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ABSTRACT
Channel modeling is a fundamental task for the design and evalua-
tion of wireless technologies and networks, before actual prototyp-
ing, commercial product development and real deployments. The
recent trends of current and future mobile networks, which include
large antenna systems, massive deployments, and high-frequency
bands, require complex channel models for the accurate simulation
of massive MIMO (m-MIMO) in millimeter wave (mmWave) and
Terahertz (THz) bands. To address the complexity/accuracy trade-
off, a spatial channel model has been defined by 3GPP (TR 38.901),
which has been shown to be the main bottleneck of current system-
level simulations in ns-3. In this paper, we focus on improving the
channel modeling efficiency for large-scale MIMO system-level
simulations. Extensions are developed in two directions. First, we
improve the efficiency of the current 3GPP TR 38.901 implemen-
tation code in ns-3, by allowing the use of the Eigen library for
more efficient matrix algebra operations, among other optimiza-
tions and a more modular code structure. Second, we propose a
new performance-oriented MIMO channel model for reduced com-
plexity, as an alternative model suitable for mmWave/THz bands,
and calibrate it against the 3GPP TR 38.901 model. Simulation re-
sults demonstrate the proper calibration of the newly introduced
model for various scenarios and channel conditions, and exhibit
an effective reduction of the simulation time (up to 16 times com-
pared to the previous baseline) thanks to the various proposed
improvements.

CCS CONCEPTS
• Networks → Network simulations; Network performance
analysis.
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1 INTRODUCTION
Mobile networks play a key role in our society and are poised to
become ever more important in the coming years. In fact, the In-
ternational Telecommunications Union (ITU) foresees that in 2030
and beyond wireless broadband will be ubiquitous, and will be re-
quired to provide connectivity not only to humans, but also to a
plethora of intelligent devices such as wearables, road vehicles, Un-
manned Aircraft Systems (UASs) and robots [16]. Moreover, novel
use cases such as holographic communications, Extended Reality
(XR) and tactile applications will further exacerbate the throughput
and latency requirements which were posed by enhanced Mobile
Broadband (eMBB) and Ultra-Reliable Low-Latency Communica-
tions (URLLC) [15].

To meet these goals, future cellular systems will further evolve
5th generation (5G) networks, which have introduced a flexible,
virtualized architecture, the support for mmWave communications
and the use of m-MIMO technologies [9]. Notably, the research
community is considering a more central role for mmWaves, a
further expansion of the spectrum towards the THz band, and an
Artificial Intelligence (AI)-native network design, with the goal of
achieving autonomous data-centric orchestration and management
of the network [35], possibly down to the air interface [14].

The THz and mmWave bands offer large chunks of untapped
bandwidth which operators can leverage to meet the Tb/s peak
rates that are envisioned by the ITU [16]. However, this portion of
the spectrum is plagued by unfavorable propagation characteristics,
comprising a marked free-space propagation loss and susceptibil-
ity to blockages [11, 20], which make it challenging to harvest its
potential. Although the harsh propagation environment can be par-
tially mitigated by using directional links and densifying network
deployments [36], the support for mmWave and THz bands entails
a major redesign not only of the physical layer, but of the whole cel-
lular protocol stack [42]. For instance, the intrinsic directionality of
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the communication requires ad hoc control procedures [13], while
the frequent transitions between Line-of-Sight (LoS) and Non-Line-
of-Sight (NLoS) conditions call for an ad hoc transport layer design,
such as novel Transmission Control Protocol (TCP) algorithms [45].

In addition, as the network progressively becomes increasingly
complex and heterogeneous, the push for spectrum expansion will
be coupled with an AI-native design which, thanks to the ongo-
ing virtualization, will not be limited to the radio link level, but
will encompass the orchestration of large scale deployments as
well [34]. Nevertheless, how to design, test and eventually deploy
management and orchestration algorithms is an open research
challenge [33]. First, the training data must accurately capture the
interplay of the whole protocol stack with the wireless channel. Fur-
thermore, optimization frameworks such as Deep Reinforcement
Learning (DRL) also call for preliminary testing in isolated yet real-
istic environments, with the goal of minimizing the performance
degradation to actual network deployments [5, 22].

In these regards, system-level network simulators have a central
role to play. Indeed, an end-to-end evaluation of algorithms and
protocols becomes paramount when considering frequencies above
6 GHz, given the impact of their peculiar propagation character-
istics on the whole protocol stack. At the same time, end-to-end
simulators can also serve as both sources of training data for AI
models, and testing platforms for preliminary evaluation of Ma-
chine Learning (ML) algorithms prior to their deployment in com-
mercial networks. However, the suitability of end-to-end network
simulators to these tasks largely depends on the accuracy of the
channel model [43] and on the scalability for realistically-sized
deployments. In fact, system-level simulators generally abstract the
actual link-level transmission via an error model, which maps the
Signal-to-Interference-plus-Noise Ratio (SINR) of the wireless link
to a packet error probability [23]. Eventually, the latter is used to
determine whether the packet has been successfully decoded by the
receiver. As a consequence, the accuracy of the simulator heavily
depends on the reliability of the SINR estimation, especially when
considering the mmWave and THz bands.

