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Abstract—Persistent Homology (PH) is a method of Topological
Data Analysis that analyzes the topological structure of data
to help data scientists infer relationships in the data to assist
in informed decision- making. A significant component in the
computation of PH is the construction and use of a complex that
represents the topological structure of the data. Some complex
types are fast to construct but space inefficient whereas others
are costly to construct and space efficient. Unfortunately, existing
complex types are not both fast to construct and compact.

This paper works to increase the scope of PH to support
the computation of low dimensional homologies (Ho—H1p) in
high-dimension, big data. In particular, this paper exploits the
desirable properties of the Vieforis—Rips Complex (VR-Complex)
and the Delaunay Complex in order to construct a sparsified
complex. The VR-Complex uses a distance matrix to quickly
generate a complex up to the desired homology dimension. In
contrast, the Delaunay Complex works at the dimensionality of
the data to generate a sparsified complex. While construction
of the VR-Complex is fast, its size grows exponentially by the
size and dimension of the data set; in contrast, the Delaunay
complex is significantly smaller for any given data dimension.
However, its construction requires the computation of a Delaunay
Triangulation that has high computational complexity. As a
result, it is difficult to construct a Delaunay Complex for data
in dimensions d > 6 that contains more than a few hundred
points. The techniques in this paper enable the computation
of topological preserving sparsification of k-Simplices (where
k < d) to quickly generate a reduced sparsified complex
sufficient to compute homologies up to k-subspace, irrespective
of the data dimensionality d.

Index Terms—Proximity Hyper-graphs, Simplicial Complex,
Persistent Homology, Data Mining

I. INTRODUCTION

Topological Data Analysis (TDA) aims to develop tools for
studying the qualitative features of data using results and ideas
from geometry and topology. TDA techniques and specifically
Persistent Homology (PH) provide data scientists a tool to
understand and comprehend the higher dimensional landscapes
of data [1]-[3]. PH provides a precise and robust definition
of the qualitative features (and a systematic way to compute
them) of high dimensional data [4]. PH computes homological
features of the space with O-dimensional features represented
by connected components, 1-dimensional features by loops, 2-
dimensional features by voids, and so on in higher dimensions.
These features remain unperturbed under geometric deforma-
tions such as stretching, bending, expanding, shrinking, and
rotation [5], [6]. These properties provide a versatile and
resilient description of the data sets and are sometimes termed
the characteristic signature of the data [7].
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TDA analysis techniques (especially PH) have been suc-
cessfully utilized in various application fields to infer higher
dimensional relationships in complex data. It has provided
valuable insight into research problems including the structural
and functional analysis of proteins [8]-[10], cell development
and differentiation trajectories [11]—[13], natural language pro-
cessing [14] and statistical inference [15]-[17]. For proteins,
the PH barcode signature helped in distinguishing the alpha-
helix and beta-sheets based structural classes of proteins. For
cell differentiation in the embryonic developmental stages,
TDA can help identify cell transition signifying major events
during prenatal and embryonic stages [18]-[21]. The applica-
tion of TDA techniques has seen an unprecedented surge with
recent developments in materials research [22], dynamic and
recurrent systems [23], and other domains.

Many important data analysis problems involve complex,
high-dimensional big data. Therefore it is desirable that TDA
and PH be expanded to support the processing of big data.
The computation of PH requires a construction of topological
complex representing the topology of the space characterized
by the data [24]; in general, the complex constructed is a
simplicial complex. Unfortunately, the space complexity of the
simplicial complex increases exponentially with the size and
dimension of the data and it can quickly become prohibitively
large [2]. While there are a number of types of simplicial
complexes [25]-[32], the Vietoris—Rips (VR) complex is the
most widely used. The VR-complex enjoys a fast construction
time, but its memory complexity prevents its use on big data or
high-dimensional data [32]. The sparsified Delaunay complex
is much smaller in size with respect to the fully expanded
VR-complex but it requires the computation of Delaunay tri-
angulation in the dimension of the data [27]. Unfortunately, the
computation of Delaunay triangulation in higher dimensional
spaces is prohibited due to the size of exploration space even
for moderate size data sets [33].

