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ABSTRACT: Lateral mesoscale eddy-induced tracer transport is traditionally represented in

coarse-resolution models by the flux-gradient relation. In its most complete form, the relation

assumes the eddy tracer flux as a product of the large-scale tracer concentration gradient and an

eddy transport coefficient tensor. However, several recent studies reported that the tensor has

significant spatio-temporal complexity and is not uniquely defined, that is, it is sensitive to the

tracer distributions and to the presence of non-divergent (“rotational”) component of the eddy flux.

These issues could lead to significant biases in the representation of the eddy-induced transport.

Using a high-resolution tracer model of the Gulf Stream region, we examine the diffusive and

advective properties of lateral eddy-induced transport of dynamically passive tracers, re-evaluate

the utility of the flux-gradient relation, and propose an alternative approach based on modeling

the local eddy forcing by a combination of diffusion and generalized eddy-induced advection.

Mesoscale eddies are defined by a scale-based spatial filtering, which leads to the importance

of new eddy-induced terms, including eddy-mean covariances in the eddy fluxes. The results

show that the biases in representing these terms are noticeably reduced by the new approach. A

series of targeted simulations in the high-resolution model further demonstrates that the approach

outperforms the flux-gradient model in reproducing the stirring and dispersing effect of eddies.

Our study indicates potential to upgrade the traditional flux-gradient relation for representing the

eddy-induced tracer transport.
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1. Introduction25

Mesoscale eddies, broadly defined here as deviations from large-scale fields, profoundly impact26

the ocean by redistributing dynamically active and passive tracers. Eddies modify the large-scale27

currents by transporting momentum (Waterman et al. 2011), maintain the mean stratification in the28

Southern Ocean by transporting buoyancy (Marshall and Speer 2012) and potentially influence the29

climate by transporting heat and carbon (Jayne and Marotzke 2002; Sallée et al. 2012). Mesoscale30

eddies remain largely unresolved in most current climate models (Meijers 2014; Hewitt et al. 2020),31

and thus their large-scale effects need to be parameterized.32

The most common method of parameterizing eddy effects on tracers is the flux-gradient relation,33

which represents eddy tracer fluxes as a product of the large-scale tracer concentration gradient and34

a transport coefficient tensor (Taylor 1921; Bachman and Fox-Kemper 2013). The tensor charac-35

terizes the eddy-induced diffusion and eddy-induced advection (Griffies 1998), and is considered36

to be a function of the flow properties such as eddy energy (Eden and Greatbatch 2008; Marshall37

and Adcroft 2010) and eddy mixing length scale (Prandtl 1925; Ferrari and Nikurashin 2010). The38

large-scale and eddy fields are commonly separated using a long-term time (Reynolds) averaging39

(Gent and McWilliams 1990) or a basin-scale spatial averaging (Abernathey et al. 2013; Bachman40

and Fox-Kemper 2013; Klocker and Abernathey 2014), which simplifies the eddy fluxes and re-41

duces variations in the transport tensor. Other studies define eddies as deviations from spatially42

low-pass filtered (“coarsened”) fields (e.g., Bachman et al. 2017; Aluie et al. 2018; Haigh et al.43

2021a,b). This study uses the latter definition which can more accurately account for spatial and44

temporal variability in the large-scale fields but leads to additional complexity in the tensor.45

The mesoscale eddy-induced transport, as well as the transport tensor, is mainly two-dimensional46

due to the joint effect of stratification and rotation. In the interior ocean, mesoscale currents move47

primarily along isopycnal surfaces (i.e., neutral surfaces). Thus, it is convenient to study the along-48

isopycnal eddy flux separately from the cross-isopycnal flux in isopycnal coordinates. For example,49

the widely used Gent-McWilliams parameterization scheme (Gent and McWilliams 1990, hereafter50

GM) approximates the time-mean isopycnal eddy transport as a combination of the Redi isopycnal51

diffusion (Redi 1982, hereafter Redi) and the advection by mass (layer thickness) eddy-induced52

velocity (EIV). In the mixed layer, the tracer distribution is influenced horizontally by eddy stirring53

while is homogenized vertically by turbulent mixing (Ferrari et al. 2008). In this study we focus on54
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the lateral eddy transport defined as horizontal in the mixed layer and isopycnal in the near-adiabatic55

interior.56

In eddy-resolving numerical simulations, the transport tensor can be diagnosed from eddy fluxes57

(Abernathey et al. 2013; Bachman and Fox-Kemper 2013; Bachman et al. 2015). Recent studies,58

however, found inherent complexity of the tensor: ubiquitous negative (anti-diffusive) eigenvalues59

of its symmetric component and strong variability in space and time of all its elements (Bachman60

et al. 2015, 2020; Haigh et al. 2020, 2021a,b; Haigh and Berloff 2021; Kamenkovich et al. 2021;61

Sun et al. 2021). These properties cast doubts on the accuracy of using a positive, stationary and62

isotropic diffusivity for eddy parameterization in oceanic components of climate models (Meijers63

2014), especially for the simulation of the transient tracer field.64

Even more concerning is the non-uniqueness of the transport coefficient tensor. The tensor is not65

uniquely defined because of the non-divergent (“rotational”) component in the eddy fluxes. The66

component does not directly affect tracer distributions, but can have a large magnitude (Marshall67

and Shutts 1981; Jayne and Marotzke 2002; Griesel et al. 2009; Kamenkovich et al. 2021; Sun68

et al. 2021) and thus imprint heavily on the tensor. The separation of rotational and divergent flux69

components is possible but it causes ambiguity due to the dependence on boundary conditions70

and its intrinsic spatial nonlocality (Fox-Kemper et al. 2003; Maddison et al. 2015). In addition,71

no matter whether the rotational flux component is retained or removed, the diagnosed tensor is72

generally not unique for a given flow as evidenced by its sensitivity to the initial tracer distributions,73

i.e., tracer dependence (Bachman et al. 2015, 2020; Kamenkovich et al. 2021; Sun et al. 2021).74

This undesirable property contradicts the fundamental assumption of the flux-gradient relation that75

the eddy transport coefficient is a quantity inherent to the flow.76

The reported complexity and non-uniqueness raise serious concerns on interpretation and util-77

ity of the flux-gradient relation in situations where the temporal and spatial variations in the78

eddy-induced diffusion are important. The inherent spatio-temporal variability implies errors in79

the instantaneous eddy flux represented by only a time- and/or space-invariant eddy diffusivity.80

Since the tracer distributions in coarse-resolution models are very sensitive to the eddy diffusivity81

(Danabasoglu and McWilliams 1995; Gent et al. 2002; Kuhlbrodt et al. 2012; Gnanadesikan et al.82

2015), the non-uniqueness can also lead to biases in simulating different tracers. However, the83

significance of such biases is uncertain because most previous studies only used a highly simplified84
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form (isotropic, time-invariant) of the diffusivity, partly due to the numerical instabilities induced85

by negative diffusivity (Leonard 1997; Trias et al. 2020). Overall, although the above evidence does86

not prove that the “classical” flux-gradient relation is wrong or inaccurate, it provides motivation87

for exploring modifications and extensions of the century-old formalism.88

This study examines the advective and diffusive properties of lateral mesoscale eddy-induced89

tracer transport. Mesoscale eddies are defined by a high-pass spatial filter, resulting in several90

distinct components of the eddy tracer flux. We further explore the relative importance of these91

components for tracer distributions and the properties of corresponding transport tensors. The92

conclusions question the utility of the flux-gradient model and motivate us to to explore other93

methods of representing the eddy effects on tracers. We propose a new approach that directly94

models the local eddy forcing as a combination of eddy-induced diffusion and generalized eddy-95

induced advection, which helps to alleviate some of the deficiencies of the flux-gradient model.96

The skills of the two approaches in reproducing the eddy-induced stirring are further evaluated in a97

series of targeted tracer simulations with the full and truncated eddy terms. All simulations in this98

study are carried out on the fine grid, which avoids numerical errors arising from re-discretization99

of all terms onto a coarser grid. This study, therefore, is not a direct attempt to develop a new eddy100

parameterization scheme for coarse-resolution models.101

This paper is organized as follows. Section 2 describes the off-line tracer model used to perform102

the tracer simulations. Section 3 describes the key theories and formulations of the tracer experi-103

ments, eddy forcing, and the eddy-representing approaches. Section 4 discusses properties of the104

lateral eddy fluxes and corresponding transport tensors. Section 5 discusses properties of the new105

approach. Section 6 presents results of the targeted experiments. Conclusions and discussions are106

offered in section 7.107

2. Model108

Simulations in this study were performed in an off-line tracer model, which uses previously109

computed velocities and layer thicknesses (Kamenkovich et al. 2017, 2021). The reference solution110

was obtained in a separate online simulation with the Hybrid Coordinate Ocean Model (HYCOM;111

Bleck 2002). The simulation (Mensa et al. 2013) covers the Gulf Stream region (28.78°N -112

45.72°N, 81.44°W - 50°W) and spans over 1.5 years; only the last 365 days were used in this113
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study. The model uses a Mercator horizontal grid with 1/48° resolution. The vertical grid has 30114

hybrid layers: isopycnal in the interior ocean, z-levels near the surface, and sigma-coordinates in115

the shallow coastal regions. The reference velocities and layer thicknesses were saved every 12116

hours and were interpolated in time with a step of 1 hour in the off-line model. As in Kamenkovich117

et al. (2017), we used a purely advective version of the code, that is, without explicit vertical tracer118

diffusion below the surface mixed layer. Tracer concentration within the mixed layer is vertically119

homogenized on each time step.120

The simulated currents contain a realistic Gulf Stream, fully resolved mesoscale currents, and121

partially resolved submesoscale currents that are mainly restricted to the surface mixed layer122

(Mensa et al. 2013). The main advantage of the off-line formulation is the ability to carry123

out computationally efficient sensitivity runs with modified (e.g., spatially filtered) advection.124

Kamenkovich et al. (2017) compared online and off-line simulations of idealized tracer releases125

with the same off-line code used here and concluded that the off-line tracer patch dispersion stays126

within 2 percent of the online simulations. They used daily velocities and layer thicknesses with127

a 1/12° spatial resolution, instead of the 12-hour fields at 1/48° resolution used here. The off-line128

model solves the following equation for the tracer in each model layer:129

𝜕 (ℎ𝑐)
𝜕𝑡

+∇ · (U𝑐) + 𝜕𝑠 (𝑤𝑐) = 𝐴ℎ∇ · (ℎ∇𝑐) , (1)

where 𝑐 is the tracer concentration, ℎ is the layer thickness, U is the lateral thickness flux (uℎ)130

within the layer, and ∇ is the lateral gradient. 𝐴ℎ is the explicit lateral diffusivity that represents131

effects of unresolved subgrid mixing; its value is 0.02 m s−1 ·Δ𝑥 in the reference simulation, with132

