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Many large-scale recommender systems consist of two stages. The 
first stage efficiently screens the complete pool of items for a small 
subset of promising candidates, from which the second-stage model 
curates the final recommendations. In this paper, we investigate 
how to ensure group fairness to the items in this two-stage architec-
ture. In particular, we find that existing first-stage recommenders 
might select an irrecoverably unfair set of candidates such that 
there is no hope for the second-stage recommender to deliver fair 
recommendations. To this end, motivated by recent advances in un-
certainty quantification, we propose two threshold-policy selection 
rules that can provide distribution-free and finite-sample guaran-
tees on fairness in first-stage recommenders. More concretely, given 
any relevance model of queries and items and a point-wise lower 
confidence bound on the expected number of relevant items for 
each threshold-policy, the two rules find near-optimal sets of can-
didates that contain enough relevant items in expectation from 
each group of items. To instantiate the rules, we demonstrate how 
to derive such confidence bounds from potentially partial and bi-
ased user feedback data, which are abundant in many large-scale 
recommender systems. In addition, we provide both finite-sample 
and asymptotic analyses of how close the two threshold selection 
rules are to the optimal thresholds. Beyond this theoretical analysis, 
we show empirically that these two rules can consistently select 
enough relevant items from each group while minimizing the size 
of the candidate sets for a wide range of settings. 
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1 INTRODUCTION 
Two-stage pipelines [6, 11, 15, 21, 27, 72, 75, 76] are ubiquitous in 
large-scale recommender systems. Their key advantage lies in their 
efficiency and scalability, making it possible to curate personalized 
recommendations from billions of items within milliseconds [ 44] . 
The first stage focuses on efficiently generating a small set of candi-
dates tl!at contains enough relevant items. To achieve the necessary 
efficiency, models used in the first stage may be less accurate and 
biased. The second stage only considers the candidates selected in 
the first stage for generating tl!e final recommendations. It can thus 
be more resource intensive, which allows second-stage models to 
be more accurate and less biased. 

While much prior work has focused on improving the efficiency 
and overall effectiveness of two-stage pipelines [15, 30, 38, 44], less 
attention has been given to the fairness aspects of this two-stage 
architecture. We therefore investigate methods for ensuring fair 
allocation of exposure to the items and their providers in two-stage 
pipelines, for which there are ample ethical [39], economical (e.g., 
provider retention, super-star economics [45]), and legal (e.g., anti-
trust law [56]) reasons. We specifically investigate how the first 
stage impacts the fairness of the recommendations, making our 
work complementary to the existing body of work on fairness and 
diversity of the second stage in bandits [12, 24, 36, 47, 55, 63] and 
rankings [4, 5, 9, 18, 19, 23, 28, 33, 40, 41, 45, 48, 51, 57, 64, 69, 74]. 
These second-stage methods do not apply to the first stage, since 
their computation overhead is at least linear in tl!e number of items, 
which would lead to unacceptable latency in the first stage1. 

We consider a group-based notion of fairness to tl!e items. Since 
the second-stage recommender makes the final recommendations 
from the candidate set produced by the first stage, a key require-
ment for the first stage is to select enough relevant items from each 
group of items to avoid generating an irrecoverably unfair set of 
candidates. For example, consider an e-commerce recommender 
system, where we aim to ensure both small businesses and large 
businesses receive an equitable amount of exposure to the users. 
Without a fairness-aware candidate generation policy in the first 
stage, it might happen that the group of items belonging to small 
businesses are disproportionately selected less in the first stage, 
which might be due to biased relevance estimation towards the 
items from small businesses. In this case, there is little hope for tl!e 
second-stage recommendation policy to ensure fairness, since (1) 

1 The first-stage recommenders typically employ approximate algorithms to retrieve ap-
proximately top-scored items with sub-linear (in the number of items) time complexity, 
e.g., locality-sensitive hashing [15, 31, 73]. 
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there might not be enough relevant items from small businesses for 
the second-stage recommendations to be fair; (2) second-stage rec-
ommendation policies typically only ensure fairness proportional 
to the items selected in the first stage, where small businesses are 
already unfairly represented. These fairness issues can appear in 
almost any two-stage recommender system where we need to con-
sider fair allocation of exposure to the items, including those in 
hiring, online streaming, and social media. 