This paper addresses the construction of simplicial com-
plexes for higher dimensional data sets and enables trian-
gulation of the subspace by inducing a lower dimensional
hyper-graph mesh on the point cloud. This subspace hyper-
graph mesh generation overcomes the Delaunay triangulation
requirement for constructing compact sparsified complexes in
higher dimensions. This technique extends the edge based (-
skeleton proximity graph induction technique to the general
dimension by inducing k-uniform hyper-graph (k-simplex)
mesh for point cloud in R™ for k& < d [34], [35]. The



sparsification factor 0 < ° < oo controls the degree and
density of hyper-graph with no sparsification at §° = 0
and sparsification increases with increase in 3°. The scalable
sparsification parameter can reduce or increase the density of
the local structure to compute the overall topology in lower
dimensional space. This approach provides ways to construct
sparsified complexes similar to the Delaunay complex at
topological sub-spaces but without computation costs of De-
launay triangulation in higher data dimensions. The approach
is unable to provide the sparsification at the highest dimension
and is different from [-sparsification discussed in [36]. The
key advantage of this approach is that its exploration space
is dependent only on point cloud size for a given homology
dimension and is independent of the dimension of the data
dimension. This enables the computation of lower dimensional
homologies for functional genomics big high dimensional data
sets with thousands of points in R1000 — R30000,

The remainder of this paper is organized as follows: Section
II introduces the VR-complex, Delaunay complex and Clique
complexes. In addition, the homology and co-homology com-
putation are described. Section III discusses the existing sparsi-
fication sub-sampling and dimensionality reduction techniques
for PH. Section IV details the construction of the sparsified
lower dimensional simplicial complex. Section V contains
an experimental analysis of sub-spatial sparsified complexes.
Finally, Section VI provides concluding remarks about the
merits of the proposed work and future directions.

II. BACKGROUND

Simplicial complexes: The computation of persistent ho-
mology require construction of a simplicial complex from the
original point cloud data. The simplicial complex represents
vertices as O-simplex, edges as 1-simplices, triangles as 2-
simplices, tetrahedrons as 3-simplices, and so on for the higher
dimensional counterparts. The Vietoris-Rips, Delaunay, and
Clique complex are of interest to the study of this paper.

VR-complexes are a purely combinatorial simplicial com-
plex that explores all possible vertex combinations to form
simplices. Generally, the size of VR-complex is restricted with
threshold parameter e, where every simplex with maximum
edge weight greater than € is removed from the simplicial
complex. The size of VR-complex grows exponentially with
homological dimension. The maximum number of k-simplices
in VR-complex are #Lk),, where n is the total number of
points in point cloud P for unbounded e-threshold [37].

In contrast, Delaunay complexes are a sparsified complex
with k-simplices derived from the faces of highest order
Delaunay simplices for point cloud P in R¢. The computation
of Delaunay triangulation for d > 6 becomes extremely
expensive even for small point clouds. The maximum number
of simplices in Delaunay complex is given by [26], [27] as:
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The impracticability of Delaunay triangulation for point clouds
in higher dimensions makes Delaunay complex an unfavorable

simplicial complex for high dimensional data sets. Interest-
ingly, the sparsified complexes including the graph induced
complex [38] and clique [39] complex plays important role in
restricting the complex size to reasonable space complexity.
The work in this paper generates a sparsified 1-skeleton
from sparsified hyper-graph and expands the underlying clique
complex [30].

Homology: Homological features represents holes and cy-
cles in R?, voids and tunnels in R® and their counterparts
in higher dimensional spaces. Topological features are the
homology groups of a space. Homological features represented
by simplicial homology can be defined using a simplicial
chain complex. A chain complex is defined as a sequence of
chain groups C,, together with boundary homomorphisms 9,
between the chain groups. That is:

The chain complex has the property that §; o §;41 = 0 and
thus im(d,+1) C ker(d,). That is, the image (im) of the
homomorphism is included in the kernel (ker) of the next
homomorphism. Elements of the image are boundaries, and
elements of the kernel are cycles. The n*” homology group in
the chain complex is defined to be the quotient [40].
ker(6,)
im(dpi1)
Co-homology: Co-homology groups are dual of homologi-
cal groups [41]. Co-homology groups are sequence of groups
with origins in algebraic topology rather than geometry. Co-
homology groups are important in practice as chain complex
can grow from lower order simplices to higher order simplices.
Thus, given the chain complex of Equation 2 and a group G,
the co-chains C} are defined to be the respective groups of
all homomorphisms from C,, to G:

Cr = Hom(Cy, G). )

Hn(C) = 3)

The co-boundary map 0, : C};_; — C: is then the dual to the
d, homomorphism as the mapping of ¢ as 9,(¢) = 5, (o).
For an element ¢ € (), and a homomorphism ¢ € C)_;, we
have

In¢(c) = ¢(dnc). ©)

Because §,, 0 6,41 = 0, it is easily seen that 0,41 0 9,, = 0.
In other words, im(9,) C ker(Op+1). With this fact we can
define the n** co-homology group as the quotient [42], [43]:

ker(On+1)

im(0n)
Topological features in this paper are computed using the co-
homology computation framework of LHF [44].

