
20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

56

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

ECSTATIC: An Extensible Framework for Testing
and Debugging Configurable Static Analysis

Austin Mordahl Zenong Zhang Dakota Soles Shiyi Wei
Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA
{austin.mordahl, zenong, dakota.soles, swei}@utdallas.edu

Abstract—Testing and debugging the implementation of static
analysis is a challenging task, often involving significant manual
effort from domain experts in a tedious and unprincipled process.
In this work, we propose an approach that greatly improves the
automation of this process for static analyzers with configuration
options. At the core of our approach is the novel adaptation of
the theoretical partial order relations that exist between these
options to reason about the correctness of actual results from
running the static analyzer with different configurations. This
allows for automated testing of static analyzers with clearly defined
oracles, followed by automated delta debugging, even in cases
where ground truths are not defined over the input programs. To
apply this approach to many static analysis tools, we design and
implement ECSTATIC , an easy-to-extend, open-source framework.
We have integrated four popular static analysis tools, SOOT,
WALA, DOOP, and FlowDroid, into ECSTATIC . Our evaluation
shows running E C S TAT I C detects 74 partial order bugs in the
four tools and produces reduced bug-inducing programs to assist
debugging. We reported 42 bugs; in all cases where we received
responses, the tool developers confirmed the reported tool behavior
was unintended. So far, three bugs have been fixed and there are
ongoing discussions to fix more.

Index Terms—Program analysis, testing and debugging

I. INTRODUCTION

Static analysis is a useful tool to discover software bugs.
But there is no one-size-fits-all static analysis that can handle
all types of target programs. Thus, many well-known static
analyzers (e.g., FlowDroid [1], SOOT [2], DOOP [3], and
WALA [4]) implement configuration options to allow the
developers or users to tune the analysis in order to achieve the
sweet spot between precision, soundness, and scalability on
their target programs.

However, the resulting large configuration space also makes
it more difficult to ensure the correctness of the analysis
implementations. A key challenge towards automated testing
of static analyzers is the lack of an easy-to-obtain oracle.
Each configuration of a static analyzer may be expected to
produce different results analyzing the same program. This
means that the tool developers have to manually confirm the
expected results for each configuration on every test program,
which is infeasible. Indeed, a recent study [5] shows that
implementations of analysis options are poorly tested, finding
potential bugs in multiple configurations of FlowDroid.

These potential bugs were discovered thanks to the definition
of partial orders of analysis options, i.e., relations between

the settings of an analysis option that specify the expected
behavior of the tool with regard to the true and false positives
reported [5]. These partial orders make up for the lack of an
oracle for various configuration options, by allowing issues to
be discovered by comparing two configurations that differ only
by a single option setting and finding violations of expected
behavior, which are indicative of bugs in the analysis tool.
While being a promising direction, their work is limited in
improving the reliability of static analysis implementations.
First, there is no evidence that their experiments using manually
constructed configurations on two Android taint analysis tools
can be automated and extended to other static analyzers. Second,
there is no confirmation if the detected violations of partial
orders are indeed bugs and if/how they can be useful for
debugging. Third, their experiments require input programs
with ground truths or classified results, which may not be
available for many analysis clients.

In this work, we present a new general approach and
framework that automatically tests and debugs configurable
static analysis. Our key idea is to leverage the knowledge
of tool configurations and partial orders for the automation
of test generation, bug identification, and debugging. We
propose novel partial order aware testing and delta debugging
approaches, and extend the definition of a partial order
and a violation to allow bug finding without ground truths
(Section III). Our approach takes as inputs (1) a grammar
that lists the tool options and their settings, (2) a specification
of the partial orders, and (3) a set of programs with (e.g.,
DroidBench [6]) or without (e.g., DaCapo [7]) ground truths.

To detect implementation bugs in tool configurations, we
propose a two-staged testing approach. First, based on a
tool’s default configuration, we create all partially-ordered
configurations (i.e., configurations that differ only by a single
option setting) that are defined in the partial order specification.
These configurations are run on all the input programs to detect
violations of defined partial orders. The second stage randomly
and iteratively generates and tests configurations to detect
new partial order bugs that only exist under certain option
interactions. This stage consists of four steps: (1) A grammar-
based fuzzer is used to generate seed configurations, which
are randomly selected for testing. (2) The seed configuration
is mutated to create partially-ordered configurations based on
a set of partial orders which have not yet exhibited a violation

1558-1225/23/$31.00 ©2023 IEEE 550
DOI 10.1109/ICSE48619.2023.00056

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

on any input program. (3) The mutated configurations are run
on a set of input programs to detect partial order violations. (4)
The violation detection results are used as feedback to remove
partial orders that have exhibited violation(s). Steps (1)-(4) are
repeated until a given timeout is reached. We implement and
evaluate two variations of this random testing stage that differ in
how they select partial orders and input programs. One, at each
step, randomly samples a small number of partial orders and
input programs, making it lightweight and suitable for testing
many partially-ordered configurations based on different seeds.
The second is a more exhaustive approach, using all partial
orders and input programs at each iteration.

To assist the debugging of each partial order violation, we
develop a novel violation-aware delta debugger that reduces the
input programs into bug-inducing features. Our delta debugger is
novel in two aspects. First, it is the first to adapt delta
debugging to metamorphic testing of static analyzers. At each
delta debugging iteration, our approach attempts to run two
partially-ordered configurations of an analysis tool on a reduced
program and detect whether the violation still exists. Second, to
address the challenges in efficiency (i.e., expensive compilation
and analysis passes), our delta debugger runs in two passes: first, a
coarse-grained class-level reduction [8], and then hierarchical
delta debugging [9] based on an abstract syntax tree.

To allow the proposed approach to be generally applied to
many static analysis tools, we develop an open-source frame-
work, ECSTATIC (Section IV). We design ECSTATIC with
the goals of producing an easy-to-use, scalable, reproducible,
and highly extensible framework. We achieve these goals by
(1) defining clear interfaces for specifying tools and input
programs such that a new tool or input program can typically
be integrated by writing only dozens of lines of code, (2)
structuring the code so that each phase can be run in parallel,
and (3) containerizing each analysis tool inside a Docker [10]
container for reproducible environments. ECSTATIC is available
at https://doi.org/10.5281/zenodo.7577909.

We integrate four popular static analysis tools (FlowDroid,
SOOT, WALA, and DOOP) and four benchmarks (DaCapo,
DroidBench, CATS [11], and FossDroid [12]) into ECSTATIC.
Running ECSTATIC, we detect 74 partial order bugs across
the four tools. While most of these bugs were found in the
first testing stage, the two variants of the random testing stage
were able to collectively detect 10 new partial order bugs.
The violation-aware delta debugger was able to reduce input
programs to as little as 1% of their original sizes, with an
average of 50% reduction on real-world programs. We also
reported some of these bugs to tool developers, and in every
case where the developers responded, received confirmation
that our approach uncovered unexpected behavior, leading to
three bug fixes in FlowDroid and ongoing discussion regarding a
fix for WALA.

This paper made the following contributions:
• A new general approach that provides automated support

for tool developers to test and debug static analysis,
leveraging the knowledge of tool configurations and option
partial orders throughout its design.

1 / / I n t e r p r o c e d u r a l C o n s t a n t V a l u e P r o p a g a t o r . j a v a
2 p r o t e c t e d v o i d i n t e r n a l T r a n s f o r m (. . .) {
3 . . .
4 i f (r e m o v e S i d e E f f e c t F r e e M e t h o d s) {
5
6 boolean remove = c a l l e e . g e t R e t u r n T y p e () == VoidType

. v () && ! h a s S i d e E f f e c t s O r R e a d s T h i s (c a l l e e) ;

7 - remove | = ! h a s S i d e E f f e c t s O r C a l l s S i n k (c a l l e e) ;

8 + remove &= ! h a s S i d e E f f e c t s O r C a l l s S i n k (c a l l e e) ;
9 i f (r e m o v e) {

10 S c e n e . v () . g e t C a l l G r a p h () . r e m o v e E d g e (e d g e) ;

Fig. 1: Excerpt of FlowDroid code that shows an implemen-
tation error in its codeelimination option, and the fix the tool
developer made using ECSTATIC’s bug reports [13].