In this paper, we study how to ensure fairness with distribution-
free and finite-sample guarantees in the first stage of two-stage 
recommender systems, while retaining the efficiency of existing 
first-stage recommender systems. In particular, limited by the la-
tency requirements and motivated by the Rooney rule [13], we 
focus on constructing threshold-based first-stage candidate genera-
tion policies that can provably select the smallest sets of candidates 
that contain a desired expected number of relevant items from each 
group, given any-possibly biased-relevance model. These guar-
antees make our approach different from existing works that rely 
on reducing the bias of relevance estimation in recommendation 
policies to improve fairness [8, 52, 71]. While these are certainly 
useful for the first stage, they do not provide finite-sample and 
distribution-free guarantees on the fairness and quality of the items 
selected in the first stage. 

Contributions. We formalize fairness objectives for the first 
stage of recommender pipelines and propose two threshold selec-
tion rules-which we call the union rule and the monotone rule-
motivated by distribution-free uncertainty quantification methods. 
We show that, given any relevance model of queries and items, they 
can provably select a desired number of relevant items in expecta-
tion from each group with high probability, while minimizing the 
candidate-set size. This result holds even if the relevance model is 
biased against some groups. We also provide both finite-sample and 
asymptotic analysis on how close the thresholds selected by the 
two rules are to the optimal ones. The threshold selection rules and 
the near-optimality analysis rely on lower and upper confidence 
bounds on the expected number of relevant items from each group 
for candidate generation policies. Thus, we derive such confidence 
bounds from potentially biased and partial user feedback data (e.g., 
user clicks), which are abundant in many recommender systems. 
From these bounds, we show that the two threshold selection rules 
approach the optimal thresholds asymptotically. In addition, we 
also discuss how the proposed first-stage recommendation policy 
design can shift the cost of inaccurate relevance estimation and lack 
of data from the disadvantaged groups2 to the latency of the second-
stage recommender, which provides economic incentives for the 
decision makers to construct more accurate relevance models and 
to collect more data for every group of items. 

Finally, we corroborate the theoretical analysis of the two pro-
posed selection rules with an empirical evaluation on the Microsoft 
Learning to Rank dataset [50] against several baselines. The re-
sults show that only the two proposed selection rules can consis-
tently select enough relevant items from each group across dif-
ferent amounts of user feedback data and accuracies of the rel-
evance model. With a decent amount of data, the two proposed 

2Disadvantaged groups in this paper refer to groups of items for which the relevance 
estimation is inaccurate/biased, and/or we lack user feedback data. 
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selection rules achieve the smallest candidate-set size among the 
methods that can select enough relevant items. We also conduct 
ablation studies to test their robustness to the parameters in the 
selection rules. The code for the empirical evaluation is accessible 
at https://github.com/LequnWang/Fair-Two-Stage-Recommender. 

2 FURTHER RELATED WORK 
Our proposed threshold selection rules are inspired by distribution-
free uncertainty quantification methods [25], including calibra-
tion [17, 49] and conformal prediction [62]. The goal of distribution-
free uncertainty quantification is to provide point estimates with 
finite-sample distribution-free error guarantees (calibration) or con-
fidence intervals (conformal prediction) of some target parameters 
of interest. In this context, the most relevant work is arguably by 
Bates et al. [3], where they provide a strategy to control the risk 
of prediction sets from a pool of candidates. Our proposed mono-
tone threshold selection rule uses ideas similar to their strategy. 
The strategy relies on a point-wise lower confidence bound on the 
risk, which they derive from full-information data. In contrast, we 
derive the confidence bounds using partial and biased user feed-
back, which we can typically have easy access to in recommender 
systems. In addition, we also provide both finite-sample and as-
ymptotic near-optimality analyses of the two proposed threshold 
selection rules. 

The confidence bounds we derive are built upon literature on 
off-policy evaluation in recommender systems [7, 34, 54, 59]. Many 
works have proposed estimators to estimate the expected utility of 
a contextual bandit [20, 37, 58, 60, 68] or a ranking policy [35, 46, 
58, 66, 70] from biased and partial user feedback. Some works have 
derived finite-sample confidence bounds on the estimation error 
in contextual bandits [7, 42]. We use similar techniques to derive 
confidence bounds around the clipped inverse propensity weighted 
estimator [7, 32] for the ranking setting. 

Threshold selection rules have also been applied to screening 
processes [14, 53, 65]. However, these works assume that the candi-
dates are independent and identically distributed (i.i.d.). In contrast, 
we consider recommendation scenarios where the relevances of the 
items are dependent given a recommendation request. Thus these 
approaches do not apply here. 