H,(C;G) = (6)

III. RELATED WORK

Dimensional reduction techniques are commonly used to
compute the PH for lower dimensional topological features of
higher dimensional data sets [45]. Most of the data reduction
techniques used are based on density and spectral analysis



(e.g., IsoMap [46], Laplacian eigenmaps [47] and kernelPCA
[48]). Several non-linear dimensionality reduction techniques
have also been studied to extract and visualize topological
features in higher dimensions. These works compute the local
structure by using probability, spectral, and density based
estimates. The dimensionality reduction technique for the
lower dimensional PH computation has been known to alter
the manifold homology [49].

k-nearest neighbor based proximity graphs have also been
analyzed by Takahashi et al [50]. Density distribution based
topological analysis has been performed by sampling on the
Gabriel graphs of the points cloud [51]-[53]. The Gabriel
graphs are proximity graphs embedded on a point cloud
and are obtained from [-skeleton neighborhood graphs for
B = 1, among other interesting embeddings for g # 1 [54].
Three dimensional generalization of [-skeletons have been
attempted by Hiyoshi et al [55]. The approach of this paper
is fundamentally different from the previous dimensionality
reduction approaches. Moreover, the approach overcomes the
limitation of linear edge based graph neighborhood embedding
by using hyper-graph embedding.

In this paper, the proximity hyper-graphs are induced using
neighborhood relationships based on coverage region (Section
IV). The hyper-graph induction requires d-Ball based neigh-
borhood evaluation. Several data structures exist to efficiently
compute neighboring points including kd-trees [56], [57], ball-
tree [58], [59], k-NN based nearest neighbors [60] and Local-
ity Sensitive Hashing (LSH) [61]. Tree based neighborhood
evaluation suffers in higher dimensions as minimum number
of points required for efficient partitioning should be > 2.
This requirement make brute force approaches outperform
tree based algorithms in higher dimensions [62]. For higher
dimensional data sets machine learning and hashing based
approaches are often preferred [63]. For the purpose of this
paper kd-tree based evaluation is performed with a scope to be
expanded with machine learning and LSH based approaches.

IV. OVERVIEW OF APPROACH

This section explains the subspace-based generation of a
reduced sparsified simplicial complex. When computing ho-
mologies up to H(k-1) features, it is sufficient to generate
simplicial complex up to k-simplices. The approach in this
section induces k-uniform hyper-graph, where k£ < d, on
d-dimensional data to compute lower dimensional H(k-1)-
homologies. The maximum number of ordered k-simplices
that can exist is (Z) = Wlk)' where n in the size of point
cloud. This count is same as number of simplices in VR-
complex expanded to k-dimensions with € = co. The number
of Delaunay k-simplices for data in d-dimension require
computation of Delaunay triangulation in ambient dimension
d and is extremely prohibitive for d > 6. To efficiently identify
lower dimensional homologies its is thus required to have an
efficient mesh induction algorithm on point cloud that can
preserve underlying topology. In this section, a simple but
scalable generalized approach is described to induce lower
simplicial mesh on high dimensional point cloud.

Throughout the remainder of this paper the following terms
will be used without further definition:

e P, the input point cloud in R",

o [3° represents a subspace sparsification intensity,

o k-simplex and k-hyperedge are equivalent, and

e Sk, set of all k-dimensional simplices of P for k < d.

A. Definition: Hyper-graph Induction

There are two possibilities for hyper-graph induction,
namely: d-Ball based, and d-Lune based (the d-Lune based
technique is valid only if the sparsification factor 5° > 1).
Both techniques define a region R that cause the k-hyperedge
to be removed from the graph if any point of the k-hyperedge
lie in R. The region R is defined as either the intersection or
union of a set of d-Balls (intersection or union is based on
(% and the specific method used). The radii of the d-balls and
the intersecting rules to define R are presented below; their
centers have complex definitions that are best described by
the pseudo-code in Algorithms 1 and 2.