The well known ns-3 simulator features the implementation of
the 3rd Generation Partnership Project (3GPP) channel model [1],
which, according to the 3GPP, represents the state-of-the-art chan-
nel model for drop-based end-to-end simulations of devices oper-
ating at frequencies between 0.5 to 100 GHz. Despite its accuracy,
the TR 38.901 channel model is particularly demanding from a
computational point of view, and thus limits the scalability of the
simulated scenarios. At the same time, the simpler channel models
which are found in analytical studies fail to capture the peculiar
characteristics of mmWave and THz links.

To fill this gap, in this paper we propose optimizations to the
ns-3 implementation of the TR 38.901 channel model of [47], both at
the codebase and at the design level, which aim to provide wireless
researchers with the tools for simulating future dense wireless
scenarios in a computationally efficient manner. Specifically, we
significantly improve the runtime of simulations involving the
3GPP TR 38.901 channel model [1] by porting the intensive linear
algebra operations to the open-source library Eigen [10]. To this
end, we also design and implement a set of common linear algebra
APIs, which increase the modularity of the spectrum module with
respect to the underlying data structures and algorithms. Then, we

propose a simplified channel model, based on [1], which aims to
provide an additional order of magnitude of runtime reduction, at
the cost of a slight accuracy penalty. Profiling results show that the
support for Eigen, coupled with further TR 38.901 optimizations,
leads to a decrease of up to 5 times in the simulation time of typical
Multiple Input Multiple Output (MIMO) scenarios. Furthermore, the
proposed performance-oriented channel model further improved
the runtime of simulations, which now take as low as 6 % with
respect to the full TR 38.901 channel model, with a negligible loss
in accuracy.

The remainder of the paper is organized as follows. Section 2
reports the state of the art on channel models. Sections 3 and 4
describe the contributions of this work, in terms of optimizations
to the ns-3 implementation of the TR 38.901 framework and the de-
sign of a performance oriented channel model, respectively. Finally,
Section 5 presents benchmarks of the introduced optimizations and
discusses the main use cases of these channel models, while Sec-
tion 6 concludes the paper by mentioning possible future extensions
of this work.

2 RELATEDWORK
Channel modeling is a fundamental task for the design, simula-
tion, and evaluation of current and future wireless networks. It
is especially relevant to perform system-level simulations to test
new algorithms, procedures, and architectures, before going into
real deployment/device implementations. In the recent decades,
the challenges for understanding the propagation at mmWave and
THz frequencies with large antenna arrays and the use of MIMO
have further motivated the channel modeling efforts in those fre-
quency ranges [12, 25]. As a result, multiple channel measurement
campaigns have been performed by the academic and industry
communities [39], leading to different families of channel models.
The various channel models differ in their degree of simplicity and
accuracy. They range from simple models that just consider a prop-
agation loss component combined with Nakagami-m or Rayleigh
fading but fail to capture the spatial dimension of the channel and
the interactions with beamforming [3], to deterministic models that
are very accurate in specific scenarios but are much more complex
and require a precise characterization of the environment [24]. To
address the complexity-accuracy trade-off, the 3GPP has adopted
a stochastic channel model for simulations of 5G and beyond net-
works [1]. Stochastic channel models are generic, thanks to their
stochastic nature, but at the same time can model interactions with
multiple-antenna arrays. Specifically, the 3GPP defined in TR 38.901
the spatial channel model for simulations that address frequency
ranges from 0.5 GHz to 100 GHz [1], which is parameterized for
various simulation scenarios, including indoor office, indoor factory,
urban macro, urban micro, and rural macro.

However, for system-level simulations of large-scale systems in-
cluding multiple nodes and large antenna arrays, the 3GPP spatial
channel model still introduces a significant overhead in terms of
computational complexity. In this line, in [37], a simplified channel
model for the system-level simulations of MIMO wireless networks
is proposed. Therein, the end-to-end channel gain is obtained as
the sum of several loss and gain terms that account for large-scale
phenomena such as path loss and shadowing, small-scale fading,
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and antenna and beamforming gains. Notably, the latter terms rep-
resent a fundamental component for studies concerning modern
wireless systems. In particular, an accurate characterization of the
antenna radiation pattern and of the effect of the presence of multi-
ple radiating elements becomes extremely important when studying
mmWave and THz frequencies. Following the model in [37], the
combined antenna and beamforming gain can be computed accord-
ing to [40], the path loss and shadowing components can follow the
3GPP model in [1], and the small-scale fading can be sampled from
various statistical distributions. For the small-scale fading, authors
in [37] propose to use a Nakagami-𝑚 distribution, which has been
shown to provide a good fit with the 3GPP model, provided that
the𝑚 parameter is appropriately chosen. Another option for small-
scale fading modeling is the so-called Fluctuating Two-Ray (FTR)
fading model presented in [41], which models more accurately the
fading that occurs at mmWaves.

