0.900

FPR 0.043 0.111

Avg Runtime: of Online

Component (sec/1, 000 pts)
3.831 0.208

Avg Runtime: of Offline

Component (sec/matrix reduction)
0.496 0.0004

Avg # of Simplices 124, 277 109

Avg Memory Used (MB) 16.119 0.014

TABLE 5 The occurrence of different types of connections with

the progress of Subset 2 data stream

Type No. of Connections Stream Progress

Normal 200 200

guess password (R2L) 20 220

Normal 120 340

buffer overflow (U2R) 10 350

Normal 150 500

imap (R2L) 10 510

Normal 100 610

rootkit (U2R) 10 620

Normal 180 800

warezmaster (R2L) 10 810

Normal 200 1010

• True Positives (TP): The number of times the changes in traffic type are correctly and timely detected. In other words, TP

is the number of times the changes in traffic are detected at the offline computations immediately following the respective

changes.

• True Negatives (TN): The number of offline computations that correctly identify intervals of stable traffic. In other words,

TN is the number of offline computations that correctly identify the intervals where the traffic type does not change.

• False Positives (FP): The number of offline computations that incorrectly detect changes in traffic type during stable

intervals.

• False Negatives (FN): The number of offline computations that fail to detect changes in network traffic.

Based on the four numbers described above and the number of ‘spikes’ formed in Figure 4, the confusion matrix obtained

for the Subset 1 data stream is shown in Table 3. From the results in this Table, four components to highlight the accuracy of

the sliding-window model are computed, namely:

• Accuracy =
TP + TN

TP + FP + FN + TN

• Precision =
TP

TP + FP

• Recall or True Positive Rate (TPR) =
TP

TP + FN

• False Positive Rate (FPR) =
FP

FP + TN

The resulting values of these components of accuracy are given in Table 4. In addition, Table 4 shows the run times for the

online and offline components of the sliding-window model. The run time for the online component depends on the parameter

m and the proportion of new data points that are discarded or filtered out (i.e. not chosen to be inserted into the window) by the

model. The bigger the size of the window (i.e., m), the larger the simplicial complex. And the larger the complex is, the more

time it takes for the simplices to be added to and deleted from the simplicial complex. The run time for the online component

is reported as the average time required to summarize 1, 000 data points from the Subset 1 stream. The run time for the offline

component depends on the parameter m. A bigger window size and consequently a larger simplicial complex result in a larger

boundary matrix that takes longer to be reduced than a smaller one. The run time for the offline component is given as the

average time required to reduce the boundary matrix generated from the complex constructed on m = 100 data points. In

addition, Table 4 shows the average memory usage of the sliding-window model in megabytes (MB) and in terms of the average

number of simplices in the complex through the progress of the stream.
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FIGURE 7 Detection of attacks using Wasserstein distances between pairs of consecutive persistence diagrams for Subset 2

data stream. The dashed horizontal line at W2 = 2.5 represents the threshold for ‘spike’ detection.

6.1.2 Subset 2: Attack Types with Few Connections

In the previous subsection, the sliding-window model is used to detect attack types that are carried out using large number of

connections, such as the DoS and probing attacks. However, the model is also capable of detecting intrusion events that are

performed with small number of connections, such as the R2L and U2R attacks. The Subset 2 traffic in this study consists of

R2L and U2R attacks (as well as normal traffic). It contains a total of 1, 010 connection records. The occurrence of different

types of traffic with the progress of the stream is shown in Table 5.

In order to detect intrusions carried out by such small number of connections, the size of the window (i.e., m) is made

extremely small. For example, the window is scaled down to the size of the smallest chunk of attacks in Subset 2 by setting

m = 10. In addition, the offline computation is performed frequently enough to detect the rapid changes in the traffic type caused

by the R2L and U2R attacks. For instance, Δn is set to 10 for detecting the attacks in Subset 2 data stream. Decreasing the values

of the parameters m and Δn enables the sliding-window model to scan the stream through a ‘lens’ of higher magnification that

helps analyze the data at a finer granularity.