There are two basic techniques for defining the region R,
namely: d-Ball based, and d-Lune based; which to use is
determined by the user. Given a point cloud P in R¢ and
a sparsification parameter 0 < 8° < oo, a k-hyper-edge with
k + 1-points (vg,v; ---vk) € P and circum-center H Ecc is
valid, iff no point from P\ (vg,v7 - - - vy ) belongs to the region
R((vg, v1 - - - vg),B3°) defined as:

o d-Ball Based:
— For 3% <1, the intersection of 2 d-Balls with radii
HEcc/B?
— For 8% > 1, the union of 2 d-Balls with radii
HEqc * 38
e d-Lune Based: (valid only if 3° > 1)
— The intersection of & d-Balls with radii 5° x H Ecc.

Algorithm 1 computes the d-Ball based 3°-centers for given
hyper-edge and a sparsification factor 3°. The d-Balls centers
and radius remains same for §° and its reciprocal L the
difference occur during evaluation of the hyper-edge validity
(Algorithm 3). Thus, if 8° < 1, Line 3 of Algorithm 1
redefines B° as its reciprocal. With that change, the remaining
computation is independent of the value of °. The remainder
of the algorithm proceeds as follows. Line 4-6, computes the
k-hyperplane coefficients (hpCof f), circum-center(H Ec )
and circum-radius (HE¢g) for the k-hyper-edge. Line 7,
computes the perpendicular distance from the k-hyper-edge
circum-center to the beta-centers corresponding to J°-radius
equal to 3° - HEcg. Lines 8-9 compute the hyper-planes
parallel to the k-hyper-edge hyperplane passing through the
upper and lower [3°-centers (- computes a vector dot-product
and (]|d||) is the magnitude of a@). Lines 13-15, computes
the upper and lower (3°-center coordinates using the variables
computed in line 10-11. Finally at line 16, the algorithm return
the [®-centers and [®-radius. The computation of 3°-centers
requires the intermediate sub-space embedding of k-simplex
in k-dimensional space. This step requires PCA and inverse
PCA transforms that are not shown in Algorithm 1.



Algorithm 1 d-Ball Based Beta-Centers Computation.

Algorithm 2 d-Lune Based Beta-Centers Computation.

Input: 37, Hyper-Edge(vg, vy - - - vg)
Qutput: upper and lower 3°-Centers, 3°-radius
1. function 335 .;, CENTERS(3?®, Hyper-Edge(vq, - - - v ))
2. if 8% < 1 then
3 B BLS
4 hpCoff « HyperPlane(Hyper-Edge(vo, - - - vk )})
s:  HEcgc < circumCenter(Hyper-Edge(va, - - - vic))
6 HEcg < circumRadius(Hyper-Edge(vq, - - - vi))
7 d« /((B**HEcgr)*-HEZR)
8 upperHP « —(hpgoﬁ . Hljjcc) +d- ||1}péoﬁ||
9:  lowerHP <« -(hpCoff - HEcc)-d - ||hpCoff||
(-(hpCoff -HE y(1)-upperHP)
[IbpCoff||2
(-(hpCoff HE)-lowerHP)
[lhpCoff||2
Beenterlowers Beenterupper
13:  for each coff z,y € hpCoff, HEcc do
s insert(x - (varl) + y)
insert(x - (var2) + y)

16: - retwrn (B nieriower: Beenterupper)s 87 - HECR

10: varl <

11: var2 <—

centerlower”

Fig. 1. The Coverage Region R grows with increasing 8°. The R d-Ball
based coverage region for 0 < 8° < 1 is computed as the intersection of
two balls orthogonal to the k-simplex. For 1 < 8% the union of two balls
orthogonal to the k-simplex defines R.

Figure 1, shows the two intersecting balls up and below
the hyper-edge plane for 8 values of 3°. The blue, green, red

and yellow balls corresponds to 3° = 1,1, 85 = 1.5, %,BS =

2, % and 8° = 2.5,% respectively. For B‘“’l = 1, the two balls
(upper and lower) overlaps and represents the circum-sphere
of the 2-simplex. At this 5° value the intersection and union of
two balls is identical. As sparsification grows (reduces) further
away from 1, the corresponding union (intersection) of the two
balls increases (decreases). This strategy provides a continues
spectrum of induced A-uniform hyper-graphs on point cloud
P in R?, where k < d. The k-hyper-graph becomes complete
when (3° becomes 0 and results in completely disconnected
hyper-graph as 3° approaches oc.

