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Abstract—Topological Data Analysis (TDA) utilizes concepts
from topology to analyze data. In general, TDA considers objects
similar based on a topological invariant. Topological invariants
are properties of the topological space that are homeomor-
phic; resilient to deformation in the space. The Euler-Poincaré
Characteristic is a classic topological invariant that represents
the alternating sum of the vertices, edges, faces, and higher-
order cells of a closed surface. Tracking the Euler characteristic
over a topological filtration produces an FEuler Characteristic
Curve (ECC). This study introduces a computational technique to
determine the ECC of R? or R® data; the technique generalizes to
higher dimensions. This technique separates landscapes of lower-
order homologies utilizing triangulations of the space.

Index Terms—Euler Characteristic Curve, Topological Data
Analysis, Data Mining

I. INTRODUCTION

Topological Data Analysis (TDA) treats a point cloud as a
sampling of a topological space and characterizes the data
based on its topological invariants [1]. Topological invari-
ants are measurable properties of topological spaces that are
unique up to homeomorphism. Some well-known topological
invariants include the cardinality, connectedness, compactness,
countability conditions, and the Euler Characteristic [2]. The
Euler-Poincaré Characteristic (EC), generalizes Euler’s equa-
tion to higher dimensions and is defined as:
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For consistency with the higher-order cells characterizations,
substitutions are made for the traditional variables: vertices
(Co =V), edges (C1 = F), and faces (Cy = F).

One method to examine the EC is to perform a filtration,
such as the sequence of topological spaces created as con-
necting proximity is increased. Recording the EC from each
topological space creates a trend of the EC against proximity
filtration, commonly referred to as the Euler Characteristic
Curve (ECC) [3]. The ECC captures global topological struc-
ture in a manner directly related to Persistent Homology (PH).
PH is a well-known and invaluable tool for TDA, howeyver, its
exponential space and time complexity inhibits its application
to high-dimensional data and big data applications [4]-[6].

In this study ECC is characterized alongside PH [5], [7]
to identify applications where the ECC can perform fast
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computations to complement results from PH. Unlike PH,
ECC can capture topological invariant information using favor-
able memory and modest run-time complexities. A synthetic
analysis of R? and R? shapes is provided in this paper to
demonstrate the results of the approach. A brief correlation
analysis against R®> MRA Brain Artery trees is also included.

The remainder of this paper is organized as follows. Section
IT contains background on TDA and topological invariants.
Section III identifies related studies and characterizations
of ECCs. Section IV introduces the triangulated approach
for ECC and dimensional homology separation. Section V
presents experimental results. Finally, Section VI remarks on
the experimental study and future work with ECC.

II. BACKGROUND

Formally, ECC and PH both examine the formation and
collapse of topological features (connected components, loops,
voids, and their higher dimensional analogues) over a filtration.
One popular filtration is to utilize the proximity between
points, increasingly adding edges, faces, and higher order
components to characterize the persistence of topological
features. Formally, a filtration can be expressed as a filtered
complex, K that represents a nested sequence of graphs:

0=KyCK; C..CKp. (2)

At any of these filtration spaces the EC (Equation 1) can be
shown to be the alternating sum of the existent topological
features, denoted as the Betti () count at that filtration [8]:
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So x(K;) represents the EC of an arbitrary topological space.

A filtration of the point cloud creates an ordered set of
topological spaces related to the connectivity distances, ¢ =
(€0, €1, ,€x0) S:t. Vi < j,€; < €j, used to create the space.
The EC can be evaluated for each member of the filtration to
compute: (i) the alternating sum of the Betti numbers, or (ii)
the alternating sum of representational components.

A simplicial complex contains dimensional representations
of the point cloud called simplices. Filtration of the simplices
based on their weights defines a nested sequence of graphs.
The filtration can be defined through various functions com-
paring paired samples of the data; however, we will focus on
using the proximity between points to compute the weights,
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Fig. 1: The ECC for a sphere in R?.

such as that used for fast construction of the Vietoris-Rips
complex [9]. With this filtration, we can rewrite the ECC as:
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ECC d|Ke d| for € €€, (4)

where | K, 4| is the count of d-simplices existent in the filtered
complex, K.,. Figure 1 plots the ECC of the surface of a
sphere; the x-axis represents the filtration values (¢) and y-
axis measures the EC at that e distance.

