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ABSTRACT

Static analyses are powerful tools that can serve as a complement to

dynamic approaches such as testing. In order to ensure generality,

many static analysis tools are con�gurable. However, these con�g-

urations can make testing and debugging more di�cult. To address

this issue, we introduce a new tool, ECSTATIC, which leverages

partial order relations between analysis con�guration options to

automatically test and debug static analyzers, even without ground

truths. ECSTATIC’s results are reproducible by virtue of running

within Docker containers, and ECSTATIC provides clear extension

interfaces for users to add their own tools and input programs. We

evaluated ECSTATIC on four popular data�ow analysis tools, and

found 74 bugs in all four tools. We also found that ECSTATIC’s

novel two-staged delta debugging was able to reduce real-world

programs by 50%, compared to a baseline of 6%.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Automated static analysis.
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1 INTRODUCTION

Static analysis is a powerful technique that can be used to �nd

bugs, perform code optimizations, or prove myriad properties about

programs. The power of static analysis lies in the fact that it models

a program’s execution without running it. For the task of �nding
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bugs, speci�cally, static analysis can serve as a complement to

testing approaches, �nding bugs in parts of the code that may not

be executed by a test suite. However, because static analysis is

an undecidable problem, there is no one-size-�ts-all analysis. An

analysis designer needs to balance the needs for precision (i.e., the

quality of not over-approximating a program’s behavior, typically

measured through false positives), soundness (i.e., the quality of

not under-approximating a program’s behavior, typically measured

through true positives), and termination. Any individual use case

and target program can require a di�erent set of static analysis

algorithms in order to be analyzed with an optimal tradeo�s.

These tradeo�s are often implemented with con�guration op-

tions. While con�guration makes analysis tools more general, it

can also lead to bugs that only exist under certain con�gurations.

Even without con�guration, testing static analysis tools is di�-

cult, because the test cases are real programs about which some

property is known. These test cases are not trivial to create, and

adding a dimension of con�guration means that the expected out-

put of the analysis can be di�erent in di�erent con�gurations. Thus,

exhaustively testing the con�gurations of an analysis is infeasible.

In this work, we propose ECSTATIC, a new tool that enables

analysis designers and users to automatically test and debug con�g-

urable static analyses. The key idea that ECSTATIC leverages is that

of partial orders between analysis options – these are theoretical re-

lations between di�erent analysis algorithms that provide expected

relations between the algorithms’ outputs. For example, consider

object sensitivity [13, 18], a form of context sensitivity [17] for

object-oriented programs; object sensitivity uses objects’ allocation

sites as contexts, which allows an analysis to analyze method calls

di�erently for di�erent sequences of receivers. The algorithm is

parameterized with a natural number, : , that indicates the maxi-

mum context depth. All other things being equal, an analysis with

a higher : should be at least as precise as an analysis with a lower

: . In other words, an operator ⊑% (read as “is at least as precise as”)

induces a partial ordering over the values of object sensitivity. We

can also de�ne soundness partial orders using the ⊑( operator.

ECSTATIC uses these partial orders to perform automatic testing

and debugging of con�gurable static analysis tools. Given a tool’s

partial order speci�cation, a con�guration grammar, and a set of

input programs, ECSTATIC automatically constructs test cases to

exercise the partial orders, and reports potential bugs when par-

tial orders are violated. ECSTATIC then uses a new two-staged

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: An overview of the ECSTATIC approach. The over-

all operation of ECSTATIC is shown in the input program-

speci�c container. Note that the debugging phase is optional.

partial-order aware delta debugging technique to reduce the input

programs to their failure-inducing features. To achieve the design

goals of extensibility and reproducibility, ECSTATIC provides clear,

well-documented extension interfaces to add new tools and pro-

gram sets, and runs all of its analyses inside Docker containers.

We have integrated and tested 4 tools in ECSTATIC (SOOT,

WALA, DOOP, and FlowDroid). ECSTATIC found 74 bugs across

these four tools. We have so far reported 42 of them to develop-

ers, who have con�rmed that we found actual misbehaviors in the

analysis tools. We have made the implementation of ECSTATIC

available.1. We have also recorded a video demonstrating how to

use ECSTATIC2. Additionally, we have published a technical paper

describing ECSTATIC’s approach and evaluation in detail [15].