Algorithm 2 computes d-Lune based §°-centers for a
given hyper-edge and a sparsification factor 5°. The d-Lune
based validation is only defined for 5° > 1 and algorithm
stops at Line 4 otherwise. Line 5-6, computes the circum-
center(H Foc) and circum-radius (H FcR) corresponding to
k-hyper-edge. Line 9-10, computes the 3°-center and [3°-
radius corresponding to each vertex of the k-hyper-edge. The
lines 11-12, collects the [°-centers. Finally at line 13, the

Input: 37, hyper-edge(vg, vy - - - vg)
OQutput: k 3°-Centers and radii for each hyper-edge vertices

function 33, ... CENTERS(3®, Hyper-Edge(vg, - - - v))

1:
2 if 8% < 1 then

3 only defined for 3° > 1

4 return

5. HEcgc < circumCenter(Hyper-Edge(va, - - - vi)})

s HEcr < circumRadius(Hyper-Edge(vo, - - - vi})

7 S enterss Bradii < 0 > Circumcenter and Radius
8: for each vertex v; € Hyper—Edge(vo, v1 - - - vg) do

o: B% < (8° - HEcr-HEcr + 1) - (HEcc-vi) + vi

10: Br «— distance(vi, 85)

o Blengery. insert(85)

12: Bradii- insert(57)

13 return Bgorss Badii

Intersection

Fig. 2. Coverage Region increases with increase in the sparsification factor
5. k-Lune Based coverage region 1 < 8% < oo is shown as intersection of
k-Balls centered on k-simplex hyperplane

algorithm return the §°-centers and S°-radii. For 3° = 1,
all the °-centers coincides with k-hyper-edge circum-center
and their intersection corresponds to k-hyper-edge circum-
sphere. As 3° grows the d-Lune region grows in hyper-volume
orthogonal to its hyperplane. As [(° grows away from 1,
the %-hyper-graph edges experience reduction and eventually
saturates; the complex does not necessary collapse all hyper-
edges (the d-Ball technique always will).

Figure 2, shows the k-intersecting balls based d-Lune for 4
values of 3°. The blue d-Balls (not visible due to overlapping)
corresponds to 5° = 1 and represents k-hyper-edge circum-
sphere. The intersection of three red, green and yellow balls
represents the d-Lune for §° = 1.5, 8° = 2 and §° = 2.5.

B. Hyper-edge Validation

Utilizing the functions of Algorithms 1 and 2, the evaluation
criteria for hyper-edge validity is described in Algorithm 3 (a
valid hyper-edge is preserved, an invalid one is removed). As
in Algorithm 2, the k-Lune based criteria is not defined when
8% < 1 (and Line 4 terminates the algorithm accordingly). For
5% > 1 the k-Lune based validation is evaluated in Lines 6—
10. The 3°-centers and 5°-radii from Algorithm 2 are used at
Line 7. The intersection of all k-hyper-balls corresponding to
hyper-edge vertices is than evaluated. The algorithm at Line
10 return true if no point of the point cloud(P) is present in
k-Lune region; otherwise it returns false.

The algorithm evaluates the d-Ball based validation in Lines
11-17. The algorithm computes [S°-centers and J°-radius
for the upper and lower [3°-hyper-sphere at Line 12. The
intersection of the two hyper-balls is checked for 8° < 1 and



Algorithm 3 Hyper-edge validity.

Algorithm 4 Enumeration and Sparsification of k-hyper-edges

Input: P in R%, 3°, Hyper-Edge(vg, vy - - -
Output: true if valid otherwise false

vk ), Rule R

. function 3°
if R is d-Lune and 3° < 1 then
d-Lune based rule only defined for3° > 1
return

1 - VALIDATION(P, 8° Hyper-Edge(vo, - «
2
3
4
5: points <+
6
7
8

- vk).R)

if R is d-Lune then
C,R + ﬁfmwCENTERS(ﬁs,Hyper—Edge(vo7 cee )
: for each c¢;, r; € C,R do

9: points < points N P.Ball(c;,r;)

10: return points € () ? true : false

11 else if R is d-Ball then

12: ¢, < B5_ a1 CENTERS(8° Hyper-Edge(vo, - - - vi))

