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Abstract—Topological Data Analysis (TDA) is a data mining
technique to characterize the topological features of data. Per-
sistent Homology (PH) is an important tool of TDA that has
been applied to a wide range of applications. However its time
and space complexities motivates a need for new methods to
compute the PH of high-dimensional data. An important, and
memory intensive, element in the computation of PH is the
complex constructed from the input data. In general, PH tools
use and focus on optimizing simplicial complexes; less frequently
cubical complexes are also studied. This paper develops a method
to construct polytopal complexes (or complexes constructed of
any mix of convex polytopes) in any dimension R". In general,
polytopal complexes are significantly smaller than simplicial or
cubical complexes. This paper includes an experimental assess-
ment of the impact that polytopal complexes have on memory
complexity and output results of a PH computation.

Index Terms—Polytopal Complex, Persistent Homology, Con-
vex Decomposition, Stereo-graphic projection, Data Mining.

I. INTRODUCTION

The motivation for this paper is to reduce the memory
requirement of complexes representing the topological space
under observation. The paper explores the construction of
polytopal complexes for use in the computation of Persis-
tent Homology (PH). Polytopal complexes are a generalized
representation of complexes that include polytopes as a basic
building unit. While similar to the simplices of simplicial com-
plexes, polytopal complexes can contain a mix of polytopes
[1]-[8]. That is, polytopal complexes represents the boundary
maps using vertices, edges, polygons, polyhedrons, and higher
dimensional polytopes.

Preliminaries. The topology of the underlying space is
concerned with properties that are preserved under continuous
deformations such as stretching and bending without gluing
holes together and tearing surface apart. In general topologies
are unaffected by the metric used for measurement but are
mainly concerned with the continuity of the space.

A Topological Space T(X, ) is defined for the set X and
its topology 7 = {7; | » C X} such that:

¢ ¢, the empty set, and X are in T,

o The union of any two elements of 7 are in 7, and

o The intersection of two elements of 7 are in 7.

The topological space T(X, (¢, X)), where 7 is just a col-
lection of ¢ and X is known as chaotic topology. This kind
of topology has no notion of distance and can not distinguish
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far and near in topological spaces. The only concerned aspect
is the continuum, as long the points lies on same continuous
surface they are indistinguishable. Another topological space
of interest is T'(X, P(X)), where 7 is a subset of power set
of X and is known as discrete topology.

Point Cloud Data (PCD) is the primary format to represent
the discrete topology governed by the notion of a distance
metric. The PCD in conjunction with a distance metric is ex-
pected to preserve the topological invariants of the underlying
space. The effect of PCD sub-sampling has been studied to
reduce the space required for computing PH while preserving
the topological features in the data [9]-[11].

TDA is an approach to data science that identifies topo-
logical features of data to provide insight into the topological
invariants of the space [12]. While there are multiple methods
that perform TDA, the most widely used method is the
computation of PH. PH characterizes the persistence of the
homologies that appear and disappear at discrete connectivity
distances. The output of PH is a set of Persistence Intervals
(PIs) of the form (dim,birth,death), that characterize the
dimension of the feature, the connectivity distance (birth)
when the feature first forms, and the connectivity distance
(death) when the feature disappears [13], [14]. Computing PH
using various complexes has been explored [15]-[20].

Data Reduction and Sparsification manipulate the input
point cloud to enable the computation of PH on large data
sets. Sparsification by sub-sampling can be achieved either
by a Sparsified Rips complex [21], Graph Induced Complex
[22] or Partitioned Persistence Homology [10], [23]. The
Alpha complex is a sparsified representation that supports PH
computation on large data sets [24]. In general, the complexity
of complex construction increases as their size reduces, e.g.,
the Alpha complex size reduction comes at the cost of first
computing a Delaunay triangulation. Likewise, a CW-complex
can provide a succinct representation of the topology of space
but it is difficult to generate [25].

Applications. As more efficient algorithms for TDA com-
putations emerge, its utilization to various application domains
have expanded. TDA provides data science practitioners im-
portant tools for certain data science problems. In compu-
tational biology, TDA can help identify the cell differenti-
ation trajectories, signatures for protein folding, signatures
to different cancer types in ontology, gene sequences, and
cardiovascular diseases [26]. Other areas that also draw useful
insights from TDA analysis include: network analysis [27],



[28], digital images [29]-[32], and many others.