Δ𝑥 being the horizontal grid spacing. 𝑤 is the volume flux through layer interfaces, which is133

vertical within the mixed layer and diapycnal in the interior ocean; we will refer to it as 𝑤-flux134

hereafter. Operator 𝜕𝑠F = F𝑡 −F𝑏 is the difference between fluxes through the top (F𝑡) and the135

bottom (F𝑏) of the layer. The 𝑤-flux is diagnosed from the mass conservation within each layer136

𝜕𝑠𝑤 = −𝜕ℎ
𝜕𝑡

−∇ ·U . (2)

Figure 1 shows the simulated tracer concentration field and upper-ocean speed, as well as the137

meridional cross-sections of temperature and layer interfaces. The tracer was initialized with a138
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Fig. 1. Model fields. (a) The tracer concentration anomalies vertically averaged within the mixed layer after

2 months of evolution in the off-line model. The initial distribution (𝑐𝑡1) is subtracted. (b) Flow speed from the

online model averaged in the mixed layer at Day 9 of Year 9 that corresponds to (a). (c) Temperature section

along 305°E at Day 9 of Year 9, overlapped with layer bottom interfaces (white solid lines) and mixed layer

depth (red dashed line). Only interfaces of layers 1-10 and 16-29 are plotted in the upper and lower subplots,

respectively.

143

144

145

146

147

148

sinusoidal meridional distribution ranging from unity at the southernmost points to nearly zero at139

the northernmost points (Appendix A). After 60 days of integration, the tracer deviates significantly140

from the initial distribution and forms anomalies, due to both the large-scale and eddy-induced141

stirring.142
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3. Effects of eddies and their representation149

This study will analyze the eddy effects on tracers and evaluate two different approaches to150

representing these effects. We define the eddy effects in section 3a, discuss the flux-gradient151

relation in section 3b and derive the new model of eddy effects in section 3c, and discuss tracer152

experiments in section 3d.153

a. Tracer “eddy forcing”154

We first separate the lateral isopycnal thickness fluxes and layer thicknesses into the large-scale155

(angle brackets) and mesoscale (primes) components156

U = ⟨U(𝑥, 𝑦, 𝑧, 𝑡)⟩ +U′(𝑥, 𝑦, 𝑧, 𝑡) , ℎ = ⟨ℎ(𝑥, 𝑦, 𝑧, 𝑡)⟩ + ℎ′(𝑥, 𝑦, 𝑧, 𝑡) . (3)

The large-scale component of the 𝑤-flux, ⟨𝑤⟩†, is calculated from the mass conservation157

𝜕𝑠⟨𝑤⟩† = −𝜕⟨ℎ⟩
𝜕𝑡

−∇ · ⟨U⟩ , (4)

and the eddy part is 𝑤′ = 𝑤 − ⟨𝑤⟩†. In this study the low-pass filter ⟨...⟩ is a nominal 2° (1012
158

horizontal grid points) boxcar spatial averaging. This definition is different from the common159

Reynolds (long-term temporal or zonal) averaging, and allows for a direct quantification of the160

interaction between different spatial scales (Aluie et al. 2018; Garabato et al. 2022). The superscript161

of ⟨𝑤⟩† is to distinguish it from the the directly filtered flux ⟨𝑤⟩, because the spatial filter does162

not commute precisely with differential operators on a sphere (Aluie 2019). We verified their163

difference to be small and hereafter drop the superscript. Since submesoscale is partially resolved164

in our model, the “eddies” include both mesoscale and submesoscale anomalies. Note, however,165

that although the submesoscales are ubiquitous in the surface mixed layer, they are generally very166

weak in deeper layers (Mensa et al. 2013). We confirm that the conclusions are the same when167

using a medium-pass filter (Capet et al. 2008) to extract the mesoscale, and we continue to use168

“mesoscale” and “eddies” interchangeably.169

Inserting (3) and (4) into the tracer equation (1) then leads to170

𝜕 (⟨ℎ⟩𝑐)
𝜕𝑡

+∇ · (⟨U⟩𝑐) + 𝜕𝑠 (⟨𝑤⟩𝑐) − 𝐴ℎ∇ · (⟨ℎ⟩∇𝑐) = −D𝑒 , (5)
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where the tracer “eddy forcing” D𝑒 (𝑥, 𝑦, 𝑧, 𝑡) includes all the eddy effects on tracer,171

D𝑒 =
𝜕 (ℎ′𝑐)
𝜕𝑡

+∇ · (U′𝑐) + 𝜕𝑠 (𝑤′𝑐) − 𝐴ℎ∇ · (ℎ′∇𝑐), (6)

and is the main object of this study. Note that D𝑒 is a function of the full tracer concentration 𝑐172

including both the large-scale and eddy parts. An alternative and equivalent form of D𝑒 can be173

derived by combining (2), (4), and (6):174

D𝑒 = ℎ
′𝜕𝑐

𝜕𝑡
+U′ · ∇𝑐+ (𝜕𝑠 (𝑤′𝑐) − 𝑐𝜕𝑠𝑤′) − 𝐴ℎ∇ · (ℎ′∇𝑐) . (7)

This study will focus only on the lateral components of the eddy forcing D𝑒, namely, the lateral175

eddy flux divergence ∇ · (U′𝑐) in (6) and the lateral advection by eddy volume flux U′ · ∇𝑐 in (7).176

We will use the flux-gradient relation and a new approach to model the two terms, respectively. We177

do not consider the eddy tendency and vertical/diapycnal terms, 𝜕𝑡 (𝑐ℎ′) + 𝜕𝑠 (𝑤′𝑐) in D𝑒, because178

they cannot be easily expressed by the flux-gradient relation. Although in a closed domain they can179

be incorporated into a divergent flux (Sun et al. 2021; Haigh et al. 2021b), the appropriate boundary180

conditions for the corresponding Poisson problem do not exist in a general case. In addition, the181

𝑤-flux is induced not only by mesoscale eddies but also by dynamically different processes, such182

as buoyancy mixing due to breaking of internal gravity waves. Finally, vertical terms are difficult183

to quantify in the mixed layer of our idealized simulations. The neglect of the eddy tendency and184

vertical/diapycnal terms can, however, cause biases in tracer evolution, which can be particularly185

significant in situations where these terms and ∇ · (U′𝑐) are both large and partially balance each186

other in D𝑒. For this reason, we anticipate that truncating D𝑒 to U′ · ∇𝑐 will lead to lower biases187

in tracer evolution than truncating D𝑒 to ∇ · (U′𝑐), and our tracer experiments will confirm this.188

Note also that D𝑒 does not include the flux of eddy tracer anomalies by the large-scale currents189

⟨U⟩𝑐′, because this term is included into the left-hand side of (6) for consistency with the high-190

resolution tracer experiments in section 3d. For the sake of completeness and comparability with191

previous studies (e.g., Haigh et al. 2020), we will discuss properties of ⟨U⟩𝑐′ wherever appropriate,192

and confirm that our main conclusions hold true for that term as well.193
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b. The flux-gradient relation: transport tensor and its reduced form194

The lateral eddy tracer flux F𝑒 = U′𝑐 in the eddy forcing can be conventionally represented by195

the eddy transport tensor K via the flux-gradient relation:196

F𝑒 = −⟨ℎ⟩K∇⟨𝑐⟩, (8)

where the space- and time-dependent K is a 2× 2 tensor that characterizes the properties of197

lateral eddy-induced transport. Within this framework, the eddy forcing D𝑒 is approximated by198

D̂ = −∇ · (⟨ℎ⟩K∇⟨𝑐⟩) with the hat denoting a parametric model.199

The tensor can be split into the symmetric and antisymmetric parts that represent physically200

distinct transport processes (Griffies 1998). The symmetric part S stands for a diffusive process201

affecting the domain-integrated tracer variance. It can be further modified to outline the anisotropy202

of diffusion:203

S =
1
2
(K+K𝑇 ) = ©­«

𝑆11 𝑆12

𝑆12 𝑆22

ª®¬ = I𝑅
©­«
𝜆1 0

0 𝜆2

ª®¬ I𝑇𝑅 , (9)

where I𝑅 is a rotation matrix for the diffusion angle 𝜃 that defines the coordinates (eigenvectors)204

along which the Fickian diffusions occur with corresponding diffusivities (eigenvalues) 𝜆1,2 (Haigh205

et al. 2021a). The antisymmetric part A corresponds to an eddy-induced advection of the large-scale206

tracer concentration (Griffies 1998; Haigh et al. 2021b):207

A =
1
2
(K−K𝑇 ) = ©­«

0 −𝐴
𝐴 0

ª®¬ , (10)

where ⟨ℎ⟩𝐴 is the streamfunction for the eddy-induced advective flux u∗
𝑐⟨ℎ⟩ = ẑ×∇(⟨ℎ⟩𝐴) =208

[−𝜕𝑦 (⟨ℎ⟩𝐴), 𝜕𝑥 (⟨ℎ⟩𝐴)], with u∗
𝑐 being the corresponding tracer EIV.209

In this study, the full tensor K will be used mainly for diagnostic analysis. In tracer simulations,210

we will use a reduced transport tensor K𝑟𝑒𝑑 that combines isotropic diffusion and eddy-induced211

advection:212

K𝑟𝑒𝑑 =
©­«
𝐾𝑖𝑠𝑜 −𝐴𝑟𝑒𝑑
𝐴𝑟𝑒𝑑 𝐾𝑖𝑠𝑜

ª®¬ , (11)
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where 𝐾𝑖𝑠𝑜 is an isotropic diffusivity and 𝐴𝑟𝑒𝑑 corresponds also to a tracer EIV u∗
𝑐−𝑟𝑒𝑑 = ẑ×213

∇(⟨ℎ⟩𝐴𝑟𝑒𝑑)/⟨ℎ⟩. The main reason of introducing K𝑟𝑒𝑑 is that the full anisotropic tensor K causes214

numerical instability, which is not surprising given the persistent presence of negative eigenvalues215

