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Abstract—Topological Data Analysis (TDA) utilizes concepts
from topology to analyze data. In general, TDA considers objects
similar based on a topological invariant. Topological invariants
are properties of the topological space that are homeomor-
phic; resilient to deformation in the space. The Euler-Poincaré
Characteristic is a classic topological invariant that represents
the alternating sum of the vertices, edges, faces, and higher-
order cells of a closed surface. Tracking the Euler characteristic
over a topological filtration produces an Euler Characteristic
Curve (ECC). This study introduces a computational technique to
determine the ECC of R2 or R

3 data; the technique generalizes to
higher dimensions. This technique separates landscapes of lower-
order homologies utilizing triangulations of the space.

Index Terms—Euler Characteristic Curve, Topological Data
Analysis, Data Mining

I. INTRODUCTION

Topological Data Analysis (TDA) treats a point cloud as a

sampling of a topological space and characterizes the data

based on its topological invariants [1]. Topological invari-

ants are measurable properties of topological spaces that are

unique up to homeomorphism. Some well-known topological

invariants include the cardinality, connectedness, compactness,

countability conditions, and the Euler Characteristic [2]. The

Euler-Poincaré Characteristic (EC), generalizes Euler’s equa-

tion to higher dimensions and is defined as:

χ(K) = V − E + F − C3 + C4... =

∞∑

k=0

(−1)kCk. (1)

For consistency with the higher-order cells characterizations,

substitutions are made for the traditional variables: vertices

(C0 = V ), edges (C1 = E), and faces (C2 = F ).

One method to examine the EC is to perform a filtration,

such as the sequence of topological spaces created as con-

necting proximity is increased. Recording the EC from each

topological space creates a trend of the EC against proximity

filtration, commonly referred to as the Euler Characteristic

Curve (ECC) [3]. The ECC captures global topological struc-

ture in a manner directly related to Persistent Homology (PH).

PH is a well-known and invaluable tool for TDA, however, its

exponential space and time complexity inhibits its application

to high-dimensional data and big data applications [4]–[6].

In this study ECC is characterized alongside PH [5], [7]

to identify applications where the ECC can perform fast
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computations to complement results from PH. Unlike PH,

ECC can capture topological invariant information using favor-

able memory and modest run-time complexities. A synthetic

analysis of R
2 and R

3 shapes is provided in this paper to

demonstrate the results of the approach. A brief correlation

analysis against R3 MRA Brain Artery trees is also included.

The remainder of this paper is organized as follows. Section

II contains background on TDA and topological invariants.

Section III identifies related studies and characterizations

of ECCs. Section IV introduces the triangulated approach

for ECC and dimensional homology separation. Section V

presents experimental results. Finally, Section VI remarks on

the experimental study and future work with ECC.

II. BACKGROUND

Formally, ECC and PH both examine the formation and

collapse of topological features (connected components, loops,

voids, and their higher dimensional analogues) over a filtration.

One popular filtration is to utilize the proximity between

points, increasingly adding edges, faces, and higher order

components to characterize the persistence of topological

features. Formally, a filtration can be expressed as a filtered

complex, KF that represents a nested sequence of graphs:

∅ = K0 ⊆ K1 ⊆ ... ⊆ KF . (2)

At any of these filtration spaces the EC (Equation 1) can be

shown to be the alternating sum of the existent topological

features, denoted as the Betti (β) count at that filtration [8]:

χ(Kj) = β0 − β1 + β2 − β3 + ... =

∞∑

k=0

(−1)kβk. (3)

So χ(Kj) represents the EC of an arbitrary topological space.

A filtration of the point cloud creates an ordered set of

topological spaces related to the connectivity distances, ǫ =
(ǫ0, ǫ1, · · · , ǫ∞) s.t. ∀i < j, ǫi < ǫj , used to create the space.

The EC can be evaluated for each member of the filtration to

compute: (i) the alternating sum of the Betti numbers, or (ii)

the alternating sum of representational components.

A simplicial complex contains dimensional representations

of the point cloud called simplices. Filtration of the simplices

based on their weights defines a nested sequence of graphs.

The filtration can be defined through various functions com-

paring paired samples of the data; however, we will focus on

using the proximity between points to compute the weights,



Fig. 1: The ECC for a sphere in R
3.

such as that used for fast construction of the Vietoris-Rips

complex [9]. With this filtration, we can rewrite the ECC as:

ECC(K) = [(ǫi,

∞∑

d=0

(−1)d|Kǫi,d|), for ǫi ∈ ǫ, (4)

where |Kǫi,d| is the count of d-simplices existent in the filtered

complex, Kǫi . Figure 1 plots the ECC of the surface of a

sphere; the x-axis represents the filtration values (ǫ) and y-

axis measures the EC at that ǫ distance.

