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Abstract—Persistent Homology (PH) is a method of Topological
Data Analysis that analyzes the topological structure of data
to help data scientists infer relationships in the data to assist
in informed decision- making. A significant component in the
computation of PH is the construction and use of a complex that
represents the topological structure of the data. Some complex
types are fast to construct but space inefficient whereas others
are costly to construct and space efficient. Unfortunately, existing
complex types are not both fast to construct and compact.

This paper works to increase the scope of PH to support
the computation of low dimensional homologies (H0–H10) in
high-dimension, big data. In particular, this paper exploits the
desirable properties of the Vietoris–Rips Complex (VR-Complex)
and the Delaunay Complex in order to construct a sparsified
complex. The VR-Complex uses a distance matrix to quickly
generate a complex up to the desired homology dimension. In
contrast, the Delaunay Complex works at the dimensionality of
the data to generate a sparsified complex. While construction
of the VR-Complex is fast, its size grows exponentially by the
size and dimension of the data set; in contrast, the Delaunay
complex is significantly smaller for any given data dimension.
However, its construction requires the computation of a Delaunay
Triangulation that has high computational complexity. As a
result, it is difficult to construct a Delaunay Complex for data
in dimensions d > 6 that contains more than a few hundred
points. The techniques in this paper enable the computation
of topological preserving sparsification of k-Simplices (where
k ≪ d) to quickly generate a reduced sparsified complex
sufficient to compute homologies up to k-subspace, irrespective
of the data dimensionality d.

Index Terms—Proximity Hyper-graphs, Simplicial Complex,
Persistent Homology, Data Mining

I. INTRODUCTION

Topological Data Analysis (TDA) aims to develop tools for

studying the qualitative features of data using results and ideas

from geometry and topology. TDA techniques and specifically

Persistent Homology (PH) provide data scientists a tool to

understand and comprehend the higher dimensional landscapes

of data [1]–[3]. PH provides a precise and robust definition

of the qualitative features (and a systematic way to compute

them) of high dimensional data [4]. PH computes homological

features of the space with 0-dimensional features represented

by connected components, 1-dimensional features by loops, 2-

dimensional features by voids, and so on in higher dimensions.

These features remain unperturbed under geometric deforma-

tions such as stretching, bending, expanding, shrinking, and

rotation [5], [6]. These properties provide a versatile and

resilient description of the data sets and are sometimes termed

the characteristic signature of the data [7].

TDA analysis techniques (especially PH) have been suc-

cessfully utilized in various application fields to infer higher

dimensional relationships in complex data. It has provided

valuable insight into research problems including the structural

and functional analysis of proteins [8]–[10], cell development

and differentiation trajectories [11]–[13], natural language pro-

cessing [14] and statistical inference [15]–[17]. For proteins,

the PH barcode signature helped in distinguishing the alpha-

helix and beta-sheets based structural classes of proteins. For

cell differentiation in the embryonic developmental stages,

TDA can help identify cell transition signifying major events

during prenatal and embryonic stages [18]–[21]. The applica-

tion of TDA techniques has seen an unprecedented surge with

recent developments in materials research [22], dynamic and

recurrent systems [23], and other domains.

Many important data analysis problems involve complex,

high-dimensional big data. Therefore it is desirable that TDA

and PH be expanded to support the processing of big data.

The computation of PH requires a construction of topological

complex representing the topology of the space characterized

by the data [24]; in general, the complex constructed is a

simplicial complex. Unfortunately, the space complexity of the

simplicial complex increases exponentially with the size and

dimension of the data and it can quickly become prohibitively

large [2]. While there are a number of types of simplicial

complexes [25]–[32], the Vietoris–Rips (VR) complex is the

most widely used. The VR-complex enjoys a fast construction

time, but its memory complexity prevents its use on big data or

high-dimensional data [32]. The sparsified Delaunay complex

is much smaller in size with respect to the fully expanded

VR-complex but it requires the computation of Delaunay tri-

angulation in the dimension of the data [27]. Unfortunately, the

computation of Delaunay triangulation in higher dimensional

spaces is prohibited due to the size of exploration space even

for moderate size data sets [33].