3 FAIRNESS IN THE FIRST STAGE 
We consider recommendation problems with n items3 d = (di) iE [n], 

where each item di belongs to the item space !D, i.e., di E !lJ for all 
j E [ n]. We want to select enough relevant items from several (pos-
sibly overlapping) groups(} of items. We assume the group informa-
tion is known for every item di and can be included in the feature 
representation of the item. We model the distribution of requests 
coming into the recommender system using a distribution PQ,R 
over queries and relevance vectors. For each recommendation re-
quest, the query q E Q and the relevance vector r = (ri) iE[n] of the 
items are independently drawn from q, r ~ PQ,R, where ri E { 0, 1} 
is the relevance of item di to the recommendation request. The 
first-stage recommender relies on an expected-relevance estimation 
model4 f: Q x !D [0, 1], which maps a query q and an item di 

3we use [·] to denote the set {1, 2, ... , • }. 
4We call it the relevance model interchangeably. 
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to an estimate f (q, dj) of the expected relevance5 E [Rj IQ= q]. 
Given a fixed first-stage relevance model f, a first-stage candidate 
generation policy 1ef : Q x vn -t {O, l}n maps a query q and 
the items (dj) je[n] to the selection decisions s = 7C (q, d), wh~re 
s = (sj)je[n] andsj E {O,l}representswhethertheitemdl is 
selected (sj = 1) or not selected (sj = 0). 

Ideally, we would like a policy 1ef that selects only items that are 
relevant to the recommendation request from each group. Unfortu-
nately, as long as there is no deterministic mapping between the 
query q and the relevance vector r, such a perfect candidate gener-
ation policy does not exist in general. What is worse, to satisfy the 
latency requirements, recommender systems require that f be com-
puted efficiently, often at the expense of accuracy and unbiasedness. 
So instead, we focus on constructing a policy 1ef that creates sets of 
items that are near-optimal in terms of the candidate-set size, while 
provably containing enough relevant items in expectation for each 
group of items, without making assumptions on the distribution 
PQ,R nor the accuracy/bias of the relevance model f. 

In particular, given any relevance model f, we consider group-
aware threshold policies that select t9 E [ tfax] top-scored (pre-
dicted by the relevance model f) items from each group 9. tfax 
is the largest candidate-set size the decision makers consider for 
a group 9, which conveys the decision makers' belief that there 
must be enough relevant items from group 9, had they selected 
tmax top-scored items from 9. Note that considering only thresholds 
ip to t,rax provides both computational and statistical efficiency 

as discussed later. Formally, let t = ( t9 ) ge(i' a threshold policy ,r{ 
selects an item if it is among the t9 top-scored items from a group 
9, i.e., 

sj = {1 if39 E g s.t. j E { c{9 U') : j' E [t9 ]} (l) 
0 otherwise, 

where c/. is a ranking of the items in the group 9 by their estimated 
relevanl: to the query q predicted by f, which returns the index 
c/.q (j) of the item that is ranked at position j from group 9 . We ,9 

assume that c{9 is deterministic without loss of generality. 

We aim to select a threshold vector t E Tige(i [ t,rax] such that 
the expected number of relevant items from each group 9 E g is 
greater than a target u; E JR specified by the decision makers, i.e., 

while minimizing the candidate-set size t9 of each group 9. Note 
that when the groups are disjoint, minimizing the candidate-set 
size of each group is equivalent to minimizing the candidate-set 
size of the whole first-stage recommender. Throughout the paper, 
we make the following mild assumption on tfax. 

ASSUMPTION 3.1. For any group 9 E g, Ug (t;ax) u; > 0. 

5we use capital letters to denote random variables and lower case letters to denote 
realizations of random variables. 
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The target expected numbers of relevant items (u;) reflect 
ge(i 

the decision makers' belief that they can build a fair second-stage 
recommender system given u; relevant items from each group 9. 

4 FAIR AND NEAR-OPTIMAL THRESHOLD 
SELECTION RULES 

In this section, we first introduce two threshold selection rules 
that can provably select enough relevant items in expectation from 
each group with high probability, while achieving near-optimal 
candidate-set sizes. Both rules rely on a point-wise lower confidence 
bound on the expected number of relevant items for each thresh-
old policy and each group, and their near-optimality gaps further 
depend on a point-wise upper confidence bound on that quantity. 
Thus, we derive such lower and upper confidence bounds from 
some user feedback data (e.g., user clicks), which might be partial 
and biased. From these bounds, we instantiate concrete threshold 
selection algorithms, provide asymptotic analysis on how close the 
proposed threshold selection rules are to the optimal, and discuss 
how these two rules can incentivize the decision makers to improve 
the accuracy of the relevance model and collect more data for the 
disadvantaged groups. 

