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Abstract—Topological Data Analysis (TDA) is a data mining
technique to characterize the topological features of data. Per-
sistent Homology (PH) is an important tool of TDA that has
been applied to a wide range of applications. However its time
and space complexities motivates a need for new methods to
compute the PH of high-dimensional data. An important, and
memory intensive, element in the computation of PH is the
complex constructed from the input data. In general, PH tools
use and focus on optimizing simplicial complexes; less frequently
cubical complexes are also studied. This paper develops a method
to construct polytopal complexes (or complexes constructed of
any mix of convex polytopes) in any dimension R

n. In general,
polytopal complexes are significantly smaller than simplicial or
cubical complexes. This paper includes an experimental assess-
ment of the impact that polytopal complexes have on memory
complexity and output results of a PH computation.

Index Terms—Polytopal Complex, Persistent Homology, Con-
vex Decomposition, Stereo-graphic projection, Data Mining.

I. INTRODUCTION

The motivation for this paper is to reduce the memory

requirement of complexes representing the topological space

under observation. The paper explores the construction of

polytopal complexes for use in the computation of Persis-

tent Homology (PH). Polytopal complexes are a generalized

representation of complexes that include polytopes as a basic

building unit. While similar to the simplices of simplicial com-

plexes, polytopal complexes can contain a mix of polytopes

[1]–[8]. That is, polytopal complexes represents the boundary

maps using vertices, edges, polygons, polyhedrons, and higher

dimensional polytopes.

Preliminaries. The topology of the underlying space is

concerned with properties that are preserved under continuous

deformations such as stretching and bending without gluing

holes together and tearing surface apart. In general topologies

are unaffected by the metric used for measurement but are

mainly concerned with the continuity of the space.

A Topological Space T (X, τ) is defined for the set X and

its topology τ = {τi | τi ⊂ X} such that:

• φ, the empty set, and X are in τ ,

• The union of any two elements of τ are in τ , and

• The intersection of two elements of τ are in τ .

The topological space T (X, (φ,X)), where τ is just a col-

lection of φ and X is known as chaotic topology. This kind

of topology has no notion of distance and can not distinguish
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far and near in topological spaces. The only concerned aspect

is the continuum, as long the points lies on same continuous

surface they are indistinguishable. Another topological space

of interest is T (X,P (X)), where τ is a subset of power set

of X and is known as discrete topology.

Point Cloud Data (PCD) is the primary format to represent

the discrete topology governed by the notion of a distance

metric. The PCD in conjunction with a distance metric is ex-

pected to preserve the topological invariants of the underlying

space. The effect of PCD sub-sampling has been studied to

reduce the space required for computing PH while preserving

the topological features in the data [9]–[11].

TDA is an approach to data science that identifies topo-

logical features of data to provide insight into the topological

invariants of the space [12]. While there are multiple methods

that perform TDA, the most widely used method is the

computation of PH. PH characterizes the persistence of the

homologies that appear and disappear at discrete connectivity

distances. The output of PH is a set of Persistence Intervals

(PIs) of the form 〈dim, birth, death〉, that characterize the

dimension of the feature, the connectivity distance (birth)

when the feature first forms, and the connectivity distance

(death) when the feature disappears [13], [14]. Computing PH

using various complexes has been explored [15]–[20].

Data Reduction and Sparsification manipulate the input

point cloud to enable the computation of PH on large data

sets. Sparsification by sub-sampling can be achieved either

by a Sparsified Rips complex [21], Graph Induced Complex

[22] or Partitioned Persistence Homology [10], [23]. The

Alpha complex is a sparsified representation that supports PH

computation on large data sets [24]. In general, the complexity

of complex construction increases as their size reduces, e.g.,

the Alpha complex size reduction comes at the cost of first

computing a Delaunay triangulation. Likewise, a CW-complex

can provide a succinct representation of the topology of space

but it is difficult to generate [25].

