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ABSTRACT: Lateral mesoscale eddy-induced tracer transport is traditionally represented in
coarse-resolution models by the flux-gradient relation. In its most complete form, the relation
assumes the eddy tracer flux as a product of the large-scale tracer concentration gradient and an
eddy transport coeflicient tensor. However, several recent studies reported that the tensor has
significant spatio-temporal complexity and is not uniquely defined, that is, it is sensitive to the
tracer distributions and to the presence of non-divergent (“rotational”’) component of the eddy flux.
These issues could lead to significant biases in the representation of the eddy-induced transport.
Using a high-resolution tracer model of the Gulf Stream region, we examine the diffusive and
advective properties of lateral eddy-induced transport of dynamically passive tracers, re-evaluate
the utility of the flux-gradient relation, and propose an alternative approach based on modeling
the local eddy forcing by a combination of diffusion and generalized eddy-induced advection.
Mesoscale eddies are defined by a scale-based spatial filtering, which leads to the importance
of new eddy-induced terms, including eddy-mean covariances in the eddy fluxes. The results
show that the biases in representing these terms are noticeably reduced by the new approach. A
series of targeted simulations in the high-resolution model further demonstrates that the approach
outperforms the flux-gradient model in reproducing the stirring and dispersing effect of eddies.
Our study indicates potential to upgrade the traditional flux-gradient relation for representing the

eddy-induced tracer transport.
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1. Introduction

Mesoscale eddies, broadly defined here as deviations from large-scale fields, profoundly impact
the ocean by redistributing dynamically active and passive tracers. Eddies modify the large-scale
currents by transporting momentum (Waterman et al. 2011), maintain the mean stratification in the
Southern Ocean by transporting buoyancy (Marshall and Speer 2012) and potentially influence the
climate by transporting heat and carbon (Jayne and Marotzke 2002; Sallée et al. 2012). Mesoscale
eddies remain largely unresolved in most current climate models (Meijers 2014; Hewitt et al. 2020),
and thus their large-scale effects need to be parameterized.

The most common method of parameterizing eddy effects on tracers is the flux-gradient relation,
which represents eddy tracer fluxes as a product of the large-scale tracer concentration gradient and
a transport coeflicient tensor (Taylor 1921; Bachman and Fox-Kemper 2013). The tensor charac-
terizes the eddy-induced diffusion and eddy-induced advection (Griffies 1998), and is considered
to be a function of the flow properties such as eddy energy (Eden and Greatbatch 2008; Marshall
and Adcroft 2010) and eddy mixing length scale (Prandtl 1925; Ferrari and Nikurashin 2010). The
large-scale and eddy fields are commonly separated using a long-term time (Reynolds) averaging
(Gent and McWilliams 1990) or a basin-scale spatial averaging (Abernathey et al. 2013; Bachman
and Fox-Kemper 2013; Klocker and Abernathey 2014), which simplifies the eddy fluxes and re-
duces variations in the transport tensor. Other studies define eddies as deviations from spatially
low-pass filtered (“‘coarsened”) fields (e.g., Bachman et al. 2017; Aluie et al. 2018; Haigh et al.
2021a,b). This study uses the latter definition which can more accurately account for spatial and
temporal variability in the large-scale fields but leads to additional complexity in the tensor.

The mesoscale eddy-induced transport, as well as the transport tensor, is mainly two-dimensional
due to the joint effect of stratification and rotation. In the interior ocean, mesoscale currents move
primarily along isopycnal surfaces (i.e., neutral surfaces). Thus, it is convenient to study the along-
isopycnal eddy flux separately from the cross-isopycnal flux in isopycnal coordinates. For example,
the widely used Gent-McWilliams parameterization scheme (Gent and McWilliams 1990, hereafter
GM) approximates the time-mean isopycnal eddy transport as a combination of the Redi isopycnal
diffusion (Redi 1982, hereafter Redi) and the advection by mass (layer thickness) eddy-induced
velocity (EIV). In the mixed layer, the tracer distribution is influenced horizontally by eddy stirring

while is homogenized vertically by turbulent mixing (Ferrari et al. 2008). In this study we focus on
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the lateral eddy transport defined as horizontal in the mixed layer and isopycnal in the near-adiabatic
interior.