4.1 Threshold Selection Rules 
For now, lets assume that we have access to a point-wise lower con-
fidence bound 09 ( t, a) on the expected number of relevant items 

U9 (t) such that for any group 9 E {}, threshold6 t E [ 0 : tfax - 1], 
and a E (0, 1), 

Pr(u9 (t) 09(t,a)) 1-a. 

We will derive one such bound using user feedback data in Sec-
tion 4.3. Given this bound, we propose two threshold selection rules 
which can ensure that the expected number of relevant items is 
above the target level u; with high probability, while achieving 
near-optimal expected candidate-set size for a group 9. 

The first rule we propose is called the union threshold selection 
rule. Given any success probability 1 - a E (0, 1), it selects the 
smallest threshold if°0 n for a group 9 such that the lower confi-
dence bound on the expected number of relevant items with failure 
probability f.!':_ 1 is greater than the target, i.e., 

9 

where we define the minimum over the empty set for a group 9 to be 
tfax, i.e., we set the threshold to be tfax if none of the lower bounds 
exceeds the target. We show that the union threshold selection rule 
can select enough relevant items for a group 9 with high probability 
in the following theorem, with a proof that applies the union bound 
over the lower confidence bounds for each threshold, as reflected 
in our naming of the rule. 

6We use [O: •] to denote the set {O, 1, ... , • }. 
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THEOREM 4.1. Under Assumption 3.1, for any group g E (J and 
a E (0, 1), with probability at least 1 - a, 

Ug ( ~nion) u;. 
PROOF. For a group g, applying the union bound to the lower 

confidence bounds for each threshold, and by Assumption 3.1, we 
have that with probability at least 1 - a, 

u,c,J a u,-h~- 1)) v, c [,;=] 
When the above event holds, 

u, (;;'"00) a U9 ( ~•. (~_,))a IF,', 

where the second inequality is by the definition of ~ion. 

The second selection rule is called the monotone threshold selec-
tion rule. Given any success probability 1 - a E (0, 1), it selects the 
smallest threshold tfono for a group g such that the lower confi-
dence bound with failure probability a for every threshold larger 
than or equal to tfono is greater than the target u;, i.e., 

tfono := min{tE [t;"" - 1]: 0-9 (t', a)~ u;, Vt t' < tfax }- (4) 

Compared to ~nion, tfono allows for a larger failure probability 
in the confidence lower bounds for each threshold, but requires that 
the lower bounds be greater than the target for all the thresholds 
larger than the selected one, in addition to the selected one. It can 
also ensure selecting enough relevant items with high probability 
for any group as shown in the following theorem, where the proof 
leverages the fact that U9 is monotonically increasing, as reflected 
in our naming of the rule. 

THEOREM 4.2. Under Assumption 3.1, for any group g E (J and 
a E (0, 1), with probability at least 1 - a, 

Ug (~ono) u;. 
PROOF. The proof of the theorem is inspired by that of Theorem 

1 in [3]. 
For any group g, let t; be the smallest threshold such that the 

expected number of relevant items from group g using the threshold 
policy is larger than or equal to U"t, i.e., 

t; := min {t E [t;""] : U9 (t) u;}. (5) 

By Assumption 3.1, we know that the set on the right ofEq.5 is non-
empty. Suppose u9 ( tfono) < u;, we know u9 ( tfono) < u; 

U9 ( t;) by the definition of t;. Thus tfono < t; by the fact that U9 

is monotonically increasing. Since tfono and t; are integers, we 
have t; - 1 tfono. By the definitions of tfono and t;, this further 
implies that t; > 1 and 

,_ ( * ) * ( * ) U9 t9 - 1, a U9 > U9 t9 - 1 . 

By the lower confidence bound, we know that this happens with 
probability at most a, which concludes the proof. 
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Algorithm 1 Fair First-Stage Threshold-Policy Selection 

1: input:(}, (u;) , (t;ax) , (ui) , a 
9E9 9E9 9E9 

2: Compute the lower confidence bounds for each group g E 
(J and each threshold t E [ tfax - 1] : 0-9 ( t, a) for tfono or 

llg (t, tg'.g-1) for ~on_ 
3: Compute i9 for each group g E (J : i9 = tfono by Eq 4 or 

t9 = ~on by Eq 3. 

4: return x{", where t = (i9)9e9 -

We summarize the fair first-stage threshold-policy selection al-
gorithm in Algorithm 1. 