Applications. As more efficient algorithms for TDA com-

putations emerge, its utilization to various application domains

have expanded. TDA provides data science practitioners im-

portant tools for certain data science problems. In compu-

tational biology, TDA can help identify the cell differenti-

ation trajectories, signatures for protein folding, signatures

to different cancer types in ontology, gene sequences, and

cardiovascular diseases [26]. Other areas that also draw useful

insights from TDA analysis include: network analysis [27],



[28], digital images [29]–[32], and many others.

Contribution. Polytopal complexes and their geometric re-

alization has been studied [6]–[8]. However, no previous work

has developed a practical mechanism for their construction

in R
n. This paper develops a method to construct polytopal

complexes suitable for use in the computation of PH in any

dimension R
n. A polytopal complex differs from a simplicial

complex or cubical complex in that a polytopal complex can

be constructed of a mix of cells formed from any convex

polytope. In this work, the polytopal complex is obtained from

Delaunay simplices by gluing adjacent simplices into poly-

topes using Convex Decomposition (CD). To compute lower

dimensional convex decompositions, a series of stereo-graphic

projections are used to obtain a more efficient polytopal

complex containing the highest degree polytopes possible.

The remainder of this paper is organized as follows. Section

II presents a background discussion of the different types of

complexes used in TDA. Section III presents the work related

to convex decomposition and convex polytopes in the context

of a polytopal complex. Section IV describes the method used

in this paper to construct polytopal complexes. Section V

evaluates the impact that using a polytopal complex has on:

(i) the size of the complexes constructed (contrasted to De-

launay Complexes) and (ii) the impact that using triangulated

polytopal complexes has on the output of a PH computation.

Finally, Section VI provide some closing remarks on this work

and discuss future work possibilities.

II. BACKGROUND : TOPOLOGICAL COMPLEXES

This section reviews simplicial, cubical, ∆, polytopal, and

CW-complexes. Simplicial complexes are sets of simplices

that are simple to construct but large in size. Vietoris-Rips

(VR) complexes are combinatorial simplicial complexes that

are easy and fast to construct but often result in the largest

complexes of this type [33]. Čech complex, Alpha complex,

and Clique complexes are more compact than VR complexes;

however, their construction is more computational expensive

and difficult, especially in higher dimensions [34], [35].

Cubical complexes are analogous to simplicial complexes

except that they are composed of points, lines, squares, cubes

and their n-dimensional analogues. The bottom up construc-

tion of cubical complexes using lifting and cubifications

operation has been discussed [36]. The disadvantage of this

approach is that it is not known whether every even faced

cubical d−1 sphere admits a d-cubifications [37], [38]. Cubical

complexes are most suitable for digital image processing

where data is cubical as 2D image consist of square pixels

and 3D image consist of 3D voxels [39]–[41].

∆-complexes are similar to simplicial complexes but re-

moves the restrictions that (i) every n + 1 vertices must

represent one unique n-simplex, and (ii) triangulation needs

not to have a geometric realization. A ∆-complex can be

simplicial or cellular. A ∆-complex is regular if every k-cell

in complex has k+1 distinct vertices. A regular ∆-complex is

proper (or simplicial) if each subset of k+1 vertices is incident

to at most one k-cell, or equivalently, if the intersection of any

two cells in X is (the image of) a face of both cells. A proper

∆-complex is equivalent to a geometric simplicial complex.

Polytopal complexes (the main topic of this paper) use

convex d-polytopes as their constituent building blocks. A

general discussion on different types of polytopes and their

significance in the construction of the polytopal complex can

be found in [1]–[5]. However, for the purposes of this paper,

convex polytopes form the boundary maps of the polytopal

complex. Since every non-convex polytope has a convex

decomposition, it is always possible to construct polytopal

complex in any dimension. Polytopal complexes and their

geometric realization has been studied in [6]–[8]. The ordered

d-polytope can be represented by its lower dimensional convex

polytopal face vectors [42].

CW complexes are a more generalized complex and are

often known for much smaller representations than simplicial

complexes. The CW complex drops the requirement that

gluing maps are cellular [43]–[45]. A CW complex in 2D is

equivalent to graphs with self loops and parallel edges.

Regular CW complex are a restricted version of a CW

complex where parallel edges and self loops are not permitted.