Contribution. Polytopal complexes and their geometric re-
alization has been studied [6]-[8]. However, no previous work
has developed a practical mechanism for their construction
in R™. This paper develops a method to construct polytopal
complexes suitable for use in the computation of PH in any
dimension R™. A polytopal complex differs from a simplicial
complex or cubical complex in that a polytopal complex can
be constructed of a mix of cells formed from any convex
polytope. In this work, the polytopal complex is obtained from
Delaunay simplices by gluing adjacent simplices into poly-
topes using Convex Decomposition (CD). To compute lower
dimensional convex decompositions, a series of stereo-graphic
projections are used to obtain a more efficient polytopal
complex containing the highest degree polytopes possible.

The remainder of this paper is organized as follows. Section
II presents a background discussion of the different types of
complexes used in TDA. Section III presents the work related
to convex decomposition and convex polytopes in the context
of a polytopal complex. Section IV describes the method used
in this paper to construct polytopal complexes. Section V
evaluates the impact that using a polytopal complex has on:
(1) the size of the complexes constructed (contrasted to De-
launay Complexes) and (ii) the impact that using triangulated
polytopal complexes has on the output of a PH computation.
Finally, Section VI provide some closing remarks on this work
and discuss future work possibilities.

II. BACKGROUND : TOPOLOGICAL COMPLEXES

This section reviews simplicial, cubical, A, polytopal, and
CW-complexes. Simplicial complexes are sets of simplices
that are simple to construct but large in size. Vietoris-Rips
(VR) complexes are combinatorial simplicial complexes that
are easy and fast to construct but often result in the largest
complexes of this type [33]. Cech complex, Alpha complex,
and Clique complexes are more compact than VR complexes;
however, their construction is more computational expensive
and difficult, especially in higher dimensions [34], [35].

Cubical complexes are analogous to simplicial complexes
except that they are composed of points, lines, squares, cubes
and their n-dimensional analogues. The bottom up construc-
tion of cubical complexes using lifting and cubifications
operation has been discussed [36]. The disadvantage of this
approach is that it is not known whether every even faced
cubical d—1 sphere admits a d-cubifications [37], [38]. Cubical
complexes are most suitable for digital image processing
where data is cubical as 2D image consist of square pixels
and 3D image consist of 3D voxels [39]-[41].

A-complexes are similar to simplicial complexes but re-
moves the restrictions that (i) every n + 1 vertices must
represent one unique n-simplex, and (ii) triangulation needs
not to have a geometric realization. A A-complex can be
simplicial or cellular. A A-complex is regular if every k-cell
in complex has k41 distinct vertices. A regular A-complex is
proper (or simplicial) if each subset of k+1 vertices is incident
to at most one k-cell, or equivalently, if the intersection of any

two cells in X is (the image of) a face of both cells. A proper
A-complex is equivalent to a geometric simplicial complex.

Polytopal complexes (the main topic of this paper) use
convex d-polytopes as their constituent building blocks. A
general discussion on different types of polytopes and their
significance in the construction of the polytopal complex can
be found in [1]-[5]. However, for the purposes of this paper,
convex polytopes form the boundary maps of the polytopal
complex. Since every non-convex polytope has a convex
decomposition, it is always possible to construct polytopal
complex in any dimension. Polytopal complexes and their
geometric realization has been studied in [6]-[8]. The ordered
d-polytope can be represented by its lower dimensional convex
polytopal face vectors [42].

CW complexes are a more generalized complex and are
often known for much smaller representations than simplicial
complexes. The CW complex drops the requirement that
gluing maps are cellular [43]-[45]. A CW complex in 2D is
equivalent to graphs with self loops and parallel edges.

Regular CW complex are a restricted version of a CW
complex where parallel edges and self loops are not permitted.
They are somewhat easier to construct and, like CW com-
plexes, require fewer cells to represent a topological space
[46]. Simplicial complexes are related to regular CW com-
plexes as triangulations are related to pseudo-triangulations.

The complexes discussed above have an inclusion order by
their restrictive gluing rules:

A embeddin
Complex, — Complex, ., L, Complex,,,

The regular CW complex can be subdivide a into a A-complex
using boundary cone structures by induction over skeleta. A
CW complex is regular if its characteristic maps can be chosen
to be embeddings. Furthermore:

sim, ol
Complexg,, RN Complex,,,,, P2y Complex,,,

Polytopal complexes are restrictive CW complexes having
gluing maps on convex ordered polytopes.

III. RELATED WORK

The construction of polytopes and other geometrical objects
can be found in [47]. A wide collection of techniques and
algorithms regarding combinatorial and computational aspects
of polytopes and polytopal complexes are presented in [48],
[49]. To the best of our knowledge, no literature exists for
the construction of polytopal complexes from PCD in any
dimension R™. This work uses higher dimensional convex
decomposition to generate polytopal complexes. Generating
an optimal convex decomposition is an NP-hard problem
[50], [51]. Fortunately, good approximate methods of convex
decomposition exist and are sufficient [52], [53].