4.2 Finite-Sample Near-Optimality Gaps 
So far, we have shown that both threshold selection rules ensure 
that the expected number of relevant items is large enough with 
high probability from each group. Now we characterize how far 
the expected number ofrelevant items selected by each threshold 
policy deviates from the target u; for each group g. 

The finite-sample near-optimality gaps we prove depend also 
on a point-wise upper confidence bound u; (t, a) on the expected 
number of relevant items U9(t) such that for any group g E (}, 
threshold t E [~ - 1], and a E (0, 1), 

Pr(u9(t) u;(t,a)) 1-a. (6) 

We will show how to derive one such bound for data that takes the 
form of partial-information user feedback in Section 4.3. 

For the union threshold selection rule ~on, we have the fol-
lowing proposition that bounds how much more relevant items it 
selects than the target u;. 

PROPOSITION 4.3. Under Assumption 3.1, for any group g E (J 
and a E (0, 1), with probability at least 1 - a, 

Ug (~nion)- u; < u; ( ~ion, tf:- l) 
- Ui (r;non - 1, ti- 1) • 

The complete proofs of this and the following propositions are on 
the arxiv7. We can silnilarly derive the finite-sample near-optimality 
gap for tfono as shown in the following proposition. 

PROPOSITION 4.4. Under Assumption 3.1, for any group g and 
a E (0, 1), with probability at least 1 - a, 

u(imono)-u* < o-+ (tmono _a_)-u-(imono _ 1 a) 
9 9 9 9 't;ax-1 9 9 ' • 

The proof of proposition 4.4 is almost the same as that of Propo-
sition 4.3, and therefore we olnit it. We can see that both threshold 
selection rules rely on the lower confidence bounds, and their op-
timality gaps depend further on the upper confidence bounds on 
7 https:/ /arxiv.org/abs/2205. 15436 
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the expected number of relevant items for threshold policies. To 
instantiate the two rules and their finite-sample near-optimality 
gaps, we introduce how to derive such bounds using user feedback 
data in the next section. 

4.3 Confidence Bounds from User Feedback 
In many recommender systems, we have access to an abundance of 
user feedback ( e.g., user clicks, dwell times) that can help reveal the 
relevance of the items to the queries. However, these data are partial 
(we only observe a user's feedback for a subset of the items) and 
biased (by the presentation of the policy that logged the data). Thus, 
we derive confidence bounds that are robust to these properties8. 

More formally, we use a sample oflogged user feedback for m 
recommendations served by a deployed logging policy Jro. For each 
recommendation request i, we merely assume that the query and 
the relevance vector are independently sampled from the query 
and relevance-vector distribution% ri ~ PQ,R· Instead of directly 
observing the relevance vector ri, we observe some user feed-
back (e.g., user clicks) Ci = (cf). that is typically biased by 

JE[n] 
the recommendation that Jro made (e.g., position in ranking). To 
model this presentation bias, we follow the standard approach 
[1, 2, 22, 35, 67] where the user feedback for an item di is decom-
posed as the product of the user observation and the relevance 
c{ = of rf, where of E { 0, 1} denotes whether the user observes the 
item. The user observation vector o E {0, l}n is generated from 
P~0 I Q,R· We call the conditional probability that the user observes 
an item under the logging policy Jro the propensity, and denote it as 
pf := Pr ( of = 11 Q = qi, R = ri; Ko). In the case of one-item rec-
ommendation, this can be interpreted as the probability that the log-
ging policy Jro recommends the item. Since we control the logging 
policy, this propensity is known by design. In the case of ranking, 
the propensities typically need to be estimated. There are many ex-
isting works on estimating the propensities [1, 2, 22, 35, 67] by mak-
ing assumptions on how the users interact with the ranked items 
(e.g., position-based click models [1] where the propensity only 
depends on the rank of the item, and cascade click models [10, 61] 
where it further depends on the relevances of the items in a partic-
ular way). Thus we assume we know the (estimated) propensities, 
and the batch oflogged user feedback for constructing the confi-
dence bounds is SCB = {%Ci,PihE[m], where Pi= (pf). and 

JE[n] 
m > 1. Throughout the paper, we assume that the propensities are 
positive, as formally described below, which can be achieved by 
carefully designing the logging policy. 

