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ABSTRACT

Static analyses are powerful tools that can serve as a complement to
dynamic approaches such as testing. In order to ensure generality,
many static analysis tools are configurable. However, these config-
urations can make testing and debugging more difficult. To address
this issue, we introduce a new tool, ECSTATIC, which leverages
partial order relations between analysis configuration options to
automatically test and debug static analyzers, even without ground
truths. ECSTATIC’s results are reproducible by virtue of running
within Docker containers, and ECSTATIC provides clear extension
interfaces for users to add their own tools and input programs. We
evaluated ECSTATIC on four popular dataflow analysis tools, and
found 74 bugs in all four tools. We also found that ECSTATIC’s
novel two-staged delta debugging was able to reduce real-world
programs by 50%, compared to a baseline of 6%.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Automated static analysis.
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1 INTRODUCTION

Static analysis is a powerful technique that can be used to find
bugs, perform code optimizations, or prove myriad properties about
programs. The power of static analysis lies in the fact that it models
a program’s execution without running it. For the task of finding
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bugs, specifically, static analysis can serve as a complement to
testing approaches, finding bugs in parts of the code that may not
be executed by a test suite. However, because static analysis is
an undecidable problem, there is no one-size-fits-all analysis. An
analysis designer needs to balance the needs for precision (i.e., the
quality of not over-approximating a program’s behavior, typically
measured through false positives), soundness (i.e., the quality of
not under-approximating a program’s behavior, typically measured
through true positives), and termination. Any individual use case
and target program can require a different set of static analysis
algorithms in order to be analyzed with an optimal tradeoffs.
These tradeoffs are often implemented with configuration op-
tions. While configuration makes analysis tools more general, it
can also lead to bugs that only exist under certain configurations.
Even without configuration, testing static analysis tools is diffi-
cult, because the test cases are real programs about which some
property is known. These test cases are not trivial to create, and
adding a dimension of configuration means that the expected out-
put of the analysis can be different in different configurations. Thus,
exhaustively testing the configurations of an analysis is infeasible.
In this work, we propose ECSTATIC, a new tool that enables
analysis designers and users to automatically test and debug config-
urable static analyses. The key idea that ECSTATIC leverages is that
of partial orders between analysis options — these are theoretical re-
lations between different analysis algorithms that provide expected
relations between the algorithms’ outputs. For example, consider
object sensitivity [13, 18], a form of context sensitivity [17] for
object-oriented programs; object sensitivity uses objects’ allocation
sites as contexts, which allows an analysis to analyze method calls
differently for different sequences of receivers. The algorithm is
parameterized with a natural number, k, that indicates the maxi-
mum context depth. All other things being equal, an analysis with
a higher k should be at least as precise as an analysis with a lower
k. In other words, an operator Cp (read as “is at least as precise as”)
induces a partial ordering over the values of object sensitivity. We
can also define soundness partial orders using the Cgs operator.
ECSTATIC uses these partial orders to perform automatic testing
and debugging of configurable static analysis tools. Given a tool’s
partial order specification, a configuration grammar, and a set of
input programs, ECSTATIC automatically constructs test cases to
exercise the partial orders, and reports potential bugs when par-
tial orders are violated. ECSTATIC then uses a new two-staged
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Figure 1: An overview of the ECSTATIC approach. The over-
all operation of ECSTATIC is shown in the input program-
specific container. Note that the debugging phase is optional.

partial-order aware delta debugging technique to reduce the input
programs to their failure-inducing features. To achieve the design
goals of extensibility and reproducibility, ECSTATIC provides clear,
well-documented extension interfaces to add new tools and pro-
gram sets, and runs all of its analyses inside Docker containers.
We have integrated and tested 4 tools in ECSTATIC (SOOT,
WALA, DOOP, and FlowDroid). ECSTATIC found 74 bugs across
these four tools. We have so far reported 42 of them to develop-
ers, who have confirmed that we found actual misbehaviors in the
analysis tools. We have made the implementation of ECSTATIC
available.!. We have also recorded a video demonstrating how to
use ECSTATIC?. Additionally, we have published a technical paper
describing ECSTATIC’s approach and evaluation in detail [15].