III. RELATED WORK

The Euler-Poincaré Characteristic has been studied through

many domain perspectives. A brief history of the EC and

an overview of several famous applications are examined in

Richeson [2]. Various scientific applications including neu-

roscience, thermodynamics, cosmology, random fields, and

material science are detailed by Smith and Zavala [10].

The remainder of this section discusses work related directly

to TDA with the EC; these approaches typically mine through

filtrations of some domain data. Richardson and Werman

[3] demonstrate the use on images and 3D mesh surfaces.

Bobrowski and Skraba [11] examine the EC for detecting

homological percolation. Beltramo et al [12] examine Euler

Characteristic Surfaces, multi-parameter filtrations used for

image analysis.

The Euler Characteristic Transform (ECT) examines the

ECC in multiple directions. Turner et al [13] prove the collec-

tion of directional curves can summarize R
3 shapes utilizing

H0 and H1 persistence diagrams. Ghrist et al [15] reformulate

the ECT in terms of Euler calculus on constructible functions.

Curry et al [16] prove that any shape can be uniquely de-

termined with the ECT using a finite number of directions.

Multi-parameter ECTs have also been of recent interest in the

TDA community.

Crawford et al [8] introduce the Smooth Euler Characteristic

Curve (SECT), a smoothing function on the ECT for inte-

grating shape information into machine learning models. The

SECT is utilized to predict clinical outcomes in glioblastoma

by quantifying MRI images of tumors.

IV. OVERVIEW OF THE APPROACH

In this section the direct relation between the ECC and PH

is characterized. In addition, an alternative method is proposed

to compute and detect higher-order homologies within a point

cloud using properties of triangulation and the ECC. While

few scenarios are known where higher-order homologies are

salient, the potential to characterize and identify cases are

limited by the computational complexity of PH [17]. The

homology-separated ECC, a fast metric to compute, can al-

leviate these limitations.

While triangulation of a point cloud has been previously

studied for computing ECCs over a filtration of data [3],

[8], [11], [12], [18], a careful examination of the change of

homology alongside a sequential insertion process can reveal

neighborhood topological information not captured by the EC

alone. This approach is demonstrated for R
2 in Section IV-B

and for R3 in Section IV-C.

A. ECC and PH

A connection of ECC with PH is necessary to qualify

ECC as a compatible estimator. Section II provides a brief

introduction to the use of the ECC with a topological filtra-

tion. The extension of this definition for the proximity-based

triangulated ECC is covered here as preliminary material.

Recall that the EC represents the alternating sum of di-

mensional components in a space (Equation 1). Computing

the ECC from a triangulation is one method to associate the

input point cloud to a simplicial complex. Using the maximal

proximity distance ǫ between any two pairs of points in the

simplex yields a proximity filtration. The EC is recorded at

insertion of each triangle, in sequence by weight from smallest

to largest, to obtain the ECC (Equation 4); these curves capture

a proximity-series representation of the EC of a discrete point

cloud. Many applications have been built on the ECC due to its

significance as a topological invariant. While result analysis is

beyond the scope of this study, there is considerable interest in

understanding how the EC can be paired with recent advances

in data mining and machine learning applications [10], [18].

Figure 1 depicts the ECC computed on points sampled from

a sphere in R
3. The curve is generated using the triangulation

and proximity-based filtration described above. The positive

and negative influence of the dimensional components interact

across the filtration — leading to a characteristic curve that

suffers from significant noise due to contributions overlap-

ping ǫ-ranges of multiple dimensions. As discussed below,

separating the contributions by dimension permits a sharper

characterization of the topological structure of the point cloud.

Recall the relationship between the dimensional compo-

nents and Bettis of χ(KF ). The dimensional components

of K are compressed in a lossy manner to an integer; the

dimensional homologies of KF are also compressed into that

same topological invariant. One might wonder: if the Bettis of

χ(Kf ) has topological significance, can we infer topological

changes from the dimensional components through χ(K)?
Through strategic comparison of the triangulated shape this

decomposition becomes possible.