In eddy-resolving numerical simulations, the transport tensor can be diagnosed from eddy fluxes
(Abernathey et al. 2013; Bachman and Fox-Kemper 2013; Bachman et al. 2015). Recent studies,
however, found inherent complexity of the tensor: ubiquitous negative (anti-diffusive) eigenvalues
of its symmetric component and strong variability in space and time of all its elements (Bachman
et al. 2015, 2020; Haigh et al. 2020, 2021a,b; Haigh and Berloff 2021; Kamenkovich et al. 2021;
Sun et al. 2021). These properties cast doubts on the accuracy of using a positive, stationary and
isotropic diffusivity for eddy parameterization in oceanic components of climate models (Meijers
2014), especially for the simulation of the transient tracer field.

Even more concerning is the non-uniqueness of the transport coefficient tensor. The tensor is not
uniquely defined because of the non-divergent (“rotational”) component in the eddy fluxes. The
component does not directly affect tracer distributions, but can have a large magnitude (Marshall
and Shutts 1981; Jayne and Marotzke 2002; Griesel et al. 2009; Kamenkovich et al. 2021; Sun
et al. 2021) and thus imprint heavily on the tensor. The separation of rotational and divergent flux
components is possible but it causes ambiguity due to the dependence on boundary conditions
and its intrinsic spatial nonlocality (Fox-Kemper et al. 2003; Maddison et al. 2015). In addition,
no matter whether the rotational flux component is retained or removed, the diagnosed tensor is
generally not unique for a given flow as evidenced by its sensitivity to the initial tracer distributions,
i.e., tracer dependence (Bachman et al. 2015, 2020; Kamenkovich et al. 2021; Sun et al. 2021).
This undesirable property contradicts the fundamental assumption of the flux-gradient relation that
the eddy transport coefficient is a quantity inherent to the flow.

The reported complexity and non-uniqueness raise serious concerns on interpretation and util-
ity of the flux-gradient relation in situations where the temporal and spatial variations in the
eddy-induced diffusion are important. The inherent spatio-temporal variability implies errors in
the instantaneous eddy flux represented by only a time- and/or space-invariant eddy diffusivity.
Since the tracer distributions in coarse-resolution models are very sensitive to the eddy diffusivity
(Danabasoglu and McWilliams 1995; Gent et al. 2002; Kuhlbrodt et al. 2012; Gnanadesikan et al.
2015), the non-uniqueness can also lead to biases in simulating different tracers. However, the

significance of such biases is uncertain because most previous studies only used a highly simplified
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form (isotropic, time-invariant) of the diffusivity, partly due to the numerical instabilities induced
by negative diffusivity (Leonard 1997; Trias et al. 2020). Overall, although the above evidence does
not prove that the “classical” flux-gradient relation is wrong or inaccurate, it provides motivation
for exploring modifications and extensions of the century-old formalism.

This study examines the advective and diffusive properties of lateral mesoscale eddy-induced
tracer transport. Mesoscale eddies are defined by a high-pass spatial filter, resulting in several
distinct components of the eddy tracer flux. We further explore the relative importance of these
components for tracer distributions and the properties of corresponding transport tensors. The
conclusions question the utility of the flux-gradient model and motivate us to to explore other
methods of representing the eddy effects on tracers. We propose a new approach that directly
models the local eddy forcing as a combination of eddy-induced diffusion and generalized eddy-
induced advection, which helps to alleviate some of the deficiencies of the flux-gradient model.
The skills of the two approaches in reproducing the eddy-induced stirring are further evaluated in a
series of targeted tracer simulations with the full and truncated eddy terms. All simulations in this
study are carried out on the fine grid, which avoids numerical errors arising from re-discretization
of all terms onto a coarser grid. This study, therefore, is not a direct attempt to develop a new eddy
parameterization scheme for coarse-resolution models.

This paper is organized as follows. Section 2 describes the off-line tracer model used to perform
the tracer simulations. Section 3 describes the key theories and formulations of the tracer experi-
ments, eddy forcing, and the eddy-representing approaches. Section 4 discusses properties of the
lateral eddy fluxes and corresponding transport tensors. Section 5 discusses properties of the new
approach. Section 6 presents results of the targeted experiments. Conclusions and discussions are

offered in section 7.