ASSUMPTION 4.5. There exists y > 0 such that 

pc{,gU) >y VgE(},qeQ,jE [t;a"]-
The confidence bounds we derive using ScB are based on the 

clipped inverse propensity weighted (CIPW) estimator [7, 29, 32] 
adapted to this ranking setting. The following CIPW estimator 
estimates the expected number ofrelevant items U9 (t9) of thresh-
old policies (recall that we use capital letters to denote random 

8The full-information setting is a special case of this partial-information setting where 
the users observe every item. 
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variables) 

ocIPW (t ) := ..!._ " " min(A, l l c'1;,g(j), 
g,). 9 mLJ L.J u!.(") 1 

iE[m] jE[t9] pi Q;,9 J 

(7) 

with a clipping parameter J.-the maximum inverse propensity 
weight-to balance the bias and variance of the estimator. The fol-
lowing propositions provide empirical upper and lower confidence 
bounds on the expected number of relevant items U9 ( t9) around 
its CIPW estimate ucrw ( t9 ). 9,A 

PROPOSITION 4.6. Under Assumption 4.5, for any A > 0, g E (}, 

t E [tfax - 1 ], and a E (0, 1), with probability at least 1 - a, we 
have that 

2Vm (Z9,t) ln(2/a) 
m 

where zg,t = (z~·t) with 
1 iE[m] 

7tJ. ln(2/ a) 
3(m -1) 

:= u; (t, a), (8) 

zr,t = L min(J., 1 . )c~;.9 U) 
jE[t] p~i,9(J) 

be the CIPWestimate of recommendation request i, and 

Vm (z9,t) = 1 L (z~,t -z!!·t)2 
m(m-1) 1< .. < 1 J _l<J_m 

be the sample variance. 
PROPOSITION 4.7. Under Assumption 4.5, for any;. > 0, g E (}, 

t E [tfax - 1 ], and a E (0, 1), with probability at least 1 - a, we 
have that 

CIP 2Vm (Z9,t) ln(4/a) 7tJ. ln(4/a) 
U9 (t) :,; 09,). W (t) + ------ + ----

m 3(m-1) 

ln(2/a) 1 '°' '°' ( u!.Q· (j)) , +t ~+;:;; L...J L...J max o, 1-J.pi •·9 := u+(t,a). 
iE[m] jE[t] 

Note that both bounds apply to any group of items including 
the group of all items d. Though we apply them for fair first-stage 
threshold-policy design and characterizing the finite-sample near-
optimality gaps, we believe that they might be of independent 
interests in other contexts. 

With these bounds, we can instantiate Algorithm 1 and the finite-
sample near-optimality gaps. We can see that the two selection 
rules can ensure selecting enough relevant items from each group 
regardless of the accuracy of the relevance model nor the amount 
of user feedback data across groups. However, the candidate-set 
sizes of the groups are determined by those factors. In particular, 
we need to include more items from a group if the relevance model 
is less accurate and/or we have less data for the group. This shifts 
the costs of inaccurate relevance estimation and/ or lack of data for 
the items from disadvantaged groups to the latency of the second-
stage recommender, and thus provides economic incentives for the 
decision makers to build accurate relevance models and collect 
enough data for every group. 
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4.4 Asymptotic Near-Optimality Analysis 
From these upper and lower confidence bounds, we can now analyze 
how close the selected thresholds are to the optimal thresholds t; 
as defined in Eq. 5 asymptotically. In the following propositions, 
we show that the expected number of relevant items using the 
selected policies will converge to the target asymptotically, and the 
selected thresholds will also converge to the optimal thresholds 
asymptotically, under mild assumptions. 

PROPOSITION 4.8. Let t9 be either ~nion or tfono, and A = ym. 
Under Assumption 3.1 and 4.5,forany groupg E g and any a E (0, 1), 
it holds almost surely (with probability l) that for any o > 0, there 
exists c > 0 such that for any m > c, 

u: - o < U9 (t9) < l + u: + o, 
and even stronger than the second inequality above, 

U9 (t9 - l) < U: + o. 
PROPOSITION 4.9. Under the conditions in Proposition 4.8 and 

further assume that u9 is strictly increasing, we have that for any 
group g E (}, a E (0, 1), it holds almost surely that there exists c > 0 
such that for any m > c, 

5 EMPIRICAL EVALUATION 
In this section, we compare the union ~on and the monotone 
f;ono threshold selection ruls with several competitive baselines on 
first-stage recommendation scenarios simulated from the Microsoft 
Learning-to-Rank WEB30K dataset [50]. 

5.1 Experiment Setup 
The dataset consists of 30, 000 queries, along with the relevances 
and the features of the items per query. We divide the items into two 
categories-"old and estabilished" and "new and undiscovered" -
by their "url click count" feature given in the dataset. The feature 
represents "the click count of a url aggregated from user browsing 
data in a period". We set the items with zero click count as the 
disadvantaged group disadv and the other items as the advantaged 
group adv. We binarize the relevance by assigning relevance 1 to 
items with an original label of 2, 3, or 4, and O to the others. The 
average numbers of relevant items per query from each group are 
ARadv = 6.16 and AR&sadv = 13.99. 