III. RELATED WORK

The Euler-Poincaré Characteristic has been studied through
many domain perspectives. A brief history of the EC and
an overview of several famous applications are examined in
Richeson [2]. Various scientific applications including neu-
roscience, thermodynamics, cosmology, random fields, and
material science are detailed by Smith and Zavala [10].

The remainder of this section discusses work related directly
to TDA with the EC; these approaches typically mine through
filtrations of some domain data. Richardson and Werman
[3] demonstrate the use on images and 3D mesh surfaces.
Bobrowski and Skraba [11] examine the EC for detecting
homological percolation. Beltramo et al [12] examine Euler
Characteristic Surfaces, multi-parameter filtrations used for
image analysis.

The Euler Characteristic Transform (ECT) examines the
ECC in multiple directions. Turner et al [13] prove the collec-
tion of directional curves can summarize R? shapes utilizing
Hjy and H; persistence diagrams. Ghrist ef al [15] reformulate
the ECT in terms of Euler calculus on constructible functions.
Curry et al [16] prove that any shape can be uniquely de-
termined with the ECT using a finite number of directions.
Multi-parameter ECTs have also been of recent interest in the
TDA community.

Crawford et al [8] introduce the Smooth Euler Characteristic
Curve (SECT), a smoothing function on the ECT for inte-
grating shape information into machine learning models. The
SECT is utilized to predict clinical outcomes in glioblastoma
by quantifying MRI images of tumors.

IV. OVERVIEW OF THE APPROACH

In this section the direct relation between the ECC and PH
is characterized. In addition, an alternative method is proposed
to compute and detect higher-order homologies within a point
cloud using properties of triangulation and the ECC. While
few scenarios are known where higher-order homologies are
salient, the potential to characterize and identify cases are
limited by the computational complexity of PH [17]. The
homology-separated ECC, a fast metric to compute, can al-
leviate these limitations.

While triangulation of a point cloud has been previously
studied for computing ECCs over a filtration of data [3],
[8], [11], [12], [18], a careful examination of the change of
homology alongside a sequential insertion process can reveal
neighborhood topological information not captured by the EC
alone. This approach is demonstrated for R? in Section IV-B
and for R? in Section IV-C.

A. ECC and PH

A connection of ECC with PH is necessary to qualify
ECC as a compatible estimator. Section II provides a brief
introduction to the use of the ECC with a topological filtra-
tion. The extension of this definition for the proximity-based
triangulated ECC is covered here as preliminary material.

Recall that the EC represents the alternating sum of di-
mensional components in a space (Equation 1). Computing
the ECC from a triangulation is one method to associate the
input point cloud to a simplicial complex. Using the maximal
proximity distance e between any two pairs of points in the
simplex yields a proximity filtration. The EC is recorded at
insertion of each triangle, in sequence by weight from smallest
to largest, to obtain the ECC (Equation 4); these curves capture
a proximity-series representation of the EC of a discrete point
cloud. Many applications have been built on the ECC due to its
significance as a topological invariant. While result analysis is
beyond the scope of this study, there is considerable interest in
understanding how the EC can be paired with recent advances
in data mining and machine learning applications [10], [18].

Figure 1 depicts the ECC computed on points sampled from
a sphere in R3. The curve is generated using the triangulation
and proximity-based filtration described above. The positive
and negative influence of the dimensional components interact
across the filtration — leading to a characteristic curve that
suffers from significant noise due to contributions overlap-
ping e-ranges of multiple dimensions. As discussed below,
separating the contributions by dimension permits a sharper
characterization of the topological structure of the point cloud.

Recall the relationship between the dimensional compo-
nents and Bettis of x(Kp). The dimensional components
of K are compressed in a lossy manner to an integer; the
dimensional homologies of K are also compressed into that
same topological invariant. One might wonder: if the Bettis of
X(K ) has topological significance, can we infer topological
changes from the dimensional components through x(K)?
Through strategic comparison of the triangulated shape this
decomposition becomes possible.