Figures 7 shows the W2 distances comparing adjacent persistence diagrams, and Figure 8 shows the W2 distances comparing

the persistence diagrams to that of the reference normal traffic. In Figure 8, the persistence diagram obtained after the first 10

normal connection records from the stream is considered as a reference. Unlike in Figure 5, the attacks do not form ‘plateaus’

in Figure 8. Since the durations of R2L and U2R attacks are small, they are displayed as ‘spikes’ in both Figures 7 and 8. A

‘spike’ in Figure 7 is empirically defined as W2 ≥ 2.5 based on the distribution of values of W2 between pairs of consecutive

persistence diagrams. The confusion matrix obtained from the detection of attacks in Subset 2 data stream is given in Table 6.

The accuracy, run time and memory usage of the sliding-window model for Subset 2 data stream is shown in Table 4. For this

data stream, the update sensitivity factor f is set to 4.

Table 4 shows that the sliding-window model generates high values of Accuracy for both Subset 1 and Subset 2 data streams.

The high values of true negatives contribute to the high Accuracy of the model. While a large number of false positives results

in a moderately low value of Precision for Subset 2 stream, the extremely low values of false negatives produce high Recall for

both the streams. In almost all practical applications, having low false negatives is more important than having low false posi-

tives. The low values of false negatives demonstrate that the sliding-window model seldom fails to detect changes in the traffic

types. In addition, the higher values of false positives are offset by high true negatives, producing small False P ositiveRates

for both Subset 1 and Subset 2 data streams.

From Table 4 it is observed that the run time and the memory usage of the sliding-window model decrease substantially

with the size of the window. The ability to adjust the time and memory requirements of the model creates a unique advantage

for the sliding-window over other techniques for network anomaly detection. Intrusion detection methods based on traditional
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FIGURE 8 Detection of attacks using Wasserstein distances between persistence diagrams of reference normal connection and

subsequent connections for Subset 2 data stream

TABLE 6 Confusion matrix obtained for the sliding-window

model on Subset 2 data stream

Actual

Positive Negative

Positive TP = 9 FP = 10

Detected

Negative FN = 1 TN = 80

TABLE 7 Confusion matrix obtained for the microcluster-

based framework on Subset 2 data stream

Actual

Positive Negative

Positive TP = 7 FP = 33

Detected

Negative FN = 3 TN = 57

data mining do not have the ability to substantially alter their run times and memory usages without affecting the accuracy3.

The capability of significantly reducing the time and space requirements of the sliding-window model makes it suitable for

fast-moving streams with rapidly changing traffic types.

The advantages of faster stream processing and lower memory usage of the sliding-window model come at the cost of its

diminished capability of visually recognizing different types of traffic. While the model configured with an extremely small

window is capable of the binary categorization of traffic into attacks and normal connections, the complex constructed on

the data points in the window is not large enough to form visually recognizable topological structures. As a result, the visual

identification of different types of traffic may not be possible with an extremely small window size.

In practice, the choice of the size of the window should depend on the requirements of the application. For example, if a user

is concerned only about the detection of attacks (i.e., the binary categorization of traffic) in a computer network, then the user

should choose a small window size that enables faster processing, lower memory usage and the ability to detect all types (DoS,

probing, R2L and U2R) of attacks. However, if the user is primarily concerned about DoS and probing attacks, and wants the

additional capability of visually identifying the different subtypes among those attacks, the user should choose a window size

that is sufficiently large (typically between 50 and 100 data points) to form visually identifiable topological structures.

It is evident that the mechanisms and capabilities of the sliding-window model for the detection of network anomalies are

vastly different than those of existing techniques. For instance, classification and clustering based anomaly detection systems

3The difference in accuracy of the sliding-window model between Subset 1 and Subset 2 is due to the difference in traffic types in the two data streams.