They are somewhat easier to construct and, like CW com-

plexes, require fewer cells to represent a topological space

[46]. Simplicial complexes are related to regular CW com-

plexes as triangulations are related to pseudo-triangulations.

The complexes discussed above have an inclusion order by

their restrictive gluing rules:

Complex
∆

∆
−→ Complex

regCW

embedding
−−−−−−−→ Complex

CW

The regular CW complex can be subdivide a into a ∆-complex

using boundary cone structures by induction over skeleta. A

CW complex is regular if its characteristic maps can be chosen

to be embeddings. Furthermore:

Complex
Simp

simp
−−−→ Complex

Poly

poly
−−−→ Complex

CW

Polytopal complexes are restrictive CW complexes having

gluing maps on convex ordered polytopes.

III. RELATED WORK

The construction of polytopes and other geometrical objects

can be found in [47]. A wide collection of techniques and

algorithms regarding combinatorial and computational aspects

of polytopes and polytopal complexes are presented in [48],

[49]. To the best of our knowledge, no literature exists for

the construction of polytopal complexes from PCD in any

dimension R
n. This work uses higher dimensional convex

decomposition to generate polytopal complexes. Generating

an optimal convex decomposition is an NP-hard problem

[50], [51]. Fortunately, good approximate methods of convex

decomposition exist and are sufficient [52], [53].

The Qhull convex decomposition algorithm is used in this

work [54]. The approximation of Convex Decomposition on

Spherical Surfaces (CDSS) is achieved by stereo-graphic pro-

jections in general dimension [55]. The stereo-graphic projec-

tion techniques are topology preserving conformal projections



Algorithm 1 MERGENEIGHBORS(poly,simplices)

Input: polytope; simplices
Output: convex polytope with neighbors merged

1: polyneigh ← φ
⊲ Find all immediate neighboring simplices

2: for each simplex σ ∈ simplices do
3: if len(∩(poly, σ)) = (len(σ)− 1) then
4: neighbors = neighbors ∪ σ

⊲ Add simplices that grow the convex polytope
5: for each simplex σ ∈ neighbors do
6: if poly ∪ σ is convex-polytope then
7: poly = poly ∪ σ

8: return poly

[56], [57]. The Schlegel diagram is a projection of a polytope

from R
d into R

d−1 and can be generated using stereo-graphic

projections [58]. Algorithms to generate Schlegel diagrams

have been studied in Chebyshev d-spheres for the convex

polytope are utilized to guarantee non-overlapping edges in

the projection space [59]. Stereo-graphically projected points

on a d-hyperplane then can be reduced to d-1 dimension using

Principal Component Analysis (PCA). computation of PH on

polytopal complexes have been studied in [60].

IV. POLYTOPAL COMPLEX GENERATION AND PH

This work defines polytopal complexes that use convex

polytopes as their cellular maps. This modification in the

cellular mapping provide polytopal complexes a reduced mem-

ory representation compared to simplicial complex represen-

tations. Polytopal complexes consist of d-polytopes instead

of d-simplices and, in this work, are generated using convex

decomposition of PCD triangulation. The polytopes and their

cellular maps generate the underlying manifold of the PCD.

This approach constructs polytopal complexes by first con-

structing the highest order polytopes from the highest order

Delaunay cells. The lower dimensional polytope surfaces are

then recursively constructed dimension by dimension. In par-

ticular, this approach uses stereo-graphic projection to project

the polytopes in the complex from R
d to R

d−1. The convex

decomposition on polytope surfaces are then constructed in

dimension R
d−1. This process repeats until d − 1 = 2. The

remainder of this section presents this method in detail.

A. Convex Decomposition

The convex decomposition code is constructed using two

helper functions, namely: MERGENEIGHBORS (Algorithm 1)

and CONVEXIZATION (Algorithm 2). MERGENEIGHBORS

extends a polytope by merging any immediate neighboring

simplices that produces a larger convex polytope. The algo-

rithm first locates all immediate neighboring simplices of the

polytope. A simplex is an immediate neighbor if it shares a

common facet with the polytope (Line 3) (a d-simplex with

d + 1 vertices has another d-simplex as neighbor if both of

them shares d vertices). The algorithm then extends the current

polytope by merging the immediate neighboring simplices that

also produces a convex polytope.