Relation to Kǫ
−1

V CEC ∆(χ) Adj. ∆(χ)
1 Independent [3,3,1] 1 0
2 Shares 1 Vertex [2,3,1] 0 0
3 Shares 2 Vertices [1,3,1] -1 Case(-1 or 0)
4 Shares 3 Vertices [0,3,1] -2 Case(-2, -1, or 0)
5 Shares 1 Edge [1,2,1] 0 0
6 Shares 1 Edge, 1 Vertex [0,2,1] -1 Case(-2, -1, or 0)
7 Shares 2 Edges [0,1,1] 0 0
8 Shares 3 Edges [0,0,1] +1 +1

TABLE I: VCEC changes for data in R
2; raw EC changes are

denoted ∆(χ) and adjusted EC are denoted Adj. ∆(χ)

Separation of the dimensional curves can result in individual

landscapes of the individual homology groups for further

analysis. This approach utilizes characteristics of generalized

d-tetrahedra to infer the change of homology of the space.

The result is separation of high-order features. Dimensional

topological landscapes provide a unique characteristic for

applications of topological data analysis.

B. The Euler Characteristic Curve in R
2

This work develops an alternate method to calculate ECC

that exploits the structure of triangles in higher dimensions to

separate dimensional ECCs. The approach utilizes an insertion

of higher-order triangles examined over the filtration of the

distance between points. This construction of ECC is presented

in R
2 to demonstrate the unique formation of H1 loops in

the space; insertion of triangles is utilized for separation. An

extension to R
3 in Section IV-C reveals the computational

shortcut used in the approach.

Consider all possible combinations of adding triangles to

a point cloud; insertion occurs sequentially by maximal edge

weight of the triangle. Triangles always have 3 vertices, 3
edges, and 1 face. Triangles can share several, or none, of

these components as they are enumerated. The sequence of

insertions can be computed as the Vector of Changes in

the Euler Characteristic (VCEC), a vector recording each

subsequent change in the EC. Formally, VCEC becomes [18]:

V CEC0 = ECC0

V CECi = ECCi − ECCi−1, for 0 < i,
(5)

and V CECi becomes an enumeration of vector changes to

the EC for each member of the filtration.

Instead of tracking the change in ECC at each triangle

insertion, this approach tracks the component changes (ver-

tices, edges, faces, cells) at each insertion. There are a finite

number of possibilities for the component changes with only a

subset impacting the topology in a filtration. The deterministic

changes to the EC in R
2 are described in Table I.

In R
2 only homology groups H0 and H1 are present. There

are two methods to separate these features within ECC. First,

the H0 connected components can be tracked by a UnionFind

structure to identify when connected components form within

the point cloud. Alternatively, the H1 components can be

computed using the VCEC dimensional changes. Either may

be removed from the original ECC to compute the other:

ECC − ECC0 = ECC1

ECC − ECC1 = ECC0

(6)

Counting H0 connected components is straightforward with

the UnionFind structure. Identifying H1 loops requires more

analysis. Surprisingly, formation of a loop can only happen in

a general case: two vertices are shared with some connected

component without an adjoining edge. This can happen with

3 vertices as well, and potentially form up to 3 H1 loops with

the insertion of one triangle. However, if any of the original

components are independent from one another, no loop is

formed from the adjoining edge addition.

Closure of a loop follows a similar result. The death of a

loop in the filtration happens only when a triangle is inserted

with only a face; all vertices and edges are constituent of a pre-

vious filtration. Change in the EC’s dimensional components

indicates the death of an H1 loop (Table I, Row 8).

Counting the changes noted above is relatively simple

when computing the ECC. However, some cases expose a

deterministic change in the homology of the space. If the

inserted triangle is independent (Table I, Row 1) and shares

no components with the existing space the EC is expected

to increase by 1, indicating an unconnected component (H0)

topological feature has been inserted into the space.

Adjusting the ECC to account for formation of lower order

topological features is captured in Table I. Note that only 5 R
2

cases induce a change in the EC; of these, 4 are recorded by the

Adjusted characteristic. This adjustment is made by tracking

the connected sets of vertices in the space, implemented

through a UnionFind algorithm and a mapped lookup table for

adjustments from ∆(Ck). Between the UnionFind algorithm

and tracking the change in vertices, edges, and faces, all

formations of H1 loops can be tracked through the filtration,

free of noise from lower dimensional components.

These observations do not hold for data in R
3. Higher

dimensional topological features begin to create noise in the

EC that is not easily manipulated to characterize H1 features

in the filtration. Higher-dimensional triangulations of the space

must be explored to generalize the approach to R
n.

C. The Euler Characteristic Curve in R
3

In R
3 there are many combinations of tetrahedrons that can

occur; however, only those that change the EC are of interest

to this approach. Table II lists the Euler tetrahedron insertions

that induce change in the ECC; additional combinations are

omitted for brevity. The formation of H1 features in the space

must also be considered; fortunately this is achieved with the

same adjusted values from Table I.