The Qhull convex decomposition algorithm is used in this
work [54]. The approximation of Convex Decomposition on
Spherical Surfaces (CDSS) is achieved by stereo-graphic pro-
jections in general dimension [55]. The stereo-graphic projec-
tion techniques are topology preserving conformal projections



Algorithm 1 MERGENEIGHBORS(poly,simplices)

Algorithm 2 CONVEXIZATION(simplices)

Input: polytope; simplices
Output: convex polytope with neighbors merged
1: polYneigh < ¢
> Find all immediate neighboring simplices
2: for each simplex o € simplices do
3 if len(N(poly, o)) = (len(c) — 1) then
neighbors = neighbors U o
> Add simplices that grow the convex polytope
for each simplex o € neighbors do
if poly U o is convex-polytope then
poly = poly U o
return poly

ks

[56], [57]. The Schlegel diagram is a projection of a polytope
from R? into R4~! and can be generated using stereo-graphic
projections [58]. Algorithms to generate Schlegel diagrams
have been studied in Chebyshev d-spheres for the convex
polytope are utilized to guarantee non-overlapping edges in
the projection space [59]. Stereo-graphically projected points
on a d-hyperplane then can be reduced to d-1 dimension using
Principal Component Analysis (PCA). computation of PH on
polytopal complexes have been studied in [60].

IV. POLYTOPAL COMPLEX GENERATION AND PH

This work defines polytopal complexes that use convex
polytopes as their cellular maps. This modification in the
cellular mapping provide polytopal complexes a reduced mem-
ory representation compared to simplicial complex represen-
tations. Polytopal complexes consist of d-polytopes instead
of d-simplices and, in this work, are generated using convex
decomposition of PCD triangulation. The polytopes and their
cellular maps generate the underlying manifold of the PCD.

This approach constructs polytopal complexes by first con-
structing the highest order polytopes from the highest order
Delaunay cells. The lower dimensional polytope surfaces are
then recursively constructed dimension by dimension. In par-
ticular, this approach uses stereo-graphic projection to project
the polytopes in the complex from R¢ to R~!. The convex
decomposition on polytope surfaces are then constructed in
dimension R?~!. This process repeats until d — 1 = 2. The
remainder of this section presents this method in detail.

A. Convex Decomposition

The convex decomposition code is constructed using two
helper functions, namely: MERGENEIGHBORS (Algorithm 1)
and CONVEXIZATION (Algorithm 2). MERGENEIGHBORS
extends a polytope by merging any immediate neighboring
simplices that produces a larger convex polytope. The algo-
rithm first locates all immediate neighboring simplices of the
polytope. A simplex is an immediate neighbor if it shares a
common facet with the polytope (Line 3) (a d-simplex with
d + 1 vertices has another d-simplex as neighbor if both of
them shares d vertices). The algorithm then extends the current
polytope by merging the immediate neighboring simplices that
also produces a convex polytope.

Input: simplices

Output: set of maximal polytopes
I: COnveTpolys < P
2: for each simplex o € simplices do
poly < o

> Grow polytope by adding neighboring simplices

while true do

P + MERGENEIGHBORS (poly, simplices)

if P = poly then break

poly < P
CONVETpolys = CONVELpolys U poly

w

R AN

return sortByMaxSizeAndFacet(convex poiys)

Algorithm 3 CONVEXDECOMP(simpy;)

Input: simpyr;: a triangulated mesh
Output: ordered set of convex polytopes
: polytopes < ¢
rem <— SiMpiri
: while true do
convexporys < CONVEXIZATION(Simpyr;)
> Collect non-overlapping polytopes from ordered list
for polytope cp; in conveporys do
: if cp; ¢ (polytopes) then
7: polytopes < polytopes U cp;
> Remove simplices that are in a polytope
for each polytope poly; in polytopes do

Rl > e

SN

9: for each simplex s € poly; do
10: rem < rem\s

11: if rem = simpy,; then

12: return polytopes U rem

13: else

14: SIMPiri < rem

Algorithm 2 (CONVEXIZATION) generates a maximal poly-
tope for each simplex in the triangulation.' The algorithm ex-
amines each simplex and grows the maximum convex polytope
from that simplex by iteratively merging the immediate neigh-
bors (using MERGENEIGHBORS) until the convex polytope is
no longer able to add new simplices to itself. This maximum
convex polytope is then added to the candidate polytope set.
Finally, the algorithm returns a list of candidate polytopes
sorted in order by their sizes (number of vertices) and then
by minimum polygon weight (defined as the maximum length
facet on its boundary).