The 3GPP TR 38.901 spatial channel model was included in ns-3
thanks to the efforts of Tommaso Zugno in 2019 Google Summer
of Code [47], and later extended to address vehicular scenarios
in [46] and industrial scenarios in [38]. The current spatial channel
model implemented in ns-3 is very accurate for simulations in line
with 3GPP specifications for a wide range of frequencies, but rep-
resents the main bottleneck in terms of computational complexity
when considering large-scale simulations with many multi-antenna
nodes, especially when equipped with large antenna arrays. This is
because of the intrinsic complexity in the generation of the chan-
nel model according to 3GPP specifications and the need to deal
with 3D channel matrix structures. The channel matrix in the ns-3
implementation of the 3GPP spatial channel model is implemented
as a 3D structure whose dimensions depend on the number of the
transmit antennas, receive antennas, and clusters. Currently, in
ns-3, the 3GPP channel model uses a vector of vectors of vectors to
represent 3D arrays, such as the channel matrix.

The design of computationally efficient yet accurate channel
models has been a topic of interest also in the Wireless Local Area
Network (WLAN) space. The authors of [18, 19] present a frequency-
selective channel for WLANs, and use Exponential Effective SNR
Mapping (EESM) Link-to-System (L2S) mapping to integrate their
model with the ns-3 system-level Wi-Fi implementation. More-
over, they develop a framework which leverages cached statistical
channel matrix realizations to directly estimate the effective Signal-
to-Noise Ratio (SNR), thus further improving the computational
efficiency of the model. Specifically, the latter is modeled as a param-
eterized log-SGN random variable. They extend their work in [17],
by accounting for the channel correlation over time. Moreover, [26]
compares statistical channel models for the 60 GHz band with the
Quasi Deterministic (QD) Ray Tracer (RT) of [4].

In this paper, we summarize the efforts carried out by Matteo
Pagin in 2022 Google Summer of Code to further optimize the
code in ns-3 in two directions: 1) improving the efficiency of the
code by allowing the use of Eigen library, and 2) proposing a new
performance-orientedMIMO channelmodel for reduced complexity
in ns-3 large-scale simulations. First, we have improved the effi-
ciency of the 3GPP spatial channel model in ns-3 by allowing the
usage of Eigen to represent matrices, so that when Eigen is avail-
able the 3GPP channel matrix is represented as an std::vector of
Eigen matrices. This already improves the performance of current

models. Second, we propose an alternative model, based on the
FTR channel model [41], in which the channel is characterized by
a single scalar instead of 3D matrices, and we have calibrated such
model to align with the 3GPP TR 38.901 spatial channel model for
various scenarios and channel conditions. This model is especially
useful to speed up ns-3 large-scale simulations, when simplicity is
prioritized.

3 EFFICIENT MIMO MODELINGWITH THE
EIGEN LIBRARY

The use of multiple antennas both at the transmitter and at the
receiver, a fundamental feature of modern wireless systems, makes
a scalar representation of the channel impulse response insufficient.
Instead, MIMO channels are usually represented in the form of a
complex matrix 𝑯 ∈ C𝑈×𝑆 , whose elements depict the channel
impulse response between the 𝑈 and 𝑆 radiating elements of the
transmitting and receiving antenna arrays, respectively [1]. This
peculiarity significantly increases the computational complexity
of MIMO channel models, compared to Single Input Single Output
(SISO) ones, since the complex gain of the channelmust be evaluated
for each pair of transmit and receive antennas. Notably, previous
analyses identified in statistical channel models the main bottleneck
for system-level MIMOwireless simulations. In typical m-MIMO 5G
scenarios, where the devices feature a high number of antennas, the
channel matrix generation and the computation of the beamforming
gain represent up to 90% of the simulation time [43].

In light of these limitations, as the first of our contributions, we
optimized the implementation of the 3GPP TR 38.901 model in ns-3
introduced in [47]. First, we observed that, as of ns-3.37, part of
the trigonometric operations of the GetNewChannel method of the
ThreeGppChannelModel class are unnecessarily repeated for each
pair of transmitting and receiving radiating elements. This repre-
sents a significant inefficiency, since the inputs of these functions,
i.e., the angular parameters of the propagation clusters, depend on
the cluster index only. Moreover, the standard library sin and cos
functions are particularly demanding to evaluate. Therefore, we
cached the trigonometric evaluations of these terms prior to the
computation of𝑯 ’s coefficients, effectively reducing the complexity
of the trigonometric operations from O(𝑈 ×𝑆 ×𝑁 ) to O(𝑁 ), where
𝑁 is the number of propagation clusters.