13: if thenB® <1

14: points < P.Ball(c.up,r) N P.Ball(c.low, )
15: else

16: points < P.Ball(c.up,r) U P.Ball(c.low, )
17: return points € () 7 true : false

union is checked for 8° > 1 at Line 14 and 16 respectively.
The algorithm then checks for the presence of point in the [3°-
region and return frue if no point is present; otherwise return
false. For the sake of simplicity and testing convenience, the
neighborhood computation for function P.Ball is obtained
using kd-tree at Lines 9, 14 and 16. Other, more efficient,
solutions would be used in practice at higher dimensions.

C. Lower Dimensional Enumeration for k < d and Sparsifi-
cation

For a point cloud P of size n in R? Euclidean space,
the maximum possible 1- hyper—edges (1- 51m%)hces) and 2-
hyper-edges (2-simplices) are "(";’1
spectively. The number of these k-hyper-edges 1ncreases W1th
the degree (k) and can be generalized by combination (2)
= ﬁlk), for k-hyper-edge. To compute simplicial complex
up to dimension k, it is not require to conquer the data at
dimension d to compute lower dimensional homological fea-
ture. For k-dimensional Betti Numbers (and the corresponding
homological features), it is sufficient to conquer the data at
dimension k¥ < d. This approach is utilized by VR-complex
as it adds all possible simplices of dimension less than k
to compute homological features up to dimension k. Since
the VR-complex adds all possible simplices its size grows
exponentially with dimension. In contrast, a Delaunay complex
is small for compared to VR-complex; however, it requires the
computation of a Delaunay triangulation at the dimension of
the data. This makes it infeasible to use a Delaunay complex
for the computation of lower dimensional homological features
for point cloud in higher dimensions. The approach of this
paper provides a topology sensitive reduction technique that
reduces the number of simplices at the desired subspace while
preserving topology.

The enumeration technique as described in Algorithm 4
inputs a point cloud P in RY, a sparsification factor 3°, and
an edge-degree k for the hyper-graph induction. At Line 3,
the Algorithm receives user input to select between the k-Ball
or k-Lune methods. The algorithm generate all the possible
unique combinations for k-hyper-edges at Line 4 and checks

Input: P in R%,3° Sparsification factor, k edge-degree
Output: Sparsified £ Hyper-Edge set
function k-ENUMERATION(3®, k, P)
B (HER) + 0
R < Rule-Userlnput(k — Ball, kK — Lune)
for Vseq((pi,...pr) € P do
HE; < [Py, -+, Pl
if 3°-VALIDATION(P, 3%, HE;, R) then
B°(HE}).append(HE;)
return 3°(HE},)

® N YR

them for S°-validation at Line 6. The valid hyper-edges are
appended to the sparsified k-hyper-edge set and is returned
at Line 8. In general, the size of the simplicial complex can
be further reduced with a user-specified €,,,,. However, a
study of sparsified hyper-graphs coupled with €,,,, filtration
is beyond the scope of this paper.

V. EXPERIMENTS

This section examines the performance (complex size, and
PH run time costs) of Alpha, VR, and S*-sparsified com-
plexes for synthetic and real-world data sets. In particular, the
following synthetic data sets are examined: (a) dspheres of
150 points in R3 — R0, (b) a Permutahedron (120 points)
embedded in R*, and (c) a tetraSphere (210 points) and a
cubicSphere (192 points) both embedded in R®. The real
world data sets used in this study are: (a) a forest fire data
set (517 points in R'') [64] and (b) a concrete compressive
strength data set (1030 points in R?) [65]. The forest fire
data set is a multivariate data with temperature, wind-speed,
humidity, rain among others as factors to predict burned area
during forest fire. The concrete compressive strength data set
(CCSDS) analyze factors like cement quantity, blast furnace
slag, fly ash, water among others to infer concrete strength.
The Permutahedron, tetraSphere and cubicSphere data sets are
generated by distributing points on their edges and projecting
them on to unit d-sphere. Table I, shows the Betti numbers
for each of these data sets.

TABLE I
BETTI COUNT (by,) FOR THREE DIFFERENT SYNTHETIC DATA SETS.