𝜆1,2 (Leonard 1997; Trias et al. 2020; Haigh and Berloff 2021). Note that the anisotropy of eddy-216

induced transport can still be partly captured by the advective part of K𝑟𝑒𝑑 , because u∗
𝑐−𝑟𝑒𝑑 can217

always lead to tracer spreading along a well-defined direction.218

There are several challenges of using the flux-gradient relation. A significant one is the presence219

of the rotational (non-divergent) component in eddy tracer fluxes. This component does not affect220

tracer distributions but is generally an order of magnitude larger than the divergent component221

(Jayne and Marotzke 2002; Griesel et al. 2009; Kamenkovich et al. 2021; Sun et al. 2021), leading222

to large values in the corresponding tensor. Thus, the biases in the parameterized eddy fluxes,223

inevitable when the tensor is simplified or approximated, can also be very large. This justifies the224

need to remove the rotational component from eddy fluxes when estimating the tensor, which is225

typically done by the Helmholtz decomposition. However, the definition of the rotational compo-226

nent is “nonlocal” and non-unique, because the decomposition depends on boundary conditions227

for both the divergent and rotational components, and these boundary conditions are arbitrary228

(Fox-Kemper et al. 2003; Maddison et al. 2015). Therefore, the dominance of rotational eddy flux229

leads to an inherent source of ambiguity in the estimate of the tensor. In addition, the Helmholtz230

decomposition is computationally expensive and is impractical if one wants to obtain the full231

spatio-temporal variability of the tensor. For example, the decomposition technique used in this232

study, as will be described later, costs about 2 CPU hours to solve for the divergent component of233

each instantaneous eddy flux.234

The tracer dependence is another important source of uncertainty in modeling eddy fluxes.235

Although the origins of this uncertainty remain poorly understood, it hints at the need to revisit the236

flux-gradient relation. In addition, some components of the eddy forcing, such as the tendency and237

vertical/diapycnal terms that are not in a flux form, cannot be easily represented by the relation in a238

general case. These components are traditionally ignored in studies with long-term time averaging239

definition of eddies (e.g., Gent et al. 1995), but can be large under a more relevant non-Reynolds240

definition (e.g., Sun et al. 2021). These challenges of the flux-gradient relation will be further241

outlined by our results in section 4.242
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Note that the eddy fluxes in this study are unfiltered in order for preserving their divergence on243

the fine grid for the tracer experiments and for consistency to the eddy forcing D𝑒. The results do244

not, however, change qualitatively, if ⟨F𝑒⟩ is considered instead.245

c. The generalized-advective-diffusive approach246

Besides the above issues of the flux-gradient relation, there are two more fundamental properties247

of the eddy-induced stirring that motivate us to seek a new approach. Firstly, some components248

of the eddy flux cannot be expected to be successfully modeled by down-gradient diffusion. For249

example, the mixing length theory (Taylor 1921; Prandtl 1925), on which the flux-gradient model is250

based, relates tracer anomalies to the mean tracer gradient and water parcel excursion, 𝑐′ ∼−𝑙′
𝑗
𝜕
𝑗
⟨𝑐⟩,251

which yields the definition of eddy transport tensor via 𝑢′
𝑖
𝑐′ ∼ −𝑢′

𝑖
𝑙′
𝑗
𝜕
𝑗
⟨𝑐⟩. Here the eddy velocity252

𝑢′
𝑖

and excursion 𝑙′
𝑗

are assumed to be correlated, and indices 𝑖 and 𝑗 denote spatial coordinates.253

Flux ⟨𝑢𝑖⟩𝑐′ can also be expressed similarly as ⟨𝑢𝑖⟩𝑐′ ∼ −⟨𝑢𝑖⟩𝑙′𝑗𝜕𝑗 ⟨𝑐⟩. However, the eddy stirring of254

mean tracer contour, U′⟨𝑐⟩, is not consistent with this framework, because the theory only gives255

the relation between 𝑐′ and 𝜕𝑗 ⟨𝑐⟩, not between ⟨𝑐⟩ and 𝜕𝑗 ⟨𝑐⟩. This flux term is clearly “advective”256

in nature, but cannot be represented by the advection of the antisymmetric tensor because of the257

divergent U′. Therefore, a different “eddy-induced advection” is needed.258

Secondly, it is the eddy forcing (e.g., flux divergence) that directly appears in the tracer budget259

and determines tracer evolution. The flux-gradient relation, which models the eddy flux, involves260

a non-local, ill-defined problem due to the rotational eddy flux component. This nonlocal property261

not only causes uncertainty in determining the tensor, but is also intuitively suspicious: why262

should mesoscale fluxes in the ocean interior depend on the remote boundary conditions? These263

considerations argue for modeling the tracer eddy forcing directly. George et al. (2021) attempted264

a similar idea by modeling eddy heat flux divergence from sea surface height anomalies with a265

data-driven method.266

Here, we formulate a new approach with generalized eddy-induced advection (GEIA). The new267

model is motivated by the aforementioned properties of the flux-gradient relation and our own268

results, as is further discussed in section 5. We start from modifying the flux-gradient relation269

in two major ways. We choose to model the eddy forcing instead of the eddy flux, thus avoiding270

the discussed issues associated with calculating the rotational flux component. Then, to deal with271
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the part of the eddy forcing that cannot be represented by the flux-gradient relation, we add a new272

advection term, U𝜒 · ∇⟨𝑐⟩:273

D̂ = −∇ · (⟨ℎ⟩K∇⟨𝑐⟩) +U𝜒 · ∇⟨𝑐⟩ , (12)

where vector U𝜒 is a free parameter, which is divergent and independent of A. This term is274

a key difference from the flux-gradient relation in which the eddy-induced advective fluxes are275

non-divergent and determined uniquely by A.276

The generic, divergent form of U𝜒 also makes the formulation purely local. To see that, we277

expand the first term on the right hand side of (12) and collect all advective terms into a generalized278

eddy-induced advective (GEIA) flux χ:279

D̂ = −⟨ℎ⟩{𝑆11𝜕𝑥𝜕𝑥 ⟨𝑐⟩ +2𝑆12𝜕𝑥𝜕𝑦 ⟨𝑐⟩ + 𝑆22𝜕𝑦𝜕𝑦 ⟨𝑐⟩} +χ · ∇⟨𝑐⟩ , (13)

where the detailed derivation is provided in Appendix B. The GEIA flux χ is treated as an280

independent parameter that needs to be determined from tracer distributions, because it includes281

the free parameter U𝜒. This new formulation is local because all parameters are outside of the282

spatial gradient, and thus can be diagnosed directly from the local eddy forcing. It eliminates the283

ambiguity associated with solving for the divergent eddy flux component.284

Given the large number of parameters needed in (13) and to provide a direct comparison to the285

reduced tensor K𝑟𝑒𝑑 , this study will consider a simplified form of (13) with isotropic diffusion and286

GEIA. As discussed previously, the simulations with a full diffusive tensor S suffer from numerical287

instabilities, which further justifies our choice on isotropic diffusivity here. Specifically, we set288

𝑆11 = 𝑆22 = 𝜅, 𝑆12 = 0 in (13) and get:289

D̂ = −⟨ℎ⟩𝜅∇2⟨𝑐⟩ +χ · ∇⟨𝑐⟩ , (14)

where 𝜅(𝑥, 𝑦, 𝑧, 𝑡) [m2 s−1] is an isotropic diffusivity and χ(𝑥, 𝑦, 𝑧, 𝑡) [m2 s−1] incorporates all eddy-290

induced advective terms: χ = −∇ (⟨ℎ⟩𝜅) +u∗
𝑐⟨ℎ⟩ +U𝜒. This new model can still lead to anisotropic291

transport of tracers because of the directional GEIA flux χ. Thus, some anisotropic properties of292

eddy-induced transport, such as the eddy-induced filamentation (Kamenkovich et al. 2021), can be293
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potentially captured, although a fully anisotropic formulation (13) would still be needed for better294

accuracy in future studies.295

Equations (13) and (14) are counterparts of the full tensor K and the reduced tensor K𝑟𝑒𝑑 in the296

flux-gradient approach, respectively. In what follows, we will explore applications of (14) and297

K𝑟𝑒𝑑 to the tracer model and demonstrate advantages of the new approach.298

Note that modeling the eddy forcing indicates reduction of the information available when299

diagnosing the parameters, e.g., direction and magnitude of eddy tracer fluxes will be missing.300

In particular, the regional eddy tracer transports can not be easily inferred from the approach.301

Our approach, however, is still justified because the eddy fluxes are contaminated by ill-defined302

rotational components.303

d. Tracer experiments304

The sensitivity experiments solve for tracer 𝑐 advected by the large-scale volume fluxes and305

forced by forcing D:306

𝜕 (⟨ℎ⟩𝑐)
𝜕𝑡

+∇ · (⟨U⟩𝑐) + 𝜕𝑠 (⟨𝑤⟩𝑐) − 𝐴ℎ∇ · (⟨ℎ⟩∇𝑐) = −D , (15)

where all fields are defined on the high-resolution grid and 𝑐 will contain both large-scale and307

eddy parts. The forcing D will be either a truncated form of the full forcing D𝑒 or its parametric308

representation D̂ with (14) or (8) with K𝑟𝑒𝑑 . All the tracer experiments and corresponding D are309

listed in Table 1 and will be discussed in detail in section 6.310

The benchmark for the solution 𝑐 is the full tracer concentration 𝑐 of the reference simulation314

(1). It is obvious that 𝑐 will not equal 𝑐 if D ≠ D𝑒. Thus, the difference between 𝑐 and 𝑐315

measures the ability of the corresponding D to reproduce the eddy-induced stirring. Although316

theoretically one can aim at reproducing only the large-scale component of the tracer 𝑐 = ⟨𝑐⟩ by317

using D = 𝜕𝑡 (ℎ′𝑐+ ⟨ℎ⟩𝑐′) +∇ · (U′𝑐+ ⟨U⟩𝑐′) (the 𝑤-flux and sub-grid mixing terms are ignored for318

simplicity) in (15), we do not pursue this objective for the following reason. Our experiments are319

carried out in a high-resolution model, which means that generation of small-scale tracer anomalies320

is inevitable. For example, the solution will have a non-trivial eddy component 𝑐′ even in the case321

of D = 0, as will be seen in section 6. The anomalies 𝑐′ will in turn generate an additional eddy322

flux through large-scale currents, ⟨U⟩𝑐′, which will result in a solution 𝑐 diverting from ⟨𝑐⟩. An323
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Table 1. Description of numerical experiments in the high-resolution off-line tracer model. Different forms

of eddy forcing D are applied in (15). Note that 𝑐 is the “run-time” tracer solution, whereas 𝑐 is the tracer

diagnosed from the reference run.