• An open-source, extensible framework, ECSTATIC, that
enables easy integration of new analysis tools and bench-
marks for configuration aware testing and debugging.

• The integration of four popular tools and four benchmarks in
ECSTATIC, and an evaluation on the performance of our
approach, showing its effectiveness of detecting actual bugs
and producing reduced bug-inducing programs.

II. BACKGROUND AND MOTIVATION

In this section, we first use an example to illustrate the
challenges when testing and debugging a static analyzer. We
then introduce the background of a key concept, partial orders of
analysis options, which we adapted and improved upon to
mitigate these challenges.

A. Motivating Example

We use an example from FlowDroid to illustrate the
challenges of detecting and debugging bugs in static analysis
tools. This bug was detected by ECSTATIC, reported to the tool
maintainer, and is fixed in the current version of the tool [13].
The bug extracted in Figure 1 shows a logic error in the
implementation of FlowDroid’s codeelimination option. The
default setting of this option, PROPAGATECONSTS, performs
constant propagation. The REMOVECODE setting of this
option, in addition to constant propagation, performs a pre-
analysis to remove any methods from the call graph that (1)
have a void return type, (2) do not refer to the this variable, (3)
do not have side effects, and (4) do not call a sink method. This
should be a sound optimization because methods satisfying all
four conditions should not affect the detection of taint flows.

However, there was a logic error in its implementation. In
line 6 of Figure 1, the boolean variable remove is used to
determine if a method (i.e., callee) should be removed from
the call graph. Line 6 correctly implements the logic to satisfy
the first three conditions to remove a method by checking the
return type and calling the method hasSideEffectsOrReadsThis.
In line 7, it calls the method hasSideEffectsOrCallsSink, to
decide if the fourth condition–“do not call a sink method”–is
satisfied. This method also rechecks the value of hasSideEffects
as computed by hasSideEffectsOrCallsSink. However, by using
the OR operator |= , it can remove a method that only meets
conditions (1), (2), (3) or only meets conditions (3) and (4).

551

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

Instead, the AND operator &= should be used (as shown in
the fix in line 8). This bug is useful to demonstrate several
challenges in testing and debugging a static analysis tool.

Challenge 1: This erroneous code may be executed
only in some configurations of FlowDroid. In line 4, the
field removeSideEffectFreeMethods guards the execution of
the code that contains the logic error. This field is only set
to true if the configuration sets the codeelimination option
to REMOVECODE and does not set the implicit option to
ALL. This suggests that the tool developers potentially
need to test many configurations of a static analysis. This is
almost impossible to achieve, as testing the correctness of
any one configuration is a daunting task (see below).

Challenge 2: Appropriate input programs with oracles
are not easy to obtain when testing a static analysis tool. To
catch the above error, FlowDroid, using a configuration that
can execute the erroneous code, needs to be run on an input
program that contains a method that meets only conditions
(1)-(3) or (3)-(4). Indeed, when searching DroidBench, the
most popular benchmark for Android taint analysis, we found
only 1 out of 190 programs (ActivityLifecycle1) contains a
method that would allow the detection of this logic error.

Challenge 3: Debugging to understand the cause of an
implementation error in a static analyzer is a challenging task.
While researchers have developed some tools to support such
a task [14], [15], it still involves extensive manual efforts.
For the example in Figure 1, after observing that FlowDroid
unexpectedly does not produce a tainted flow in an input
program (e.g., ActivityLifecycle1), the developer is likely to
find that there is a missing call graph edge to the method that
calls the sink method. However, the task of determining the
cause of the missing edge requires the developer to understand
both FlowDroid’s code and the input program, requiring the
developers to inspect potentially large codebases with their
domain knowledge.

B. Partial Orders of Analysis Options

We aim to mitigate the above challenges through an approach
that greatly improves the automation of the testing and
debugging of static analysis. At the core of our idea is the
adaptation of a concept called analysis options partial orders.
The idea of using partial orders to describe the relationship
between settings within a configuration option of static analysis
tools was recently presented by Mordahl and Wei [5], which
they use to study the impact of configuration options on the
results of two Android taint analysis tools.

The basic idea of these partial order relationships is that
increasing the soundness of an analysis should not remove true
positives and increasing the precision of an analysis should not
introduce new false positives, compared to a less sound/precise
configuration, respectively. Let C be a configuration of an
analysis tool, and let C [oi] return the setting of option oi in C .
Given two configurations C 1 and C2 , We say that C 1 v S C 2

(read as “C1 is at least as sound as C2”) if (1) there exists one
and only one option, oi , such that C1 [oi] = C2 [oi]; and (2)
C1 [oi] implements an analysis that is expected to be at least as

sound as that implemented by C2 [oi] (alternatively written in
terms of the settings C1 [oi] v S C2 [oi]). For precision partial
orders (denoted v P), the definition is the same except that
“sound” is replaced with “precise” in (2).

Using these definitions, Mordahl and Wei found potential
bugs in two Android taint analysis tools by comparing the
results of different configurations. Their idea is an instantiation
of metamorphic testing [16], [17] using these partial orders.
Metamorphic testing is an approach in which a known relation
between the outputs of related inputs to some piece of software
is used as an oracle for testing. For our situation, let f (C i , p)
be the set of results obtained by running an analysis tool with
configuration C i and input p, and let T P and F P extract the
set of true and false positives, respectively. The metamorphic
relations are C i v S C j → T P (f (C j , p)) � T P (f (C i , p)) ,
and C i v P C j → F P (f (C i , p)) � F P (f (C j , p)) . Thus, a
precision bug exists if C i v P C j � (F P (f (C i , p)) −
F P (f (C j , p)) = �), and a soundness bug exists if C i v S C j �
(T P (f (C j , p)) − T P (f (C i , p)) = �) for any p.
Furthermore, Mordahl and Wei introduced the concept of
implicit soundness partial orders to capture the fact that
changing precision is generally not expected to alter the set of
true positives. As such, when there is a precision partial order
C 1 v P C2 , they add the implicit soundness partial orders C 1

v S C 2 and C 2 v S C1 .
Despite the definition of partial orders of analysis options,

Mordahl and Wei have not addressed the challenges of testing
and debugging static analysis, discussed in Section II-A. First,
their definition of partial orders is limited, as it requires known
ground truths in the input programs or the analysis results be
classified to detect violations. This requirement is often
infeasible for large programs and/or for certain analyses (e.g.,
call graph analysis) (Challenge 2). Second, their goal of using
partial orders is to study the robustness of two Android analysis
tools; it is not clear how the violations may assist the debugging
process of static analysis tools (Challenge 3). Moreover, they
have not presented an automated and scalable approach to test
the tool configurations in the study; their approach was largely
manual, requiring test environments tailor-made to the tools
they were evaluating (Challenge 1).

III. CONFIGURATION AWARE TESTING AND DEBUGGING

We propose a holistic approach to improve the automation
of testing and debugging for static analysis, leveraging partial
orders of analysis option in all of its components. An overview
of our approach is depicted in Figure 2. A key design
decision to make such an approach generally useful is to make
reasonable assumptions about the inputs that are feasible for
tool developers to obtain. Our approach expects three inputs.

First, a configuration grammar of the target tool which
specifies all of its options and their settings. Second, a
specification of all the precision and soundness partial orders in
a tool’s configuration space. This specification acts as the oracle
of the relative expected behavior between tool configurations.
We argue that formally specifying a tool’s configuration space
and partial orders of its options not only increases the chance
for these configurations to be tested automatically; it also

552

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of configuration aware testing and debugging for static analysis. Gray boxes indicate steps for which we offer
two variations in implementation and evaluation (see Section III-B).

allows the users and even the developers to better understand
the capabilities of static analysis tools with less ambiguity. The
third input is a set of input programs. We improved the partial
order definition to make our approach flexible enough to detect
bugs with or without ground truths or labeled results (Section
III-A). This improvement makes most existing static analysis
benchmarks suitable as input to our approach.