Relation to K. VCEC A(x) Adj. A(x)
1 Independent [3,3,1] 1 0
2 Shares 1 Vertex [2,3,1] 0 0
3 Shares 2 Vertices [1,3,1] -1 Case(-1 or 0)
4 Shares 3 Vertices [0,3,1] -2 Case(-2, -1, or 0)
5  Shares 1 Edge [1,2,1] 0 0
6 Shares 1 Edge, 1 Vertex [0,2,1] -1 Case(-2, -1, or 0)
7  Shares 2 Edges [0,1,1] 0 0
8  Shares 3 Edges [0,0,1] +1 +1

TABLE I: VCEC changes for data in R?; raw EC changes are
denoted A(y) and adjusted EC are denoted Adj. A(y)

Separation of the dimensional curves can result in individual
landscapes of the individual homology groups for further
analysis. This approach utilizes characteristics of generalized
d-tetrahedra to infer the change of homology of the space.
The result is separation of high-order features. Dimensional
topological landscapes provide a unique characteristic for
applications of topological data analysis.

B. The Euler Characteristic Curve in R?

This work develops an alternate method to calculate ECC
that exploits the structure of triangles in higher dimensions to
separate dimensional ECCs. The approach utilizes an insertion
of higher-order triangles examined over the filtration of the
distance between points. This construction of ECC is presented
in R? to demonstrate the unique formation of H; loops in
the space; insertion of triangles is utilized for separation. An
extension to R? in Section IV-C reveals the computational
shortcut used in the approach.

Consider all possible combinations of adding triangles to
a point cloud; insertion occurs sequentially by maximal edge
weight of the triangle. Triangles always have 3 vertices, 3
edges, and 1 face. Triangles can share several, or none, of
these components as they are enumerated. The sequence of
insertions can be computed as the Vector of Changes in
the Euler Characteristic (VCEC), a vector recording each
subsequent change in the EC. Formally, VCEC becomes [18]:

VCEC, = ECCy

VCEC; = ECC; — ECCi_l, for 0 < 1, )
and VCEC; becomes an enumeration of vector changes to
the EC for each member of the filtration.

Instead of tracking the change in ECC at each triangle
insertion, this approach tracks the component changes (ver-
tices, edges, faces, cells) at each insertion. There are a finite
number of possibilities for the component changes with only a
subset impacting the topology in a filtration. The deterministic
changes to the EC in R? are described in Table I.

In R? only homology groups Hy and H; are present. There
are two methods to separate these features within ECC. First,
the Hy connected components can be tracked by a UnionFind
structure to identify when connected components form within
the point cloud. Alternatively, the H; components can be

computed using the VCEC dimensional changes. Either may
be removed from the original ECC to compute the other:

ECC - ECCy = ECC,

6
ECC - ECC) = ECCy ©

Counting Hy connected components is straightforward with
the UnionFind structure. Identifying H; loops requires more
analysis. Surprisingly, formation of a loop can only happen in
a general case: two vertices are shared with some connected
component without an adjoining edge. This can happen with
3 vertices as well, and potentially form up to 3 H; loops with
the insertion of one triangle. However, if any of the original
components are independent from one another, no loop is
formed from the adjoining edge addition.

Closure of a loop follows a similar result. The death of a
loop in the filtration happens only when a triangle is inserted
with only a face; all vertices and edges are constituent of a pre-
vious filtration. Change in the EC’s dimensional components
indicates the death of an H; loop (Table I, Row 8).

Counting the changes noted above is relatively simple
when computing the ECC. However, some cases expose a
deterministic change in the homology of the space. If the
inserted triangle is independent (Table I, Row 1) and shares
no components with the existing space the EC is expected
to increase by 1, indicating an unconnected component (Hy)
topological feature has been inserted into the space.

Adjusting the ECC to account for formation of lower order
topological features is captured in Table 1. Note that only 5 R?
cases induce a change in the EC; of these, 4 are recorded by the
Adjusted characteristic. This adjustment is made by tracking
the connected sets of vertices in the space, implemented
through a UnionFind algorithm and a mapped lookup table for
adjustments from A(C}). Between the UnionFind algorithm
and tracking the change in vertices, edges, and faces, all
formations of H; loops can be tracked through the filtration,
free of noise from lower dimensional components.

These observations do not hold for data in R®. Higher
dimensional topological features begin to create noise in the
EC that is not easily manipulated to characterize H; features
in the filtration. Higher-dimensional triangulations of the space
must be explored to generalize the approach to R".