Algorithm 2 CONVEXIZATION(simplices)

Input: simplices
Output: set of maximal polytopes

1: convexpolys ← φ
2: for each simplex σ ∈ simplices do
3: poly ← σ

⊲ Grow polytope by adding neighboring simplices
4: while true do
5: P ← MERGENEIGHBORS(poly, simplices)
6: if P = poly then break

7: poly ← P

8: convexpolys = convexpolys ∪ poly

9: return sortByMaxSizeAndFacet(convexpolys)

Algorithm 3 CONVEXDECOMP(simptri)

Input: simptri: a triangulated mesh
Output: ordered set of convex polytopes

1: polytopes← φ
2: rem← simptri
3: while true do
4: convexpolys ← CONVEXIZATION(simptri)

⊲ Collect non-overlapping polytopes from ordered list
5: for polytope cpi in convexpolys do
6: if cpi 6⊂ (polytopes) then
7: polytopes← polytopes ∪ cpi

⊲ Remove simplices that are in a polytope
8: for each polytope polyi in polytopes do
9: for each simplex s ∈ polyi do

10: rem← rem\s

11: if rem = simptri then
12: return polytopes ∪ rem
13: else
14: simptri ← rem

Algorithm 2 (CONVEXIZATION) generates a maximal poly-

tope for each simplex in the triangulation.1 The algorithm ex-

amines each simplex and grows the maximum convex polytope

from that simplex by iteratively merging the immediate neigh-

bors (using MERGENEIGHBORS) until the convex polytope is

no longer able to add new simplices to itself. This maximum

convex polytope is then added to the candidate polytope set.

Finally, the algorithm returns a list of candidate polytopes

sorted in order by their sizes (number of vertices) and then

by minimum polygon weight (defined as the maximum length

facet on its boundary).

Algorithm 3 (CONVEXDECOMP) inputs a triangulated mesh

of the data and builds the largest set of convex polytopes found

in that data. The algorithm uses the CONVEXIZATION function

to collect an ordered set of maximal convex polytopes from

the triangulated mesh. These convex polytopes are then filtered

to the largest set of non-overlapping convex polytopes (stored

in polytopes at Line 7). That is, any smaller convex polytopes

containing simplices that are also contained in some larger

convex polytope are removed from the list. The subset of

simplices that are part of the polytopes set are then removed

from simptri so that the CONVEXIZATION function can be

1Note this will grow a set of maximal polytopes possible from each simplex
(what are called candidate polytopes); this will be filtered into a final polytope
set in Algorithm 3.







Algorithm 6 POLYTOPALCOMPLEX(pcd)

Input: pcd: point cloud data; dim: dimension of pcd
Output: Polytopal Complex

1: polycomplex[dim]←CONVEXDECOMP(Delaunay(pcd))
2: for d in [dim-1, · · · , 2, 1] do
3: polycomplex[d]← φ
4: for poli in polycomplex[d+1] do
5: polys←LOWDECOMP(poli)
6: polycomplex[d] ← polycomplex[d] ∪ polys

7: return polycomplex

While, Singular homology does permit the definition of the

homology for a topological space that is independent of

simplices or cells representations [64], there are not well

developed tools for singular homology and its use is outside

the scope of this paper. As a result, this paper studies the

impact that polytopal complexes have on the computation of

PH using a corresponding canonical simplicial subdivision

of the polytopal complex. That is, since simplicial complex

and polytopal complex have the same underlying spaces

and complexes with the same underlying spaces have same

homology groups, the polytopal complex can be replaced by

a corresponding canonical simplicial complex. While decom-

position of polytopal complex to simplicial complex expands

the number of cells in the complex, the simplicial complex

obtained from polytopal complex is still smaller than the

corresponding Delaunay complex as only the surface facets are

utilized for lower dimensional simplices. Thus, in this work

this simplicial representation is used to compute the PH and

show that a polytopal complex preserves the PCD homology.