Algorithm 3 (CONVEXDECOMP) inputs a triangulated mesh
of the data and builds the largest set of convex polytopes found
in that data. The algorithm uses the CONVEXIZATION function
to collect an ordered set of maximal convex polytopes from
the triangulated mesh. These convex polytopes are then filtered
to the largest set of non-overlapping convex polytopes (stored
in polytopes at Line 7). That is, any smaller convex polytopes
containing simplices that are also contained in some larger
convex polytope are removed from the list. The subset of
simplices that are part of the polytopes set are then removed
from simpy.; so that the CONVEXIZATION function can be

!Note this will grow a set of maximal polytopes possible from each simplex
(what are called candidate polytopes); this will be filtered into a final polytope
set in Algorithm 3.



Triangulated Mesh

Polygonal Mesh

Fig. 1: Convex decomposition of 2D point cloud. Input triangulated
mesh transformed to a polygonal mesh.

reinvoked to attempt the construction of more polytopes. This
process is repeated until no additional polytopes are found.
The function returns the set of maximal convex polytopes and
any remaining simplices that did not merge into a polytope.
The convex decomposition of a point cloud in R? is shown
in Figure 1. The input triangulated mesh is shown in the
left graphic and polygonal composed output is shown to the
right. Algorithm 3 is organized to build polytopes by size and
weight instead of by minimizing the total number of convex
parts. The convex decomposition obtained by Algorithm 3 is
unique and reproducible for given ordered input triangulated
mesh. This paper focuses on constructing an exact convex
decomposition to avoid any change in the resultant features.
While additional reductions may be possible with Approximate
Convex Decomposition (ACD), the algorithms that generalize
ACD to dimensions above R? have not yet been developed.

B. Lower Dimensional Decomposition

The next step in the construction of polytopal complex is to
generate a face vector for the convex polytopes in the convex
decomposition at R™. The face vector for a 2-polytope can
not be reduced as every edge in the convex hull contributes
to the lower boundary map. For d-polytopes with d > 2, the
d—1 surface of a d-polytope can exhibit convex decomposition
and can be represented by d — 1 convex polytopes. This
surface reduction can be obtained by computing convexization
on polytopal face vectors. Convex decomposing the hyper-
spherical surface is required to obtain the lower dimensional
polytopes. As discussed in Section III, the decomposition on
the surface of the hyper-sphere is extremely difficult due to
positive curvature. Furthermore, the presence of antipodes on
spherical surfaces adds to this complexity.

To obtain lower dimensional facets, a conformal stereo-
graphic projection technique is utilized. Conformal stereo-
graphic projection of the hyper-spherical surface preserve
the surface topology but is not isometric. To increase the
efficiency and to generate maximal convex facets on hyper-
spherical surface, a convex decomposition on multiple rota-
tions of orthogonal stereo-graphic projections are performed.
The selection of the projection points on the hyper-spherical
surface is important as it can impact the projection efficacy.

The lower dimensional decomposition is performed by
Algorithm 5 and the STEREOGRAPHICPROJ helper function
(Algorithm 4). Algorithm 4 inputs the convex d-polytope
having vertices and facets and returns a projected mesh of
facets in d-1 dimension. The algorithm first computes the half-

(b) Projected Facet

(a) Polytope and its Chebyshev
Sphere

(¢) Convex Decomposition

Fig. 2: Lower dimensional decomposition. (a) The convex 2-polytope
is projected into its Chebyshev sphere; (b) a stereo-graphic projection
of the polytope vertices on 2-simplex; and (c) the corresponding lower
dimensional convex decomposition of the projected vertices.

Algorithm 4 STEREOGRAPHICPROI(poly, facet)

Input: poly: convex polytope; facet: projection facet
Output: stereo-graphic projected facet mesh in R%!
: hs <halfspaces(poly)
. facelpiane <—hyperplane(facet)
chR < hs.chR
: chXc¢ < hs.chXc
> Project onto Chebyshev sphere

((poly.vertices—chXc)xchR) ) )
dist(chXc,poly.vertices) +chXe

> Chebyshev radius
> Chebyshev center

5: pTijozy <
e Facet somtroiy - chXe

7. projections < ¢

8: for each v; € projpoy.vertices do

9: p < intersection(facetpiane, line(projpoint, vi))
10: projections < projections Up

11: return ToMesh(PCA(projections, d-1), poly.facets)