Then, we focused on improving the algebra manipulations of the
channel matrix performed in the ThreeGppSpectrumPropagation-
LossModel by introducing the support for the open-source library
Eigen in ns-3. Eigen is a linear algebra C++ template library that
offers fast routines for algebra primitives such as matrix multiplica-
tion, decomposition and space transformation [10], and is used by
many open-source frameworks such as TensorFlow.

We set Eigen as an optional, external ns-3 dependency, with
the goal of minimizing future code maintenance efforts, and thus
mimicking the support for other third-party libraries. To get Eigen,
ns-3 users can either rely on packet managers, i.e., install the pack-
age libeigen3-dev (eigen) for Linux (Mac) systems, or manu-
ally install the library by following the official instructions1. Then,
Eigen can be enabled via a custom flag defined in the macros-and--
definitions.cmake file, and its presence in the system is shown to

1https://gitlab.com/libeigen/eigen/-/blob/master/INSTALL
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the user by exposing whether it has been found or not via the ns3--
config-table.cmake file. The latter also defines the preprocessor
definition HAVE_EIGEN3, which is used in the ns-3 source files to
discern Eigen’s availability. Finally, the linking of Eigen with the
ns-3 source files is taken care of by the CMake configuration file
provided by the library itself, as suggested in the related ns-3 guide.

To prevent the need for Eigen to be installed in the host system,
we developed a common set of APIs between the Eigen- and the
Standard Template Library (STL)-based data structures and primi-
tives. Thanks to this choice, the remainder of the spectrum code is
completely abstracted with respect to the presence of the library.
Given that most of the needed operators can not be overloaded for
STL C++ vectors (for instance, operator()), the common interface
for both Eigen and STL’s based vectors and matrices has been im-
plemented by defining ad hoc structs with custom operators. In
particular, we defined:

• The complex vector type PhasedArrayModel::ComplexVec-
tor. This data-structure is defined as an std::vector of
std::complex<double> whenever Eigen is not installed,
and as an Eigen vector of std::complex<double> other-
wise. The set of APIs includes operators [] and !=, which
can be used to access the vector entries and to compare pairs
of vectors, respectively. Additionally, we defined the STL-like
methods size, norm and resize, which return the vector
size, itsL2-norm, and allow the user to resize the underlying
container, respectively. These definitions follow the typical
STL notation, as it is supported by Eigen as well.

• The complex matrix type MatrixBasedChannelModel::-
Complex2DVector. In this case, the underlying type is a
nested std::vector of std::complex<double> for when
Eigen is disabled, and an Eigen matrix whose entries are of
type std::complex<double> otherwise.
In this case, we aligned the notation to the APIs provided
by Eigen. Specifically, the matrix elements can be accessed
via the operator (), which takes as arguments the row and
column indices of the entry, while the method resize allows
users to resize matrices by specifying the number of rows
and columns. In turn, these can be accessed via the rows and
columns methods, respectively.

• The 3Dmatrix MatrixBasedChannelModel::Complex3DVec-
tor. This data structure is defined, regardless of Eigen’s
availability, as an std::vector of MatrixBasedChannel-
Model::Complex2DVector. In this case, the only method
provided is MultiplyMatByLeftAndRightVec, which com-
putes a product of the type 𝒘𝑇𝑯𝒘𝑇

𝑅
, where 𝑯 ∈ C𝑈×𝑆 ,

𝒘𝑇 ∈ C1×𝑈 and 𝒘𝑅 ∈ C1×𝑆 . Notably, this computation-
ally demanding evaluation, which is required for computing
the beamforming gain in ThreeGppSpectrumPropagation-
LossModel, leverages Eigen’s optimized algorithms when-
ever the library is installed in the host system.

Finally, we remark that the support for Eigen in the ns-3 code-
base can possibly be further extended to improve the efficiency
of other linear algebra operations, such as the Singular Value De-
composition (SVD) which is used in the mmwave and nr modules to
compute optimal beamformers, and the matrix-by-matrix multipli-
cations needed for relayed channels [30].

4 A PERFORMANCE-ORIENTED MIMO
STATISTICAL CHANNEL MODEL

The second approach to reduce computational complexity we pro-
pose in this paper is a MIMO channel model for simulating large
m-MIMO scenarios, implemented in the class TwoRaySpectrum-
PropagationLossModel. The goal of this auxiliary model is to offer
a faster, albeit slightly less accurate, statistical channel model than
the 3GPP TR 38.901 framework of [47] by preventing the need for
the computation of the complete channel matrix. In line with [1],
the frequency range of applicability of this model is 0.5 − 100 GHz,
although the framework can be possibly extended to support higher
frequencies as well.