2 ECSTATIC OVERVIEW

Figure 1 shows the architecture and process of ECSTATIC. EC-

STATIC requires three inputs from the end user: the tool they wish

to test, the input program set they wish to test, and other optional

parameters, such as timeouts or number of processes to run in paral-

lel. These inputs assume that the user has integrated the desired tool

and input program set into ECSTATIC; the interfaces ECSTATIC ex-

poses to allow integration of tools and input programs are described

in Section 3. Given these inputs, ECSTATIC runs in two phases. In

the testing phase, ECSTATIC iterates through the partial orders in

the analysis tool’s speci�cation. For each partial order, ECSTATIC

constructs two con�gurations that di�er only in the option speci�ed

by the partial order; it then runs both con�gurations on each input

program. ECSTATIC compares the outputs of these con�gurations

against the expectations encoded by partial orders, and reports any

violations. There are two stages of the testing phase. In the base

testing stage, ECSTATIC uses the default con�guration as its base

to create new con�gurations. This means that every con�guration

1https://github.com/UTD-FAST-Lab/ECSTATIC
2https://youtu.be/siHp4PwUjbQ

run in the base testing stage will be, at most, one setting di�erent

from the default. In the random testing stage, ECSTATIC uses a

grammar-based fuzzer to generate a random base con�guration,

which is then mutated to produce partially-ordered con�gurations.

The base testing stage allows us to �nd bugs that exist in any option

individually, while the random testing stage allows us to �nd bugs

associated with more complex option interactions.

In the debugging phase, ECSTATIC applies a novel two-staged,

violation-aware delta debugging algorithm to reduce input pro-

grams to their failure-inducing features. The two-staged approach

addresses an important challenge in delta debugging static analysis

inputs. Speci�cally, both compiling an input program and running

static analysis on it can be slow, yet delta debugging relies on the

ability to iteratively make and check many changes. Our two-staged

delta debugger �rst applies a coarse strategy that makes modi�ca-

tions on the class level. Then, it applies more traditional hierarchical

delta debugging at the statement level. The debugging is violation-

aware as it uses the continued presence of a partial order violation

as its criteria for accepting a change to the target program. Full

details of these two phases are available in our technical paper [15].

As shown in Figure 1, the architecture of ECSTATIC is split into

two levels. The backend of ECSTATIC consists of analyses run

inside Docker [12] containers. This gives ECSTATIC the bene�ts

of portability and reproducibility, since the analysis is container-

ized in an environment that is consistent across di�erent machines.

The end user interacts with the dispatcher, which is a lightweight,

standalone program installed on the host machine. For each tool

name that the user supplies, the dispatcher uses the tool’s Dock-

er�le (see Section 3.1) to build a tool-speci�c image that contains

an executable version of the tool. Then, for each benchmark that is

speci�ed, the dispatcher creates a new Docker container; within

this container, ECSTATIC uses the benchmark’s build.sh script

(see Section 3.2) to build the benchmark. The dispatcher mounts

a common result directory from the host machine onto each con-

tainer. ECSTATIC’s testing phase was implemented with 2646 lines

of Python code, and its delta debugger, which can reduce Java

applications and Android APKs, was implemented in 2123 lines

of Java code. Instructions on running ECSTATIC are available at

https://github.com/UTD-FAST-Lab/ECSTATIC.

3 TOOL AND BENCHMARK INTEGRATION

ECSTATIC exposes interfaces to integrate new tools and bench-

marks, with the goal of making the integration process principled

and easy. Using these interfaces, we have integrated 4 analyzers

and 4 benchmarks in ECSTATIC (see Section 4). It typically requires

only dozens of lines of code to integrate a new tool or benchmark.
3.1 Tool Integration Interface

To integrate a new tool in ECSTATIC, four components need to

be extended. First, a new Docker�le that sets up the analysis tool

needs to be written. This Docker�le is responsible for downloading

and setting up the analysis tool, including any of its dependencies.

Second, ECSTATIC’s interface called AbstractRunner needs to be

extended. This interface exposes 14 methods that can be overridden

to specify how the target tool is run; however, most tools will only

need to implement four of these methods, as shown in Figure 2.