2 ECSTATIC OVERVIEW

Figure 1 shows the architecture and process of ECSTATIC. EC-
STATIC requires three inputs from the end user: the tool they wish
to test, the input program set they wish to test, and other optional
parameters, such as timeouts or number of processes to run in paral-
lel. These inputs assume that the user has integrated the desired tool
and input program set into ECSTATIC; the interfaces ECSTATIC ex-
poses to allow integration of tools and input programs are described
in Section 3. Given these inputs, ECSTATIC runs in two phases. In
the testing phase, ECSTATIC iterates through the partial orders in
the analysis tool’s specification. For each partial order, ECSTATIC
constructs two configurations that differ only in the option specified
by the partial order; it then runs both configurations on each input
program. ECSTATIC compares the outputs of these configurations
against the expectations encoded by partial orders, and reports any
violations. There are two stages of the testing phase. In the base
testing stage, ECSTATIC uses the default configuration as its base
to create new configurations. This means that every configuration

!https://github.com/UTD-FAST-Lab/ECSTATIC
Zhttps://youtu.be/siHp4PwUjbQ
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run in the base testing stage will be, at most, one setting different
from the default. In the random testing stage, ECSTATIC uses a
grammar-based fuzzer to generate a random base configuration,
which is then mutated to produce partially-ordered configurations.
The base testing stage allows us to find bugs that exist in any option
individually, while the random testing stage allows us to find bugs
associated with more complex option interactions.

In the debugging phase, ECSTATIC applies a novel two-staged,
violation-aware delta debugging algorithm to reduce input pro-
grams to their failure-inducing features. The two-staged approach
addresses an important challenge in delta debugging static analysis
inputs. Specifically, both compiling an input program and running
static analysis on it can be slow, yet delta debugging relies on the
ability to iteratively make and check many changes. Our two-staged
delta debugger first applies a coarse strategy that makes modifica-
tions on the class level. Then, it applies more traditional hierarchical
delta debugging at the statement level. The debugging is violation-
aware as it uses the continued presence of a partial order violation
as its criteria for accepting a change to the target program. Full
details of these two phases are available in our technical paper [15].

As shown in Figure 1, the architecture of ECSTATIC is split into
two levels. The backend of ECSTATIC consists of analyses run
inside Docker [12] containers. This gives ECSTATIC the benefits
of portability and reproducibility, since the analysis is container-
ized in an environment that is consistent across different machines.
The end user interacts with the dispatcher, which is a lightweight,
standalone program installed on the host machine. For each tool
name that the user supplies, the dispatcher uses the tool’s Dock-
erfile (see Section 3.1) to build a tool-specific image that contains
an executable version of the tool. Then, for each benchmark that is
specified, the dispatcher creates a new Docker container; within
this container, ECSTATIC uses the benchmark’s build. sh script
(see Section 3.2) to build the benchmark. The dispatcher mounts
a common result directory from the host machine onto each con-
tainer. ECSTATIC’s testing phase was implemented with 2646 lines
of Python code, and its delta debugger, which can reduce Java
applications and Android APKs, was implemented in 2123 lines
of Java code. Instructions on running ECSTATIC are available at
https://github.com/UTD-FAST-Lab/ECSTATIC.

3 TOOL AND BENCHMARK INTEGRATION

ECSTATIC exposes interfaces to integrate new tools and bench-
marks, with the goal of making the integration process principled
and easy. Using these interfaces, we have integrated 4 analyzers
and 4 benchmarks in ECSTATIC (see Section 4). It typically requires
only dozens of lines of code to integrate a new tool or benchmark.
3.1 Tool Integration Interface

To integrate a new tool in ECSTATIC, four components need to
be extended. First, a new Dockerfile that sets up the analysis tool
needs to be written. This Dockerfile is responsible for downloading
and setting up the analysis tool, including any of its dependencies.