As shown in Figure 2, the partial order aware testing phase
has two stages. The base configuration testing stage starts
with the default configuration of the tool. It generates a set of
partially-ordered configurations by mutating one setting from
the default configuration for each setting in the partial order
specification. It then runs the static analysis tool using each
partially-ordered configuration on each input program. The
results of these runs can be checked according to the defined
partial orders to identify violations. Note that violations in some
partial orders may only be observed when other options are
set (i.e., there are interactions in the configuration options). To
address this issue, we propose a second stage that randomly and
iteratively tests partial orders on more configurations (Section
III-B). The output of the testing phase is a collection of partial
order bugs, each containing violations (i.e., a specific pair of
configurations, the input program, and the partial order that
was violated) grouped by partial order.

For each detected partial order bug, we start the debugging
process. Violations are caused not only by the static analysis
tool, but also by features in the input program. The goal of
violation aware delta debugging is to reduce input programs to
their violation-inducing features while still preserving the
violations, in order to help the tool developers better localize the
causes of the violations (Section III-C). Overall, the outputs of
our approach are analysis results, partial order bugs/violations,
and reduced programs.

A. Improving Partial Order Definition

We make two improvements to Mordahl and Wei’s partial
order definition, with the goal of detecting partial order
violations in cases where ground truths in the input programs
are not known. As discussed earlier, this is critical for the
general applicability of our approach.

First, in addition to the implicit soundness partial orders
induced by an explicit precision partial order, we add an

TABLE I: Violation detection with (rows 2-5) and without (rows
6-7) ground truths. T P (C 1) is shorthand for T P (f (C1 , p)) for
some p. The first column shows the set relations between two
analysis results on program p, and the first row shows the
defined partial orders.

C 1 v S C 2 C 1 v P C 2

�C2 v P C 1 �C1 v S C 2

�C2 v S C 1

T P (C 1) − T P (C 2) = � � { C 2 v S C 1 }
T P (C 2) − T P (C 1) = � { C 1 v S C 2 } { C 2 v S C 1 }
F P (C 1) − F P (C 2) = � � { C 1 v P C 2 }
F P (C 2) − F P (C 1) = � { C 2 v P C 1 } �

C 1 − C 2 = � � { C 2 v S C 1

�C1 v P C 2 }
C 2 − C 1 = � { C 1 v S C 2 �

�C2 v P C 1 }

implicit precision partial order induced by an explicit soundness
partial order. Consider the soundness partial order C 1 v S C2 ; in
addition to the expectation that C 2 should never produce
more true positives than C1 , we also expect that the former
configuration should never produce more false positives than
the latter. In other words, increasing soundness should never
miss results that were previously present, whether true or false
positives. Thus, for the above soundness partial order, we
additionally add the implicit precision partial order C 2 v P C1 .

Second, consider the results of two configurations C 1 and
C 2 on an input program p. If f (C1 , p) � f (C2 , p), then
without ground truths, we can ascertain (T P (f (C1 , p)) �
T P (f (C2 , p))) � (F P (f (C 1 , p)) � F P (f (C2 , p))) . Note that
these are the conditions for satisfying the partial orders C 1

v P C 2 and C 2 v S C1 . So, although we cannot pinpoint the
violation to one partial order, if both partial orders are defined,
we can say that f (C1 , p) � f (C2 , p) is a violation of either
C 1 v P C 2 or C 2 v S C1 . We refer to all violations of a single
partial order as one partial order bug. While less precise than
Mordahl and Wei’s original approach, this approach addresses
Challenge 2 by allowing us to detect erroneous behavior without
ground truths. If we have ground truths defined for an input
program, we can fall back to Mordahl and Wei’s original
relations. Table I shows the possible violations produced by
comparing the results of two partially-ordered configurations,
both with and without ground truths.

553

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

1 p r o t e c t e d v o i d onCreate(Bundle s a v e d I n s t a n c e S t a t e) {
2 - s u p e r . o n C r e a t e (s a v e d I n s t a n c e S t a t e) ;

3 - s e t C o n t e n t V i e w (R . l a y o u t . a c t i v i t y _ l i f e c y c l e 1) ;
4 TelephonyManager telephonyManager =
5 (Te lephony M anager) g e t S y s t e m S e r v i c e (C o n t e x t .

TELEPH O NY _ S ERVICE) ;
6 S t r i n g i m e i = t e l e p h o n y M a n a g e r . g e t D e v i c e I d () ; / / s o u r c e
7 URL = U R L . c o n c a t (i m e i) ;
8 }
9 p r i v a t e v o i d c o n n e c t () t h r o w s I O E x c e p t i o n {

10 URL u r l = new U R L (U R L) ; / / s i n k

Fig. 3: Excerpt of ActivityLifecycle1 from DroidBench.

B. Partial Order Aware Testing

We propose a two-staged testing approach that iteratively
constructs partially-ordered configurations, runs them on input
programs, and detects violations.

First, the base configuration testing stage starts with a default
configuration. This is because the default configuration and
those that are slight variations of it are most likely to be
what users initially try when using a static analysis tool. For
each defined partial order, we mutate the default configuration to
produce partially-ordered configurations. We then run the
static analysis on each input program with each generated
configuration, which produces a set of results. To detect
violations, we compare each pair of results on the same input
program from two partially-ordered configurations. We query
Table I to decide if a violation exists.

After the base configuration testing stage, we offer two
variations of random testing for different usage scenarios. This
stage uses different configurations than the default, so that
we can find partial order bugs that may be caused by the
interaction of multiple non-default options. As shown in Figure 2,
the random testing phase consists of four steps. First, we
select a seed configuration from which we mutate. Second,
we select some number of partial orders that have not yet
exhibited violations. Third, we select some number of input
programs to test on. Finally, we follow a similar workflow as the
base testing phase; mutating the seed using the selected partial
orders, running them on the selected input programs, and
looking for violations. The two variations (which affect the
gray boxes shown in Figure 2) for selecting the partial order
set P and input program set I are as follows:

• Exhaustive Testing: P is the set of all partial orders for
which we have not yet found violations, and I is the full
set of input programs. This variant performs thorough
testing of each selected seed configuration.

• Non-exhaustive Testing: P is a small random subset of
partial orders and I is a small random subset of input
programs. This variant favors faster iterations of the testing
phase, by running only a few partial orders on a handful
of input programs.

Running example: The bug discussed in Section II-A
was detected by the base configuration testing phase. Flow-
Droid’s partial order specification includes a partial order
R E M O V E C O D E v S P R O PA G AT E C O N S T S for the op-
tion codeelimination. In the base configuration testing phase,

we mutated FlowDroid’s default configuration to create 35
partially-ordered configurations, including a configuration that
sets codeelimination to REMOVECODE. Each configuration
was run on all DroidBench programs, and the results were
compared to look for partial order violations. On one program,
ActivityLifecycle1 (shown in Figure 3), the configuration that
sets REMOVECODE misses a true positive flow, from the
source on line 6 (getDeviceId) to the sink on line 10 (the
constructor of URL). Not shown is the app’s onStart callback,
which calls connect. The default configuration does report
this flow. Given the partial order R E M O V E C O D E v S

P R O PA G AT E C O N S T S , Table I (row 3, column 2) shows
that the absence of the true positive indicates a violation. We
output this partial order, the two partially ordered configurations,
and this missed true flow as a violation.

C. Violation Aware Delta Debugging

The input program on which a violation is detected is a useful
artifact for the debugging process. However, the part of the
input program that induces a violation may be a small portion of
the program. Therefore we aim to adapt delta debugging [18] to
reduce input programs to violation-inducing features, which
presents two primary challenges. The first challenge is adapting
the delta debugging process to our approach. The second is
overcoming issues in efficiency.

To address the first challenge, we adapt delta-debugging to
be violation-aware. Specifically, when debugging a violation
between two configurations C 1 and C 2 on program P , the
delta debugger iteratively proposes a reduced program P 0, tries
to compile P 0, and if it can, it runs the static analyzer under
configurations C 1 and C 2 on P 0. Depending on the partial
orders between C 1 and C 2 (the first row in Table I) and the
type of violation (the cells in Table I), we say P 0 preserves
the violation only if the same set relation between the results
of C 1 and C 2 holds as in the first column in Table I.