The goal of the EC in R
2 was to separate H0 components

and H1 loops. In R
3, an additional focus is directed to the H2

voids of the space. H2 voids are encompassed by connected

faces forming a surface, such as the interior of a sphere. The

goal of the adjusted ECC is to only increase when the birth of

a void occurs and only to decrease at the filling of the void.



Relation to Kǫ
−1

V CEC ∆(χ) Adj. ∆(χ)
1 Independent [4,6,4,1] +1 0
2 Shares 2 Vertices [2,6,4,1] -1 Case(-1 or 0)
3 Shares 3 Vertices [1,6,4,1] -2 Case(-2, -1, or 0)
4 Shares 4 Vertices [0,6,4,1] -3 Case(-3, -2, -1, or 0)
5 Shares 1 Edge, [1,5,4,1] -1 Case(-1 or 0)

1 Vertex
6 Shares 1 Edge, [0,5,4,1] -2 Case(-2, -1, or 0)

2 Vertices
7 Shares 2 Edges [0,4,4,1] -1 Case(-1 or 0)
8 Shares 2 Faces, [0,0,2,1] +1 Case(+1 or 0)

1 Edge
9 Shares 4 Faces [0,0,0,1] -1 -1

TABLE II: VCEC changes for data in R
3; raw EC changes

are denoted ∆(χ) and adjusted EC are denoted Adj. ∆(χ)

The simplest representation of a void is that of a tetrahedron

with no internal cell, only faces encapsulating the void. The

closing of the tetrahedron (birth) occurs when a face is inserted

adding no new vertices or edges. When inserting tetrahedrons

into the filtration many instances of this birth can occur. Death

of the void occurs when a tetrahedral cell is inserted, with no

faces, edges, or vertices. This mirrors the observations of R2.

Consider the birth and death instances of both R
2

(edge/triangle) and R
3 (triangle/tetrahedron). We can guaran-

tee detection of these cases due to the strategic insertion of

(d + 1)-tetrahedra into the space. In any dimension d, the

face of the representational (d + 1)-tetrahedron creates the

birth and the (d+1)-tetrahedron insertion with no lower-order

components represents a death.

The same strategy of mapping dimensional VCEC adjust-

ments is taken for the tetrahedral representations. We can

generalize our mapping approach to arbitrary dimensions by

examining the VCEC and UnionFind count. In addition, the

EC components and VCEC maps can be compared across

different cardinalities. H1 loops, for example, can be identified

in the R
3 filtration by comparing the leading components

when maps are stored as [∆(C0),∆(C1),∆(C2)]. Selection

of certain dimensions of topological features to analyze, such

as only enabling H2 adjusted ECC mappings, may provide

flexibility in representation for different applications.

D. An Algorithm for computing ECC in R
n

Extrapolating the ECC constructions in R
2 and R

3, we can

formalize ECC separation with Algorithm 1. The algorithm

inputs data in R
n and a parameter for the maximum dimension

of homology (Hd) to compute (d < n)1. The algorithm ini-

tializes a UnionFind data structure for tracking the connected

components of the space (Line 3) and creates sets for tracking

each dimensional component Ck for easy duplicate removal

when counting (Line 4).

The Delaunay triangulation (Line 5) is the primary bottle-

neck for the algorithm.2 The ECC utilizes generalized R
d+1

1The algorithm is defined for Rn but, since we only have ECC adjustments
in R

2 and R
3, the application is limited to data in these dimensions.

2The Delaunay triangulation is used here for expediency and can be
replaced with other methods to form a triangulation of the data.

Algorithm 1 Separated Euler Characteristic Curve

Input: PC, a point cloud of dimension R
n;

Hd, the dimension of homology to characterize
Output: ECC, a series of triangulated ECC values

1: function ECC(ǫ∞)
2: dmap← Adj.∆(χ)
3: uf ← UnionFind()
4: Ck ← {} for d
5: trid ← Delaunay(PC,Hd + 1)
6: for u ∈ trid do
7: trid[u][ǫ]← max(dist(i, j)∀i, j ∈ u)

8: for t ∈ ordered(trid) do
9: uf.insert((i, j)∀i, j ∈ t))

10: Ck.insert(tk∀k <= d)
11: V CECi = Cki

− Cki−1

12: ECC.insert(ǫ, dmap[V CECi] + ∆uf)

triangles for representing the Hd features of the space; there-

fore we set the triangulation to create (Hd + 1)-dimensional

representations. The triangulation are ordered by filtration

weight (Lines 6 - 7). Cases where the weight of two triangles

are equal are recorded for the same weight value in the ECC.