Data Set bo b1 bo b3 by | b3
5-Tetra-Sphere 6 15 20 15 6 1
5-Cubic-Sphere 32 80 80 40 | 10 1
4-Permutahedron | 120 | 240 | 150 | 30 1 -

In addition to the study of complex size and run times,
this paper also presents results that the generated complexes
have on the PH intervals (to give a sense of how well the
various complexes preserve the topological features in the
point cloud). The output of PH is analyzed using the Sliced
Wasserstein distance metric to generate a dissimilarity scores
[66]. The test data set in the experimental section may seem
small but, given the capabilities of contemporary PH tools' and

!For example state-of-the art Delaunay computation algorithm will struggle
for 1030 points in R [67].
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Fig. 3. Time and Space comparisons with a dSphere point cloud of 150 points and noise of 0.2 in R® — R1® for 3% = 1 for homology groups Hy and Hy.

the higher dimensional nature of the data, they should serve
as adequate tests. For the Sliced Wasserstein comparisons,
the VR-complex PH output is used as the ground truth. The
experiments including PH computations are performed using
the LHF persistent homology tool chain [68] and testing was
performed on an Intel(R) Xeon(R) CPU E5-1620 @ 3.70GHz
with 128GB of RAM.

A. Space and Time Comparison to VR and Alpha-complex

The first study compares the PH run time and complex size
differences between the J°-sparsified complex at 3° = 1, the
VR-complex and the Alpha-complex against the d-sphere test
data. Figure 3a compares the computational run time of com-
puting PH for the H,, H», Hs and H,4 homology groups. The
run time for VR-complex is the fastest for computing H; — Hy
homology groups. In contrast, the Alpha complex run times
increase exponential with dimension and fails at all dimensions
> R, The VR-complex is fast but the resulting complexes
are quite large. In contrast, the run time for the °-sparsified
complex remains proportional to the homology group being
computed (H; — H,4) irrespective of the dimension of the
data. Contrasting the Alpha and [3°-sparsified complexes, the
later provides a capability to provide sparsification for high
dimensional data at lower subspaces thereby overcoming the
Alpha-complex failures in higher dimensional spaces.

The [°-sparsified complex allows one to develop a sparsi-
fied complexes at subspaces with sizes similar to an Alpha-
complex with less time complexity Figure 3. In this imple-
mentation the dominant run time costs for constructing a 5°-
sparsified in higher dimensions is the enumerated simplicial
space and the use of the kd-tree based neighborhood. The
enumerated space can be constricted by capping the €,,4x
value similar to that of the VR-complex. The kd-tree behaves
worst than brute force for point clouds containing fewer than
2¢ points (for P in R?). For kd-trees to work efficiently the
size of the point cloud P should be greater than 2¢ (| P| > 2%).
More efficient neighborhood search algorithms such as k-NN
and LSH can keep a check on the build time.

The maximum complex size limits on 8GB, 16GB, 32GB,
64GB and 128GB RAM capacities is also shown in Figure
3b. For H, homology groups, the VR-complex size grows
above the 64GB limit for the 150-point dsphere data in
RS. In contrast, the corresponding Alpha and B3°-sparsified
complex size remain significantly smaller with their complex
size consuming less than 2GB of RAM capacity. Interest-
ing, for dsphere data sets in dimension > R'0, the Alpha-
Complex construction run time costs prohibit its construction
in reasonable time. The [°-sparsified complex can support
this computation. Furthermore, the 3°-sparsified complex con-
struction algorithm is embarrassingly parallel and its run time
complexity can be significantly reduced with multi-threading
and distributed computing solutions.

B. Complex Size and Accuracy

1) Permutahedron, Tetra-dSphere and Cubic-dSphere:
As discussed in Section IV-C, the complexity of the J°-
sparsification is O(n*) for simplicial complex up to k-
simplices. Permutahedron in R* has a 4-simplex as a highest
degree hyper-edge. To obtain H; and Hs homology features
only 2-simplex and 3-simplices are required.