311

312

313

Experiment Description Formulation

MEAN Tracer transported by zero eddy flows (mean flows
only)

D = 0

EXP-ADV By lateral eddy tracer advection D = U′ · ∇𝑐̃

EXP-K𝑟𝑒𝑑 By lateral eddy tracer flux divergence where the flux
is represented by the reduced transport tensor

D = −∇ · ( ⟨ℎ⟩K𝑟𝑒𝑑∇⟨𝑐̃⟩) , where K𝑟𝑒𝑑 is pre-estimated from
U′𝑐 = −⟨ℎ⟩K𝑟𝑒𝑑∇⟨𝑐⟩

EXP-𝜅χ By lateral eddy tracer advection represented by the
generalized-advective-diffusive approach

D = −⟨ℎ⟩𝜅∇2 ⟨𝑐̃⟩ +χ · ∇⟨𝑐̃⟩, where 𝜅 and χ are pre-estimated
from U′ · ∇𝑐 = −⟨ℎ⟩𝜅∇2 ⟨𝑐⟩ +χ · ∇⟨𝑐⟩

FULL By full (mean plus eddy) flows D = 𝜕𝑡 (𝑐̃ℎ′) + ∇ · (U′𝑐̃) +𝜕𝑠 (𝑤′𝑐̃) − 𝐴ℎ∇ · (ℎ′∇𝑐̃)

alternative way is to solve for 𝑐 in a coarse-resolution offline model (Mana and Zanna 2014), but324

this task presents its own challenges in, for example, extrapolating and re-discretizing all physical325

fields onto a coarser grid (Patching 2022), and is beyond the scope of this study.326

The eddy effects on tracer evolution in isopycnal coordinates have been studied by Gent et al.327

(1995), who parameterized the layer-thickness EIV u′ℎ′/ℎ using a long-term time (Reynolds)328

averaging (...). Our study is different in two aspects: i) we focus on the eddy tracer flux U′𝑐329

instead of layer-thickness EIV in ⟨U⟩, and ii) we use a more general scale-based filtering ⟨...⟩.330

To clarify the differences and similarities between two approaches, we rewrite the tracer equation331

in the advective form by substituting (4) into (5), and ignore the vertical and small-scale mixing332

terms:333

𝜕𝑐

𝜕𝑡
+ ⟨U⟩
⟨ℎ⟩ · ∇𝑐 = −D𝑒

⟨ℎ⟩ , (16)

where the second term ⟨U⟩/⟨ℎ⟩ = ⟨u⟩ +u∗ and the layer thickness EIV u∗ = (⟨U⟩ − ⟨u⟩⟨ℎ⟩)/⟨ℎ⟩. In334

this study, we assume that the large-scale layer-thickness flux ⟨U⟩ is known and focus on the eddy335

forcing D𝑒. The equation is the same as the equation (5) of Gent et al. (1995) with u∗ = u′ℎ′/ℎ,336

D𝑒 = ∇ ·U′𝑐′, and ⟨...⟩ taken to be (...). In most modern coarse-resolution ocean models u∗ is337

parameterized by the GM closure and D𝑒 is parameterized by an isotropic Redi diffusion. However,338

Haigh et al. (2021b) showed that in a quasi-geostrophic model, u∗ is significantly smaller than the339

tracer EIV u∗
𝑐 calculated from the advective tensor A, indicating the importance of the advective340

part in D𝑒. Our analysis will arrive at a similar conclusion and further demonstrate the need of341
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the new eddy-induced advection in our approach. As is explained in section 3c, the GEIA flux χ342

includes u∗
𝑐, and thus χ+u∗⟨ℎ⟩ describes the total advective effect of eddies on tracer.343

Ourχ has some similarities with the “residual velocity” proposed by Pratt et al. (2016): they both344

measure the advective effect of eddies and both are able to contain diabatic terms. Nevertheless,345

we stress that they correspond to different processes: χ describes the eddy forcing whereas the346

residual velocity is derived directly as the residual of the large-scale and eddy tracer flux.347

Due to the tracer fluxes through the open boundaries of our domain, the global tracer mass, M𝑐,348

is not conserved. Instead, M𝑐 becomes part of the solution and will depend partly on the domain349

volume integral of the parametric model D̂(𝑥, 𝑦, 𝑧, 𝑡). This integral determines the eddy-induced350

change in the global tracer mass, ΔM𝑐, 𝑒𝑑𝑑𝑦. For simplicity and a fair comparison of the different351

models D̂, we force ΔM𝑐, 𝑒𝑑𝑑𝑦 to zero in the two eddy-representing experiments with (15). In352

both cases, only the large-scale flow is allowed to take tracers into or out of the domain. In the353

flux-gradient case, D̂ is in a form of flux divergence, and thus the conservation of M𝑐, 𝑒𝑑𝑑𝑦 can354

be guaranteed by requiring the eddy fluxes across all boundaries to be zero. We do this at both355

solid and open boundaries, because the eddy fluxes at open boundaries are generally unknown.356

In the case of the new approach, however, the conservation of M𝑐, 𝑒𝑑𝑑𝑦 has to be enforced by357

different means because of the advection term U𝜒 · ∇⟨𝑐⟩. We will correct the eddy forcing (14)358

by subtracting its domain average at each grid point, to ensure ΔM𝑐, 𝑒𝑑𝑑𝑦 = 0 when applying this359

approach in the tracer experiment. We confirm that the volume averaged forcing are less than 1%360

smaller than the forcing, so the effect of the correction on tracer distributions is negligible.361

4. Properties of the lateral eddy transport362

a. Calculation of the transport coefficient tensor363

We calculate the full transport coefficient tensor K by inverting the flux-gradient relation (8)364

using two methods. One way is to obtain an exact solution (Haigh et al. 2020). Two independent365

tracers are needed in this case since K has four unknowns. As discussed by Kamenkovich et al.366

(2021) and Sun et al. (2021), the resulting tensor is different for each tracer pair. An alternative367

way is to use multiple tracers to form an overdetermined problem (Bachman et al. 2015), where the368

resulting tensor is an approximation that minimizes the mismatch between the reconstructed and369

original eddy fluxes in the tracer ensemble. Bachman et al. (2020) showed that this method leads370
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to an “optimal” solution of K, judging by errors in reconstructing the eddy fluxes of temperature371

and salinity. Similarly, we will here use errors in reconstructing fluxes of tracers withheld from the372

inversion method.373

To prepare the fields for calculating the tensors, 10 tracers were initialized with vertically uniform374

but horizontally different distributions (Appendix A). The tracer model (1) was then integrated375

over four consecutive 110-day segments with the first 20 days of each segment overlapped by the376

end of previous one, providing a one-year evolution for each tracer. Because of the indeterminate377

boundary conditions for the open boundaries, we use a minimization technique with Tikhonov378

regularization to remove the rotational eddy flux component (Li et al. 2006; Kamenkovich et al.379

2021; Kamenkovich and Garraffo 2022). The method is able to obtain a decomposition without380

the need of explicitly specifying boundary conditions.381

The reduced transport coefficient tensor K𝑟𝑒𝑑 is also diagnosed from (8) using the same two382

inversion methods. The problem has only two unknowns so only one tracer is required for an exact383

solution.384

b. Properties of the transport tensors385

The complexity of the eddy transport tensor has been shown by several earlier studies (Bachman386

et al. 2020; Haigh et al. 2020; Kamenkovich et al. 2021; Sun et al. 2021). Below we briefly review387

these properties in our model.388

Figure 2 shows the eigenvalues 𝜆1,2 of K estimated from the full eddy flux F𝑒 and from its389

divergent component, overlapped with the diffusion angle 𝜃. In agreement with previous studies390

(Bachman et al. 2020; Haigh et al. 2020; Kamenkovich et al. 2021; Sun et al. 2021), both 𝜆1,2391

and 𝜃 exhibit remarkable spatial complexity. The magnitude and spatial structure of 𝜆1,2 change392

significantly when the rotational component is removed, and the magnitudes are over 10 times393

less than those estimated from the full eddy flux. The inhomogeneity of 𝜆1,2 and the root mean394

square (rms) values are reported in Table 2a. The inhomogeneity is quantified by the spatial395

standard deviation of the absolute value. The eigenvalues are mostly of opposite sign (“polarity”396

of the tensor), indicating that the eddy-induced diffusion is predominantly a filamentation process397

and thus highly anisotropic (Haigh et al. 2021a; Kamenkovich et al. 2021). For the advective398

part (Table 2b), the rms tracer EIV u∗
𝑐 is found to be one order of magnitude larger than the rms399
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Table 2. Inhomogeneity and root mean square (rms) values of (a) the diffusive (𝜆1,2, 𝐾𝑖𝑠𝑜, 𝜅) and (b) the

advective (u∗
𝑐, u∗

𝑐−𝑟𝑒𝑑 , χ/⟨ℎ⟩) parameters in different parametric models estimated from different eddy terms.

Inhomogeneity is defined as the spatial standard deviation of absolute values. The statistics of 𝜆1 and 𝜆2 are

similar and are averaged. The statistics of the fluxes are calculated from their norms. Parameters are diagnosed

at day 100, layer 24, using tracers 𝑐1-𝑐5. Note that F1 = U′⟨𝑐⟩, F2 = U′𝑐′ and F𝑒 = F1 +F2, with the rotational

components removed. For reference the inhomogeneity and rms values of ⟨U⟩/⟨ℎ⟩ are 0.014 and 0.023 m s−1,

respectively.