C. The Euler Characteristic Curve in R3

In R3 there are many combinations of tetrahedrons that can
occur; however, only those that change the EC are of interest
to this approach. Table II lists the Euler tetrahedron insertions
that induce change in the ECC; additional combinations are
omitted for brevity. The formation of H; features in the space
must also be considered; fortunately this is achieved with the
same adjusted values from Table I.

The goal of the EC in R? was to separate Hy components
and H; loops. In R3, an additional focus is directed to the Hy
voids of the space. H, voids are encompassed by connected
faces forming a surface, such as the interior of a sphere. The
goal of the adjusted ECC is to only increase when the birth of
a void occurs and only to decrease at the filling of the void.



Relation to Kc_, VCEC A(x) Adj. A(x)

1 Independent [4,6,4,1] +1 0

2 Shares 2 Vertices [2,6,4,1] -1 Case(-1 or 0)

3 Shares 3 Vertices [1,6,4,1] -2 Case(-2, -1, or 0)

4 Shares 4 Vertices [0,6,4,1] -3 Case(-3, -2, -1, or 0)

5 Shares 1 Edge, [1,5.4,1] -1 Case(-1 or 0)
1 Vertex

6  Shares 1 Edge, [0,5,4,1] -2 Case(-2, -1, or 0)
2 Vertices

7  Shares 2 Edges [0,4,4,1] -1 Case(-1 or 0)

8  Shares 2 Faces, [0,0,2,1] +1 Case(+1 or 0)
1 Edge

9  Shares 4 Faces [0,0,0,1] -1 -1

TABLE 1II: VCEC changes for data in R3: raw EC changes
are denoted A(x) and adjusted EC are denoted Adj. A(x)

The simplest representation of a void is that of a tetrahedron
with no internal cell, only faces encapsulating the void. The
closing of the tetrahedron (birth) occurs when a face is inserted
adding no new vertices or edges. When inserting tetrahedrons
into the filtration many instances of this birth can occur. Death
of the void occurs when a tetrahedral cell is inserted, with no
faces, edges, or vertices. This mirrors the observations of R2.

Consider the birth and death instances of both R?
(edge/triangle) and R? (triangle/tetrahedron). We can guaran-
tee detection of these cases due to the strategic insertion of
(d + 1)-tetrahedra into the space. In any dimension d, the
face of the representational (d + 1)-tetrahedron creates the
birth and the (d+ 1)-tetrahedron insertion with no lower-order
components represents a death.

The same strategy of mapping dimensional VCEC adjust-
ments is taken for the tetrahedral representations. We can
generalize our mapping approach to arbitrary dimensions by
examining the VCEC and UnionFind count. In addition, the
EC components and VCEC maps can be compared across
different cardinalities. H; loops, for example, can be identified
in the R? filtration by comparing the leading components
when maps are stored as [A(Cp), A(Cy), A(Cy)]. Selection
of certain dimensions of topological features to analyze, such
as only enabling Hs adjusted ECC mappings, may provide
flexibility in representation for different applications.

D. An Algorithm for computing ECC in R"

Extrapolating the ECC constructions in R? and R?, we can
formalize ECC separation with Algorithm 1. The algorithm
inputs data in R™ and a parameter for the maximum dimension
of homology (Hy) to compute (d < n)!. The algorithm ini-
tializes a UnionFind data structure for tracking the connected
components of the space (Line 3) and creates sets for tracking
each dimensional component Cj, for easy duplicate removal
when counting (Line 4).

The Delaunay triangulation (Line 5) is the primary bottle-
neck for the algorithm.”> The ECC utilizes generalized R*!

I'The algorithm is defined for R™ but, since we only have ECC adjustments
in R? and R3, the application is limited to data in these dimensions.

2The Delaunay triangulation is used here for expediency and can be
replaced with other methods to form a triangulation of the data.

Algorithm 1 Separated Euler Characteristic Curve

Input: PC, a point cloud of dimension R";
Hg, the dimension of homology to characterize
Output: ECC, a series of triangulated ECC values

1: function £FCC(ex)

2: dmap + Adj.A(x)

3 uf < UnionFind()

4: Cy {} for d

5: trig < Delaunay(PC,Hq + 1)

6: for u € trig do

7 triqulle] < max(dist(i, j)Vi,j € u)
8 for ¢ € ordered(triq) do

9: uf.insert((i, j)Vi,j € t))

10: C.insert(tyVk <= d)
1 VCEC; = Cy; — C,_
12: ECC. msert(e dmap[VCEC |+ Auf)

triangles for representing the H; features of the space; there-
fore we set the triangulation to create (Hy + 1)-dimensional
representations. The triangulation are ordered by filtration
weight (Lines 6 - 7). Cases where the weight of two triangles
are equal are recorded for the same weight value in the ECC.