The complex reduction curves and the corresponding Sliced
Wasserstein results for H; homologies are shown in Figure 4a
and 4b. Since the d-Lune based reduction is defined only for
8% > 1, the 5 values in Figure 4b starts from 1. Similarly, for
homology up to Hs the reduction is shown in Figure 4c and 4d
for d-Ball and d-Lune based proximity rules. Simplicial Com-
plex sizes experience a monotonic reduction as S° increases.
The reduction from 0 < 8% < 0.8 is somewhat slow, but
accelerates quickly for 0.8 < 8° < 1.0. Similar, but slightly
different reduction curves are experienced for homologies
computed to H> (Figures 4c and 4d, the Red and Orange
curves). The d-Ball based sparsification criteria quickly lose
its edges and becomes completely disconnected (Figures 4a
and 4c¢). The d-Lune based sparsification experiences a steady
reduction curve and does not become completely disconnected
even for larger values of 3° (Figures 4b and 4d). The ad-
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Fig. 4. Sliced-Wasserstein distance for Permutahedron in R* with 120 points and noise of 0.1.

vantage of the approach for lower dimensional homologies
computation is the reduced complex size without much effect
in the PH intervals.

Sliced Wasserstein Distance remains close to 0 for values of
8% < 1.0. For 8 > 1.0, the d-Ball based SW distance increase
quickly compared to d-Lune based reduction (Figures 4a and
4b, the Blue and Sky Blue curves). Similar SW distance curve
are experienced for Hs homology groups (Figures 4c and 4d,
Blue,Sky Blue and Cyan curves).

Results for the TetraSphere in R® are shown in Figure 5.
For 2D case, the complex experienced a significant reduction
until 8° = 1 without affecting the persistence intervals. For
8% > 1, the d-Ball based approach quickly sheds most of the
complex size and SW distance signifies homology collapse
(Figure 5a). For d-Lune based approach, the gradual reduction
is experienced until 3° = 1.1 with gradual increase in the SW
distance (Figure 5b). The d-Lune based results shows that the
Hs homology features are lost even at 8° = 1 (Figure 5c);
these results are similar to permutahedron results where Ho

are lost just before 5° = 1 (Figure 4c¢).

Results for the cubicSphere are shown in Figure 6 for
homology groups to H;. The results for permutahedron,
tetraSphere and cubicSphere synthetic data sets shows that
the sparsification approach is stable and follows a topology
preserving reduction.

2) Forest Fire and Concrete Compressive Strength Data:
Moving to the real world test data sets, Figure 7 shows a
steady reduction in the complex size for 0 < p° < 2.
The SW distance scores show an unperturbed H, score but
considerable fluctuations in the H; results (Figure 7a, Blue
line). An alternative comparisons using Betti numbers is shown
in Table II. The counts show that the Betti numbers are
preserved until 8° = 1 and quickly reduce for d-Ball based
sparsification (Figure 7a), but a steady reduction for d-Lune
based sparsification (Figure 7b). The SW distance increases
suddenly at 5° = 1.4 and then drops again at 8° = 1.5,
this variation is supported by the Betti counts where the H;
features increases to 150 suddenly and then drops to 143.
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TABLE II
TOTAL BETTI COUNT (b1) COMPARISON TO VR-COMPLEX 134 COUNT FOR FOREST FIRE DATA SET
ER 03] 04 |05 |06 |07 ] 08 ] 09 1.0 1.1 1.2 1.3 1.4 1.5 16 | 1.7 | 1.8 | 1.9 | 2.0
b1(d-Ball) 135 | 135 | 137 | 138 | 140 | 142 | 138 | 142 14 1 0 0 0 0 0 0 0 0
b1 (d-Lune) - - - - - - - 142 | 145 | 147 | 147 | 150 | 143 | 114 | 93 77 54 36

The CCSDS real world test data in RY has been evaluated
for its H; homology features. The results of Figure § show
that the homology is preserved until 8° = 1 with both Hy and
H; SW-distance close to (. The H; SW distance increases as
5% becomes greater than one and signify disconnected loops.
The Hy homology results shows a very gradual increase in
SW distance indicating that the minimum spanning tree edges
are well preserved.

VI. CONCLUSION AND FUTURE WORK

The computation of persistent homology is challenging for
big data sets in higher dimensional spaces. This paper presents
a technique to embed lower dimensional hyper-graphs on
higher dimensional point clouds to compute lower dimensional
homologies. The complex size is reduced at the subspace to

compute lower homologies rather that conquering the data
in the ambient space. The proposed approach overcomes
the infeasible Delaunay triangulation computation in higher
dimensional spaces to generate a sparsified complex. The prox-
imity hyper-graphs can be embedded at a subspace sufficient
to compute lower homologies. The experimental results show
that the lower dimensional homologies are well preserved
under subspace sparsification. The approach will enable the
computation of PH for moderately big data sets in higher
dimensions.
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