6: pTijomt <—

space (Line 1) representation of the convex polytope from its
vertex representation. The hyper-plane for the projection facet
is computed at Line 2. Next, the python package pypoman
[61] is used to compute the Chebyshev hyper-sphere® radius
(Line 3) and center (Line 4). The polytope vertices and their
centroid are then projected onto the surface of the Chebyshev
hyper-sphere (Lines 5 and 6). This projection step is important
in order to avoid overlapping edges in the projected space.
Finally, Lines 7-10 compute the projection of the polytopal
point on projection hyper-plane computed in Line 2. The
projection point for each vertex v; on the polytope surface
is identified by the intersection of the hyper-plane facet,igne
and the line joining projpein: and v;. The algorithm returns the
projected lower dimensional surface mesh of the polytope in
Line 11. The function returns a PCA reduction of the projected
data to the next lower dimensional coordinates; the facets of
the original polytope define the facets of the projected mesh.

Figure 2a depicts a polytope surface (blue) in R3, its Cheby-
shev sphere (red), and the projection plane (green). Figure 2b
represents the stereo-graphic projection of polytopal surface on
the projection plane. The extreme points on the projected plane
represent the polytope facet selected for projection. Finally,

2The Chebyshev sphere represents the largest hyper-sphere within a poly-
tope surface boundary.



Algorithm 5 LOWDECOMP(poly, numProj)

Input: poly: convex polytopes; numProj: number of projection
trials
Output: [oweriecype; 1 polytopal surface decomposition

I: facets <~SELECTPROJECTIONFACETS(poly, numProj)
polytopes < ¢
> Perform multiple stereo-graphic projections

for each face f € facets do

mesh <—STEREOGRAPHICPROI(poly, f)

polys <—CONVEXDECOMP(mesh)

polytopes <~ MERGEMAX(polytopes, polys)
lowereypel < @

> Capture the maximal polytopes from the projections

8: for each polytop P € polytopes do
9: projpoly =AlignPlaneToPolytope(poly, P)
10: lowerieyer.append(Projfpory)
11: return lower;cye;

»

A

Figure 2c shows the convex components obtained from the
projected facets. It should be noted that the convex components
for projected points do not undergo efficient decomposition for
regions close to extreme points; thus, it becomes necessary
to perform multiple stereo-graphic projections from different
projection facets to obtain the best convex face vectors.

Algorithm 5 attempts to obtain the maximal convex decom-
position of the polytopal surface. The first task of Algorithm
5 is to generate the candidate facets for the projection target.
These candidates are identified by the function SELECTPRO-
JECTIONFACETS (implementation omitted). These selected
facets are selected based on the distribution of vertices on
the polytopal surface (ideally regions of low density are best
targeted). As each projection is performed, the MERGEMAX
(implementation omitted) function selects the maximal convex
decomposition from each successive projection. Finally, Algo-
rithm 5 rebuilds the centroid aligned projections of the convex
facets at Lines 8—11 and returns the result.

The main steps of Algorithm 5 are depicted in Figure 3;
he left column of images show a tetra-sphere (top left) and
a cubical-sphere (bottom left) with vertices shown in green.
The tetra-sphere is shown with 4 (d+1) projection facets and
the cubical sphere is shown with 6 (2*d) projection facets.
The graphics in the center column correspond to the stereo-
graphic projections obtained on the candidate projection facets.
The projections captures one opposite polygonal loop for the
tetra-sphere and three polygonal loops for the cubic-sphere.
The projections appear similar due to the symmetry of the
tetra- and cubical-spheres; however, they actually represent
different loops that appear opposite to the selected projection
facet. These projections are then combined to obtain maximal
convex components. The resulting lower dimensional polygo-
nal candidate facets are shown in the right column of Figure 3.
Algorithm 5 is successful in capturing the 4-polygonal facets
from the tetra-sphere data, but captures more than 6 polyg-
onal facets for the cubical-sphere. This error occurs because
some of the facets are repeated as multiple projection can
capture redundant facets. This error can be mitigated by using
either additional projections or by selecting better candidate
projection facets. The number of projections required can be

Select Projection 5. | Generate Stereographic Projection| __, Keep Maximal
Simplices and Convex Decomposition Convex Decompostion
— O T
: AR T S B U S (Y O
y 2 P N | S S S
- NORS S JO
. — ' & 1. &, __________

Fig. 3: Obtain lower order decomposition for tetra-sphere (top row)
and cubical-sphere (bottom row). The left images shows the 2-
simplices selected for the stereo-graphic projection step. The images
in the middle show the corresponding projection on 2-simplices. The
right image shows the convex decomposition of 2-tetra-sphere surface
into 4 1-polygons and the loops on the 2-cubical-sphere surface.