This paper addresses the construction of simplicial com-

plexes for higher dimensional data sets and enables trian-

gulation of the subspace by inducing a lower dimensional

hyper-graph mesh on the point cloud. This subspace hyper-

graph mesh generation overcomes the Delaunay triangulation

requirement for constructing compact sparsified complexes in

higher dimensions. This technique extends the edge based β-

skeleton proximity graph induction technique to the general

dimension by inducing k-uniform hyper-graph (k-simplex)

mesh for point cloud in R
n for k ≪ d [34], [35]. The
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sparsification factor 0 ≤ βs ≤ ∞ controls the degree and

density of hyper-graph with no sparsification at βs = 0
and sparsification increases with increase in βs. The scalable

sparsification parameter can reduce or increase the density of

the local structure to compute the overall topology in lower

dimensional space. This approach provides ways to construct

sparsified complexes similar to the Delaunay complex at

topological sub-spaces but without computation costs of De-

launay triangulation in higher data dimensions. The approach

is unable to provide the sparsification at the highest dimension

and is different from β-sparsification discussed in [36]. The

key advantage of this approach is that its exploration space

is dependent only on point cloud size for a given homology

dimension and is independent of the dimension of the data

dimension. This enables the computation of lower dimensional

homologies for functional genomics big high dimensional data

sets with thousands of points in R
1000 − R

30000.

The remainder of this paper is organized as follows: Section

II introduces the VR-complex, Delaunay complex and Clique

complexes. In addition, the homology and co-homology com-

putation are described. Section III discusses the existing sparsi-

fication sub-sampling and dimensionality reduction techniques

for PH. Section IV details the construction of the sparsified

lower dimensional simplicial complex. Section V contains

an experimental analysis of sub-spatial sparsified complexes.

Finally, Section VI provides concluding remarks about the

merits of the proposed work and future directions.

II. BACKGROUND

Simplicial complexes: The computation of persistent ho-

mology require construction of a simplicial complex from the

original point cloud data. The simplicial complex represents

vertices as 0-simplex, edges as 1-simplices, triangles as 2-

simplices, tetrahedrons as 3-simplices, and so on for the higher

dimensional counterparts. The Vietoris-Rips, Delaunay, and

Clique complex are of interest to the study of this paper.

VR-complexes are a purely combinatorial simplicial com-

plex that explores all possible vertex combinations to form

simplices. Generally, the size of VR-complex is restricted with

threshold parameter ǫ, where every simplex with maximum

edge weight greater than ǫ is removed from the simplicial

complex. The size of VR-complex grows exponentially with

homological dimension. The maximum number of k-simplices

in VR-complex are n!
n!(n−k)! , where n is the total number of

points in point cloud P for unbounded ǫ-threshold [37].

In contrast, Delaunay complexes are a sparsified complex

with k-simplices derived from the faces of highest order

Delaunay simplices for point cloud P in R
d. The computation

of Delaunay triangulation for d > 6 becomes extremely

expensive even for small point clouds. The maximum number

of simplices in Delaunay complex is given by [26], [27] as:
(

n− ⌊d+1
2 ⌋

n− d

)

+

(

n− ⌊d+2
2 ⌋

n− d

)

= O(n⌈
d

2
⌉). (1)

The impracticability of Delaunay triangulation for point clouds

in higher dimensions makes Delaunay complex an unfavorable

simplicial complex for high dimensional data sets. Interest-

ingly, the sparsified complexes including the graph induced

complex [38] and clique [39] complex plays important role in

restricting the complex size to reasonable space complexity.

The work in this paper generates a sparsified 1-skeleton

from sparsified hyper-graph and expands the underlying clique

complex [30].

Homology: Homological features represents holes and cy-

cles in R
2, voids and tunnels in R

3 and their counterparts

in higher dimensional spaces. Topological features are the

homology groups of a space. Homological features represented

by simplicial homology can be defined using a simplicial

chain complex. A chain complex is defined as a sequence of

chain groups Cn together with boundary homomorphisms δi
between the chain groups. That is:

· · ·
δn+2

−−−→ Cn+1
δn+1

−−−→ Cn
δn−→ Cn−1

δn−1

−−−→ · · · (2)

The chain complex has the property that δi ◦ δi+1 = 0 and

thus im(δn+1) ⊂ ker(δn). That is, the image (im) of the

homomorphism is included in the kernel (ker) of the next

homomorphism. Elements of the image are boundaries, and

elements of the kernel are cycles. The nth homology group in

the chain complex is defined to be the quotient [40].