Most delta debugging techniques could be adapted using
the above idea. However, the second challenge (efficiency)
arises because each iteration of delta debugging requires two
potentially expensive steps: first, we have to try to recompile the
altered source code; second, we have to run the static analysis
tool under two configurations if the code compiles. Both of
these steps can take a long time, making this process inefficient,
especially for large programs with many classes where we
expect the majority of changes to result in syntactically
incorrect programs.

We address this challenge by performing delta debugging at
different granularities. We start with a coarse-grained approach,
which we adapted from Kalhauge and Palsberg [8]. Their
approach works at a class-level granularity, applying a reduction
algorithm to transitive closures of the nodes in the class
dependency graph (CDG) in order to avoid failed compilations
due to removal of classes on which other classes depend. After
performing this initial reduction, we switch to a finer grained
approach based on Hierarchical Delta Debugging (HDD) [9],
which can reduce at statement-level granularity. We call this

554

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

Build
Input

Tool names,

ECSTATIC Backend

Input:

input program Dispatcher

names, Configuration Spaces/
optional Partial Orders

parameters

Tool Dockerfiles

Input Program Scripts

1. Build 2. Start tool- and
image for input program-
each tool specific containers

Results
Storage Tool-Specific Image

Input Program-Specific Container

Analysis
Results, Test Debug

Violations,
Reduced

Programs

Fig. 4: The architecture of ECSTATIC’s backend.

approach CDG+HDD, and describe the implementation in
Section IV-A.

Our delta debugging approach is, to our knowledge, the
first to implement either of these ideas; namely, applying delta
debugging to metamorphic testing of static analyzers, and
running delta debugging in two passes in order to improve
efficiency. Note that, as discussed in other delta debugging
works [18], [19], if there are multiple underlying root causes
in the analysis tool that could result in the same violation, our
approach cannot guarantee that the root cause of the violation in
the reduced program is the same as the root cause of the
violation in the original. In this case, the user can iteratively
apply the framework, fixing root causes until the violation is
no longer detected.

Running example: Figure 3 shows an example of the delta
debugger’s operation on ActivityLifecycle1. The delta debugger
was able to remove the two yellow lines in the onCreate method
which were unnecessary for the flow to be detected, leaving
only the code that is necessary to taint URL. In addition, the
delta debugger removed two omitted lines after the sink in the
method connect.

D. Limitations

Our approach cannot find all bugs in a static analyzer. As
we detect bugs by comparing the results of two configurations,
a bug that is common to all configurations cannot be found.
Bugs that are not reflected in the analysis results also cannot
be detected. For example, if there exists a bug in FlowDroid’s
implementation of the IFDS algorithm [20], it would likely
affect all configurations and would not be able to be detected
by our approach.

IV. ECSTATIC DESIGN AND IMPLEMENTATION

To demonstrate the generality and effectiveness of the
approach presented in Section III and to allow this novel partial

order aware approach to be easily adopted to test and debug
many static analysis tools, we design and implement ECSTATIC,
an open-source, extensible, easy-to-use, and reproducible
framework. ECSTATIC’s design has two major parts: (1) a
backend that executes the testing and debugging phases on
the specified tools and benchmarks, and (2) a set of interfaces to
allow easy integration of tools and benchmarks. This was
inspired by the design of FuzzBench [21], an open-source
platform for evaluating fuzzers, developed by Google.

A. ECSTATIC Backend Design

The design goals of ECSTATIC’s backend are that it should
be (1) easy-to-use, (2) reproducible, and (3) scalable. Figure 4
shows its high-level architecture. ECSTATIC takes names of
tools and input programs, along with optional parameters that
control timeouts, random testing variant, and logging. The
dispatcher manages all testing and debugging executions with
three pieces of information of the integrated tools and input
programs: the tools’ partial orders and configuration spaces
(specified as JSON files), Dockerfiles [10] that build images for
each tool, and the scripts needed to build the input programs.
For each tool name the user supplies, the dispatcher first builds
a tool-specific Docker image, which downloads and builds the
tool. This image inherits from ECSTATIC’s base image, which
sets up ECSTATIC and its dependencies. Next, the dispatcher
starts a new Docker container, responsible for the testing and
debugging phases, for each specified benchmark in each tool-
specific image. The outputs (i.e., analysis results, detected
violations, and reduced programs) from different containers
are stored on the host machine, allowing the user to access
and analyze all results together.

The above architecture makes ECSTATIC’s backend satisfy
our design goals. By containerizing analyses inside of Docker,
ECSTATIC results are reproducible and platform independent.
ECSTATIC is easy-to-use and automated; users only need to
specify the names of the integrated tools and input programs.
ECSTATIC is also scalable, as we allow the testing and
debugging phases to be run in parallel, with the level of
parallelism tunable by the user.

Implementation: The dispatcher and testing phase were
implemented in 2855 lines of code in Python. In the random
testing phase, we re-used the GrammarCoverageFuzzer from
the Fuzzing Book [22] to generate seed configurations, and
implemented the violation detector following Table I.

We implemented the violation aware delta debugger in 2123
lines of code in Java. This delta debugger can be used for
debugging any static analysis tools targeting Java or Android
programs. The debugger performs both class-level CDG-based
debugging and AST-based hierarchical delta debugging, which
can reduce statement-level granularity. We use JavaParser [23] to
produce and manipulate the ASTs for both Java and Android, and
JDeps [24] to construct CDGs.

B. Tool and Input Program Integration Interface

ECSTATIC exposes interfaces to integrate new tools and
input programs with the goal of making the integration process

555

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

principled and easy. Using these interfaces, it typically requires
only dozens of lines of code to integrate a new tool or new
input programs (see Section IV-C).

Tool Integration Interface: To integrate a new tool in
ECSTATIC, four components need to be extended. First, a new
Dockerfile that sets up the analysis tool needs to be written.

Second, ECSTATIC’s interface called AbstractRunner needs
to be extended. This interface exposes 14 methods that can be
overridden to specify how the target tool is run. In most cases,
only 4 methods need to be overridden, in order to specify the
command to invoke the analysis tool, the commands to specify
the inputs and output, and the command to pass a timeout to
the analysis tool.

Third, ECSTATIC’s AbstractResultReader interface needs to
be extended. This interface specifies how to read and compare
the results of the target tool. AbstractResultReader requires the
tool results to be stored as a collection of individual results.
Typically, a common result form exists for different tools
performing the same client analysis. For example, all call
graph analysis results can be stored as a collection of call
graph edges. Therefore, if the new tool performs an analysis
that has already been integrated in ECSTATIC, the previously
extended AbstractResultReader can be reused.

Fourth, the partial orders of analysis options (used by the
violation detector) and configuration grammar (used by the
grammar-based fuzzer) need to be specified in two JSON files.

Input Program Integration Interface: In order to integrate
a new input program for testing, one simply needs to add
a b u i l d . s h script which downloads and builds the input
program. In order to perform delta debugging, one must
additionally supply an input program index as a JSON file.
This file lists, for each program, where its source code is, so
that ECSTATIC can pass this information to the delta debugger.

ECSTATIC also supports supplying ground truths with input
programs. ECSTATIC expects these ground truths to be speci-
fied in a format that can be read by the AbstractResultReader.
Providing ground truths will automatically switch ECSTATIC
from the ground-truth unaware violation detection method
specified in Section III to the ground-truth aware one.

C. Integrated Tools and Benchmarks

We have integrated four configurable static analysis tools
in ECSTATIC: FlowDroid [1], SOOT [2], WALA [4], and
DOOP [3]. SOOT, WALA, and DOOP are three widely used
frameworks for Java static analysis. For these three frameworks,
we called provided interfaces to build call graphs. FlowDroid
is the most popular static taint analyzer for Android.

Table II shows the number of analysis options and partial
orders in each tool (rows 2 and 3), as well as the number of
lines of code in each tool’s Dockerfile, reader, and runner (rows
4-6). Overall, it takes only a few lines of code to integrate a
tool into ECSTATIC: at most, 156 for FlowDroid.