Moitra ET AL. 21

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

Progress of Stream

0
−

d
im

e
n
s
io

n
a
l 
2
n
d
 W

a
s
s
e
rs

te
in

 D
is

ta
n
c
e

Wasserstein Distances between Pairs of Consecutive Persistence Diagrams

FIGURE 9 Detection of attacks by the microcluster-based framework using Wasserstein distances between pairs of consecutive

persistence diagrams for Subset 2 data stream

categorize each individual connection either as normal or as anomalous. None of those techniques provides the option to

significantly alter the processing speed or the memory usage (without affecting the accuracy). On the contrary, the sliding-

window model does not attempt to determine the category of each individual connection. Instead, the model computes the

topological properties of a set of connections, and looks for changes to those topological properties as the stream progresses. For

these reasons, a fair comparison of the performance between the sliding-window model and existing methods is not possible.

However, the comparison of the output of the model to the baseline (or ground truth) provides an accurate representation of the

performance of the model.

6.1.3 Microcluster-based Framework Applied on Subset 2 TABLE 8 Accuracy of the

microcluster-based framework on

Subset 2 data stream

Metric Value

maxHeigℎt 10

Accuracy 0.640

Precision 0.175

TPR 0.700

FPR 0.367

In this subsection, the microcluster-based framework10 is applied on Subset 2

data stream to demonstrate its inability to accurately categorize the traffic when

the attacks are carried out with small number of connections. We implemented

the framework using the same libraries and interfaces (i.e., the R interface39 to

ClusTree26 from Massive Online Analysis40, and the R interface41 to persistent

homology from the GUDHI library42,43) as those used in10. In the following, we

report the accuracy of the microcluster-based framework using maxHeigℎt = 10

(for the maximum height of the tree), ℎorizon = 11 (for the range of the time win-

dow), and Δn = 10 (for the interval of offline computations), the set of parameter

values that yielded the best result in our experiments.

Figure 9 shows an attempt of the detection of attacks with the help of the microcluster-based framework for the Subset 2

data stream. Based on the distribution of values of W2 between pairs of consecutive persistence diagrams, a ‘spike’ in Figure 9

is defined as W2 ≥ 4.0. The confusion matrix obtained from the detection of attacks by the microcluster-based framework in

Subset 2 data stream is given in Table 7. The accuracy of the framework for Subset 2 data stream is shown in Table 8.

Tables 7 and 8 show that the microcluster-based framework is unable to accurately categorize the traffic in Subset 2 data

stream. The framework fails to detect the changes in traffic type in three instances (FN = 3). Moreover, a large number of false

positives results in a poor precision for the framework. These results demonstrate that the microcluster-based framework is not

suitable for detecting changes of very short duration.
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FIGURE 10 Detection of attacks using Wasserstein distances between pairs of consecutive persistence diagrams for NSL-KDD

data stream. The dashed horizontal line at W2 = 3.6 represents the threshold for ‘spike’ detection.

6.2 NSL-KDD Data Set

In addition to the KDD Cup 1999 data, the performance of the sliding-window model is evaluated on another data set, called the

NSL-KDD data set30, that has been widely used in the literature on classification of network traffic in the recent years. In the

previous section, the effect of the window size on the performance of the sliding-window model was discussed. A larger window

was used for the detection and identification of DoS and probing attacks while a smaller window was used for the detection of

R2L and U2R attacks. It was shown that for the binary categorization of traffic into normal or anomalous connections, the model

configured with a small window size is more advantageous due to its speed and lower memory requirements than the model

with a larger window size. In this section, a small window with m = 20 is used for the detection of all types of attacks (namely:

DoS, probing, R2L and U2R) in a subset of the NSL-KDD data set. The interval of offline computation is set to Δn = 20, and

the update sensitivity factor f is chosen to be 6. As with the KDD Cup 1999 data, the subset is constructed considering 34

continuous valued features from the training set of the NSL-KDD data to utilize the baseline or ground-truth information on

the traffic type of each connection. In order to help evaluate network anomaly detection techniques that are primarily based on

classification-based machine learning models, the sequence of the connections are randomly shuffled in the original NSL-KDD

data set30. To produce a data stream with sequential changes in the traffic types, the sequence of the connections is modified in

the subset of the NSL-KDD data used for the evaluation of the sliding-window model. In particular, the traffic types are arranged

such that there are occasional attacks that appear (and subsequently disappear) sequentially during the flow of network traffic.