Hn(C) =
ker(δn)

im(δn+1)
. (3)

Co-homology: Co-homology groups are dual of homologi-

cal groups [41]. Co-homology groups are sequence of groups

with origins in algebraic topology rather than geometry. Co-

homology groups are important in practice as chain complex

can grow from lower order simplices to higher order simplices.

Thus, given the chain complex of Equation 2 and a group G,

the co-chains C∗n are defined to be the respective groups of

all homomorphisms from Cn to G:

C∗n = Hom(Cn, G). (4)

The co-boundary map ∂n : C∗n−1 −→ C∗n is then the dual to the

δn homomorphism as the mapping of φ as ∂n(φ) = δ∗n(φ).
For an element c ∈ Cn and a homomorphism φ ∈ C∗n−1, we

have

∂nφ(c) = φ(δnc). (5)

Because δn ◦ δn+1 = 0, it is easily seen that ∂n+1 ◦ ∂n = 0.

In other words, im(∂n) ⊂ ker(∂n+1). With this fact we can

define the nth co-homology group as the quotient [42], [43]:

Hn(C;G) =
ker(∂n+1)

im(∂n)
. (6)

Topological features in this paper are computed using the co-

homology computation framework of LHF [44].

III. RELATED WORK

Dimensional reduction techniques are commonly used to

compute the PH for lower dimensional topological features of

higher dimensional data sets [45]. Most of the data reduction

techniques used are based on density and spectral analysis



(e.g., IsoMap [46], Laplacian eigenmaps [47] and kernelPCA

[48]). Several non-linear dimensionality reduction techniques

have also been studied to extract and visualize topological

features in higher dimensions. These works compute the local

structure by using probability, spectral, and density based

estimates. The dimensionality reduction technique for the

lower dimensional PH computation has been known to alter

the manifold homology [49].

k-nearest neighbor based proximity graphs have also been

analyzed by Takahashi et al [50]. Density distribution based

topological analysis has been performed by sampling on the

Gabriel graphs of the points cloud [51]–[53]. The Gabriel

graphs are proximity graphs embedded on a point cloud

and are obtained from β-skeleton neighborhood graphs for

β = 1, among other interesting embeddings for β 6= 1 [54].

Three dimensional generalization of β-skeletons have been

attempted by Hiyoshi et al [55]. The approach of this paper

is fundamentally different from the previous dimensionality

reduction approaches. Moreover, the approach overcomes the

limitation of linear edge based graph neighborhood embedding

by using hyper-graph embedding.

In this paper, the proximity hyper-graphs are induced using

neighborhood relationships based on coverage region (Section

IV). The hyper-graph induction requires d-Ball based neigh-

borhood evaluation. Several data structures exist to efficiently

compute neighboring points including kd-trees [56], [57], ball-

tree [58], [59], k-NN based nearest neighbors [60] and Local-

ity Sensitive Hashing (LSH) [61]. Tree based neighborhood

evaluation suffers in higher dimensions as minimum number

of points required for efficient partitioning should be ≫ 2d.

This requirement make brute force approaches outperform

tree based algorithms in higher dimensions [62]. For higher

dimensional data sets machine learning and hashing based

approaches are often preferred [63]. For the purpose of this

paper kd-tree based evaluation is performed with a scope to be

expanded with machine learning and LSH based approaches.

IV. OVERVIEW OF APPROACH

This section explains the subspace-based generation of a

reduced sparsified simplicial complex. When computing ho-

mologies up to H(k-1) features, it is sufficient to generate

simplicial complex up to k-simplices. The approach in this

section induces k-uniform hyper-graph, where k < d, on

d-dimensional data to compute lower dimensional H(k-1)-
homologies. The maximum number of ordered k-simplices

that can exist is
(

n
k

)

= n!
k!(n−k)! , where n in the size of point

cloud. This count is same as number of simplices in VR-

complex expanded to k-dimensions with ǫ = ∞. The number

of Delaunay k-simplices for data in d-dimension require

computation of Delaunay triangulation in ambient dimension

d and is extremely prohibitive for d > 6. To efficiently identify

lower dimensional homologies its is thus required to have an

efficient mesh induction algorithm on point cloud that can

preserve underlying topology. In this section, a simple but

scalable generalized approach is described to induce lower

simplicial mesh on high dimensional point cloud.