416

417

418

419

420

421

422

(a) Diffusive parameters

𝜆1,2 𝐾𝑖𝑠𝑜 𝜅

Eddy terms F𝑒 F1 F2 F𝑒 F1 F2 U′ · ∇𝑐 U′ · ∇⟨𝑐⟩ U′ · ∇𝑐′

Inhomogeneity [m2 s−1] 3830 3760 466 1310 1270 236 1120 0.49 1120

rms [m2 s−1] 4230 4140 525 1510 1470 271 1220 0.56 1220

(b) Advective parameters

u∗
𝑐 u∗

𝑐−𝑟𝑒𝑑 χ/⟨ℎ⟩

Eddy terms F𝑒 F1 F2 F𝑒 F1 F2 U′ · ∇𝑐 U′ · ∇⟨𝑐⟩ U′ · ∇𝑐′

Inhomogeneity [m s−1] 0.15 0.14 0.016 0.07 0.07 0.01 0.034 0.019 0.031

rms [m s−1] 0.19 0.19 0.021 0.087 0.087 0.012 0.041 0.025 0.035

mean advective velocity ⟨U⟩/⟨ℎ⟩ in (16), which results from the importance of a lateral eddy flux400

divergence discussed later.401

The anisotropy of eddy-induced diffusion in the mid-latitude oceanic flows has been well known402

from Lagrangian studies (Sallée et al. 2008; Klocker et al. 2012a; Rypina et al. 2012; Kamenkovich403

et al. 2015). However, the Lagrangian diffusivity (tensor) is conceptually different from the locally404

defined K. Although some studies (e.g., Riha and Eden 2011; Abernathey et al. 2013) found405

similarities between the two tensors, the asymptotically defined Lagrangian diffusivity is non-local406

in space and time, and it, therefore, cannot quantify the transient and local eddy effects. For407

example, the polarity of the Lagrangian diffusivity is particularly hard to capture, because the408

corresponding filamentation cannot proceed for long time. In addition, the tracer EIV u∗
𝑐 cannot409

be estimated by Lagrangian diffusivity.410

Figure 3 shows the two elements of the reduced tensor K𝑟𝑒𝑑 . The inhomogeneity and rms426

statistics of 𝐾𝑖𝑠𝑜 and u∗
𝑐−𝑟𝑒𝑑 are roughly one-third of those for K (Table 2). The reduced magnitudes427
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Fig. 2. Eigenvalues of S calculated from the total lateral eddy flux F𝑒 (top) and its divergent flux component

(bottom), overlapped with the direction of the major axes (direction of the maximal eigenvalue described by the

angle 𝜃) in yellow bars. The tensor is averaged over days 71-80 in layer 24 (∼1500 m depth on average) and

is overdetermined from five tracers (𝑐1-𝑐5). Note that the values in the top and bottom rows are an order of

magnitude different. Parameters are smoothed by a 0.4°×0.4° boxcar filter for presentation.

411

412

413

414

415

are possibly due to the truncated anisotropic diffusion. Negative values are still common in 𝐾𝑖𝑠𝑜428

(∼40% of the domain), indicating transient anti-diffusive processes.429

The transport tensor is also known to depend on the initial tracer distributions, although the430

tracers are stirred by the same flow (Bachman et al. 2015, 2020; Kamenkovich et al. 2021; Sun431

et al. 2021). This tracer dependence violates the main assumption that the tensor coefficient is a432

function of the flow only. This property is quantified here by calculating K (K𝑟𝑒𝑑) from all possible433

tracer pairs (tracers), which results in an ensemble of the corresponding eigenvalues 𝜆1,2 (𝐾𝑖𝑠𝑜).434
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Fig. 3. Isotropic diffusivity 𝐾𝑖𝑠𝑜 and anti-symmetric part 𝐴𝑟𝑒𝑑 of K𝑟𝑒𝑑 (11) calculated from the divergent

component of F𝑒. The tensor is averaged over days 71-80 in layer 24, and calculated from tracers 𝑐1-𝑐5.

Parameters are spatially smoothed by a 0.4°×0.4° boxcar filter for presentation.

423

424

425

The resulting values of both 𝜆1,2 and 𝐾𝑖𝑠𝑜 change by more than 300% over the entire ensemble.435

This result questions the utility of the flux-gradient relation and the diffusion model.436

c. Eddy flux components and their importance437

The lateral eddy tracer flux F𝑒 = U′𝑐 is comprised of two components with distinct physical438

interpretations: U′⟨𝑐⟩ and U′𝑐′. They represent the eddy advection of the large-scale tracer439

contours and the tracer anomalies, respectively. We now discuss their relative importance and440

properties of the corresponding transport tensors. For completeness, the properties of the third441
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eddy-induced flux, the flux of tracer anomalies by the large-scale flow ⟨U⟩𝑐′, are also discussed442

here.443

Figure 4 (top) compares magnitudes of the divergences of these eddy flux terms with that of444

⟨U⟩⟨𝑐⟩. An intriguing result is that the divergence of the eddy advection of the large-scale tracer445

U′⟨𝑐⟩ is largest among all four. To gain further insight into this term, we split it into two components:446

447

∇ · (U′⟨𝑐⟩) = ⟨𝑐⟩∇ ·U′+U′ · ∇⟨𝑐⟩ . (17)

Within an isopycnal layer, the first term on the right-hand side represents the effect of volume448

convergence, that leads to the squeezing/stretching of the layer and its diapycnal mass exchanges449

with the adjacent isopycnal layers. We refer to this term as the “expansion term”. In the mixed450

layer, the term corresponds to the vertical convergence of the volume flux. In both regimes, the451

term is the main cause of the exaggerated importance of ∇ · (U′⟨𝑐⟩), because the second term on452

the right-hand side of (17) is of the same order of magnitude as the other eddy advection terms453

(Figure 4, bottom). There are two reasons for the dominance of the expansion term ⟨𝑐⟩∇ ·U′: (i)454

⟨𝑐⟩ is generally larger than 𝑐′, which explains why the expansion term is larger than 𝑐′∇·U′; (ii) the455

divergence of U′ tends to be larger than the divergence of the large-scale volume flux ⟨U⟩, which456

explains why the expansion term is larger than 𝑐′∇ · ⟨U⟩. The expansion term can also be expected457

to explain a large part of the tracer dependence in K, since ⟨𝑐⟩∇ ·U′ strongly depends on the458

initial tracer distribution and would also change if a constant were added to 𝑐 all over the domain.459

Note that the expansion term is zero in quasi-geostrophic studies (e.g., Haigh et al. 2020). The460

dominance of the expansion term ⟨𝑐⟩∇ ·U′ and its dependence on ⟨𝑐⟩ thus complicate application461

of the flux-gradient relation to the lateral (isopycnal) fluxes, especially U′⟨𝑐⟩.462

All the eddy forcing terms in Figure 4 remain large after being spatially filtered by ⟨...⟩, meaning463

that they not only affect the full but also the large-scale tracer distribution. Remarkably, U′⟨𝑐⟩, as464

well as its divergence, is still the largest eddy terms after the filtering. This property results from465

the lack of scale separation between the large-scale and eddy fields. Note that for the Reynolds466

decomposition, only the eddy-eddy term, U′𝑐′, remains non-zero after long-term time averaging.467
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Fig. 4. Domain-median of absolute values of the divergence (top) and advection (bottom) for different lateral

mean and eddy forcing terms over 8 months in layer 24. Bars denote the 20th-80th percentile range. Similar

results are found in other layers. Initial distribution of the tracer is 𝑐𝑡1 (Appendix A). Note that ∇ · (U′⟨𝑐⟩) is an

order of magnitude larger than the other forcing terms.

468

469

470

471

Because the flux-gradient relation is linear, we can further explore properties of K estimated472

from U′⟨𝑐⟩ and U′𝑐′ separately:473

F1 = U′⟨𝑐⟩ = −⟨ℎ⟩K1∇⟨𝑐⟩, F2 = U′𝑐′ = −⟨ℎ⟩K2∇⟨𝑐⟩ . (18)

The rotational component is removed from each of the flux components separately. Table 2a lists474

the inhomogeneity and rms magnitudes of both the eigenvalues and tracer EIVs of K1,2. Both475

variables are much larger for K1 than for K2, which is due to large mean values and fluctuations of476
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F1. Similarly, the reduced transport tensor K𝑟𝑒𝑑 from F1 (Table 2) also has larger inhomogeneity477

and rms values than K𝑟𝑒𝑑 from F2.478

The tracer dependence of the tensors is quantified next. We first estimate an ensemble of479

tensors K1,2 from a set of tracer pairs, and calculate their eigenvalues and tracer EIVs. The tracer480

dependence is then defined as the ratio of the ensemble standard deviation to the absolute ensemble481

mean of these parameters. The results show that both the diffusion (Figure 5a) and advection482

(Figure 5b) tensor components are strongly tracer-dependent (>300% in most of the domain) for483

all flux components, although this dependence in K2 is weaker than in both K and K1. The tensors484

calculated from ⟨U⟩𝑐′ (not shown) have tracer dependence similar to K2. The tracer dependence in485

K𝑟𝑒𝑑 is higher than K except for F2. The elevated tracer dependence in F1 can be explained by the486

expansion term being the leading source of tracer dependence. For example, if a constant is added487

to the tracer field, the tensor calculated by −U′⟨𝑐⟩ · [∇⟨𝑐⟩]−1 will change correspondingly, leading488

to unphysical dependence of the tensor on the tracer concentration. In agreement with Sun et al.489

(2021), we verified that tensors calculated from large-scale eddy fluxes, ⟨F𝑒⟩, have very similar490

properties.491

Because of tracer dependence, eddy fluxes reconstructed from K will always have biases regard-503

less of the number of tracers used in the calculation. For K calculated from a large ensemble of504

tracers (overdetermined problem), the biases are inevitable for each of the eddy fluxes. For K505

calculated exactly from a tracer pair, the tracer dependence leads to biases for a third tracer. We use506

the relative error in the divergence of the eddy flux to examine the significance of these biases on507

tracer distribution, because it is the flux divergence that directly enters the tracer budget. We define508

the relative error 𝜀 that results from using a parametric model D̂ to represent the eddy forcing D509

for a given tracer as510

𝜀 =

�����D−D̂
D

����� , (19)

where D = ∇ · F𝑒 and D̂ = −∇ · (⟨ℎ⟩K∇⟨𝑐⟩). The relative error quantifies the biases in the511

reconstructed eddy forcing fields (e.g., in flux divergence) that are caused by the uncertainty (e.g.,512

tracer dependence) in the parameters (e.g., K) that represent the eddy forcing. It is zero only when513