2. Model

Simulations in this study were performed in an off-line tracer model, which uses previously
computed velocities and layer thicknesses (Kamenkovich et al. 2017, 2021). The reference solution
was obtained in a separate online simulation with the Hybrid Coordinate Ocean Model (HYCOM,;
Bleck 2002). The simulation (Mensa et al. 2013) covers the Gulf Stream region (28.78°N -
45.72°N, 81.44°W - 50°W) and spans over 1.5 years; only the last 365 days were used in this
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study. The model uses a Mercator horizontal grid with 1/48° resolution. The vertical grid has 30
hybrid layers: isopycnal in the interior ocean, z-levels near the surface, and sigma-coordinates in
the shallow coastal regions. The reference velocities and layer thicknesses were saved every 12
hours and were interpolated in time with a step of 1 hour in the off-line model. As in Kamenkovich
etal. (2017), we used a purely advective version of the code, that is, without explicit vertical tracer
diffusion below the surface mixed layer. Tracer concentration within the mixed layer is vertically
homogenized on each time step.

The simulated currents contain a realistic Gulf Stream, fully resolved mesoscale currents, and
partially resolved submesoscale currents that are mainly restricted to the surface mixed layer
(Mensa et al. 2013). The main advantage of the off-line formulation is the ability to carry
out computationally efficient sensitivity runs with modified (e.g., spatially filtered) advection.
Kamenkovich et al. (2017) compared online and off-line simulations of idealized tracer releases
with the same off-line code used here and concluded that the off-line tracer patch dispersion stays
within 2 percent of the online simulations. They used daily velocities and layer thicknesses with
a 1/12° spatial resolution, instead of the 12-hour fields at 1/48° resolution used here. The off-line

model solves the following equation for the tracer in each model layer:

d(hc)
ot

+V.-(Uc)+0ds(wc) =A,V-(hVc), (1)

where c is the tracer concentration, / is the layer thickness, U is the lateral thickness flux (uh)
within the layer, and V is the lateral gradient. Ay is the explicit lateral diffusivity that represents
effects of unresolved subgrid mixing; its value is 0.02 m s~! - Ax in the reference simulation, with
Ax being the horizontal grid spacing. w is the volume flux through layer interfaces, which is
vertical within the mixed layer and diapycnal in the interior ocean; we will refer to it as w-flux
hereafter. Operator d;F = F, — F;, is the difference between fluxes through the top (F;) and the

bottom (F) of the layer. The w-flux is diagnosed from the mass conservation within each layer

w=——-V.U. 2
ogw i U (2)

Figure 1 shows the simulated tracer concentration field and upper-ocean speed, as well as the

meridional cross-sections of temperature and layer interfaces. The tracer was initialized with a
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Fic. 1. Model fields. (a) The tracer concentration anomalies vertically averaged within the mixed layer after
2 months of evolution in the off-line model. The initial distribution (c;) is subtracted. (b) Flow speed from the
online model averaged in the mixed layer at Day 9 of Year 9 that corresponds to (a). (c) Temperature section
along 305°E at Day 9 of Year 9, overlapped with layer bottom interfaces (white solid lines) and mixed layer
depth (red dashed line). Only interfaces of layers 1-10 and 16-29 are plotted in the upper and lower subplots,

respectively.

sinusoidal meridional distribution ranging from unity at the southernmost points to nearly zero at
the northernmost points (Appendix A). After 60 days of integration, the tracer deviates significantly
from the initial distribution and forms anomalies, due to both the large-scale and eddy-induced

stirring.
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3. Effects of eddies and their representation

This study will analyze the eddy effects on tracers and evaluate two different approaches to
representing these effects. We define the eddy effects in section 3a, discuss the flux-gradient
relation in section 3b and derive the new model of eddy effects in section 3c, and discuss tracer

experiments in section 3d.

a. Tracer “eddy forcing”

We first separate the lateral isopycnal thickness fluxes and layer thicknesses into the large-scale

(angle brackets) and mesoscale (primes) components
U=(U(x,y,z,0))+U'(x,y,z,1), h=<{(h(x,y,z,t))+h (x,y,2,1). 3)

The large-scale component of the w-flux, (w)T, is calculated from the mass conservation

AL
a,(w)! === =V -(U). )

and the eddy part is w’ = w — (w)'. In this study the low-pass filter (...) is a nominal 2° (1012
horizontal grid points) boxcar spatial averaging. This definition is different from the common
Reynolds (long-term temporal or zonal) averaging, and allows for a direct quantification of the
interaction between different spatial scales (Aluie et al. 2018; Garabato et al. 2022). The superscript
of (w)T is to distinguish it from the the directly filtered flux (w), because the spatial filter does
not commute precisely with differential operators on a sphere (Aluie 2019). We verified their
difference to be small and hereafter drop the superscript. Since submesoscale is partially resolved
in our model, the “eddies” include both mesoscale and submesoscale anomalies. Note, however,
that although the submesoscales are ubiquitous in the surface mixed layer, they are generally very
weak in deeper layers (Mensa et al. 2013). We confirm that the conclusions are the same when
using a medium-pass filter (Capet et al. 2008) to extract the mesoscale, and we continue to use
“mesoscale” and “eddies” interchangeably.