The process of producing the configuration space specifica-
tion was roughly the same for each tool. Given an analysis
tool, we thoroughly explored the tool’s documentation and
used our domain expertise to identify options with clear

TABLE II: Configuration spaces of SOOT, WALA, DOOP,
and FlowDroid, and lines of code needed to integrate them
into ECSTATIC.

SOOT WALA DOOP FlowDroid
Options 20 5 20 22
Partial Orders 20 26 35 77

Dockerfile LoC 15 14 38 21
Reader LoC 12 19 26 16
Runner LoC 43 20 47 119
Total LoC 90 53 111 156

soundness/precision partial orders. We also performed a cursory
investigation of the code, in order to identify undocumented
options and additional documentation that could help infer
partial orders. This process typically took a handful of hours to
complete. This approach depends on the quality of the
documentation, which is often ambiguous, incomplete, or out
of date. Unfortunately, the alternative, a full code review to
understand the actual effect of each configuration option, is
infeasible. We hope our work motivates tool developers to be
more explicit about the configuration spaces in their tools,
which could directly be used as input to ECSTATIC.

SOOT’s configuration space is partitioned into “phases,”
which cover specific stages of the analysis. Such options are
specified as - p <phase> < o p t i o n > : < s e t t i n g > . For
example, configuration options for call graph construction
are accessed through the c g phase, which exposes various
subphases, such as SPARK (c g . s p a r k) . Each (sub)phase
may implement its own options. For example, setting - p
c g . s p a r k t y p e s - f o r - s i t e s : t r u e causes types to be
used as elements of points-to sets, rather than allocation sites.
We only included configuration options that were in the c g
phase of SOOT, since our experiments focus on detecting bugs
in SOOT’s call graph construction. The options in this phase
had clear soundness/precision effects on the tool’s output.

WALA neither provides a command line interface for call
graph construction, nor does it have documentation about
the configuration options that are available. Thus, we used
the WALA library to implement our own call graph driver.
To discover configuration options, we did a code review to
identify options in WALA’s call graph construction phase,
and exposed those options in our driver. For example, the
cgalgo option exposes various call graph algorithms, such as
RTA [25], VTA [26], k-call-site-sensitivity [27], and k-object-
sensitivity [28], [29], while handleStaticInit controls whether
calls to static initializers are modeled.

For DOOP, we followed this methodology and were ex-
haustive with regard to the documented configuration space.
The vast majority of DOOP’s partial orders are within its
analysis option, which exposes 32 settings, covering various
heap abstractions, analysis types, and sensitivities (e.g., context-
insensitive, 1-call-site-sensitive+heap, 3-object-sensitive+3-
heap). Unlike other tools, DOOP does not allow the user
to supply parameterized context-sensitive analyses via its
command line interface.

For FlowDroid, we began from the configuration space
defined by Mordahl and Wei, which was produced using a

556

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

similar methodology [5]. We modified inaccurate partial orders
from this space. Specifically, we changed the partial order alias-
flowins.TRUE v P aliasflowins.FALSE to aliasflowins.FALSE
v S aliasflowins.TRUE, which we deemed congruent with the
behavior of FlowDroid after performing a code review.

Some tools’ configuration spaces contain conflicts between
option settings. Mordahl and Wei identified one type of
conflict, which they referred to as disablement. Given two
options, o1 and o2, a setting s1 � o1 disables a setting s2

� o2 if �p, �C, f (C [o1 .s1 , o2 .s2], p) = f (C [o1 .s1], p).1 They
identified 5 disablement relationships in FlowDroid. We
do not explicitly handle these relationships, as they do not
impact the correctness of our approach; rather, they simply
result in wasted runs, as we compare the results of two
configurations which invariably behave the same. We did
encounter one non-disablement conflict in SOOT, wherein
enabling SPARK [30] via the cg.spark:on-fly-cg option throws
an exception when certain other options in the cg.spark
phase are set (e.g., cg.spark:VTA). We thus explicitly set
cg.spark:enabled to false in our SOOTRunner.

We have integrated four benchmarks in ECSTATIC:
CATS [11], [31], DaCapo [7], DroidBench [6], [1], [32],
and FossDroid [12], [5]. The CATS and DaCapo benchmarks
consist of Java programs, while DroidBench and FossDroid
consist of Android applications.

DroidBench is a popular benchmark consisting of 190 hand-
crafted Android APKs for which the ground truths are known.
The input programs are organized into 22 categories, each
aiming to test a taint analysis’ ability to handle certain elements
of Java and/or Android (e.g., Aliasing, Android Lifecycle, and
Reflection) [1]. This benchmark has been used in several works
to evaluate Android taint analysis tools [32], [5], [1], [33], [34].
DroidBench programs range from 8 to 236 lines of code. The
benchmark script for DroidBench consists of 8 lines of code.

The FossDroid benchmark consists of one real-world An-
droid application, Alarm Klock, originally collected by Mordahl
and Wei [5] from FossDroid [12], a repository for open-source
Android applications.2 True (16) and false (160) positives
of FlowDroid results running this program were manually
classified. This program consists of 3313 lines of code. The
benchmark script for FossDroid contains 12 lines of code.

CATS consists of 112 small Java programs, ranging from
2 to 36 lines of code in size. These microbenchmarks were
developed by Reif et al. in order to evaluate Java static analysis
tools [31]. This benchmark tests 15 Java features, including
Reflection, Virtual Calls, and Dynamic Proxies. The benchmark
script for CATS contains 8 lines of code.

DaCapo is a benchmark of open-source, real-world Java
programs [7] that has been widely used to evaluate static
analysis tools [29], [35], [36]. We integrated version 2006-10-
MR2, with modifications made to compile the programs with a

1 C [o.s] should be understood as a configuration equivalent to C except
with option o set to s.

2Alarm Klock was chosen to be integrated because it was the most-labeled
program in the FossDroid dataset Mordahl and Wei created, suitable for using as
an input program with ground truths.

Java 8 compiler. The 11 input programs contain an average of
85K lines of code, and the script to integrate DaCapo contains 9
lines of code.

V. EVALUATION

In this section, we set up the experiments and present
evaluation results of our partial order aware testing and
debugging on the integrated tools in ECSTATIC.

A. Experimental Setup

Research questions: Our evaluation aims to answer three
research questions.

RQ1: How effective is ECSTATIC’s partial order aware
testing? To answer RQ1, we measured the number of partial
order bugs detected on each tool. We discuss how the
characteristics of the input programs affect ECSTATIC’s ability
to detect bugs, and analyze the effectiveness of each stage of
the partial order aware testing.

RQ2: How effective is ECSTATIC’s violation aware delta
debugging? To answer RQ2, we compared the sizes of each
input program before and after running the delta debugger to
measure the reduction rate, and we compared CDG+HDD with a
baseline that performs only hierarchical delta debugging on the
ASTs (HDD-only).

RQ3: Are ECSTATIC’s outputs useful for tool developers?
To answer RQ3, we discuss the bugs we reported to tool
developers and their responses, including fixes that have been
made.

Inputs to ECSTATIC: In our experiments, we ran all three
Java static analysis tools (SOOT, DOOP, and WALA) on both
Java benchmarks (DaCapo and CATS), and FlowDroid on both
of the Android benchmarks, DroidBench and FossDroid. The
timeouts were determined through preliminary experiments
on the performance of each tool. In the base configuration
testing stage and the delta debugging phase, for SOOT, WALA,
and FlowDroid, we used a timeout of 15 minutes for each
microbenchmark program (CATS and DroidBench) and 30
minutes for each real-world program (DaCapo and FossDroid).
DOOP executions took significantly more time and memory;
we used a 30-minute timeout for each CATS program and
a 45-minute timeout for each DaCapo program in the base
configuration testing stage. We ran both variants of the random
testing phase, each for 24 hours with 4 CPU cores and a
smaller timeout for each program. For non-exhaustive testing,
we randomly selected at most 4 programs and 2 partial orders in
each iteration. All programs and partial orders were sampled at
least once during non-exhaustive testing. Each random testing
phase was run twice; because we observed little variance
between the results of the two trials, we report the results
of the first trial. We ran the delta debugger with a 6-hour
timeout for each violation. We did not run the random testing
and delta debugging phases with DOOP due to its large memory
footprint.