K is calculated exactly from a pair of tracers that includes the given tracer.514
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Fig. 5. Tracer dependence (ratio of the standard deviation to the absolute ensemble mean) of the (a) diffusive

and (b) advective parameters of the two parametric models D̂, estimated from different eddy forcing terms. Error

bars denote the median and the 20th-80th percentile range of the ratio. (a) Diffusive parameters include the

average of the eigenvalues 𝜆1,2 of S, the isotropic diffusivity 𝐾𝑖𝑠𝑜, and 𝜅 of the generalized-advective-diffusive

model. (b) Advective parameters include the tracer EIVs associated with A and 𝐴𝑟𝑒𝑑 , and the generalized

advective flux χ normalized by ⟨ℎ⟩. All three ensembles of K𝑟𝑒𝑑 , K, and 𝜅 and χ contains 10 estimates, with

K randomly chosen from all the 45 possible estimates (tracer pairs) and 𝜅&χ randomly chosen from the 120

possible estimates (tracer triplets). For a flux, the ratios of its two horizontal components are averaged. The x-axis

denotes different eddy terms from which the parameters are estimated. Note that tensors (K,K1,2) are estimated

from eddy fluxes (F,F1,2) whereas 𝜅&χ are estimated from eddy advections (e.g., U′ · ∇𝑐). All parameters are

diagnosed at day 100, layer 24. Other layers have similar results.
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Figure 6 shows 𝜀 for F𝑒 and F1,2, as a function of the number of tracers in the set {𝑐𝑛, 𝑛 = 1, ..., 𝑁}515

used to calculate K. The tensor is solved either exactly (𝑁 = 2) or by using the overdetermined516

method (𝑁 > 2). The results are shown for the tracer 𝑐6, which is not included in the tensor517

calculations, but the conclusions are the same for all other tracers. The errors 𝜀 for different terms518

are larger than 100% in most of the domain and are not improved significantly with increasing 𝑁 .519

This implies that the multi-tracer inversion cannot reduce the tracer dependence effectively. It is,520

therefore, almost certain that the tracer dependence of K has a significant effect on tracer transport521

through the errors in eddy forcing. We also see larger bias in the divergence of U′⟨𝑐⟩, which is522

particularly problematic because it dominates lateral eddy fluxes. As discussed in section 3c, this523

flux term is inconsistent with the flux-gradient framework. We have now confirmed that it is one524

of the sources of bias in the relation.525

5. Generalized-advective-diffusive approach531

The results in the last section illustrate challenges of the flux-gradient approach and provide532

motivation for the generalized-advective-diffusive approach. In this section, we perform similar533

analyses of our new formulation (14), and show the improvement relative to the flux-gradient534

method.535

a. Properties536

One advantage of the new approach is that it can be used to represent any term in the eddy537

forcing, such as the lateral eddy tracer flux divergence ∇ · (U′𝑐), the lateral eddy advection U′ · ∇𝑐,538

the vertical term, and eddy tendency. As mentioned in section 3a, this study focuses on the lateral539

eddy-induced transports only. This is for the sake of a direct and fair comparison with the flux-540

gradient approach, which can only be applied to the lateral eddy flux. The advection form of the541

lateral term U′ · ∇𝑐 is anticipated to be more accurate than the flux divergence form ∇ ·U′𝑐. for the542

following reason. In section 4, we showed that a large portion of the lateral eddy flux divergence543

is devolved into the “expansion” term, i.e., ⟨𝑐⟩∇ ·U′ ≫ U′ · ∇⟨𝑐⟩. Using the advection form will544

thus eliminate the need to account for this expansion term and avoids its elevated sensitivity to ⟨𝑐⟩.545

We will later confirm this by analyzing the corresponding tracer dependence and errors in the the546

represented eddy forcing. We leave the consideration of the vertical/tendency terms for a future547
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Fig. 6. Effects of the tracer dependence in the flux-gradient approach on the accuracy of the represented eddy

forcing. Dots are median of the relative error 𝜀 of the eddy flux divergence at day 100, layer 24. Bars denote

the 20th-80th percentile range. Different components of the eddy flux are reconstructed by K for tracer 𝑐6. 𝑁

is the number of tracers in the set {𝑐𝑛} (𝑐6 ∉ {𝑐𝑛}) that was used to calculate K. Similar results were found for

different times, layers and tracers.
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study. We will, however, show in section 6 that the lateral eddy advection effectively captures the548

bulk effect of the eddy forcing.549

The diffusivity 𝜅 and GEIA fluxχ are calculated by inverting (14) from the lateral eddy advection550

using the same set of idealized tracers. We use either three independent tracers to get an exact551

solution or more than three tracers to get a least-squares solution of the three unknowns. Figure 7552

shows snapshots of 𝜅 and χ overdetermined with five tracers. Similar to the diffusivities of553

K and K𝑟𝑒𝑑 , 𝜅 is spatially inhomogeneous and exhibits both positive and negative values. The554

26



inhomogeneity and rms values of 𝜅 (Table 2a) have similar magnitude with 𝐾𝑖𝑠𝑜 of K𝑟𝑒𝑑 , although555

the spatial pattern is very different (Figure 3). This is not unexpected because the two isotropic556

diffusivities are formulated differently.557

The new divergent GEIA flux χ is of particular interest. Its magnitude (divided by ⟨ℎ⟩) is about558

two times less than u∗
𝑐 from both K and K𝑟𝑒𝑑 (Table 2b). A key question is on the importance559

of the new term U𝜒 and whether this part is really divergent, i.e., cannot be represented by the560

antisymmetric tensor. Although U𝜒 and u∗
𝑐⟨ℎ⟩ cannot be calculated individually in this framework,561

we can extract the divergent component of their sum, which equals χ+∇ (⟨ℎ⟩𝜅) by definition. The562

divergent component then measures the importance of U𝜒 because u∗
𝑐⟨ℎ⟩ is purely rotational. Using563

the same technique as for the eddy tracer flux to calculate the divergent and rotational components,564

we found that their rms values, divided by ⟨ℎ⟩, are 0.57 m s−1 and 0.04 m s−1, respectively. This565

indicates that there is indeed a significant divergent component in the GEIA flux that cannot be566

possibly described by a streamfunction and thus by the eddy transport tensor.567

We next evaluate the tracer dependence in 𝜅 and χ using the same method as for K and K𝑟𝑒𝑑 . We572

remind the reader that this dependence contradicts the assumption that the parameters of D̂ are573

functions of the flow only and increases uncertainty in estimating these parameters for practical574

applications. Figure 5 shows the spread of 𝜅 and χ derived from different eddy advection terms575

among the tracer triplets. We observe modest reduction in the tracer dependence relative to the576

diffusive and advective parts of K and K𝑟𝑒𝑑 . The only exception is the spread of χ for the term577

U′ · ∇⟨𝑐⟩ which is zero; this is expected because χ = U′ in this case.578

To examine how the tracer dependence affects the accuracy of representing the eddy forcing, we579

recalculated the relative error 𝜀 from (19), with D = U′ · ∇𝑐 and D̂ given by (14). In this case,580

𝜅 and χ are calculated for a subset of tracers triplets and the error is evaluated for the rest of the581

tracer ensemble. Figure 8 shows 𝜀 for different eddy advection terms. We see that 𝜀 is significantly582

reduced compared to the flux-gradient model (Figure 6). We conclude that the new approach583

leads to reduced uncertainty in estimating the eddy forcing, despite the remaining sensitivity of its584

parameters to tracer distributions.585
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Fig. 7. Snapshots of 𝜅 and χ/⟨ℎ⟩ in the new approach, estimated from lateral eddy advection U′ · ∇𝑐. They

are averaged over days 71-80 in layer 24 and are overdetermined from tracers 𝑐1-𝑐5. 𝜅 is on the same order

of magnitude with 𝜆1,2 and 𝐾𝑖𝑠𝑜, but has different spatial structure. Parameters are spatially smoothed by the

0.4°×0.4° boxcar filter for presentation clarity.
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6. Application in the high-resolution model590

This section aims to evaluate the skill of the flux-gradient relation and the generalized-advective-591

diffusive model in reproducing the eddy-induced stirring, as well as the effects of truncating the592

eddy forcing D𝑒 to its lateral part. This is done by performing a series of tracer experiments (15)593

with various forms of eddy forcing D, and by quantifying how close the approximate solution 𝑐594

is to the reference solution. To assess the robustness of conclusions, our analysis on the tracers is595

carried out in two distinct parts of the domain: in the mixed layer and below the isopycnal layer596

15 (∼500 m depth) of the model. We remind the reader, that the tracer in the mixed is stirred597
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Fig. 8. Effects of tracer dependence on the accuracy of modeling of the eddy forcing in the generalized-

advective-diffusive approach. Median of the relative errors 𝜀 between the eddy advection reproduced by 𝜅 and χ

and the original advection term, for the tracer concentration 𝑐6 in layer 24. Bars denote the 20th-80th percentile

range. The relative error for U′ · ∇⟨𝑐⟩ is nearly zero (not shown).
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horizontally by a combination of mesoscale and partially-resolved submesoscale currents and is598

homogenized vertically at each time step.599

a. Tracer experiments600

The total of five experiments are listed in Table 1. The MEAN run has D = 0 with tracers601

transported by the large-scale volume flux, and the FULL run is the reference (control) simulation602

with the full flow. The EXP-ADV run illustrates the importance of the lateral eddy advection603

(D = U′ · ∇𝑐) in the eddy forcing and serves to quantify the effect of omitting the non-lateral terms604

in eddy forcing (7). It also represents the “best scenario” when this advection term is represented605

accurately.606

The other two experiments examine how well the flux-gradient approach (EXP-K𝑟𝑒𝑑) and the new607

approach (EXP-𝜅χ) represent the lateral eddy forcing. In both experiments, D̂(𝑥, 𝑦, 𝑧, 𝑡) is applied608

to simulate tracers that were not used to calculate the parameters of this D̂. The tracer dependence in609

these parameters will inevitably cause bias in D̂, which leads to the difference between 𝑐 and 𝑐 from610
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the FULL simulation. The difference between solutions thus mainly quantifies the impact of tracer611

dependence and the “goodness” of the approaches. Our previous analysis on the relative errors in612

eddy forcing is a complementary measure in a diagnostic way. The other source of the difference is613

the omitted eddy tendency and vertical/diapycnal terms, whose effect is measured by EXP-ADV. In614

the EXP-K𝑟𝑒𝑑 run, we use the reduced transport tensor (11) to represent the lateral eddy flux. The615

new approach (14) is applied in the EXP-𝜅χ run. Both representations are the combination of an616

isotropic diffusion and an eddy-induced advection. As discussed in section 3b, we did not employ617

the anisotropic diffusion because it is numerically unstable as a result of negative diffusivities.618