Throughout the remainder of this paper the following terms

will be used without further definition:

• P , the input point cloud in R
n,

• βs represents a subspace sparsification intensity,

• k-simplex and k-hyperedge are equivalent, and

• Sk, set of all k-dimensional simplices of P for k < d.

A. Definition: Hyper-graph Induction

There are two possibilities for hyper-graph induction,

namely: d-Ball based, and d-Lune based (the d-Lune based

technique is valid only if the sparsification factor βs > 1).

Both techniques define a region R that cause the k-hyperedge

to be removed from the graph if any point of the k-hyperedge

lie in R. The region R is defined as either the intersection or

union of a set of d-Balls (intersection or union is based on

βs and the specific method used). The radii of the d-balls and

the intersecting rules to define R are presented below; their

centers have complex definitions that are best described by

the pseudo-code in Algorithms 1 and 2.

There are two basic techniques for defining the region R,

namely: d-Ball based, and d-Lune based; which to use is

determined by the user. Given a point cloud P in R
d and

a sparsification parameter 0 < βs < ∞, a k-hyper-edge with

k + 1-points (v0, v1 · · · vk) ∈ P and circum-center HECC is

valid, iff no point from P \(v0, v1 · · · vk) belongs to the region

R((v0, v1 · · · vk),βs) defined as:

• d-Ball Based:

– For βs ≤ 1, the intersection of 2 d-Balls with radii

HECC/β
s

– For βs > 1, the union of 2 d-Balls with radii

HECC ∗ βs

• d-Lune Based: (valid only if βs > 1)

– The intersection of k d-Balls with radii βs ∗HECC .

Algorithm 1 computes the d-Ball based βs-centers for given

hyper-edge and a sparsification factor βs. The d-Balls centers

and radius remains same for βs and its reciprocal 1
βs , the

difference occur during evaluation of the hyper-edge validity

(Algorithm 3). Thus, if βs ≤ 1, Line 3 of Algorithm 1

redefines βs as its reciprocal. With that change, the remaining

computation is independent of the value of βs. The remainder

of the algorithm proceeds as follows. Line 4–6, computes the

k-hyperplane coefficients (hpCoff ), circum-center(HECC)

and circum-radius (HECR) for the k-hyper-edge. Line 7,

computes the perpendicular distance from the k-hyper-edge

circum-center to the beta-centers corresponding to βs-radius

equal to βs · HECR. Lines 8–9 compute the hyper-planes

parallel to the k-hyper-edge hyperplane passing through the

upper and lower βs-centers (· computes a vector dot-product

and (||~a||) is the magnitude of a). Lines 13–15, computes

the upper and lower βs-center coordinates using the variables

computed in line 10–11. Finally at line 16, the algorithm return

the βs-centers and βs-radius. The computation of βs-centers

requires the intermediate sub-space embedding of k-simplex

in k-dimensional space. This step requires PCA and inverse

PCA transforms that are not shown in Algorithm 1.





Algorithm 3 Hyper-edge validity.

Input: P in R
d, βs, Hyper-Edge(v0, v1 · · · vk), Rule R

Output: true if valid otherwise false

1: function βs - VALIDATION(P, βs,Hyper-Edge(v0, · · · vk),R)
2: if R is d-Lune and βs < 1 then

3: d-Lune based rule only defined forβs > 1
4: return

5: points← ∅
6: if R is d-Lune then

7: C,R← βs

lune
CENTERS(βs,Hyper-Edge(v0, · · · vk))

8: for each ci, ri ∈ C,R do

9: points← points ∩ P.Ball(ci, ri)

10: return points ∈ ∅ ? true : false

11: else if R is d-Ball then

12: c, r ← βs

d−Ball
CENTERS(βs,Hyper-Edge(v0, · · · vk))

13: if thenβs ≤ 1
14: points← P.Ball(c.up, r) ∩ P.Ball(c.low, r)
15: else

16: points← P.Ball(c.up, r) ∪ P.Ball(c.low, r)

17: return points ∈ ∅ ? true : false

union is checked for βs > 1 at Line 14 and 16 respectively.

The algorithm then checks for the presence of point in the βs-

region and return true if no point is present; otherwise return

false. For the sake of simplicity and testing convenience, the

neighborhood computation for function P.Ball is obtained

using kd-tree at Lines 9, 14 and 16. Other, more efficient,

solutions would be used in practice at higher dimensions.