For each triangle, the constituent pairs of points are inserted
into the UnionFind algorithm to identify any new connected
components that form (Line 9). The change in connected com-
ponents adjusts the ECC to ignore cases identified in Sections
IV-B and IV-C. Each d-dimensional subset of the triangle is
inserted into dimensional sets (Line 10). For example, each
constituent vertex is inserted into the first set. If vertices
already exist there is no change; if new vertices are added
they are counted; likewise for edges, faces, and so on.

Finally, the ECC is computed at the filtration (Line 12). The
filtration weight is recorded with the ECC value. Depending
on the dimensions of homology to filter, the mappings can
have variable cardinality and only compare the leading order
change in the ECC components.

E. ECC Homology Separation

The ECC sequence considers topological features in all
dimensions; if instead the ECC is computed from a strategic
insertion of higher-dimensional components, such as tetra-
hedrons, lower-dimensional features can be anticipated and
removed from the results. In essence, by computing a series of
triangulations of the point cloud from 2 to d, the H; homolo-
gies can be separated. This is the critical contribution of this
work; separation of ECC results by homological dimension
can provide insights into high-dimensional structures currently
unobtainable with other topological methods such as PH.

Canceling lower order features in each of the ECs being
computed create an inverted relationship:

ECCYK)c ECC¥Y(K)c ..c ECCYK). (1)

Therefore, the ECC can be separated by dimension:

d—1

)= (-

j=0

ECCYK)= ECC(K Y(ECCIH(K)).  (8)
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Fig. 2: Scalability of the ECC against data set size.

This briefly introduces homology separation methods for the
Triangulated ECC. Additional computational techniques and
salient topological data sets are necessary to begin further
exploration of this relationship in higher dimensions.

V. EXPERIMENTAL RESULTS

Synthetic data was generated to demonstrate the scalability
of the approach in Section V-A and the separability of dimen-
sional components in Section V-B. Real-world ECC analysis
of MRA Brain Artery trees are compared to previously pub-
lished PH correlation results in Section V-C. All experiments
in this section were performed on an AMD Ryzen 7 3800X
8-Core Processor @ 3900MHz with 64GB of RAM.

A. Synthetic Scalability

Scalability is one of the primary benefits of this work. The
ECC complexity is dominated by the triangulation of the input
data; the remaining computation is a counting problem that can
be easily computed with linear programming [18].

Figure 2 charts the scalability of the ECC for increasing
number of points. Each curve is measuring a different di-
mension of synthetically generated d-spheres in R*1. As the
number of points increase the runtime grows; however the rate
of growth compared to a more complex approaches, such as
PH, is modest. Where the ECC approach excels is in memory
complexity; PH is typically bounded by memory [4], [6].

B. Synthetic Data Analysis

Figure 3 presents the £C'C plot (left), and a PH comparison
(right) for a sphere (top row) and a torus (bottom row). These
shapes are fundamental in Topology and are expected to emit
structural differences when compared.

The ECC plot (left) is the raw ECC computed over the
triangulated filtration separated using the method described in
Section 1V. Here the ECC, ECCy, and ECC’y are computed
to compute £'C'C5. This reduces the cost of determining the
ECC at the highest dimension.

The right plots of Figure 3 overlay the FCCy + ECCy
curves with the H; and H, barcode results from PH. The
barcode results do not fully depict the filtration captured
through the ECC separation approach; instead they are approx-
imated from a sparse distance matrix recording edges of each
tetrahedron inserted. The edges are all assigned the weight of
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Fig. 3: Analysis of R® sphere (top row) and torus (bottom
row) data: ECC curves (left column), and the ECC + ECCy
curve overlayed with I, and H> PH results (right column).