Inserting (3) and (4) into the tracer equation (1) then leads to

M) 9. (U)e) +((w)e) - 4T - (WVe) = . ®

0
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where the tracer “eddy forcing” D, (x,y,z,t) includes all the eddy effects on tracer,

_ d(h'c)

D ot

+V-(Uc)+d5(w'c)—ALV - (W' Vo), (6)

and is the main object of this study. Note that D, is a function of the full tracer concentration ¢
including both the large-scale and eddy parts. An alternative and equivalent form of D, can be

derived by combining (2), (4), and (6):

D, = h'% +U" -Ve+ (05(w'c)—cogw’)— A,V - (W' V). @)

This study will focus only on the lateral components of the eddy forcing D,, namely, the lateral
eddy flux divergence V- (U’c) in (6) and the lateral advection by eddy volume flux U’ - V¢ in (7).
We will use the flux-gradient relation and a new approach to model the two terms, respectively. We
do not consider the eddy tendency and vertical/diapycnal terms, d;(ch’) + ds(w’c) in D,, because
they cannot be easily expressed by the flux-gradient relation. Although in a closed domain they can
be incorporated into a divergent flux (Sun et al. 2021; Haigh et al. 2021b), the appropriate boundary
conditions for the corresponding Poisson problem do not exist in a general case. In addition, the
w-flux is induced not only by mesoscale eddies but also by dynamically different processes, such
as buoyancy mixing due to breaking of internal gravity waves. Finally, vertical terms are difficult
to quantify in the mixed layer of our idealized simulations. The neglect of the eddy tendency and
vertical/diapycnal terms can, however, cause biases in tracer evolution, which can be particularly
significant in situations where these terms and V- (U’c) are both large and partially balance each
other in D,. For this reason, we anticipate that truncating D, to U - V¢ will lead to lower biases
in tracer evolution than truncating D, to V- (U’c), and our tracer experiments will confirm this.

Note also that O, does not include the flux of eddy tracer anomalies by the large-scale currents
(U)c’, because this term is included into the left-hand side of (6) for consistency with the high-
resolution tracer experiments in section 3d. For the sake of completeness and comparability with
previous studies (e.g., Haigh et al. 2020), we will discuss properties of (U)c’ wherever appropriate,

and confirm that our main conclusions hold true for that term as well.
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b. The flux-gradient relation: transport tensor and its reduced form

The lateral eddy tracer flux F, = U’c in the eddy forcing can be conventionally represented by

the eddy transport tensor K via the flux-gradient relation:
F. =—-(h)KV(c), 8)

where the space- and time-dependent K is a 2 X2 tensor that characterizes the properties of
lateral eddy-induced transport. Within this framework, the eddy forcing O, is approximated by
D=-V- ((h)KV{c)) with the hat denoting a parametric model.

The tensor can be split into the symmetric and antisymmetric parts that represent physically
distinct transport processes (Griffies 1998). The symmetric part S stands for a diffusive process

affecting the domain-integrated tracer variance. It can be further modified to outline the anisotropy

of diffusion:

1 S S A1 O
s=-(K+K")=|""" P |=ig| ! I~ 9)
2 Si2 S 0 A

where I is a rotation matrix for the diffusion angle 6 that defines the coordinates (eigenvectors)
along which the Fickian diffusions occur with corresponding diffusivities (eigenvalues) 4 » (Haigh
etal. 2021a). The antisymmetric part A corresponds to an eddy-induced advection of the large-scale
tracer concentration (Griffies 1998; Haigh et al. 2021b):
a=taokny =[O A (10)
2 A 0
where (h)A is the streamfunction for the eddy-induced advective flux wi(h) =ZXx V((h)A) =
[-0)({h)A),dc((h)A)], with u} being the corresponding tracer EIV.
In this study, the full tensor K will be used mainly for diagnostic analysis. In tracer simulations,
we will use a reduced transport tensor K,.; that combines isotropic diffusion and eddy-induced

advection:

K; -A
Kred _ iso red , (1 1)
Ared Kiso

10
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c—red

where K, is an isotropic diffusivity and A,.; corresponds also to a tracer EIV u =ZX
V({h)A,cq)/{h). The main reason of introducing K., is that the full anisotropic tensor K causes
numerical instability, which is not surprising given the persistent presence of negative eigenvalues
A1 2 (Leonard 1997; Trias et al. 2020; Haigh and Berloff 2021). Note that the anisotropy of eddy-
induced transport can still be partly captured by the advective part of K4, because u’__ , can
always lead to tracer spreading along a well-defined direction.

There are several challenges of using the flux-gradient relation. A significant one is the presence
of the rotational (non-divergent) component in eddy tracer fluxes. This component does not affect
tracer distributions but is generally an order of magnitude larger than the divergent component
(Jayne and Marotzke 2002; Griesel et al. 2009; Kamenkovich et al. 2021; Sun et al. 2021), leading
to large values in the corresponding tensor. Thus, the biases in the parameterized eddy fluxes,
inevitable when the tensor is simplified or approximated, can also be very large. This justifies the
need to remove the rotational component from eddy fluxes when estimating the tensor, which is
typically done by the Helmholtz decomposition. However, the definition of the rotational compo-
nent is “nonlocal” and non-unique, because the decomposition depends on boundary conditions
for both the divergent and rotational components, and these boundary conditions are arbitrary
(Fox-Kemper et al. 2003; Maddison et al. 2015). Therefore, the dominance of rotational eddy flux
leads to an inherent source of ambiguity in the estimate of the tensor. In addition, the Helmholtz
decomposition is computationally expensive and is impractical if one wants to obtain the full
spatio-temporal variability of the tensor. For example, the decomposition technique used in this
study, as will be described later, costs about 2 CPU hours to solve for the divergent component of
each instantaneous eddy flux.

The tracer dependence is another important source of uncertainty in modeling eddy fluxes.
Although the origins of this uncertainty remain poorly understood, it hints at the need to revisit the
flux-gradient relation. In addition, some components of the eddy forcing, such as the tendency and
vertical/diapycnal terms that are not in a flux form, cannot be easily represented by the relation in a
general case. These components are traditionally ignored in studies with long-term time averaging
definition of eddies (e.g., Gent et al. 1995), but can be large under a more relevant non-Reynolds

definition (e.g., Sun et al. 2021). These challenges of the flux-gradient relation will be further

outlined by our results in section 4.

11
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Note that the eddy fluxes in this study are unfiltered in order for preserving their divergence on
the fine grid for the tracer experiments and for consistency to the eddy forcing 9,. The results do

not, however, change qualitatively, if (F,) is considered instead.

c. The generalized-advective-diffusive approach

Besides the above issues of the flux-gradient relation, there are two more fundamental properties
of the eddy-induced stirring that motivate us to seek a new approach. Firstly, some components
of the eddy flux cannot be expected to be successfully modeled by down-gradient diffusion. For
example, the mixing length theory (Taylor 1921; Prandtl 1925), on which the flux-gradient model is
based, relates tracer anomalies to the mean tracer gradient and water parcel excursion, ¢’ ~ —[ ; (9]. (c),
which yields the definition of eddy transport tensor via u’.c’ ~ —u;l;. 8]. (c). Here the eddy velocity
u: and excursion l} are assumed to be correlated, and indices i and j denote spatial coordinates.
Flux (u;)c’ can also be expressed similarly as (u;)c” ~ —(u,}l} 0 ; (c). However, the eddy stirring of
mean tracer contour, U’(c), is not consistent with this framework, because the theory only gives
the relation between ¢’ and d;(c), not between {c) and d;(c). This flux term is clearly “advective”
in nature, but cannot be represented by the advection of the antisymmetric tensor because of the
divergent U’. Therefore, a different “eddy-induced advection” is needed.

Secondly, it is the eddy forcing (e.g., flux divergence) that directly appears in the tracer budget
and determines tracer evolution. The flux-gradient relation, which models the eddy flux, involves
a non-local, ill-defined problem due to the rotational eddy flux component. This nonlocal property
not only causes uncertainty in determining the tensor, but is also intuitively suspicious: why
should mesoscale fluxes in the ocean interior depend on the remote boundary conditions? These
considerations argue for modeling the tracer eddy forcing directly. George et al. (2021) attempted
a similar idea by modeling eddy heat flux divergence from sea surface height anomalies with a
data-driven method.