The overall channel model design follows the approach of [37],
i.e., the end-to-end channel gain is computed by combining several
loss and gain terms which account for both large- and small-scale
propagation phenomena, and the antenna and beamforming gains.
In particular, let𝑇 be a device transmitting a signal 𝑥 with power P𝑥

𝑇
,

and 𝑅 be another device in the simulation (which may or may not be
the intended destination of 𝑥 ). The proposed model implements the
PhasedArraySpectrumPropagationLossModel interface by esti-
mating P𝑥

𝑅
, i.e., the power of 𝑥 received at 𝑅, as follows:

P𝑥𝑅 [𝑑𝐵𝑚] = P𝑥𝑇 [𝑑𝐵𝑚] − PL𝑇,𝑅 [𝑑𝐵] (1)
+ S𝑇,𝑅 [𝑑𝐵] +𝐺𝑇,𝑅 [𝑑𝐵] + 𝐹𝑇,𝑅 [𝑑𝐵],

where the terms PL𝑇,𝑅 and S𝑇,𝑅 represent the path loss and the
shadowing, respectively, while 𝐺𝑇,𝑅 and 𝐹𝑇,𝑅 denote the antenna
and beamforming gain and the small-scale fading, respectively. The
remainder of this section describes in detail how each of these terms
is computed.

4.1 Path loss, Shadowing, and LoS Condition
The large-scale propagation phenomena are modeled according to
the 3GPP TR 38.901 model [1], since its implementation of [47] is
not computationally demanding. Nevertheless, the channel model
can in principle be coupled with arbitrary classes extending the
ChannelConditionModel interface.

Specifically, we first determine the 3GPP scenario. Then, for each
link we set the LoS condition in a stochastic manner, using the class
extending ThreeGppChannelConditionModel which corresponds
to the chosen scenario.

Then, we compute the path loss using the 3GPP TR 38.901 for-
mula

𝑃𝐿𝑇,𝑅 = 𝐴 log10 (𝑑) + 𝐵 +𝐶 log10 (𝑓𝐶 ) [𝑑𝐵], (2)
where 𝑑 is the 3D distance between the transmitter and the receiver,
𝑓𝐶 is the carrier frequency, and 𝐴, 𝐵 and 𝐶 are model parameters
which depend on the specific scenario and the LoS condition.

To account for the presence of blockages, an optional log-normal
shadowing component 𝑆𝑇,𝑅 and an outdoor-to-indoor penetration
loss term are added to 𝑃𝐿𝑇,𝑅 .

4.2 Antenna and Beamforming Gain
The combined array and beamforming gain is computed using the
approach of [40]. The proposed model supports the presence of
multiple antenna elements at the transmitter and at the receiver,
and arbitrary analog beamforming vectors and antenna radiation
patterns. Therefore, ns-3 users can use this model in conjunction
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with any class that implements the AntennaModel interface. In
this implementation, we focus on Uniform Planar Arrays (UPAs),
although the methodology is general and can be applied to arbitrary
antenna arrays.

Let 𝜃 and 𝜑 be the relative zenith and azimuth angles between
transmitter and receiver, respectively, and let 𝒘 (𝜃0, 𝜑0) denote
the beamforming vector pointing towards the steering direction
(𝜃0, 𝜑0). We denote with 𝑈 = 𝑈ℎ𝑈𝑣 the total, horizontal, and ver-
tical number of antenna elements, respectively, and with 𝑑ℎ, 𝑑𝑣
their spacing in the horizontal and vertical domains of the array,
respectively.

Considering first isotropic antennas, the gain pattern of a UPA,
in terms of received power relative to a single radiating element,
can be expressed as [6]

𝐺𝑖𝑠𝑜𝑇 ,𝑅 (𝜃, 𝜑) =
���𝒂T𝒊 (𝜃, 𝜑)𝒘 (𝜃0, 𝜑0)

���2 , (3)

where 𝒂𝒊 (𝜃, 𝜑) is the array response vector, whose generic entry
𝑚,𝑛 with𝑚 ∈ {0, . . . ,𝑈𝑣 − 1}, 𝑛 ∈ {0, . . . ,𝑈ℎ − 1} reads

𝑎𝑖 (𝜃, 𝜑)𝑚,𝑛 = exp
(
𝑗
2𝜋
𝜆
𝑚𝑑𝑣 cos(𝜃 )

)
× (4)

exp
(
𝑗
2𝜋
𝜆
𝑛𝑑ℎ sin(𝜃 ) sin(𝜑)

)
.