For each experiment, we randomly split the data into 1% for 
training a logistic regression model as the relevance model f, 69% 
for simulating the user feedback, and 30% for testing different first-
stage candidate generation policies. To simulate user feedback, we 
follow prior works [35] to assume that users follow a position-
based click model [16]. More specifically, for each recommendation 
request i, we randomly sample a query from the 69% data, create a 
ranking for the top tf'"' items from each group by the relevance 

model f, simulate the user observation of ~ Bernoulli {pf) with 

the propensity set as one over the rank of the item pf = rank(~ I no) 

for each item j, and the simulated user feedback is c{ = of,{. 
Unless specified explicitly, we set the size of the user feedback 

m = 100,000, the clipping parameter A = 100, and the largest 
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number of items we consider from both groups to be the same 
t:J.~ = tal:iv = 50, the success probability 1 - a= 0.9 by default. 
We set the target expected numbers of relevant items u:v and 
u:sadv to satisfy the equal opportunity constraint [26, 65], i.e., 
u:)ARadv = u:sadv/AR&sadv, subject to u:sadv + u:v = 5. 

Baselines. We compare tfono ( CIPW-LB-mono) and ~ion ( CIPW-
LB-union) with several baselines. The Uncalibrated Individual base-
line selects top-ranked items from each group until the sum of the 
scores predicted by f exceed the target. The Uncalibrated Marginal 
baseline selects the smallest threshold for each group using the sim-
ulated user data such that the average sum of scores is greater than 
the target. The Platt Individuai Platt Marginai Platt PG Individua~ 
and Platt PG Marginal baselines are the same as the uncalibrated 
ones, except that they apply Platt scaling [ 49] to the relevance 
model using user feedback data through inverse propensity weight-
ing [ 43], where "PG" implies that we calibrate the relevance model 
per group. The !PW baseline selects the smallest threshold such that 
the inverse propensity weighted (IPW) estimator on the expected 
number of relevant items of the threshold policy is greater than the 
target for each group. 

Metrics. To compare different first-stage candidate generation 
policies, we run experiments 50 times for each setting. For each 
run, we estimate whether each candidate generation policy selects 
enough relevant items ERg := K { lE [ l: j E [ n l :dhg si ri] u;} and 

the candidate-set size CSS9 = IB.9 [ L j E [ n l :di Eg si] for both g = adv 
and g = disadv on the 30% full-information test data. We then 
compare different polices in terms of the percentage of times they 
ensure selecting enough relevant items (along with standard errors) 
and the average candidate-set size (along with standard deviations) 
for both groups across the 50 runs. 

5.2 How do different methods scale with the 
size of user feedback data? 

Figure 1 compares different candidate generation policies with 
respect to the percentage of times they selects enough relevant 
items ((a) and (b)), and the average candidate-set sizes ((c) and (d)) 
for both the advantaged groups ((a) and (c)) and the disadvantaged 
group ((b) and (d)). We can see that the Uncalibrated baselines do 
not guarantee selecting enough relevant items in general. The IPW 
baseline selects enough relevant items for most of the instances, 
and achieves smaller or comparable candidate-set sizes as the two 
proposed rules. Part of the reason is that we consider discrete 
threshold policies, and the expected number of relevant items of 
the optimal threshold U9 ( t;) is typically larger than the target u;. 
As long as the IPW estimator does not overestimate the expected 
number of relevant items more than the difference u9 ( t;) -U:, it 
will select enough relevant items. However, as we can see, it fails 
to select enough relevant items more often on the disadvantaged 
group, especially when the size of the user feedback data is small. 
This is because the variance of the CIPW estimator is larger for 
the disadvantaged group due to a larger threshold and smaller 
propensities. This phenomenon is more obvious when the relevance 
model is less accurate for the disadvantaged group as shown in the 
next subsection. Among the methods that always select enough 
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Figure 1: Comparison of different first-stage candidate generation policies when we vary the amount m of user feedback data. 
The left two plots show the empirical probability, along with standard error bars, that each policy selects enough relevant items 
for the advantaged group ERadv and the disadvantaged group ERwsadv across 50 runs. The right two plots show the empirical 
average, along with one standard deviation as shaded regions, of the expected candidate-set size for the advantaged group 
CSSadv and the disadvantaged group CSSdisadv across 50 runs. 
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Figure 2: Comparison of different first-stage candidate generation policies when we vary the accuracy of the relevance model 
to the disadvantaged group by changing the relevance noise ratio Ec!isadv to the disadvantaged group. 