557

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Partial order bugs detected in each tool by dataset.
The bar in each cell differentiates bugs detected in the base
testing phase (left) and bugs detected only in the random testing
phase (right).

Microbenchmark
Real-world

Total

SOOT WALA
3 | 0 0 | 0

18 | 0 6 | 3
18 | 0 6 | 3

DOOP FlowDroid Total
0 | 0 26 | 2 29 | 2

12 | 0 2 | 7 38 | 10
12 | 0 28 | 7 64 | 10

Fig. 6: Reduction rate on partial order bugs.

Fig. 5: Number of programs that each partial order bug appeared
in.

Experimental environment: Experiments were conducted
within Docker containers based on a Ubuntu 20.04 image.
These containers were deployed across three machines. All
experiments for the testing phases of SOOT, WALA, and
DOOP, as well as random testing for FlowDroid were con-
ducted on a server with 376GB of RAM and 2 Intel Xeon Gold
5218 16-core CPUs @ 2.30GHz running Ubuntu 18.04. Base
configuration testing for FlowDroid was run on a workstation
with 32GB of RAM and an Intel Core i7-9800X CPU @
3.8GHz running Ubuntu 20.04. Delta debugging was conducted
on a server with 141GB of RAM and 2 Intel Xeon Silver 4116
12-core CPUs @ 2.10GHz running Ubuntu 16.04.

B. RQ1: Performance of Partial Order Aware Testing

Table III shows the number of partial order bugs detected
by ECSTATIC for each tool and benchmark. For Java tools,
microbenchmark refers to CATS; for FlowDroid, it refers to
DroidBench. Real-world refers to DaCapo for Java, and
FossDroid for FlowDroid.

Overall, ECSTATIC detected 74 partial order bugs in the
four tools. Even without ground truths in the input programs,
we were able to detect violations in SOOT, WALA, and DOOP.
The random testing phase was able to detect 10 additional bugs
in WALA and FlowDroid that were not detected in the base
testing phase; these are bugs that only appear under certain
option interactions not in the default configuration.

Over 24 hours, both exhaustive and non-exhaustive random
testing produced similar results. Exhaustive testing found 9 new
bugs, and non-exhaustive testing found 8 new bugs, with an
intersection of 7. The exhaustive variant alone was able to find
violations of the partial orders cgalgo.RTA v P cgalgo.CHA
and staticmode.NONE v P staticmode.DEFAULT in FlowDroid.
The non-exhaustive variant alone was able to detect a violation
in WALA of the partial order cgalgo.1-CFA v P cgalgo.0-1-
CFA. That the two approaches found different bugs in 24 hours

Fig. 7: A comparison showing the performance of CDG+HDD
compared to HDD-only on real-world benchmarks.

indicates the best strategy may be to run both approaches
concurrently. We confirmed this by running the random testing
experiments for 48 hours, and found cases in which a 24-
hour exhaustive testing run found violations that a 48-hour
non-exhaustive run missed, and vice-versa.

Figure 5 shows the number of programs each partial order
bug was detected in. 35 out of the 74 partial order bugs
were detected in only one program. Only 5 partial order bugs
appeared in programs in more than one dataset. This illustrates
the necessity of having large, diverse sets of programs on which
to test static analysis tools.

C. RQ2: Performance of Violation Aware Delta Debugging

Overall, the two-staged delta debugger (CDG+HDD) was
able to reduce programs by an average of 26% (7167 LoC),
as opposed to 14% when run with only hierarchical delta
debugging (HDD-only). This difference was even more dra-
matic for real-world programs; CDG+HDD reduced real-world
programs by an average of 50% (29187 LoC), compared to
6% by HDD-only.

Figure 6 shows the reduction rate per partial order bug,
colored by tool. We can see that the reduction rates for programs
that triggered violations in SOOT and WALA are higher on
average; this is due to all but one of FlowDroid’s inputs being a
microbenchmark. CDG+HDD did not have much impact
over HDD-only for microbenchmarks. This is expected, as
microbenchmarks usually have only a single class. Figure 7
compares reduction on real-world programs between HDD-
only and CDG+HDD. At most, the two-stage delta debugger
was able to reduce a program, hsqldb , by 99%, from 65487
lines to 29 (on this same case, HDD-only removed only 285
lines). This illustrates the utility of CDG+HDD for reducing
input program sizes to assist debugging, especially for large
real-world programs.

558

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

1 / / AnonymousClass1.apk
2 L o c a t i o n L i s t e n e r l o L i = new L o c a t i o n L i s t e n e r () { . . . } ;
3 l o c a t i o n M a n a g e r . r e q u e s t L o c a t i o n U p d a t e s (. . . , l o L i) ;
4
5 / / F l o w D r o i d
6 f o r (T y p e p o s s i b l e T y p e : p o s s i b l e T y p e s) {
7 i f (p o s s i b l e T y p e i n s t a n c e o f AnySubType)
8 t a r g e t T y p e = ((An y S ub T y p e) p o s s i b l e T y p e) . g e t B a s e () .

g e t S o o t C l a s s () ; }

Fig. 8: Code from DroidBench’s AnonymousClass1.apk, and
code from FlowDroid which failed to soundly model a callback
registration.

In terms of time, CDG+HDD delta debugging hit the 6
hour timeout for all but two real-world violations. These
were a violation on SOOT from hsqldb , which took 4.6
hours, and a violation on FlowDroid from Alarm Klock, which
took 42 minutes. The delta debugger never timed out on
microbenchmarks, taking a mean of 15 minutes and a maximum
of 57 minutes.

D. RQ3: Usefulness of ECSTATIC for Developers to Debug

We reported a subset of the violations detected in the base
testing phase to tool developers, so as not to flood developers
with many bug reports at once. Specifically, we reported all
the partial order bugs detected from the base testing phase
from the microbenchmarks for SOOT and FlowDroid (3 and
26, respectively), all 12 bugs for DOOP, and 1 bug for
WALA, totaling 42. For each bug, we provided developers our
expectation of the tool behavior, the unexpected differences
(i.e., the violation), and the associated input programs.

As of time of writing, we have heard back from developers
of FlowDroid, WALA, and DOOP. For FlowDroid, we have
received confirmation that four of the issues we raised were
real (with three having been fixed) and discussion on a fifth
is ongoing. For WALA, it was confirmed that we found
unexpected behavior, and we are still in communication with
the developer to try to find all of the root causes. Finally, for
DOOP, the developer acknowledged that the behavior was
unexpected, and confirmed it may be caused by a bug, but that it
could also be caused by internal heuristics DOOP uses to
control its performance. So far, no developer has communicated
with us that behavior we reported is intended or is otherwise
not indicative of a bug. Figure 1 shows part of the bugfix of a
FlowDroid bug; fixing this bug in the REMOVECODE setting
involved modifying 48 lines of code, contributed by the first
author of this paper and the FlowDroid developer.

Another bug we found in FlowDroid was in the imple-
mentation of CHA [37]. Figure 8 shows code from Droid-
Bench’s AnonymousClass1.apk, which creates an instance of
an anonymous subtype of LocationListener (line 2), and then
registers it as a callback (line 3). Lines 6-8 show code from the
analyzeMethodForCallbackRegistrations method of FlowDroid,
in which a method call that is known to register callbacks is
processed to find callback registrations. Normally, the value
of possibleTypes on line 6 is determined through a points-
to analysis; however, when CHA is activated, the points-to

analysis is replaced with a dummy implementation which uses
the AnySubType type to indicate that loLi may be any subtype
of LocationListener. As shown on line 8, instead of iterating
through these potential subtypes, FlowDroid unsoundly treats
the variable as if it could only be of type LocationListener.
This bug has been fixed thanks to a bug report we submitted,
and now AnySubTypes are correctly iterated through [38].