reduced by computing the convex parts based on dspheres
(points under stereo-graphic projection remain spherical but
grows with projection angle) based convex components [62].
The complexity of Algorithm 4 is dependent on the com-
putation complexity of the Chebyshev-sphere and the size of
convex polytope. Computing the Chebyshev-sphere is an NP-
hard problem for d > 2, but approximate computation can
reduce the complexity [63]. This can be further reduced as
the computation of Chebyshev-sphere can be avoided and any
hyper-sphere with a center inside the polytope is sufficient.
The overall complexity of the Algorithm 4 is O(n), where 7 is
the number of polytope vertices. The complexity of Algorithm
5 is proportional to number of stereo-graphic projections
performed; in particular, the complexity is O(kS), where k
is the number of projections and S is the number of facets.

C. Polytopal Complex

The polytopal complex consists of the highest dimension
polytopes and their lower dimensional face vectors. Algorithm
6 will generate a complete polytopal from an input PCD in R™.
The algorithm generates the maximal convex facets dimension
by dimension to obtain a reduced polytopal representation.
The algorithm first computes the convex decomposition of
a Delaunay triangulation of the PCD to obtain the highest
dimension polytopes. The algorithm then works dimension by
dimension to generate the lower dimensional face vectors for
each polytope in the highest dimension polytopes. The space
complexity of the Algorithm 6 is output sensitive. Convex
polytopes with smaller face vectors will undergo maximum
reductions; convex polytopes with large facets (in term of
vertices) will experience larger reductions.

D. Persistent Homology

Most of the recent work with algorithm development and
optimizations for persist homology use simplicial complexes.



Algorithm 6 POLYTOPALCOMPLEX(pcd)

Input: pcd: point cloud data; dim: dimension of ped
Output: Polytopal Complex

1: polycompiex [dim] <~ CONVEXDECOMP(Delaunay(pcd))

2: for d in [dim-1,---,2,1] do

3 polycomplez|d] < ¢

4: for pol; in polycomplez[d+1] do

5 polys <~ LOWDECOMP(pol;)

6 pozycomplex [d] — pOlycomplew [d] ) pOl?—,IS

7: return polYcomplex

While, Singular homology does permit the definition of the
homology for a topological space that is independent of
simplices or cells representations [64], there are not well
developed tools for singular homology and its use is outside
the scope of this paper. As a result, this paper studies the
impact that polytopal complexes have on the computation of
PH using a corresponding canonical simplicial subdivision
of the polytopal complex. That is, since simplicial complex
and polytopal complex have the same underlying spaces
and complexes with the same underlying spaces have same
homology groups, the polytopal complex can be replaced by
a corresponding canonical simplicial complex. While decom-
position of polytopal complex to simplicial complex expands
the number of cells in the complex, the simplicial complex
obtained from polytopal complex is still smaller than the
corresponding Delaunay complex as only the surface facets are
utilized for lower dimensional simplices. Thus, in this work
this simplicial representation is used to compute the PH and
show that a polytopal complex preserves the PCD homology.

V. EXPERIMENTAL RESULTS

Polytopal and Delaunay complexes are compared to address
two issues, namely: (i) complex size comparisons, and (ii)
PH outputs. The comparisons are made using 5 synthetic and
2 real-world data sets. The 5 synthetic data sets are: (i) a
Tetrahedron-Sphere, (ii) a Cubical-Sphere, (iii) a Permutahe-
dron, (iv) a Fibonacci-Sphere, and (v) a d-Sphere (d = 2
and d = 3). The Tetrahedron-Sphere, Cubical-Sphere and
Permutahedron are generated by distributing points uniformly
on their edges and projecting them to unit hyper-Sphere. The
Fibonacci-sphere and d-sphere data is generated from the
python libraries FIBLAT and TADASETS. The 2 real-world data
sets are the lion and flamingo triangulated data sets taken
from the UCI triangulated shapes database [65]. PH results are
compared using the Sliced Wasserstein (SW) distance [66].

The complex size comparisons for the synthetic and real-
world data is summarized in Tables I and II. Since the synthetic
test data is projected onto a unit hyper-sphere, it can be
organized and studied in any dimension. In this experiment
the data is projected on to a sphere in R? (the first two rows)
and a sphere in R* (the last two rows). The test set (spheres
in R3 and R*) contain two trials, one with d + 1 stereo-
graphic projections and one with 2d stereo-graphic projections
(projections are not required for the 1-cell [edge] and 2-cell
[polygon]). This is done to assess the impact that higher
projection degree have on the results. The 0-cell (points) is not

shown as it is equal in all cases (although they are included
in the row totals). In all test cases and in all dimensional
decompositions, the polytopal complex contains fewer cells
than the corresponding Delaunay complex. Finally, increased
projections do not always result in larger reductions.