For each triangle, the constituent pairs of points are inserted

into the UnionFind algorithm to identify any new connected

components that form (Line 9). The change in connected com-

ponents adjusts the ECC to ignore cases identified in Sections

IV-B and IV-C. Each d-dimensional subset of the triangle is

inserted into dimensional sets (Line 10). For example, each

constituent vertex is inserted into the first set. If vertices

already exist there is no change; if new vertices are added

they are counted; likewise for edges, faces, and so on.

Finally, the ECC is computed at the filtration (Line 12). The

filtration weight is recorded with the ECC value. Depending

on the dimensions of homology to filter, the mappings can

have variable cardinality and only compare the leading order

change in the ECC components.

E. ECC Homology Separation

The ECC sequence considers topological features in all

dimensions; if instead the ECC is computed from a strategic

insertion of higher-dimensional components, such as tetra-

hedrons, lower-dimensional features can be anticipated and

removed from the results. In essence, by computing a series of

triangulations of the point cloud from 2 to d, the Hd homolo-

gies can be separated. This is the critical contribution of this

work; separation of ECC results by homological dimension

can provide insights into high-dimensional structures currently

unobtainable with other topological methods such as PH.

Canceling lower order features in each of the ECs being

computed create an inverted relationship:

ECCd(K) ⊂ ECCd−1(K) ⊂ ... ⊂ ECC0(K). (7)

Therefore, the ECC can be separated by dimension:

ECCd(K) = ECC(K)−
d−1∑

j=0

(−1)j(ECCj(K)). (8)





Measure Corr(Age) Corr(Gender) Corr(Hand)
ECC Max 0.553 0.071 0.029

Min 0.444 0.418 0.165
Avg 0.587 0.363 0.071
MaxT 0.456 0.096 0.222

MinT 0.336 0.089 0.045
Area 0.259 0.263 0.152

ECC0 Max 0.497 0.079 0.008
Min 0 0 0
Avg 0.481 0.134 0.057
MaxT 0.506 0.152 0.171

MinT 0.568 0.242 0.096
Area 0.178 0.154 0.107

ECC1 Max 0.340 0.132 0.037
Min 0.434 0.305 0.109
Avg 0.528 0.348 0.051
MaxT 0.262 0.311 0.051
MinT 0.169 0.128 0.269

Area 0.589 0.311 0.071

ECC2 Max 0.459 0.334 0.091
Min 0.197 0.019 0.177

Avg 0.541 0.465 0.087
MaxT 0.197 0.227 0.157
MinT 0.223 0.153 0.087
Area 0.533 0.271 0.033

TABLE III: Pearson Correlation Coefficients for the full set of

MRA results. Bold values represent best curve correlation, and

underlined values denote the best overall correlation. MaxT,

MinT are the filtration where the max, min values occurred.

cases (3, 14, 82) have a lower overall peak compared to the

older cases (104, 107, 105). The latter also have a greater

minimum value; these characteristics may be associated to the

H1 loops identified in previous studies that correlate with age.

However, Figure 4 only examines a sampling of the patients.

Evaluation of several ECC measures against the full set of

patients are provided in Table III.

While the ECC measures presented in Table III are cer-

tainly naive, they demonstrate potential measures related to

the results from Malott [20]. Further exploration of similarity

metrics, time-series analysis, and machine learning methods

are of interest for application of the ECC.

In some cases the correlation of the measurement with the

patient’s label is close to that of the previous study (Table I of

[20]). The best correlation with the Age labels was found with

the area under each patient’s ECC1, corresponding to the H1

loops of the data. This result is notably similar to the previous

study; the area under each ECC curve represents the total

length of persistence intervals in the filtration. The other two

labels, gender and handedness, do not have published baselines

for correlation. Handedness, overall, does not perform notably.

In the case of gender, the average value of the ECC2 curve

provides the best correlation. The presence of H2 voids in the

MRA scans have not been previously studied.

VI. CONCLUSION

This study has examined the Euler-Poincaré Characteristic

Curve (ECC) as a topological invariant and complementary

tool for existing methods of Topological Data Analysis, most

notably Persistent Homology (PH). The natural connection

between the ECC and PH is beneficial for studying topological

relationships within data sets. Classification, clustering, and

similarity search applications built upon the ECC require sig-

nificantly less memory resources than PH and can extend result

interpretation to larger datasets and of higher dimensions.

The ECC method proposed has the ability to separate

dimensional homological landscapes by taking advantage of

neighborhood information ignored in the traditional ECC

approach. Analysis of these landscapes can be complementary

to the results of PH for many applications, as has been shown

through study of MRA Brain Artery Trees.
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