These methods specify the input program, the output �le, the time-

out, and the command to invoke the analyzer. Figure 2 shows the
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1 def get_input_option(self , benchmark_record: BenchmarkRecord) ->

List[str]:

2 output = f"--process -dir {benchmark_record.name}"

3 if len(benchmark_record.depends_on) > 0:

4 output = output + " " + f"--soot -class -path {':'.join(

benchmark_record.depends_on)}"

5 return output.split(" ")

6
7 def get_output_option(self , output_file: str) -> List[str]:

8 return f'--callgraph -output {os.path.abspath(output_file)}'.

split(" ")

9
10 def get_timeout_option(self) -> List[str]:

11 if self.timeout is None: return []

12 else:

13 return f"--timeout {self.timeout *60*1000}".split(" ")

14
15 def get_base_command(self) -> List[str]:

16 return "java -jar /SootInterface/target/SootInterface -1.0-

SNAPSHOT -jar -with -dependencies.jar -pp -w -p cg.spark on-

fly -cg:false ,enabled:true".split(" ")

Figure 2: ECSTATIC’s AbstractRunner interface and an im-

plementation on SOOT.

1 def import_file(self , file: str) -> Iterable[Flow]:

2 return [Flow(f) for f in ElementTree.parse(file).getroot ().

find('flows ').findall('flow')]

Figure 3: ECSTATIC’s AbstractReader interface and an im-

plementation on FlowDroid.

1 "name": "codeelimination",

2 "default": "PROPAGATECONSTS",

3 "levels": ["NONE", "PROPAGATECONSTS", "REMOVECODE"],

4 "orders": [{"left": "REMOVECODE", "order": "Precision", "right":

"PROPAGATECONSTS"}]

Figure 4: An example of the partial order speci�cation.

implementation of this interface for SOOT. Implementing the run-

ner is fairly straightforward for most tools, as long as they accept

inputs, outputs, and other options via the command line.

Third, ECSTATIC’s interface called AbstractReader needs to be

extended. This interface speci�es how to read and compare the

results of the target tool. Figure 3 shows an implementation of the

interface for FlowDroid. Typically, a common result form exists for

di�erent tools performing the same client analysis. For example,

all call graph analysis results can be stored as a collection of call

graph edges. Therefore, if the new tool performs an analysis that

has already been integrated in ECSTATIC, the previously extended

AbstractReader can be reused.

Fourth, the partial orders of analysis options (used to detect

partial order violations) and con�guration grammar (used by the

grammar-based fuzzer) need to be speci�ed in two JSON �les. An ex-

ample of the partial order speci�cation is shown in Figure 4; this �le

de�nes the precision partial order codeelimination.REMOVECODE

⊑% codeelimination.PROPAGATECONSTS in FlowDroid (line 6).

3.2 Benchmark Integration Interface

In order to integrate a new benchmark for testing, one simply needs

to add a build.sh script which downloads and builds the bench-

mark. In order to perform delta debugging, one must additionally

supply a benchmark index as a JSON �le. This �le lists where the

source code is for each program, so that ECSTATIC can pass this

information to the delta debugger.

Table 1: Con�guration spaces of the 8 integrated tools and

the lines of code it took to integrate them into ECSTATIC.

SOOT WALA DOOP FlowDroid

# Options 20 5 20 22

# Partial Orders 20 26 35 77

Integration LoC 90 53 111 156

Table 2: Partial order bugs detected in each tool by program

set. The bar in each cell di�erentiates bugs detected in the

base testing stage (left) and bugs detected only in the random

testing stage (right).

SOOT WALA DOOP FlowDroid Total

Microbenchmark 3 | 0 0 | 0 0 | 0 26 | 2 29 | 2

Real-world 18 | 0 6 | 3 12 | 0 2 | 7 38 | 10

Total 18 | 0 6 | 3 12 | 0 28 | 7 64 | 10

ECSTATIC also supports supplying ground truths with bench-

marks. ECSTATIC expects these ground truths to be speci�ed

in a format that can be read by the AbstractReader. Providing

ground truths will automatically switch ECSTATIC to a more pre-

cise ground-truth aware strategy.