The comparison serves to evaluate the implications of the generalized advection. We used five619

tracers (𝑐1-𝑐5) to estimate K𝑟𝑒𝑑 , 𝜅 and χ, which ensures that the same amount of information is620

provided for both approaches. Note that these experiments are not eddy parameterizations because621

the parameters are diagnosed from the reference simulation, and the experiments are carried out in622

the same high-resolution model.623

Figure 9 shows the snapshots of tracer solutions in the five experiments. Comparison of MEAN624

and FULL illustrates that eddies influence the tracer distribution mainly in two ways: (i) they625

smooth out sharp large-scale tracer concentration fronts (gradients) and the peak values on each626

side of a front; and (ii) they induce small-scale concentration structures all over the domain, and627

especially along the large-scale fronts. The tracer field in EXP-ADV and EXP-𝜅χ is visually similar628

to FULL. We then quantify the difference between the solutions of FULL and the other runs by the629

Frobenius norm (Figure 10a) and the correlation coefficients (Figure 10b-e). The results show that630

the EXP-ADV solution (green line and Figure 10e) is significantly closer to the FULL than is the631

MEAN (black line and Figure 10b), indicating an improvement because of using the lateral eddy632

advection. The remaining bias results from the truncated terms ℎ′𝜕𝑡𝑐 + (𝜕𝑠 (𝑤′𝑐) − 𝑐𝜕𝑠𝑤′) in (7),633

and are confirmed small. This justifies our choice to model the lateral term by the new approach.634

In contrast, the same bias for the flux-gradient approach cannot be quantified because an additional635

experiment with D = ∇· (U′𝑐) (not shown) exhibits unrealistic tracer concentration patterns, which636

is a possible consequence of excessively large biases caused by the absent terms 𝜕𝑡 (𝑐ℎ′) + 𝜕𝑠 (𝑤′𝑐)637

in (6). The solution of EXP-𝜅χ (red line and Figure 10d) is closer to FULL than EXP-K𝑟𝑒𝑑 (blue638

line and Figure 10c), indicating a statistical improvement brought by the new approach.639
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Fig. 9. Tracer concentration anomalies from the five experiments (Table 1) in layer 15 (∼500 m depth) after

200 days of advection. The initial distribution (𝑐𝑡1) is subtracted out.

640

641

Mesoscale eddies can have cumulative effect on the large-scale tracer distribution through stir-647

ring and dispersion. We next consider two physically meaningful processes for the sensitivity648

experiments: evolution of a large-scale tracer gradient and dispersion of a tracer patch along the649

Gulf Stream path.650

b. Evolution of a large-scale tracer gradient651

The analysis in this section is focused on the efficiency of eddy stirring in reducing the meridional652

gradients. Simulations are initialized with the tracer 𝑐6 which has a sinusoidal structure in the653

meridional direction and is uniform zonally and vertically. Over time, the eddy stirring reduces the654

meridional gradients and the tracer slowly approaches a uniform distribution.655
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Fig. 10. The skill of the truncated and the approximated eddy forcings in reproducing the eddy effects. (a)

The Frobenius norm of the vertically-averaged tracer concentration differences between the four experiments

and FULL as a function of time. The Pearson correlation of tracer fields between (b) MEAN, (c) EXP-K𝑟𝑒𝑑 , (d)

EXP-𝜅χ and (e) EXP-ADV and FULL, over 270 days. The initial distribution is 𝑐𝑡1. Tracers are averaged within

the mixed layer. Similar results are observed for tracers averaged below layer 15.
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Figure 11 shows the relative difference of tracer fields (“tracer bias”) between the FULL and three656

sensitivity experiments, MEAN, EXP-K𝑟𝑒𝑑 and EXP-𝜅χ, as a function of time and latitude. In both657

the mixed layer and deeper layers, EXP-𝜅χ is closer to FULL than EXP-K𝑟𝑒𝑑 , showing that the new658

approach captures the eddy stirring more accurately than the flux-gradient approach. An intriguing659

feature in the mixed-layer tracer concentrations (Figure 11, top) is the large relative difference at660

about 42°N. We attribute this difference to the presence of a transport barrier at the Gulf Stream661

core (Rypina et al. 2011) in the FULL run. Since velocities at this core in MEAN is smeared out662
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Fig. 11. The skill of different D̂ in reproducing eddy stirring effect on a large-scale tracer profile. The figures

show the temporal evolution of the relative difference in the zonally- and vertically-averaged tracer concentrations

between the three sensitivity experiments and FULL. Tracer concentrations were averaged over the mixed layer

(top row) and over the isopycnal layers below layer 15 (bottom row). The initial distribution is 𝑐6.
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by the spatial filter, the associated transport barrier breaks down, leading to a significant bias in663

tracer distributions.664

c. Dispersion of a tracer patch669

Mesoscale eddies disperse tracers anisotropically. The efficiency and preferential direction of670

the dispersion can be measured by the time rate of change of the second moment for a tracer patch671
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(Rypina et al. 2012). The second moment is defined as a covariance matrix (Wagner et al. 2019):672

𝜎2
𝑖 𝑗 =

∬
(𝑥
𝑖
− 𝑥𝑐

𝑖
) (𝑥

𝑗
− 𝑥𝑐

𝑗
)𝑐(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦∬

𝑐(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
, 𝑖, 𝑗 = 1,2 (20)

where 𝑥𝑐
𝑖
=
∬
𝑥
𝑖
𝑐(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦/

∬
𝑐(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 is the position of center of mass.673

We released a tracer anomaly near the Gulf Stream axis at 35.5°N, 63.5°W. The initial tracer674

concentration distribution is vertically uniform and has a shape of a round patch with the diameter675

of 3 degrees. It is larger than the typical length scale of mesoscale eddies to prevent the tracer676

from being trapped in a single eddy like a Gulf Stream ring. Figure 12 shows the evolution of677

the vertically-averaged tracer patch in the sensitivity experiments. In all simulations, the patch678

propagates along the Gulf Stream axis due to the mean advection and disperses away due to the eddy679

stirring. Unsurprisingly, the tracer in FULL spreads much farther away from its initial position680

than in MEAN. The shape of the tracer patch in EXP-𝜅χ is similar to that in the FULL run, which681

demonstrates the efficiency of GEIA in capturing anisotropic dispersion. In contrast, the spreading682

in EXP-K𝑟𝑒𝑑 is more isotropic than in FULL.683

A quantitative comparison is done through the dispersion covariance matrix. Similar to the684

symmetric tensor S, the covariance matrix can be rotated onto a new coordinate, where the major685

axis is along the maximum dispersion direction, and the minor axis is perpendicular to it. Figure 13686

compares the dispersion of the vertically-averaged tracers within the mixed layer. Along the major687

axis, all results are similar, because the large-scale sheared flow in the Gulf Stream dominates688

over the eddy effects. In contrast, the differences between the experiments are significant in the689

transverse direction, along the minor axis (e.g., Oh et al. 2000). We see that the FULL dispersion690

increases much faster and asymptotes to a larger value than in MEAN (Figure 13, bottom). Across691

the Gulf Stream, the dispersion in both the EXP-K𝑟𝑒𝑑 and EXP-𝜅χ cases is close to FULL,692

demonstrating that they can capture the eddy dispersive effects.693

The improvement due to the generalized-advective-diffusive approach can be seen most clearly700

in the deeper layers (Figure 14). Along each axis, the dispersion in EXP-𝜅χ is close to FULL.701

In contrast, the EXP-K𝑟𝑒𝑑 dispersion along the minor axis is highly overestimated. The eddy-702

induced spreading in the Gulf Stream region is known to be strongly anisotropic (Rypina et al.703

2012; Kamenkovich et al. 2015). Our results from EXP-K𝑟𝑒𝑑 show that the instantaneous isotropic704
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Fig. 12. The skill of different D̂ in reproducing eddy-induced dispersion of an isolated tracer patch. Shown is

the vertically-averaged tracer concentration below layer 15 at day 120 after release. Circle in magenta represents

the initial tracer patch (𝑐𝑡2). Tracer concentration less than 1×10−3 (0.1% of the initial concentration) is set to

zero.
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diffusivity with an anisotropic antisymmetric part mixes excessively along the minor axis. In705

contrast, the anisotropic dispersion is reproduced effectively by using the generalized advection706

(EXP-𝜅χ).707

7. Conclusion and discussion708

This study aims to make progress in understanding effects of large-scale and mesoscale currents709

on passive tracer distribution. In light of the complexity of representing the eddy-induced transport710
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Fig. 13. Dispersion along the major (top panel) and minor (bottom panel) axes of the isolated tracer patch

averaged within the mixed layer.

698

699

by the traditional flux-gradient relation, the study explores a new representation approach and711

evaluates the two approaches in a high-resolution model of the Gulf Stream region.712

We focus on the lateral mesoscale eddy tracer transport, with “lateral” being defined as horizontal713

in the surface mixed layer and along-isopycnal in the ocean interior. Mesoscale eddies are defined714

broadly via a high-pass spatial filter, which is motivated by the need to study transient eddy-715

induced processes missing in coarse-resolution models. In this definition, the eddies include716

submesoscale currents that are contained mainly in the surface mixed layer and are partially717

resolved in our numerical simulations. This scale-based filter is different from the conventional718

Reynolds decomposition in that it introduces new eddy-mean “cross terms” that represent inter-719

scale interactions. Our results showed that these terms have distinct implications on tracer transport.720
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Fig. 14. Same with Figure 13 but for tracer patches averaged below layer 15.