—— Caseld (Agel9 )
Case3 { Age20 )
—— CaseB2 (Age22)
—— Casel07 (Age68 )
40 g —— Casel04 (AgeT3 )
—— Casel05 ( Age79 )

50

30

20 30
Distance (g)

Fig. 4: The ECC for several R® Brain Artery data sets. Legend
shows patient age labels. Statistics of these trends were utilized
for evaluation against the entire set of patients with correlation
results in Table IIL

the tetrahedron itself, resulting in all edges and the tetrahedron
appearing in the filtration simultaneously for PH.

C. Real-world Data Analysis

This section examines the use of ECC to analyze MRA
Brain Artery Trees in R®. This data set contains brain artery
trees for n = 98 labeled patients; patient labels include age,
gender, and handedness. The data for each patient contains
roughly 100k points. Previous studies utilizing PH [19], [20]
have identified correlations between the [; persistence in-
tervals (loops) and the ages of the patients; however, the
results with PH had to use additional subsampling of the test
data. In this study the MRA Brain Artery Trees are reduced
to 3000 points through k-means clustering (the previous PH
studies used up to 2000 points). During experimentation it
was observed larger samplings of the MRA scans generally
increased the ECC correlation measures.

Figure 4 depicts the EC'C' results for a sampling of several
of the oldest and youngest patients in the data set. The younger



Measure  Corr(Age) Corr(Gender) Corr(Hand)
ECC Max 0.553 0.071 0.029
Min 0.444 0.418 0.165
Avg 0.587 0.363 0.071
MaxT 0.456 0.096 0.222
MinT 0.336 0.089 0.045
Area 0.259 0.263 0.152
ECCy Max 0.497 0.079 0.008
Min 0 0 0
Avg 0.481 0.134 0.057
MaxT 0.506 0.152 0.171
MinT 0.568 0.242 0.096
Area 0.178 0.154 0.107
ECCT  Max 0.340 0.132 0.037
Min 0.434 0.305 0.109
Avg 0.528 0.348 0.051
MaxT 0.262 0.311 0.051
MinT 0.169 0.128 0.269
Area 0.589 0.311 0.071
ECC>  Max 0.459 0.334 0.091
Min 0.197 0.019 0.177
Avg 0.541 0.465 0.087
MaxT 0.197 0.227 0.157
MinT 0.223 0.153 0.087
Area 0.533 0.271 0.033

TABLE III: Pearson Correlation Coefficients for the full set of
MRA results. Bold values represent best curve correlation, and
underlined values denote the best overall correlation. MaxT,
MinT are the filtration where the max, min values occurred.

cases (3, 14,82) have a lower overall peak compared to the
older cases (104,107,105). The latter also have a greater
minimum value; these characteristics may be associated to the
H; loops identified in previous studies that correlate with age.
However, Figure 4 only examines a sampling of the patients.
Evaluation of several ECC measures against the full set of
patients are provided in Table III.

While the ECC measures presented in Table III are cer-
tainly naive, they demonstrate potential measures related to
the results from Malott [20]. Further exploration of similarity
metrics, time-series analysis, and machine learning methods
are of interest for application of the ECC.

In some cases the correlation of the measurement with the
patient’s label is close to that of the previous study (Table I of
[20]). The best correlation with the Age labels was found with
the area under each patient’s EC'C'y, corresponding to the H;
loops of the data. This result is notably similar to the previous
study; the area under each FCC' curve represents the total
length of persistence intervals in the filtration. The other two
labels, gender and handedness, do not have published baselines
for correlation. Handedness, overall, does not perform notably.
In the case of gender, the average value of the ECCy curve
provides the best correlation. The presence of Hs voids in the
MRA scans have not been previously studied.

VI. CONCLUSION

This study has examined the Euler-Poincaré Characteristic
Curve (ECC) as a topological invariant and complementary
tool for existing methods of Topological Data Analysis, most
notably Persistent Homology (PH). The natural connection

between the ECC and PH is beneficial for studying topological
relationships within data sets. Classification, clustering, and
similarity search applications built upon the ECC require sig-
nificantly less memory resources than PH and can extend result
interpretation to larger datasets and of higher dimensions.

The ECC method proposed has the ability to separate
dimensional homological landscapes by taking advantage of
neighborhood information ignored in the traditional ECC
approach. Analysis of these landscapes can be complementary
to the results of PH for many applications, as has been shown
through study of MRA Brain Artery Trees.
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