In this work, which supports arbitrary antennas, each antenna el-
ement (𝑚,𝑛) actually exhibits a generic radiation pattern𝑔(𝜃, 𝜑)𝑚,𝑛
towards direction (𝜃, 𝜑). In particular, we assume that 𝑔(𝜃, 𝜑)𝑚,𝑛 is
constant for all the elements of the array, i.e., 𝑔(𝜃, 𝜑)𝑚,𝑛 ≡ 𝑔(𝜃, 𝜑).
Accordingly, we compute 𝐺𝑇,𝑅 (𝜃, 𝜑) in the ComputeBeamforming-
Gain function of the TwoRaySpectrumPropagationLossModel class
as

𝐺𝑇,𝑅 (𝜃, 𝜑) = 𝐺𝑖𝑠𝑜𝑇 ,𝑅 (𝜃, 𝜑) |𝑔(𝜃, 𝜑) |
2 . (5)

Figures 1a and 1b report𝐺𝑇,𝑅 (𝜃, 𝜑) for both the isotropic (Isotropic-
AntennaModel) and the 3GPP (ThreeGppAntennaModel) radiation
patterns, respectively.

It can be noted that our model abstracts the computation of the
received signal power as a SISO keyhole channel [7], which is then
combined with the spatial antenna gain patterns at the transmit-
ter/receiver to obtain the received power. This approximation is
possibly imprecise when considering NLoS links, due to the lack of
a dominant multipath component. To account for this limitation,
we introduce a multiplicative correction factor 𝜂 which scales the
beamforming gain as 𝐺

′
𝑇,𝑅

(𝜃, 𝜑) ≡ 𝜂𝐺𝑇,𝑅 (𝜃, 𝜑). In line with [21],
we set 𝜂 = 1/19.

4.3 Fast Fading
The widely used Rayleigh and Rician distributions fail, even in their
generalized forms, to capture the intrinsic bimodality exhibited by
mmWave scenarios [8, 28, 44]. Therefore, in our implementation
we model fast fading using the more general FTR model of [41].
This fading model assumes that the received signal comprises two
dominant specular components and a mixture of scattered paths,
thus modeling the amplitude of the received signal 𝑉𝑟 as

𝑉𝑟 =
√︁
𝜉 exp( 𝑗𝜙1) +

√︁
𝜉 exp( 𝑗𝜙2) + 𝑋 + 𝑗𝑌 , (6)

where 𝜙1, 𝜙2 are statistically independent random phases, dis-
tributed as 𝜙𝑖 ∼ U [0, 2𝜋]. 𝑋 and 𝑌 are independent Gaussian
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(b) Directional Antenna Radiation Pattern of [1, Section 7.3]

Figure 1: Overall Array andBeamformingGain of aUniform
Planar Array, for Isotropic and 3GPP [1, Section 7.3] Radi-
ating Elements and {1x1, 2x2, 4x4, 8x8} UPAs. The Steering
Direction is Fixed to (𝜃0, 𝜑0) = (0◦, 0◦), and 𝜃 ≡ 0◦

random variables, i.e., 𝑋,𝑌 ∼ N(0, 𝜎2), which represent the diffuse
component of the received signal, which is assumed to be the super-
position of multiple weak scattered waves with independent phase.
Finally, 𝜉 is a unit-mean Gamma distributed random variable with
rate𝑚 and Probability Density Function (PDF)

𝑓𝜉 (𝑢) =
𝑚𝑚𝑢𝑚−1

Γ(𝑚) 𝑒𝑥𝑝 (−𝑚𝑢). (7)

In our implementation, 𝐹𝑇,𝑅 = |𝑉𝑟 |2 is sampled via the GetFtrFast-
Fading function of the TwoRaySpectrumPropagationLossModel
class.

The FTR fading model is usually expressed as a function of the
Gamma rate𝑚 and the auxiliary parameters

𝐾 �
𝑉 2
1 +𝑉 2

2
2𝜎2

(8)

Δ �
2𝑉1𝑉2
𝑉 2
1 +𝑉 2

2
∈ [0, 1] , (9)

where 𝐾 represents the ratio of the power of the specular compo-
nents with respect to the diffuse ones, while Δ denotes how similar
the received powers of the specular components are. By tuning
these parameters, a high degree of flexibility can be achieved. No-
tably, a choice of Δ = 0 effectively yields a Rician-distributed signal
amplitude [41].

4.3.1 Calibration. In our work, we calibrated the 𝑉1,𝑉2 and𝑚 pa-
rameters of the FTR fading model using the full 3GPP TR 38.901
channel model as a reference. In particular, we first obtained the sta-
tistics of the small-scale fading of the 3GPP model, using an ad hoc
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Figure 2: Small-scale FadingGain Statistics for theUMi Prop-
agation Scenario Versus the Carrier Frequency 𝑓𝐶 , for both
LoS and NLoS Channel Conditions

calibration script (three-gpp-two-ray-channel-calibration.cc).
The script produces a collection of channel gain samples obtained
by using the ThreeGppSpectrumPropagationLossModel and the
ThreeGppChannelModel classes, and neglecting the beamforming
gain, path-loss, shadowing and blockages. Accordingly, we isolate
the variation around the mean received power caused by the small-
scale fading only. A separate set of these samples has been retrieved
for both LoS and NLoS channel conditions, the different propaga-
tion scenarios of [1], and a set of carrier frequencies ranging from
0.5 to 100 GHz. However, a preliminary evaluation of the obtained
data showed a negligible dependence of the small-scale fading with
respect to the carrier frequency, as can be observed in Figure 2.
Therefore, we calibrated the FTR parameters considering only the
channel condition and the propagation scenario.