For the bug we reported in WALA, we were able to
uncover unsoundness in WALA’s modeling of reflection via a
violation of the partial order reflect ion .STRING _ONLY v S

reflection .NONE . One violation of this bug was detected in a
DaCapo program, hsqldb . Our delta debugger on this viola-
tion reduced hsqldb from 65487 to 818 lines of code, which
we provided to the developer to reproduce the bug. Specifically,
the problem is that S T R I N G _ O N LY enables logic to insert a
synthetic target representing the runtime target of a reflective
call if the parameter to the reflective call is a string con-
stant (e.g., c l a s s . f o r N a m e (“ j a v a . l a n g . S t r i n g ”))
that WALA can resolve. However, when a configuration with
S T R I N G _ O N LY resolved a string, WALA did not model
any exceptions arising from the synthetic target. ECSTATIC
detected the missing edges out of catch blocks in runs with
STRING_ONLY.

VI. THREATS TO VALIDITY

There are several potential threats to the validity. First,
while the metrics we used to measure the effectiveness of
ECSTATIC have been adopted in previous work (e.g., input
size reduced by delta debugger [9]), these metrics may not
directly indicate a reduction in the manual debugging efforts of
tool developers. To mitigate this, we reported bugs to tool
developers using ECSTATIC outputs and show that they are
useful for fixing real bugs. Second, we only integrated tools
targeting Java-based languages. There could be unforeseen
hurdles to integrate analysis tools and benchmarks across
other programming languages. Third, our results may not fully
account for the randomness in the random testing phase. We
ran two trials and observed the variance was low. Fourth, the
partial order specification we used in the evaluation may not be
correct. In all the bugs we reported, no developer has reported
that our partial orders were incorrect. Furthermore, we hope this
work can inspire tool developers to be more explicit in defining
the expected behavior of different configuration options.

VII. RELATED WORK

Evaluation of Static Analysis Configurations: Mordahl
and Wei were the first to use partial orders to study bugs in two
Android taint analysis tools [5]. They defined partial orders
and found violations in these tools, indicating the necessity
of configuration aware testing. However, their work did not
address the challenges in testing and debugging static analysis,
as discussed in Section II-B. Our work is inspired by their idea
and proposes an automated process, adding partial order aware
testing that can exercise option interactions that do not occur
in the default configuration. Furthermore, we present violation
aware delta debugging to aid developers in fixing bugs.

559

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

Smaragdakis et al. formally modeled the design space
of object-sensitive analyses and evaluated the influences of
different object-sensitive analyses on precision and perfor-
mance [29]. Lhoták and Hendren empirically evaluated the
precision of context-sensitive analyses within SOOT [35]. Wei
et al. developed a Java numeric analysis based on WALA and
evaluated 216 configurations of their tool [36]. All three of
these works used the DaCapo benchmark for evaluation. Reif et
al. presented CATS to systematically evaluate the unsoundness
of call graph construction algorithms [31]. Other works focus
on evaluating FlowDroid and other Android taint analysis tools
against each other [1], [32], [34], [33], using the DroidBench
benchmark. We tested and debugged many tool configurations
evaluated in the above works and detected partial order bugs.
This result demonstrates that while past evaluations are useful
for comparing performances between tool configurations, they
lack the ability to test the correctness of tool implementations.
Furthermore, our goal in this work is not to compare tools, but
to provide a flexible framework to test and debug configurable
static analysis tools.

Testing and Debugging Static Analysis and Compilers: Do
et al. introduced VISUFLOW, a visual debugging environment
for FlowDroid [14]. Our approach complements their work
in that it provides specific diagnostic information for a bug.
Andreasen and Møller diagnosed JavaScript analyses that
suffered from imprecision and high memory usage when
analyzing jQuery [39], using a combination of JS Delta [40]
and the TAJS inspector [15], [41]. We similarly used delta
debugging to help reduce inputs, but our approach focuses
on addressing the lack of oracles when testing static analysis
and can be used to detect and help debug both precision and
soundness issues. Wei et al. presented an approach to diagnose
sources of imprecision in JavaScript analyses by monitoring
an analysis’ execution [42]. Our approach does not monitor
the analysis process, but rather, generates test cases to find
bugs by comparing the results of multiple configurations. As a
result, our approach is less intrusive and more general.

Our approach is also related to compiler testing, as static
analyses are often implemented within compilers. Metamorphic
testing is a common approach for testing compilers [43].
These approaches generally construct two programs that are
equivalent, and then compile them with the same compiler to
ensure the two executables behave the same. For example, Le
et al. propose an approach for generating equivalent programs
by inserting and deleting code in dead regions [44], [45]. Sun
et al. propose a more general approach to generating equivalent
variants of a program within their tool, Hermes, which allows
mutation of both dead and live regions of code [46]. While all
of these works consider some equivalence relation, our work
uses a subset-based metamorphic relation in order to find bugs.
Furthermore, our work is the first to apply such a relation to
static analysis in order to find bugs.

Configuration Testing: Combinatorial interaction testing
(CIT) is a common technique for testing configurable soft-
ware [47], [48], [49], [5], [50]. The goal of CIT is to generate
various configurations and execute those configurations in order

to maximize coverage of the software’s features. While these
approaches test configurations to find bugs, they require an
oracle to determine whether a test passed or failed. Our work
treats the partial order specification as the test oracle.

Several configuration fuzzing techniques have been devel-
oped. such as ConfigFuzz, which expands the program input
with configurations and fuzzes configurations using coverage
feedback [51]. Lee et al. presented a 2-stage fuzzer, POWER,
to explore configurations [52]. Fuzzing configurations is a
research direction we are interested in pursuing in the future.

VIII. CONCLUSIONS

In this work, we presented ECSTATIC, an easy-to-use,
extensible, and scalable open-source framework for automated
testing and debugging of configurable static analysis tools.
ECSTATIC exposes a simple frontend, allowing addition of
new tools and benchmarks using feasible-to-obtain inputs:
configuration grammar, partial order specification, and scripts
that typically are only dozens of lines of code. Given these
inputs, ECSTATIC leverages partial order relationships between
configuration options to iteratively test for bugs in configurable
static analysis, even without a ground-truth benchmark. EC-
STATIC then performs violation-aware delta debugging, in order
to produce reduced programs that exhibit bugs on analysis
tools, which are useful artifacts for debugging. We integrated
four popular static analysis tools–SOOT, DOOP, WALA, and
FlowDroid–as well as four benchmarks into ECSTATIC.

Using ECSTATIC, we found 74 partial order bugs across all
four tools, out of 158 defined partial orders, using both real-
world and microbenchmarks. We reported a subset of these bugs
to tool developers, leading to three bug fixes in FlowDroid and
ongoing discussions about potential bugs in WALA, FlowDroid,
and DOOP. ECSTATIC’s violation-aware delta debugging was
able to reduce real-world programs to an average of 50% of
their original size, with a maximum observed reduction of 99%.
In addition to showing the efficacy of ECSTATIC’s automated
testing approach, our results demonstrate the necessity of large,
diverse benchmarks for testing static analysis tools.

In the future, we plan to integrate more tools into ECSTATIC,
covering more target languages and types of analysis. We plan to
extend the core technique with more fuzzing strategies in
order to allow more sophisticated exploration of tools’
configuration spaces. We plan to research the potential of
comparing intermediate analysis states in addition to final
analysis results to allow detecting more bugs (Section III-D).
Additionally, we plan to add support for constraints in the
configuration space to handle conflicts between configuration
options. We also plan to extend support for the task of
debugging configurable static analysis past delta debugging
(e.g., by integrating fault localization techniques to help users
find bugs faster).

ACKNOWLEDGMENT

This work was partly supported by NSF grants CCF-2047682
and CCF-2008905, the NSF graduate research fellowship pro-
gram, and Eugene McDermott Graduate Fellowship 202006.