V. EXPERIMENTAL RESULTS

Polytopal and Delaunay complexes are compared to address

two issues, namely: (i) complex size comparisons, and (ii)

PH outputs. The comparisons are made using 5 synthetic and

2 real-world data sets. The 5 synthetic data sets are: (i) a

Tetrahedron-Sphere, (ii) a Cubical-Sphere, (iii) a Permutahe-

dron, (iv) a Fibonacci-Sphere, and (v) a d-Sphere (d = 2
and d = 3). The Tetrahedron-Sphere, Cubical-Sphere and

Permutahedron are generated by distributing points uniformly

on their edges and projecting them to unit hyper-Sphere. The

Fibonacci-sphere and d-sphere data is generated from the

python libraries FIBLAT and TADASETS. The 2 real-world data

sets are the lion and flamingo triangulated data sets taken

from the UCI triangulated shapes database [65]. PH results are

compared using the Sliced Wasserstein (SW) distance [66].

The complex size comparisons for the synthetic and real-

world data is summarized in Tables I and II. Since the synthetic

test data is projected onto a unit hyper-sphere, it can be

organized and studied in any dimension. In this experiment

the data is projected on to a sphere in R
3 (the first two rows)

and a sphere in R
4 (the last two rows). The test set (spheres

in R
3 and R

4) contain two trials, one with d + 1 stereo-

graphic projections and one with 2d stereo-graphic projections

(projections are not required for the 1-cell [edge] and 2-cell

[polygon]). This is done to assess the impact that higher

projection degree have on the results. The 0-cell (points) is not

shown as it is equal in all cases (although they are included

in the row totals). In all test cases and in all dimensional

decompositions, the polytopal complex contains fewer cells

than the corresponding Delaunay complex. Finally, increased

projections do not always result in larger reductions.

The real-world data in Table II shows lower reductions than

achieved with the synthetic data. As with the synthetic data,

comparisons with d+1 and 2d stereo-graphic projections were

performed (shown column wise). Interestingly the additional

projections did not significantly impact the reduction. The

reductions achieved, however, are significant and this could

have dramatic impact on growing the size of point clouds that

can be processed by PH tools. Furthermore, this expanded

capability should come at a better fidelity of the results from

the PH computation than is achieved with sub-sampling.

The output of a computation of PH is a set of Persistence

Intervals (PIs) that characterize the dimension of a topological

feature as well as the connectivity distance at which the

feature first appears (its birth) and the connectivity distance

where the feature no longer exists (its death). This second

aspect of the experimental assessment of polytopal complexes

computes the PH twice: once using a Delaunay complex, and

once using a polytopal complex. The outputs from these trials

are separated by homology group (H0, H1, etc) and then

compared (homology group to homology group) using the SW

distance. The experiments were performed using d+1 stereo-

graphic projections. In a manner similar to the size studies,

the synthetic data testing was performed with the data in R
3

and R
4. Of course the real-world test data is only in R

3.

The results from the R
3 test data are shown in Table III and

from R
4 in Table IV. The results from all of the R

3 data show

very good results. The SW distance numbers show that the PI

results are very close to each other; the H2 data is identical.

The results from the R
4 tests are similar for all tests except

for the H1 and H2 results for the Permutahedron; most likely

this is due inefficiency of stereo-graphic projections.

VI. CONCLUSION AND FUTURE WORK

A polytopal complex will reduce the memory requirement

of the complex used to compute Persistent Homology. The

method utilizes two well studied areas of Convex Decompo-

sition (CD) and Convex Decomposition on Spherical Surfaces

(CDSS). Both of these problems are hard to generalize with

CDSS known to be NP-hard problem. Previous studies for both

have been limited to R
3. This paper explores convex decom-

position and stereo-graphic projection based spherical surface

decomposition algorithms suitable for the computation of PH.

The main result of this paper is the capability of this approach

to drastically reduce memory requirements for computing PH

by using a polytopal complex instead of the more traditional

simplicial complex. Finally, the use of approximate methods

for CD and CDSS may well provide an additional significant

reduction in complex size. The construction of generalized

approximate polytopal complexes using Approximate Convex

Decomposition and Convex Approximation of Spherical Sur-

faces techniques is an interesting future research direction.
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