For example, the divergence of U′⟨𝑐⟩ dominates the lateral transport due to the divergence of the721

lateral eddy volume flux amplified by the large-scale tracer, ⟨𝑐⟩∇ ·U′. This flux term not only722

contributes the most to the spatial variability of the eddy transport tensor, but is also a major source723

of biases in representing the eddy forcing by the flux-gradient relation. Using the mixing length724

theory, we also showed that U′⟨𝑐⟩ cannot be properly approximated by the turbulent diffusion.725

These properties compromise the utility of the flux-gradient relation in isopycnal layers.726

Besides the complications from the cross terms, the flux-gradient approach is also affected by the727

ambiguity due to the rotational (non-divergent) component in eddy tracer flux. The definition of this728

component and, thus, of the transport tensor, is not unique and is highly sensitive to the ill-defined729

boundary conditions. At the same time, errors in parameterization of the rotational component will730

be significant for tracer evolution, because the component tends to dominate the eddy tracer flux.731
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In addition, several non-flux and 𝑤-flux terms in the eddy forcing, i.e., 𝜕𝑡𝑐ℎ′ + 𝜕𝑠𝑤′𝑐, cannot be732

readily represented by the flux-gradient relation in isopycnal layers and in a general computational733

domain. These challenges motivated us to consider an alternative to the flux-gradient model.734

The proposed generalized-advective-diffusive approach is able to resolve the aforementioned735

issues by including a divergent generalized eddy-induced advective (GEIA) flux χ and modeling736

the local eddy forcing. This study considered a simplified form of the approach that consists of737

isotropic diffusion and generalized advection. Although the GEIA flux is advective and introduces738

a well-defined direction in the eddy-induced stirring, a full diffusivity tensor would still be needed739

to capture anisotropic diffusive effects. We did not, however, use such a tensor in our tracer740

simulations because of persistent numerical instability that plausibly results from the opposite-741

signed diffusivities. Our results showed that the new model leads to reduced biases in representing742

the tracer eddy forcing. The biases cannot, however, be completely eliminated, because the743

parameters in both the flux-gradient and the new formulations still depend on tracers, and thus744

cannot be uniquely defined.745

This study is one of the first attempts to use the eddy-induced advection and eddy-induced746

diffusion with their full spatio-temporal variability to represent the eddy effects. By performing a747

series of targeted tracer simulations in a high-resolution model, we showed the importance of the748

eddy-induced lateral advection. We also demonstrated that the new approach is more accurate in749

reproducing the stirring and dispersing effect of eddies than the flux-gradient approach.750

One of the notable advantages of the generalized-advective-diffusive approach is that it can751

represent any form of the local eddy forcing. In this study, we focused on the lateral stirring for752

a direct comparison with the flux-gradient model. We used the new approach to represent the753

lateral eddy advection U′ · ∇𝑐, and our analysis showed that it captures the full eddy effects more754

effectively than does the lateral eddy flux divergence ∇ · (U′𝑐). This could be one of the main755

reasons why the new approach outperforms the flux-gradient model besides the reduced tracer756

dependence.757

The proposed approach could eventually lead to new eddy parameterizations. It should be re-758

emphasized, however, that this study is not a direct attempt at eddy parameterization for several759

reasons. Firstly, we do not consider eddy-induced mass fluxes. The isopycnal layer thickness760

eddy-induced velocity (EIV) u∗ that can be parameterized by the Gent and McWilliams (1990)761
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closure in not studied here. In future developments, the GEIA flux χ can be combined with u∗ to762

advect tracers, uniting these two distinct eddy-induced advective effects: the former represents the763

advective eddy transport of tracers whereas the latter is the eddy advection of water mass in which764

the tracer is embedded. However, our calculation of u∗⟨ℎ⟩, defined as ⟨U⟩ − ⟨u⟩⟨ℎ⟩, showed that it765

is at least one order of magnitude smaller than χ. This result is in agreement with the conclusions766

from an idealized quasi-geostrophic study (Haigh et al. 2021b) that systematically compared the767

tracer EIV u∗
𝑐 and u∗.768

Secondly, the parameters K𝑟𝑒𝑑 , 𝜅 and χ were diagnosed from the high-resolution reference769

simulation and applied to the same model. The use of a high-resolution model avoids additional770

errors associated with extrapolation and re-discretization of relevant physical terms to a coarser771

grid. In contrast, a parameterization scheme would need to be developed and tested on a coarse772

numerical grid and must involve a closure, that is, calculation of all the parameters from large-scale773

quantities. Development of closures is a difficult and unsettled task. For example, the physical774

expressions of Redi and GM coefficients are still challenging to derive (Marshall and Speer 2012;775

Mak et al. 2017), although their application has been fairly successful.776

An important source of ambiguity in modelling eddy effects lies in the definition of eddies. This777

study used a spatial coarsening that may explain the strong variability in the eddy-induced diffusion778

and eddy-induced advection. Studies that use a long-term time- and/or zonal averaging alone (e.g.,779

Bachman and Fox-Kemper 2013; Klocker and Abernathey 2014) or combine the temporal and780

spatial averaging (e.g., Bachman et al. 2020; Zhang and Wolfe 2022) to separate mesoscale and781

large-scale fields could find reduced variability of K. For example, Zhang and Wolfe (2022)782

reported only occasional negative eigenvalues and a modest tracer dependence. This could be a783

result of the intensive smoothing they applied to eddy fluxes, which reduces variations in the tensor.784

Dynamically meaningful definition of eddies as the type of currents missing in coarse-resolution785

models is needed. A recently novel method is to define “dynamically unresolved eddies” (Agarwal786

et al. 2021; Berloff et al. 2021; Ryzhov and Berloff 2022), but it requires additional computations787

for passive tracers. The sensitivity of properties of the modeled eddy-induced transport to the788

definition of eddies and eddy forcing is an important research topic.789

It is also an intriguing and practical question of how the (Eulerian) eddy diffusivities of the790

approaches in this study (S and 𝜅) could be estimated by the Lagrangian method using drifters791
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(e.g., Lumpkin et al. 2002; LaCasce 2008) or a dye release experiment (e.g., Ledwell et al. 1998) in792

the real ocean. The task would be difficult in practice, because the required dense spatio-temporal793

coverage of the concurrent tracer and velocity fields is not available on a global scale. Besides794

the limitation of sparse observations, this open question roots in the unsettled physical connection795

between the Eulerian and Lagrangian (particle- or tracer-based) estimates in the complex oceanic796

flows. Even if a sufficient amount of Lagrangian observations can be obtained in a numerical797

model, the consistency between the two estimates has only been evaluated in a strongly zonal flow798

(Abernathey et al. 2013). This question is out of the scope of our study. We refer readers to Klocker799

et al. (2012b) and Qian et al. (2019) who used theoretical considerations to reconcile the different800

estimates of eddy diffusivities.801

This study is motivated by the recently uncovered issues with the flux-gradient relation. However,802

we emphasize that these issues do yet not prove that the relation is fundamentally unsuitable for803

parameterization of eddies. The new approach suffers from some of the same issues: e.g., the804

tracer dependence in parameters is still large. Future works should be extended to include the805

non-flux eddy terms such as the time tendency of tracer mass (𝑐ℎ), and the anisotropic diffusion,806

which we leave in a companion study.807
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APPENDIX A816

Initial distributions of tracers817

Ten tracers were used in total for diagnosing the parameters in the flux-gradient and generalized-818

advective-diffusive approaches. Tracer concentrations were initialized with different horizontal819
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distributions and were taken constant in the vertical direction (Figure A1):820
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𝑛𝑦

𝑁𝑦
+2,

𝑐2 = cos2𝜋
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where 𝑛𝑥 and 𝑛𝑦 are grid indices in the zonal and meridional directions, respectively, and 𝑁𝑥 = 1573821

and 𝑁𝑦 = 1073 are the total numbers of grid points in the corresponding directions. Tracers used822

for the experiments in section 6 have different initial distributions:823

𝑐𝑡1 = 0.5∗ cos𝜋
𝑛𝑦

𝑁𝑦
+0.5,

𝑐𝑡2 =


3−2∗ 𝑑2

752 , if 𝑑2 ≡ (𝑛𝑥 −900)2 + (𝑛𝑦 −400)2 ≤ 752

0, otherwise
.

(A2)
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Fig. A1. Initial distributions of tracer fields. Tracers are constant in the vertical direction.
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APPENDIX B824

Derivation of the generalize-advective-diffusive approach825

We start by modeling the eddy forcing field with combining the flux-gradient framework and a826

generalized advection:827

D̂ = −∇ · (⟨ℎ⟩K∇⟨𝑐⟩) +U𝜒 · ∇⟨𝑐⟩ , (B1)

where U𝜒 is an independent (vector) parameter that can be divergent. Realizing that the spatial828

gradient of K also corresponds to advection, we expand (B1) as829

D̂ = −⟨ℎ⟩𝐾𝑖 𝑗𝜕𝑖𝜕𝑗 ⟨𝑐⟩ + {−𝜕𝑖 (⟨ℎ⟩𝐾𝑖 𝑗 ) +𝑈𝜒

𝑗
}𝜕𝑗 ⟨𝑐⟩ , (B2)

where 𝑖 and 𝑗 are used to index the spatial coordinates, and summation over the repeated indices830

is assumed. By splitting 𝐾𝑖 𝑗 , in the first term on the right hand side, into its symmetric 𝑆𝑖 𝑗 and831

antisymmetric 𝐴𝑖 𝑗 parts, and by taking 𝐴𝑖 𝑗 = −𝐴 𝑗𝑖, (B2) becomes832

D̂ = −⟨ℎ⟩{𝑆11𝜕𝑥𝜕𝑥 ⟨𝑐⟩ +2𝑆12𝜕𝑥𝜕𝑦 ⟨𝑐⟩ + 𝑆22𝜕𝑦𝜕𝑦 ⟨𝑐⟩} +χ · ∇⟨𝑐⟩ , (B3)

where χ(𝑥, 𝑦, 𝑧, 𝑡) [m2 s−1] incorporating all advective terms, −𝜕𝑖 (⟨ℎ⟩𝑆𝑖 𝑗 ) + ẑ×∇(⟨ℎ⟩𝐴21) +U𝜒, is833

generally divergent, and is referred to as generalized eddy-induced advective (GEIA) flux. Both834

𝑆𝑖 𝑗 and χ need to be diagnosed from tracer fields as independent parameters. Thus, the proposed835

approach involves a set of point-wise local problems (on each grid node).836

This study considers a simplified form of (B3) by taking the diffusive part to be isotropic (𝑆12 = 0837

and 𝑆11 = 𝑆22 = 𝜅) and by incorporating the antisymmetric part of the tensor into the generalized838

advection:839

D̂ = −⟨ℎ⟩𝜅∇2⟨𝑐⟩ +χ · ∇⟨𝑐⟩ , (B4)

where 𝜅(𝑥, 𝑦, 𝑧, 𝑡) [m2 s−1] is an isotropic diffusivity. Here, we assumed that the anisotropy can840

be partly captured by the eddy-induced advection, since the advection has a well-defined direction841

(anisotropic).842
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