The real-world data in Table II shows lower reductions than
achieved with the synthetic data. As with the synthetic data,
comparisons with d+ 1 and 2d stereo-graphic projections were
performed (shown column wise). Interestingly the additional
projections did not significantly impact the reduction. The
reductions achieved, however, are significant and this could
have dramatic impact on growing the size of point clouds that
can be processed by PH tools. Furthermore, this expanded
capability should come at a better fidelity of the results from
the PH computation than is achieved with sub-sampling.

The output of a computation of PH is a set of Persistence
Intervals (PIs) that characterize the dimension of a topological
feature as well as the connectivity distance at which the
feature first appears (its birth) and the connectivity distance
where the feature no longer exists (its death). This second
aspect of the experimental assessment of polytopal complexes
computes the PH twice: once using a Delaunay complex, and
once using a polytopal complex. The outputs from these trials
are separated by homology group (Hy, Hi, etc) and then
compared (homology group to homology group) using the SW
distance. The experiments were performed using d 4 1 stereo-
graphic projections. In a manner similar to the size studies,
the synthetic data testing was performed with the data in R3
and R*. Of course the real-world test data is only in R3.

The results from the R? test data are shown in Table III and
from R* in Table IV. The results from all of the R? data show
very good results. The SW distance numbers show that the PI
results are very close to each other; the H» data is identical.
The results from the R* tests are similar for all tests except
for the H; and Hs results for the Permutahedron; most likely
this is due inefficiency of stereo-graphic projections.

VI. CONCLUSION AND FUTURE WORK

A polytopal complex will reduce the memory requirement
of the complex used to compute Persistent Homology. The
method utilizes two well studied areas of Convex Decompo-
sition (CD) and Convex Decomposition on Spherical Surfaces
(CDSS). Both of these problems are hard to generalize with
CDSS known to be NP-hard problem. Previous studies for both
have been limited to R3. This paper explores convex decom-
position and stereo-graphic projection based spherical surface
decomposition algorithms suitable for the computation of PH.
The main result of this paper is the capability of this approach
to drastically reduce memory requirements for computing PH
by using a polytopal complex instead of the more traditional
simplicial complex. Finally, the use of approximate methods
for CD and CDSS may well provide an additional significant
reduction in complex size. The construction of generalized
approximate polytopal complexes using Approximate Convex
Decomposition and Convex Approximation of Spherical Sur-
faces techniques is an interesting future research direction.



Parameters ] Synthetic Datasets ] ]
Tetrahedron-sphere Cubical-sphere Permuatahedron Fibonacci-sphere d-Sphere
T I . o o .
5 g ;/S"""--r)\.‘
E| 3 a 7T
Al > 3 (]
1R TN
Al E | S~ | e
g @
Complex Type Poly Del PDOEZ? % Poly Del PDOElly % Poly Del PDoily % Poly Del PDOSI % Poly Del PDOElly %
— 1-cell 176 769 22.88% 107 787 13.59% 261 803 32.50% 22 787 2.79% 55 788 6.98%
RS — 2-cell 4 954 0.41% 53 978 5.41% 46 998 4.60% 260 978 26.58% 205 980 20.91%
3-cell 1 380 0.26% 1 390 0.25% 1 398 0.25% 1 390 0.25% 1 391 0.25%
d+1 | Total 377 | 2103 17.93% 361 2155 16.75% 512 | 2199 23.28% 483 2155 22.41% 461 2159 21.35%
— 1-cell 192 796 24.12% 116 787 14.73% 276 803 34.37% 22 787 2.79% 37 789 4.68%
RS — 2-cell 10 954 1.04% 24 978 2.45% 34 998 3.44% 327 978 33.43% 244 982 24.84%
3-cell 1 380 0.26% 1 390 0.25% 1 398 0.25% 1 390 0.25% 1 392 0.25%
2d | Total 399 | 2103 18.97% 341 2155 15.82% 515 | 2199 23.41% 550 2155 25.52% 482 | 2163 22.28%
— 1-cell 417 561 74.33% 451 592 76.18% 541 777 69.62% 548 901 60.82% 550 937 58.69%
— 2-cell 515 1109 46.43% 642 1217 52.75% 964 1707 56.47% 1222 2099 58.21% 1161 2209 52.55%
R 4 3-cell 145 990 14.60% 180 1101 16.34% 251 1546 16.23% 247 1970 12.53% 249 2082 11.95%
5 4-cell 1 328 0.30% 1 365 0.27% 1 500 0.20% 1 633 0.15% 1 691 0.14%
d+1 | Total 1193 | 2988 39.92% 1386 | 3275 42.32% 1874 4530 41.36% 2138 5623 38.02% 2081 5919 35.15%
— 1-cell 391 561 69.69% 435 592 73.47% 443 777 57.01% 389 901 43.17% 426 925 46.05%
— 2-cell 456 1109 41.11% 731 1217 60.06% 1089 1707 63.79% 1636 2099 77.94% 1573 2175 72.32%
R4 6 3-cell 118 990 11.91% 155 1101 14.07% 199 1546 12.87% 221 1970 1121% 230 2050 11.21%
8 4-cell 1 328 0.30% 1 365 0.27% 1 500 0.20% 1 633 0.15% 1 681 0.14%
2d | Total 1081 2988 36.17% 1434 | 3275 43.78% 1849 4530 40.81% 2367 5623 42.09% 2350 5831 40.30%