The small-scale fading samples have been used to estimate the
Δ, 𝐾 and𝑚 FTR parameters, and then derive analytically the values
of 𝑉1 and 𝑉2 yielding the fading realizations that are the closest (in
a goodness-of-fit sense) to the TR 38.901 model. To this end, we
defined a discrete grid of FTR parameters, spanning their whole
domain, and considered the corresponding set of parameterized
FTR distributions. To find the best matching one, we measured the
distance between each of these distributions and the 3GPP reference
curves by using the Anderson-Darling goodness-of-fit test [2]. This
test is used to discern whether a sorted collection of 𝑛 samples
{𝑌1, . . . , 𝑌𝑛} originates from a specific distribution, by evaluating
the test statistic [2]

𝐴2 = −𝑛 − 𝑆 (F ), (10)

where

𝑆 (F ) =
𝑛∑︁
𝑖=1

2𝑖 − 1
𝑛

[ln(F (𝑌𝑖 )) + ln (1 − (F (𝑌𝑛+1−𝑖 ))] , (11)

and F is the Cumulative Distribution Function (CDF) of the target
distribution. In the standard Anderson-Darling test,𝐴2 is then com-
pared to a pre-defined critical value to validate the hypothesis. In-
stead, in our work we find the FTR distribution F𝑚,𝐾,Δ which yields
the lowest 𝑆 . Specifically, for each combination of propagation sce-
nario, LoS condition and corresponding samples {𝑌1, . . . , 𝑌𝑛} we
find

F𝑚∗,𝐾∗,Δ∗ � argmin
𝑚,𝐾,Δ

𝑆 (F𝑚,𝐾,Δ) . (12)

Finally, we exported the calibrated FTR parameters into ns-3, by
storing them in SIM_PARAMS_TO_FTR_PARAMS_TABLE, i.e., an std::map
which associates the propagation scenario and condition to the
corresponding best fitting FTR parameters. We remark that this
calibration process represents a pre-computation step which needs
to be done only once. Indeed, when running a simulation with
this channel model, the FTR parameters get simply retrieved from
the pre-computed lookup table by the GetFtrParameters function.
Nevertheless, for the sake of reproducibility and maintainability of
the code, we provide this functionality in the Python script two--
ray-to-three-gpp-ch-calibration.py.

5 BENCHMARKS, EXAMPLES AND USE
CASES

In this section, we provide an example on how to use the performance-
oriented channel model presented above, in conjunction with the
New Radio (NR) [32] module, to simulate 5GMIMO networks. More-
over, we present benchmarks which quantify the simulation time
reduction achieved with this work, and we outline some possible
use cases.

5.1 Examples and Benchmarks
We demonstrate how to use the performance-oriented channel
model in the cttc-nr-demo-two-ray script, i.e., a custom version
of the cttc-nr-demo example which is included in the NR module.
The script deploys𝑁𝑔𝑁𝐵 5GNR base stations, along with𝑁𝑈𝐸 users
in each cell. Each User Equipment (UE) uploads data using two
Bandwidth Parts (BWPs) operating at 28 and 30 GHz, respectively.
Both base stations and user terminals feature UPAs with multiple
radiating elements.

Most simulation parameters can be tuned by ns-3 users. Notably,
the script provides the possibility to choose whether to use the
3GPP TR 38.901 channel model of [47] or the FTR-based channel
model proposed in this work. In such regard, the use of the TwoRay-
SpectrumPropagationLossModel, instead of the TR 38.901 one, is
achieved by:

(1) Setting the TypeId of the SpectrumPropagationLossModel
factory to TwoRaySpectrumPropagationLossModel;

(2) Creating an instance of the TwoRaySpectrumPropagation-
LossModel class using the above factory, and setting the
corresponding pointer as the SpectrumPropagationLoss-
Model of both BWPs;

(3) Setting the attribute Frequency of the TwoRaySpectrum-
PropagationLossModel instance as the BWP carrier fre-
quency;

(4) Specifying the 3GPP propagation scenario by setting the
attribute Scenario; and

(5) Creating and setting the ChannelConditionModel by using
the TwoRaySpectrumPropagationLossModel class
ChannelConditionModel attribute.