C. Lower Dimensional Enumeration for k ≪ d and Sparsifi-

cation

For a point cloud P of size n in R
d Euclidean space,

the maximum possible 1-hyper-edges (1-simplices) and 2-

hyper-edges (2-simplices) are
n(n+1)

2 and
n(n−1)(n−2)

6 re-

spectively. The number of these k-hyper-edges increases with

the degree (k) and can be generalized by combination
(

n
k

)

= n!
k!(n−k)! for k-hyper-edge. To compute simplicial complex

up to dimension k, it is not require to conquer the data at

dimension d to compute lower dimensional homological fea-

ture. For k-dimensional Betti Numbers (and the corresponding

homological features), it is sufficient to conquer the data at

dimension k ≪ d. This approach is utilized by VR-complex

as it adds all possible simplices of dimension less than k
to compute homological features up to dimension k. Since

the VR-complex adds all possible simplices its size grows

exponentially with dimension. In contrast, a Delaunay complex

is small for compared to VR-complex; however, it requires the

computation of a Delaunay triangulation at the dimension of

the data. This makes it infeasible to use a Delaunay complex

for the computation of lower dimensional homological features

for point cloud in higher dimensions. The approach of this

paper provides a topology sensitive reduction technique that

reduces the number of simplices at the desired subspace while

preserving topology.

The enumeration technique as described in Algorithm 4

inputs a point cloud P in R
d, a sparsification factor βs, and

an edge-degree k for the hyper-graph induction. At Line 3,

the Algorithm receives user input to select between the k-Ball

or k-Lune methods. The algorithm generate all the possible

unique combinations for k-hyper-edges at Line 4 and checks

Algorithm 4 Enumeration and Sparsification of k-hyper-edges

Input: P in R
d,βs Sparsification factor, k edge-degree

Output: Sparsified k Hyper-Edge set

1: function k-ENUMERATION(βs, k, P )
2: βs(HEk)← ∅
3: R ← Rule-UserInput(k − Ball, k − Lune)
4: for ∀seq((pi, . . . pk) ∈ P do

5: HEi ← [Pi, · · · , Pk]i
6: if βs-VALIDATION(P, βs, HEi, R) then

7: βs(HEk).append(HEi)

8: return βs(HEk)

them for βs-validation at Line 6. The valid hyper-edges are

appended to the sparsified k-hyper-edge set and is returned

at Line 8. In general, the size of the simplicial complex can

be further reduced with a user-specified ǫmax. However, a

study of sparsified hyper-graphs coupled with ǫmax filtration

is beyond the scope of this paper.

V. EXPERIMENTS

This section examines the performance (complex size, and

PH run time costs) of Alpha, VR, and βs-sparsified com-

plexes for synthetic and real-world data sets. In particular, the

following synthetic data sets are examined: (a) dspheres of

150 points in R
3 − R

16, (b) a Permutahedron (120 points)

embedded in R
4, and (c) a tetraSphere (210 points) and a

cubicSphere (192 points) both embedded in R
5. The real

world data sets used in this study are: (a) a forest fire data

set (517 points in R
11) [64] and (b) a concrete compressive

strength data set (1030 points in R
9) [65]. The forest fire

data set is a multivariate data with temperature, wind-speed,

humidity, rain among others as factors to predict burned area

during forest fire. The concrete compressive strength data set

(CCSDS) analyze factors like cement quantity, blast furnace

slag, fly ash, water among others to infer concrete strength.

The Permutahedron, tetraSphere and cubicSphere data sets are

generated by distributing points on their edges and projecting

them on to unit d-sphere. Table I, shows the Betti numbers

for each of these data sets.

TABLE I
BETTI COUNT (bn) FOR THREE DIFFERENT SYNTHETIC DATA SETS.

Data Set b0 b1 b2 b3 b4 b5
5-Tetra-Sphere 6 15 20 15 6 1
5-Cubic-Sphere 32 80 80 40 10 1
4-Permutahedron 120 240 150 30 1 -

In addition to the study of complex size and run times,

this paper also presents results that the generated complexes

have on the PH intervals (to give a sense of how well the

various complexes preserve the topological features in the

point cloud). The output of PH is analyzed using the Sliced

Wasserstein distance metric to generate a dissimilarity scores

[66]. The test data set in the experimental section may seem

small but, given the capabilities of contemporary PH tools1 and

1For example state-of-the art Delaunay computation algorithm will struggle
for 1030 points in R

9 [67].
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