Table 9 shows the types of traffic and the progress of the stream in the subset constructed from the NSL-KDD data set. Figure

10 shows the plot of the 0-dimensional 2nd Wasserstein distance (W2) between pairs of consecutive persistence diagrams. In

this plot, each ‘spike’ represents a change in the traffic type, and is defined as W2 ≥ 3.6. The confusion matrix obtained from

the detection of attacks in NSL-KDD data stream is given in Table 11. The accuracy, run time and memory usage of the sliding-

window model for NSL-KDD data stream is shown in Table 10. The definitions of the performance metrics (given in Table

10) and of the components of the confusion matrix (given in Table 11) are provided in Section 6.1. From Table 10 it is seen

that the model accurately detects almost all occurrences of the attacks (TP = 9 and FN = 1). The low value of Precision is

primarily caused by 12 false positives during the occurrence of ‘portsweep’ (probing) attack that appears as a set of relatively

short spikes between 12, 920th and 13, 460th data points in Figure 10. In addition, there are several shorter or insignificant

‘spikes’ throughout the stream that do not represent changes in traffic types. Those shorter ‘spikes’ are caused by variations

within individual traffic types.

Figure 11 shows an attempt of the detection of attacks in the NSL-KDD data stream using the microcluster-based framework,

which was implemented with the help of the libraries mentioned in Section 6.1.3. The following set of parameter values was

used: maxHeigℎt = 20, ℎorizon = 25, Δn = 20. Based on the distribution of values of W2 between pairs of consecutive

persistence diagrams, a ‘spike’ in Figure 11 is defined as W2 ≥ 10.8. The confusion matrix obtained from the detection of
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TABLE 9 The occurrence of different types of connections with

the progress of NSL-KDD data stream

Type No. of Connections Stream Progress

Normal 2562 2562

buffer overflow (U2R) 20 2582

Normal 3219 5801

teardrop (DoS) 879 6680

Normal 3700 10380

guess password (R2L) 20 10400

Normal 2481 12881

portsweep (Probing) 780 13661

Normal 13400 27061

warezclient (R2L) 279 27340

Normal 4000 31340

TABLE 10 Performance of the sliding-window model

on NSL-KDD data stream

Metric Value

m 20

Accuracy 0.986

Precision 0.300

TPR 0.900

FPR 0.013

Avg Runtime: Online

Component (sec/1, 000 points)
0.224

Avg Runtime: Offline

Component (sec/matrix reduction)
0.002

Avg Num of Simplices 717

Avg Memory Use (MB) 0.093
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FIGURE 11 Detection of attacks by the microcluster-based framework using Wasserstein distances between pairs of

consecutive persistence diagrams for NSL-KDD data stream

attacks by the microcluster-based framework is given in Table 12. The accuracy of the framework for NSL-KDD data stream is

shown in Table 13.

Tables 12 and 13 show that the microcluster-based framework is unable to accurately categorize the traffic in NSL-KDD data

stream. The framework fails to detect the changes in traffic type in three instances (FN = 3). In addition, a large number of

false positives results in a poor precision for the framework.

The microcluster-based framework, when compared to the sliding-window model, reduces the TPR (0.7 vs. 0.9 for both

Subset 2 and NSL-KDD data streams) and increases the FPR (0.367 vs. 0.111 for Subset 2, and 0.110 vs. 0.013 for NSL-KDD

data stream). This is because the microcluster-based framework only provides indirect control over the size and the update

frequency of the data summary. As a result, it is difficult to configure the summary to accurately represent a small number of

data objects from the stream. This, in turn, renders the microcluster model inaccurate for applications that can involve ‘sharp’

temporal changes (or, ‘spikes’) in the metric that is being monitored. On the other hand, the sliding-window model provides

direct and precise control over the size and the update frequency of the data summary through the input parameters m and f

and, thus, is more accurate for detecting ‘spikes’ in the stream. These observations demonstrate that the microcluster-based

framework is not suitable for detecting changes of short duration.
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TABLE 11 Confusion matrix obtained for the sliding-window

model on NSL-KDD data stream

Actual

Positive Negative

Positive TP = 9 FP = 21

Detected

Negative FN = 1 TN = 1535

TABLE 12 Confusion matrix obtained for the microcluster-

based framework on NSL-KDD data stream

Actual

Positive Negative

Positive TP = 7 FP = 171

Detected

Negative FN = 3 TN = 1385

7 CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

This section concludes the paper by discussing some of the insights derived from studying the application of persistent homol-

ogy to streaming data. Those insights subsequently lead to some suggestions for future research that will potentially advance

the work examined in this paper.