relevant items, the two proposed threshold selection rules have the 
smallest candidate-set sizes when the amount of data is large. As 
we have less and less data, the two proposed rules select more and 
more items to account for the increasing uncertainty due to the lack 
of data. Comparing the two proposed rules, the monotone selection 
rule consistently outperforms the union selection rule in terms of 
the candidate-set size across data sizes, partly because it allows for 
a larger failure probability in the lower confidence bounds. 

5.3 How does the accuracy of the relevance 
model affect different groups of items? 

To simulate scenarios where the relevance model f might be less 
accurate for the disadvantaged group, we vary the accuracy off 
for the disadvantaged group by replacing its prediction for items 
in the disadvantaged group with some noise /3 sampled from /3 -
Beta(l, 10), with probability Ec!isadv, i.e., .f<lisadv = (1 - 17) f + 17/3, 
where 17 - Bernoulli (Ec!isadv)-

Figure 2 compares different candidate generation policies when 
we vary the relevance noise ratio Ec!isadv to the disadvantaged group. 
We can see that, as the relevance model becomes less accurate for 
the disadvantaged group kclisadv becomes larger), only the two 
proposed threshold selection rules always select enough relevant 
items for the disadvantaged group. In particular, IPW fails to select 
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enough relevant items substantially more often for the disadvan-
taged group than for the advantaged group, since it does not account 
for the uncertainty in the estimation process. This highlights the 
benefits of distribution-free and finite-sample guarantees the pro-
posed union and monotone threshold selection rules enjoy. The two 
rules achieve this by selecting more items from the disadvantaged 
group to account for the increasing uncertainty due to the less 
accurate relevance model for the disadvantaged group. Again, the 
monotone threshold selection rule consistently outperforms the 
union threshold selection rule in terms of the candidate-set size 
across different relevance noise ratios to the disadvantaged group. 

5.4 How robust are the two proposed rules to 
the clipping parameter ,'.l? 

Figure 3 shows the performance of the two proposed threshold 
selection rules with varying clipping parameter il. We can see that 
the two proposed rules can select enough relevant items across 
different values in the clipping parameter il, which confirms their 
distribution-free and finite-sample guarantees. The candidate-set 
sizes for both groups exhibit a bowl shape, which is consistent with 
our theory of finite-sample near-optimality gaps, that the optimal 
il lies in the middle where there is a favorable bias and variance 
trade-off in the CIPW estimator. 
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Figure 3: Analysis of the two proposed threshold selection rules when we vary the clipping parameter i\. 
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Figure 4: Analysis of the two proposed threshold selection rules when we vary the largest numbers of items we consider for 
each group, which we set to be the same = tili::dv" 

5.5 Are the two proposed rules robust to the 
largest considered threshold tfax? 

We compare the performance of the two proposed threshold se-
lection rules when we use different largest considered threshold 
t;J'ax in Figure 4. Unsurprisingly, the two proposed selection rules 
still select enough relevant items across different values of t;J'ax, 
as predicted by the distribution-free and finite-sample guarantees. 
In terms of the candidate-set size, there is a slight increase for the 
union threshold selection rule as the largest considered threshold 
increases. This is expected since it uses smaller and smaller failure 
probabilities in the lower confidence bounds. For the monotone 
threshold selection rule, the candidate-set size does not change 
with the maximum considered threshold, partly because the fail-
ure probability it uses in the lower confidence bounds does not 
change. This also shows that the lower confidence bounds used in 
the monotone selection rule are still not too loose even when the 
thresholds are large, since the threshold t is in the log terms in the 
bounds. 

6 CONCLUSION 
In this work, we initiated the study of fairness in the first stage 
of two-stage recommender systems. In particular, we proposed 
two threshold-policy selection rules that can select fair first-stage 
policies using abundantly available user-feedback data even if the 
relevance model used in the first stage is biased and has disparate 
accuracy across groups. We show that the two selection rules can 
provably select enough relevant items in expectation from each 
group with high probability, achieve near-optimal candidate-set 
sizes, and retain the efficiency of most existing first-stage recom-
mender systems. Both the theoretical analysis and the empirical 
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evaluation confirm that the two proposed selection rules are robust 
to the amount of user feedback data, the accuracy of the relevance 
model, and the parameters inside the two rules. 
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