On the other hand, the Eigen optimizations simply require users
to have the corresponding library installed in their system, and to
enable Eigen when configuring ns-3, using the flag enable-eigen.

We validated our contributions by benchmarking the simulation
times exhibited by the above simulation script, which depicts a
typical MIMO 5G NR scenario. To such end, we varied the number
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of Next Generation Node Base (gNB) antennas and UEs deployed,
and we timed 100 simulation runs for each parameter combination.
Figure 3 reports the ratio of the median simulation time achieved
when using the Eigen-based optimizations, and of the same metric
obtained using the vanilla ns-3.37. It can be seen that the matrix
multiplication routines offered by Eigen can significantly reduce
simulation times. For instance, a reduction of 5 times in the simu-
lation time is achieved when equipping gNBs with 256 radiating
elements. Similarly, Figure 4 depicts the ratio of the median simu-
lation time obtained by using the FTR-based channel model, and
the 3GPP TR 38.901 with Eigen disabled. In this case the com-
putational complexity improvement is even more dramatic, with
simulations taking as low as 6 % of the time to complete, with re-
spect to the 3GPP model implementation of [47]. As a reference,
the median simulation time obtained on an Intel© i5-6700 proces-
sor system, before the merge of this work and for {2, 4, 8} users is
{64.7, 210.5, 666.6} [s], respectively.

Finally, we also computed (using the same simulation script,
i.e., cttc-nr-demo-two-ray) the SINR statistics achieved by the
proposed FTR-based model, and compared them to those obtained
using the model of [47]. As can be seen in Figure 5, the two mod-
els provide similar results. Indeed, a non-negligible difference can
be found only in the case of the InH-OfficeMixed propagation
scenario.
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Figure 5: ECDF of the SINR Obtained Using the 3GPP Chan-
nel Model of [1], and the Performance-Oriented Channel
Model Presented in thisWork, forDifferent Propagation Sce-
narios

We remark that all the results presented in this section can be
reproduced by using the SEM [27] scripts which we provide2.

5.2 Use Cases
The main goal of both the performance oriented channel model
and the optimizations to the 3GPP TR 38.901 model is to enable
system-level simulations of large-scale MIMO scenarios for which
the implementation of [47] exhibits prohibitive computational com-
plexity. Specifically, our contributions allow ns-3 users to simulate
wireless deployments where the devices feature antenna arrays
with more than hundreds of radiating elements, and/or the number
of communication endpoints is particularly high. For example, the
modifications presented in this work can be used in the NR and
mmwave [29] modules (which both already support the proposed
channel models) to simulate massive MIMO 5G NR networks. No-
tably, a preliminary version of the Eigen port has been used in
conjunction with the mmwave [29] module to simulate 5G networks
aided by Intelligent Reflective Surfaces (IRSs), i.e., devices which
feature up to 100 × 100 reflecting elements [31].

Moreover, since the supported frequency range is 0.5− 100 GHz,
this encompasses not only terrestrial 5G and Long Term Evolution
(LTE) deployments, but also most non-terrestrial networks and
IEEE Radio Access Technologies (RATs). Finally, the proposed Two-
RaySpectrumPropagationLossModel can be further extended to
support frequencies above 100 GHz using reference fading and path
loss statistics.

2https://gitlab.com/pagmatt/ns-3-dev/-/tree/gsoc-wns3
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6 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a set of optimizations concerning the
simulation of MIMO wireless channels in ns-3. First, we introduced
the support for the linear algebra library Eigen in ns-3, and reduced
the computational complexity of the channel matrix generation
procedure by avoiding the unnecessary repetition of trigonomet-
ric evaluations. Then, we designed and implemented in ns-3 a
performance-oriented statistical channel model based on the FTR
fading model, which further reduces the simulation time of MIMO
scenarios.

Profiling results showed that, thanks to this work, the simulation
of MIMO deployments in ns-3 using the 3GPP TR 38.901 chan-
nel model takes as little as 20% of the original time. Furthermore,
whenever the complexity of the simulations represents a major
bottleneck, ns-3 users are now given the possibility of using an
additional auxiliary channel model, which achieves a further reduc-
tion in simulation time, at the cost of a negligible accuracy penalty
with respect to the full 3GPP TR 38.901 model.

As part of our future work, we plan to study more refined beam-
forming gain correction factors, using the 3GPP statistical chan-
nel model as a reference, and possibly making the estimation of
such term scenario-dependent. Moreover, we envision to design
more efficient storage/access data structures and linear algebra op-
erations for 3D matrices, by better leveraging Eigen also in this
context. Finally, we will consider using Single instruction, multiple
data (SIMD) for speeding up the evaluation of trigonometric func-
tions, and caching the beamforming gain in the TwoRaySpectrum-
PropagationLossModel class to further reduce the simulation time
of MIMO scenarios in ns-3.
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