7.1 Summary of Findings

This paper presents a computational model, called the sliding-window model, for applying persistent homology to potentially

unbounded real data streams. The model maintains a topology-preserving summary of the streaming data using a combinatorial

structure called the complex. The model is evaluated in terms of execution time, memory usage and its ability to effectively

identify topological changes in evolving data streams.

TABLE 13 Accuracy of the

microcluster-based framework on

NSL-KDD data stream

Metric Value

maxHeigℎt 20

Accuracy 0.889

Precision 0.039

TPR 0.700

FPR 0.110

The sliding-window model is applied to the task of detection of anomalous traffic

in computer networks. Based on the size of the window, the model has two different

modes of operation. If a larger window is used, the model is capable of the visual

identification of several types of traffic in addition to the binary categorization of the

connections into normal or anomalous traffic. On the other hand, a smaller window

trades the capability of visual identification of traffic for extremely fast and memory

efficient processing of the stream. Based on the application and its requirements, the

user may choose one of the modes of operation by setting the size of the window

through an input parameter.

The microcluster-based computational model used in the previous work10 is capa-

ble of identifying steady or gradual concept drifts. However, if a stream exhibits

abrupt changes of short duration, it is shown that the sliding-window model configured with a small window is a more accu-

rate tool for the detection of those changes than the microcluster-based framework. While the size and the update sensitivity

of the microcluster-based model can be configured to some extent with the help of its input parameters, the sliding-window

model provides a more direct way to configure the data summary using the parameters m and f . As a result, the sliding-window

model is able to detect changes of extremely short duration. Since the streams of network traffic can have attacks executed with

very small number of TCP packets (such as R2L and U2R attacks), the study of network anomaly detection is a suitable target

application for the evaluation of the sliding-window model.

7.2 Suggestions for Future Work

In real-world applications, the data stream may evolve due to changes in its underlying probability distribution, a phenomenon

known as the concept drift. In most cases, the concept drift causes sequential changes to the stream that can be identified by

the sliding-window model. However, the model will not be effective in the event of multiple parallel concept drifts, or the

simultaneous generation of data objects from different probability distributions, that produce overlapping topological features.
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In other words, if the stream consists of a random mixture of multiple different types of data objects that have overlapping

topological properties, the sliding-window model as described in this paper is not ideal to be directly applied to that stream. In

such a case, the model can be modified to use multiple complexes instead of one. In particular, the model can have a separate

simplicial complex built on each partition in the window that would be maintained concurrently to other complexes. This

approach would be equivalent to maintaining multiple separate windows in memory. Each window would attempt to maintain

only one type of data objects, and would have its own simplicial complex built on the points in the window. Those windows

and complexes can be maintained in parallel in the memory. Since each window would consist of only one type of data points

that would be different from those in the other windows, the topological structure of the complex constructed on the points in

a window would be expected to be different from those of the complexes built on other windows. The multiple window or the

multiple complex model can be considered as a generalization of the ‘single’ sliding-window model described in this paper.

Alternatively, it can be thought of as an approach to maintaining multiple clusters of data points in the memory. By building and

incrementally maintaining simplicial complexes on those clusters, one would summarize the stream with the help of multiple

complexes instead of one. A simplified version of this approach is presented in Appendix B that provides some preliminary

evidence that may motivate future research in this direction.
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existing partitions, it can either be an outlier or the beginning of a concept drift. As each partition of data points would have its

own complex maintained separately from other complexes, the multiple complex model would be able to deal with data streams

that have different types of data objects with overlapping topological properties shuffled together.
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FIGURE B3 Identification of clusters, generated by

stream clustering, using barcodes