Second, ECSTATIC’s interface called AbstractRunner needs to be
extended. This interface exposes 14 methods that can be overridden
to specify how the target tool is run; however, most tools will only
need to implement four of these methods, as shown in Figure 2.
These methods specify the input program, the output file, the time-
out, and the command to invoke the analyzer. Figure 2 shows the
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1 def get_input_option(self, benchmark_record: BenchmarkRecord) ->
List[str]:
output = f"--process-dir {benchmark_record.name}"
if len(benchmark_record.depends_on) > @
output output + " " + f"--soot-class-path {':'.join(
benchmark_record.depends_on)}"
return output.split(" ")

def get_output_option(self, output_file: str) -> List[str]:

return f'--callgraph-output {os.path.abspath(output_file)}"'.
split(" ")

def get_timeout_option(self) -> List[str]

if self.timeout is None: return []

else:

return f"--timeout {self.timeout*60*1000}".split(" ")

def get_base_command(self) -> List[str]:

return "java -jar /SootInterface/target/SootInterface-1.0-
SNAPSHOT -jar-with-dependencies. jar -pp -w -p cg.spark on-
fly-cg:false,enabled: true".split(" ")

Figure 2: ECSTATIC’s AbstractRunner interface and an im-
plementation on SOOT.

1 def import_file(self, file: str) -> Iterable[Flow]:
2 return [Flow(f) for f in ElementTree.parse(file).getroot().
find('flows').findall('flow')]

Figure 3: ECSTATIC’s AbstractReader interface and an im-
plementation on FlowDroid.

1 "name": "codeelimination",

2 "default": "PROPAGATECONSTS",

3 "levels": ["NONE", "PROPAGATECONSTS", "REMOVECODE"],

4 "orders": [{"left": "REMOVECODE", "order": "Precision", "right":

"PROPAGATECONSTS"}]

Figure 4: An example of the partial order specification.

implementation of this interface for SOOT. Implementing the run-
ner is fairly straightforward for most tools, as long as they accept
inputs, outputs, and other options via the command line.

Third, ECSTATIC’s interface called AbstractReader needs to be
extended. This interface specifies how to read and compare the
results of the target tool. Figure 3 shows an implementation of the
interface for FlowDroid. Typically, a common result form exists for
different tools performing the same client analysis. For example,
all call graph analysis results can be stored as a collection of call
graph edges. Therefore, if the new tool performs an analysis that
has already been integrated in ECSTATIC, the previously extended
AbstractReader can be reused.

Fourth, the partial orders of analysis options (used to detect
partial order violations) and configuration grammar (used by the
grammar-based fuzzer) need to be specified in two JSON files. An ex-
ample of the partial order specification is shown in Figure 4; this file
defines the precision partial order codeelimination. REMOVECODE
Cp codeelimination.PROPAGATECONSTS in FlowDroid (line 6).

3.2 Benchmark Integration Interface

In order to integrate a new benchmark for testing, one simply needs
to add a build. sh script which downloads and builds the bench-
mark. In order to perform delta debugging, one must additionally
supply a benchmark index as a JSON file. This file lists where the
source code is for each program, so that ECSTATIC can pass this
information to the delta debugger.
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Table 1: Configuration spaces of the 8 integrated tools and
the lines of code it took to integrate them into ECSTATIC.

SOOT WALA DOOP FlowDroid
# Options 20 5 20 22
# Partial Orders 20 26 35 77
Integration LoC 90 53 111 156

Table 2: Partial order bugs detected in each tool by program
set. The bar in each cell differentiates bugs detected in the
base testing stage (left) and bugs detected only in the random
testing stage (right).

SOOT WALA DOOP FlowDroid | Total

Microbenchmark 3|0 00 00 2602 | 29|2
Real-world 180 6|3 120 2|7 | 38|10
Total 18]0 613 12]0 28|7 | 6410

ECSTATIC also supports supplying ground truths with bench-
marks. ECSTATIC expects these ground truths to be specified
in a format that can be read by the AbstractReader. Providing
ground truths will automatically switch ECSTATIC to a more pre-
cise ground-truth aware strategy.