Here, we formulate a new approach with generalized eddy-induced advection (GEIA). The new
model is motivated by the aforementioned properties of the flux-gradient relation and our own
results, as is further discussed in section 5. We start from modifying the flux-gradient relation
in two major ways. We choose to model the eddy forcing instead of the eddy flux, thus avoiding

the discussed issues associated with calculating the rotational flux component. Then, to deal with

12
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the part of the eddy forcing that cannot be represented by the flux-gradient relation, we add a new

advection term, U¥ - V{(c):

—~

D =-V-((h)KV{c))+UX-V(c), (12)

where vector UX is a free parameter, which is divergent and independent of A. This term is
a key difference from the flux-gradient relation in which the eddy-induced advective fluxes are
non-divergent and determined uniquely by A.

The generic, divergent form of U¥ also makes the formulation purely local. To see that, we
expand the first term on the right hand side of (12) and collect all advective terms into a generalized

eddy-induced advective (GEIA) flux x:
D = —(hY{S110:0,(c) +28120,0,(c) + S0, 0, (c)} +Xx - V(c), (13)

where the detailed derivation is provided in Appendix B. The GEIA flux x is treated as an
independent parameter that needs to be determined from tracer distributions, because it includes
the free parameter UY. This new formulation is local because all parameters are outside of the
spatial gradient, and thus can be diagnosed directly from the local eddy forcing. It eliminates the
ambiguity associated with solving for the divergent eddy flux component.

Given the large number of parameters needed in (13) and to provide a direct comparison to the
reduced tensor K4, this study will consider a simplified form of (13) with isotropic diffusion and
GEIA. As discussed previously, the simulations with a full diffusive tensor S suffer from numerical
instabilities, which further justifies our choice on isotropic diffusivity here. Specifically, we set

S11=382=«,S12=01n (13) and get:
D =—(hykV*(c)+x- V(c), (14)

where «(x, y,z,7) [m? s™!]is an isotropic diffusivity and x (x, y, z,£) [m? s~!] incorporates all eddy-
induced advective terms: x ==V ({h)k) +u.(h)+UX. This new model can still lead to anisotropic
transport of tracers because of the directional GEIA flux x. Thus, some anisotropic properties of

eddy-induced transport, such as the eddy-induced filamentation (Kamenkovich et al. 2021), can be

13
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potentially captured, although a fully anisotropic formulation (13) would still be needed for better
accuracy in future studies.

Equations (13) and (14) are counterparts of the full tensor K and the reduced tensor K, ., in the
flux-gradient approach, respectively. In what follows, we will explore applications of (14) and
K,cq to the tracer model and demonstrate advantages of the new approach.

Note that modeling the eddy forcing indicates reduction of the information available when
diagnosing the parameters, e.g., direction and magnitude of eddy tracer fluxes will be missing.
In particular, the regional eddy tracer transports can not be easily inferred from the approach.
Our approach, however, is still justified because the eddy fluxes are contaminated by ill-defined

rotational components.

d. Tracer experiments

The sensitivity experiments solve for tracer ¢ advected by the large-scale volume fluxes and

forced by forcing D:

%}?C)+V~((U>5)+8s((w>5)—AhV-((h)V&) =-D, (15)
where all fields are defined on the high-resolution grid and ¢ will contain both large-scale and
eddy parts. The forcing O will be either a truncated form of the full forcing O, or its parametric
representation D with (14) or (8) with K,.4. All the tracer experiments and corresponding 9 are
listed in Table 1 and will be discussed in detail in section 6.

The benchmark for the solution ¢ is the full tracer concentration ¢ of the reference simulation
(1). It is obvious that ¢ will not equal ¢ if D # D,. Thus, the difference between ¢ and ¢
measures the ability of the corresponding D to reproduce the eddy-induced stirring. Although
theoretically one can aim at reproducing only the large-scale component of the tracer ¢ = (c) by
using D =0;(h' c+{(h)c’)+V - (U c+(U)c’) (the w-flux and sub-grid mixing terms are ignored for
simplicity) in (15), we do not pursue this objective for the following reason. Our experiments are
carried out in a high-resolution model, which means that generation of small-scale tracer anomalies
is inevitable. For example, the solution will have a non-trivial eddy component ¢’ even in the case
of D =0, as will be seen in section 6. The anomalies ¢’ will in turn generate an additional eddy

flux through large-scale currents, (U)¢’, which will result in a solution ¢ diverting from {(c). An
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TaBLE 1. Description of numerical experiments in the high-resolution off-line tracer model. Different forms
of eddy forcing D are applied in (15). Note that ¢ is the “run-time” tracer solution, whereas c is the tracer

diagnosed from the reference run.