TABLE I: Size comparisons of the po{l\/topal complex to a Delaunay complex for the synthetic test data. The test data sets in R® contain

200 points and the test data sets in R

contain 120 points.

DataSet Delaunay | (d+ proj | Z22% [ 2d proj | T2 % Point Cloud Data [ SW H, SWH, | SWH; | SWH;
1-cell 3718 3438 | 92.46% 3452 | 92.84% Tertahedron-Sphere | 0.253969 2244554 | 1.181420 0.0
Flamingo gfceﬁ gf; ;ggz g}ggg ;ggg 2?88 3 Cubical-Sphere | 0.101676 | 0.246004 | 1.145022 0.0
‘,f(ffal 13201 11799 | 89 37,7;’ 11646 | 88 22,7;’ Permutahedron | 0.063563 10.281318 | 3.520064 0.0
ool s R o B s St Fibonacci-Sphere | 0.219374 | 1.157760 | 0.133991 0.0
L 2-cell 6100 5593 | 91.68% 5364 | 87.93% 3-Sphere | 0.212961 0.225861 | 0.641286 0.0
100 |3 cell 3014 2357 | 78.20% 2357 78.2% ]
Total 12699 11257 | 88.64% 11035 | 86.89% TABLE IV: SW distance between the PIs of a polytopal and Delaunay

TABLE II: Size comparisons of the polytopal complex to a Delaunay
complex for the real-world test data with 500 points each in R

complex. The 120 point synthetic data is in R* (0.1 noise).

and I. Itenberg, Eds., vol. 589. Providence, RI: American Mathematical
Society, 2013, pp. 235-251.

Point Cloud Data SW H, SW H, | SW Hy [7] 1. Pak and S. Wilson, “Geometric realizations of polyhedral complexes,”
Tertahedron-Sphere | 0.065292 | 1.500187 0.0 Department of Mathematics, UCLA, Tech. Rep., 2014.
Cubical-Sphere | 0.101513 | 0.595516 0.0 [8] S. M. Wilson, “Embeddings of polytopes and polyhedral complexes,”
Permutahedron | 0.132509 1.854796 0.0 Ph.D. dissertation, University of California, Los Angeles, 2012.
Fibonacci-Sphere | 0.097517 | 0.064931 0.0 [9] E. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasser-
2-Sphere | 0.253665 | 1.337124 0.0 man, “Subsampling methods for persistent homology,” in Int. Conference
Lion | 0.043305 | 0.464385 0.0 on Machine Learning, ser. ICML 2015, Lille, France, Jul. 2015.
Flamingo | 0.041982 | 0.629074 0.0 [10] N. O. Malott, A. Sens, and P. A. Wilsey, “Topology preserving data
reduction for computing persistent homology,” in Int. Workshop on Big
TABLE III: SW distance between the output Pls of a polytopal and Data Refluctwn. Piscataway, wa Jerseyf IEEE" 2029’ pp- 268 172690'
Delaunay complex. The 200 point synthetic data is in R® (0.1 noise). [11] V. de Silva and G. Carlsson, “Topological estimation using witness
The 500 point I 1d data is in RS complexes,” in Eurographics Symposium on Point-Based Graphics, ser.
¢ oUU pont reai-wor ata 15 m SPBG ’04, M. Gross, H. Pfister, M. Alexa, and S. Rusinkiewicz, Eds.
Goslar, DEU: The Eurographics Association, 2004, pp. 157-166.
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