4 EVALUATION

We have integrated 4 widely used static analysis tools for di�erent

programming languages into ECSTATIC: DOOP [8], SOOT [19],

WALA [4], and FlowDroid [6]. Table 1 shows the lines of code

required to integrate each tool. The number of lines of code to

integrate a tool was on average 103 and at most 156 (for FlowDroid).

Given that these analyzers have di�erent input/output formats, this

demonstrates it is easy to integrate a tool into ECSTATIC.

DOOP, SOOT, and WALA are all Java analysis frameworks. We

chose call graph construction as our client analysis. We used two

input program sets for these tools. First, the CATS microbench-

mark [2], which contains 112 small Java programs that were con-

structed to test the soundness of Java call graph analyses, and

DaCapo [7], which is a set of 11 real-world Java programs that are

widely used to evaluate static analyses [11, 18, 20]. While ground

truths are known for CATS, they were not in a format we could

integrate into ECSTATIC. DaCapo does not have known ground

truths. Therefore, we ran both program sets without ground truths.

For FlowDroid, we used two input program sets with ground

truths. We used DroidBench [1], which is a microbenchmark con-

sisting of 190 programs used to test taint analyzers. The ground

truths were available in AQL-Answer [16] format, which is what

FlowDroid’s reader consumes. Second, we used an app, AlarmKlock,

from the FossDroid [3] benchmark contributed by Mordahl and

Wei [14], which contains manually classi�ed ground truths.

4.1 Results

Table 2 shows the number of bugs detected by ECSTATIC’s testing

phase in the four analyzers we tested, broken down by program

set. ECSTATIC identi�ed 74 potential bugs; 10 were only found by

the random testing stage. We have reported 42 bugs to developers,

and are reporting the rest. Every developer response so far has con-

�rmed that we found aberrant behavior. So far, 3 bugs in FlowDroid

have been �xed, and �xes for WALA are in progress.
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Figure 5: Our two-staged delta debugging (CDG+HDD) com-

pared to hierarchical delta debugging (HDD-only) on real-

world benchmarks.

Figure 5 shows the reduction achieved by our delta debugger

on violations on real-world programs (i.e., FossDroid and DaCapo)

with a 6-hour timeout. We did not run delta debugging on DOOP,

because of memory and time requirements. Our two-staged delta

debugging approach (CDG+HDD) was able to achieve signi�cant

improvements over hierarchical delta debugging (HDD_ONLY).

The average reduction rate on real-world programs with our two-

staged approach was 50%, as opposed to 6% when we only used

HDD. At most, our two-stage delta debugger was able to reduce a

real program by 99%, while HDD achieved <1% reduction.

4.2 Related Work and Limitations

There are two broad categories of related work. First, our work is

related to those have focused on testing static analysis tools, e.g.,

[5, 21]. These works each focus on a single analysis, while ours

proposes and implements an approach that can test any con�g-

urable analyzer. Another tool, Visu�ow [10], aims to assist users

debug static analysis. It gives general, bug-agnostic information

(e.g., showing the IR and the call graph), while ECSTATIC provides

artifacts (i.e., violations and reduced programs) that are speci�c to

bugs that it detected. Second, various approaches apply metamor-

phic testing to compilers [9]; however, these works use equivalence

relations (i.e., ensuring that a compiler produces equivalent exe-

cutables for equivalent source code), while we utilize partial order

relations. ECSTATIC is limited to �nding bugs that exist in cer-

tain con�gurations; bugs that exist globally cannot be detected by

our approach. Similarly, tools without algorithmic con�gurations

cannot be tested by ECSTATIC.

5 CONCLUSIONS AND FUTUREWORK

ECSTATIC is a new framework for performing automatic testing

and debugging of con�gurable static analysis tools. ECSTATIC

leverages the precision and soundness partial orders between con-

�guration option settings to perform its work, even without ground

truths. We designed ECSTATIC with the goals of making it extensi-

ble and reproducible; ECSTATIC de�nes clear integration interfaces

and runs all of its analyses inside Docker containers. ECSTATIC

found 74 bugs across four popular static analysis frameworks for

Java and Android. We plan to continue reporting bugs to developers,

and to integrate more tools and benchmarks into ECSTATIC.
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