4 EVALUATION

We have integrated 4 widely used static analysis tools for different
programming languages into ECSTATIC: DOOP [8], SOOT [19],
WALA [4], and FlowDroid [6]. Table 1 shows the lines of code
required to integrate each tool. The number of lines of code to
integrate a tool was on average 103 and at most 156 (for FlowDroid).
Given that these analyzers have different input/output formats, this
demonstrates it is easy to integrate a tool into ECSTATIC.

DOOP, SOOT, and WALA are all Java analysis frameworks. We
chose call graph construction as our client analysis. We used two
input program sets for these tools. First, the CATS microbench-
mark [2], which contains 112 small Java programs that were con-
structed to test the soundness of Java call graph analyses, and
DaCapo [7], which is a set of 11 real-world Java programs that are
widely used to evaluate static analyses [11, 18, 20]. While ground
truths are known for CATS, they were not in a format we could
integrate into ECSTATIC. DaCapo does not have known ground
truths. Therefore, we ran both program sets without ground truths.

For FlowDroid, we used two input program sets with ground
truths. We used DroidBench [1], which is a microbenchmark con-
sisting of 190 programs used to test taint analyzers. The ground
truths were available in AQL-Answer [16] format, which is what
FlowDroid’s reader consumes. Second, we used an app, Alarm Klock,
from the FossDroid [3] benchmark contributed by Mordahl and
Wei [14], which contains manually classified ground truths.

4.1 Results

Table 2 shows the number of bugs detected by ECSTATIC’s testing
phase in the four analyzers we tested, broken down by program
set. ECSTATIC identified 74 potential bugs; 10 were only found by
the random testing stage. We have reported 42 bugs to developers,
and are reporting the rest. Every developer response so far has con-
firmed that we found aberrant behavior. So far, 3 bugs in FlowDroid
have been fixed, and fixes for WALA are in progress.
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Figure 5: Our two-staged delta debugging (CDG+HDD) com-
pared to hierarchical delta debugging (HDD-only) on real-
world benchmarks.

Figure 5 shows the reduction achieved by our delta debugger
on violations on real-world programs (i.e., FossDroid and DaCapo)
with a 6-hour timeout. We did not run delta debugging on DOOP,
because of memory and time requirements. Our two-staged delta
debugging approach (CDG+HDD) was able to achieve significant
improvements over hierarchical delta debugging (HDD_ONLY).
The average reduction rate on real-world programs with our two-
staged approach was 50%, as opposed to 6% when we only used
HDD. At most, our two-stage delta debugger was able to reduce a
real program by 99%, while HDD achieved <1% reduction.

4.2 Related Work and Limitations

There are two broad categories of related work. First, our work is
related to those have focused on testing static analysis tools, e.g.,
[5, 21]. These works each focus on a single analysis, while ours
proposes and implements an approach that can test any config-
urable analyzer. Another tool, Visuflow [10], aims to assist users
debug static analysis. It gives general, bug-agnostic information
(e.g., showing the IR and the call graph), while ECSTATIC provides
artifacts (i.e., violations and reduced programs) that are specific to
bugs that it detected. Second, various approaches apply metamor-
phic testing to compilers [9]; however, these works use equivalence
relations (i.e., ensuring that a compiler produces equivalent exe-
cutables for equivalent source code), while we utilize partial order
relations. ECSTATIC is limited to finding bugs that exist in cer-
tain configurations; bugs that exist globally cannot be detected by
our approach. Similarly, tools without algorithmic configurations
cannot be tested by ECSTATIC.

5 CONCLUSIONS AND FUTURE WORK

ECSTATIC is a new framework for performing automatic testing
and debugging of configurable static analysis tools. ECSTATIC
leverages the precision and soundness partial orders between con-
figuration option settings to perform its work, even without ground
truths. We designed ECSTATIC with the goals of making it extensi-
ble and reproducible; ECSTATIC defines clear integration interfaces
and runs all of its analyses inside Docker containers. ECSTATIC
found 74 bugs across four popular static analysis frameworks for
Java and Android. We plan to continue reporting bugs to developers,
and to integrate more tools and benchmarks into ECSTATIC.
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