560

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

´

REFERENCES

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y.
Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for android apps,”
in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[2] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, ser. CASCON
’10. USA: IBM Corp., 2010, p. 214–224. [Online]. Available:
https://doi.org/10.1145/1925805.1925818

[3] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of
sophisticated points-to analyses,” SIGPLAN Not., vol. 44, no. 10, p.
243–262, oct 2009. [Online]. Available: https://doi.org/10.1145/1639949.
1640108

[4] “Wala,” https://github.com/wala/WALA, 2022.
[5] A. Mordahl and S. Wei, “The impact of tool configuration spaces on the

evaluation of configurable taint analysis for android,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 466–477. [Online]. Available:
https://doi.org/10.1145/3460319.3464823

[6] “DroidBench 3.0,” https://github.com/FoelliX/ReproDroid, 2021.
[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D.
Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and
analysis,” in OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
Oriented Programing, Systems, Languages, and Applications. New York,
NY, USA: ACM Press, Oct. 2006, pp. 169–190.

[8] C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency graphs,” in
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 556–566.

[9] G. Misherghi and Z. Su, “Hdd: Hierarchical delta debugging,”
in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 142–151. [Online]. Available:
https://doi.org/10.1145/1134285.1134307

[10] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[11] “The call-graph assessment & test suite,”
https://bitbucket.org/delors/cats/src/master/, 2022.

[12] “FossDroid,” https://fossdroid.com, 2022.
[13] “Flowdroid,” https://github.com/secure-software-engineering/FlowDroid/

issues/496, 2022, issue #496.
[14] L. N. Q. Do, S. Krüger, P. Hill, K. Ali, and E. Bodden, “Debugging

static analysis,” IEEE Transactions on Software Engineering, vol. 46,
no. 7, pp. 697–709, 2020.

[15] “Tajs,” https://github.com/cs-au-dk/TAJS, 2022.
[16] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” arXiv preprint arXiv:2002.12543,
2020.

[17] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and
Z. Q. Zhou, “Metamorphic testing: A review of challenges and
opportunities,” ACM Comput. Surv., vol. 51, no. 1, jan 2018. [Online].
Available: https://doi.org/10.1145/3143561

[18] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[19] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), 2018, pp. 184–191.

[20] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 49–61. [Online]. Available:
https://doi.org/10.1145/199448.199462

[21] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: An open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1393–1403. [Online]. Available:
https://doi.org/10.1145/3468264.3473932

[22] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, “Fuzzing
with grammars,” in The Fuzzing Book. CISPA Helmholtz Center
for Information Security, 2022, retrieved 2022-01-12 14:39:50+01:00.
[Online]. Available: https://www.fuzzingbook.org/html/Grammars.html

[23] “Javaparser,” https://javaparser.org, 2022.
[24] “jdeps,” https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jdeps.html,

2022.
[25] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++

virtual function calls,” in Proceedings of the 11th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’96. New York, NY, USA: Association
for Computing Machinery, 1996, p. 324–341. [Online]. Available:
https://doi.org/10.1145/236337.236371

[26] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai,
P. Lam, E. Gagnon, and C. Godin, “Practical virtual method call
resolution for java,” in Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA ’00. New York, NY, USA: Association
for Computing Machinery, 2000, p. 264–280. [Online]. Available:
https://doi.org/10.1145/353171.353189

[27] M. Sharir, A. Pnueli et al., Two approaches to interprocedural data
flow analysis. New York University. Courant Institute of Mathematical
Sciences . . . , 1978.

[28] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 1, p. 1–41, jan 2005. [Online]. Available:
https://doi.org/10.1145/1044834.1044835

[29] Y. Smaragdakis, M. Bravenboer, and O. Lhoták, “Pick your contexts well:
Understanding object-sensitivity,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 17–30. [Online]. Available:
https://doi.org/10.1145/1926385.1926390

[30] O. Lhoták and L. Hendren, “Scaling java points-to analysis using spark,” in
International Conference on Compiler Construction. Springer, 2003, pp.
153–169.

[31] M. Reif, F. Kübler, M. Eichberg, D. Helm, and M. Mezini,
Judge: Identifying, Understanding, and Evaluating Sources of
Unsoundness in Call Graphs. New York, NY, USA: Association
for Computing Machinery, 2019, p. 251–261. [Online]. Available:
https://doi.org/10.1145/3293882.3330555

[32] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint analysis tools
keep their promises?” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
331–341. [Online]. Available: https://doi.org/10.1145/3236024.3236029

[33] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe,”
in NDSS, vol. 15, no. 201, 2015, p. 110.

[34] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers:
Flowdroid/iccta, amandroid, and droidsafe,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 176–186. [Online]. Available:
https://doi.org/10.1145/3213846.3213873

[35] O. Lhoták and L. Hendren, “Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation,” ACM Trans.
Softw. Eng. Methodol., vol. 18, no. 1, oct 2008. [Online]. Available:
https://doi-org.libproxy.utdallas.edu/10.1145/1391984.1391987

[36] S. Wei, P. Mardziel, A. Ruef, J. S. Foster, and M. Hicks,
“Evaluating design tradeoffs in numeric static analysis for java,”
in Programming Languages and Systems. Springer International
Publishing, 2018, pp. 653–682. [Online]. Available: https://doi.org/10.
1007%2F978-3-319-89884-1_23

[37] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in Proceedings of the 9th

561

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

European Conference on Object-Oriented Programming, ser. ECOOP
’95. Berlin, Heidelberg: Springer-Verlag, 1995, p. 77–101.

[38] “Flowdroid,” https://github.com/secure-software-engineering/FlowDroid/
issues/503, 2022, issue #503.

[39] E. Andreasen and A. Møller, “Determinacy in static analysis for jQuery,” in
Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2014.

[40] “Js delta,” https://github.com/wala/jsdelta, 2022.
[41] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript,” in

Static Analysis, J. Palsberg and Z. Su, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 238–255.

[42] S. Wei, O. Tripp, B. G. Ryder, and J. Dolby, “Revamping javascript static
analysis via localization and remediation of root causes of imprecision,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016, p.
487–498. [Online]. Available: https://doi.org/10.1145/2950290.2950338

[43] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and L. Zhang, “A
survey of compiler testing,” ACM Comput. Surv., vol. 53, no. 1, feb 2020.
[Online]. Available: https://doi.org/10.1145/3363562

[44] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” SIGPLAN Not., vol. 49, no. 6, p. 216–226, jun 2014.
[Online]. Available: https://doi.org/10.1145/2666356.2594334

[45] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA 2015. New York,
NY, USA: Association for Computing Machinery, 2015, p. 386–399.
[Online]. Available: https://doi.org/10.1145/2814270.2814319

[46] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” SIGPLAN Not., vol. 51, no. 10, p. 849–863, oct 2016.
[Online]. Available: https://doi.org/10.1145/3022671.2984038

[47] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware
regression testing: An empirical study of sampling and prioritization,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 75–86. [Online]. Available:
https://doi.org/10.1145/1390630.1390641

[48] M. Cohen, P. Gibbons, W. Mugridge, and C. Colbourn, “Constructing
test suites for interaction testing,” in 25th International Conference on
Software Engineering, 2003. Proceedings., 2003, pp. 38–48.

[49] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surv., vol. 43, no. 2, feb 2011. [Online]. Available:
https://doi.org/10.1145/1883612.1883618

[50] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across
configurations: Implications for combinatorial testing,” SIGSOFT Softw.
Eng. Notes, vol. 31, no. 6, p. 1–9, nov 2006. [Online]. Available:
https://doi.org/10.1145/1218776.1218785

[51] Z. Zhang, G. Klees, E. Wang, M. Hicks, and S. Wei, “Registered report:
Fuzzing configurations of program options.” San Diego, CA, USA:
International Fuzzing Workshop (FUZZING) 2022, April 2022. [Online].
Available: https://dx.doi.org/10.14722/fuzzing.2022.23008

[52] A. Lee, I. Ariq, Y. Kim, and M. Kim, “Power: Program option-aware
fuzzerfor high bug detection ability.” 15th IEEE International Conference
on Software Testing, Verification and Validation (ICST) 2022, April 2022.

[53] O. Tange, “Gnu parallel 20211222 (’støjberg’),” Dec. 2021, GNU
Parallel is a general parallelizer to run multiple serial command
line programs in parallel without changing them. [Online]. Available:
https://doi.org/10.5281/zenodo.5797028

562

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 29,2023 at 20:20:35 UTC from IEEE Xplore. Restrictions apply.