Experiment Description Formulation

MEAN Tracer transported by zero eddy flows (mean flows D=0
only)

EXP-ADV By lateral eddy tracer advection D=U.V¢

EXP-K;eq By lateral eddy tracer flux divergence where the flux D = -V - ((h)K,.qV(¢)), where K,y is pre-estimated from
is represented by the reduced transport tensor Uc=-(h)K,eqV{c)

EXP-xx By lateral eddy tracer advection represented by the D = —(h)k V2 (&) +x - V(&), where « and x are pre-estimated
generalized-advective-diffusive approach from U’ - Ve = —(h)kVZ{c)+x - V{(c)

FULL By full (mean plus eddy) flows D=0;(¢h)+V-(US)+9s(W'é)—ApV - (W' VE)

alternative way is to solve for ¢ in a coarse-resolution offline model (Mana and Zanna 2014), but
this task presents its own challenges in, for example, extrapolating and re-discretizing all physical
fields onto a coarser grid (Patching 2022), and is beyond the scope of this study.

The eddy effects on tracer evolution in isopycnal coordinates have been studied by Gent et al.
(1995), who parameterized the layer-thickness EIV wh’/h using a long-term time (Reynolds)
averaging ﬁ Our study is different in two aspects: i) we focus on the eddy tracer flux U'c
instead of layer-thickness EIV in (U), and ii) we use a more general scale-based filtering (...).
To clarify the differences and similarities between two approaches, we rewrite the tracer equation
in the advective form by substituting (4) into (5), and ignore the vertical and small-scale mixing

terms:

%+%~V€:—%, (16)
where the second term (U)/(h) = (u) +u* and the layer thickness EIV u* = ((U) — (u){(h))/{h). In
this study, we assume that the large-scale layer-thickness flux (U) is known and focus on the eddy
forcing D,. The equation is the same as the equation (5) of Gent et al. (1995) with u* = W/E,
D, =V -U'¢’, and (...) taken to be ﬁ In most modern coarse-resolution ocean models u* is
parameterized by the GM closure and D, is parameterized by an isotropic Redi diffusion. However,
Haigh et al. (2021b) showed that in a quasi-geostrophic model, u* is significantly smaller than the

tracer EIV u calculated from the advective tensor A, indicating the importance of the advective

part in D,. Our analysis will arrive at a similar conclusion and further demonstrate the need of
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the new eddy-induced advection in our approach. As is explained in section 3c, the GEIA flux x
includes uZ, and thus x +u* (%) describes the total advective effect of eddies on tracer.

Our x has some similarities with the “residual velocity” proposed by Pratt et al. (2016): they both
measure the advective effect of eddies and both are able to contain diabatic terms. Nevertheless,
we stress that they correspond to different processes: x describes the eddy forcing whereas the
residual velocity is derived directly as the residual of the large-scale and eddy tracer flux.

Due to the tracer fluxes through the open boundaries of our domain, the global tracer mass, M_,
is not conserved. Instead, M. becomes part of the solution and will depend partly on the domain
volume integral of the parametric model @(x, v,2,t). This integral determines the eddy-induced
change in the global tracer mass, AM. .qq4y. For simplicity and a fair comparison of the different
models 13, we force AM. cqay to zero in the two eddy-representing experiments with (15). In
both cases, only the large-scale flow is allowed to take tracers into or out of the domain. In the
flux-gradient case, D is in a form of flux divergence, and thus the conservation of M, c4qy can
be guaranteed by requiring the eddy fluxes across all boundaries to be zero. We do this at both
solid and open boundaries, because the eddy fluxes at open boundaries are generally unknown.
In the case of the new approach, however, the conservation of M. .44y has to be enforced by
different means because of the advection term UX - V{(c). We will correct the eddy forcing (14)
by subtracting its domain average at each grid point, to ensure AM .44y = 0 when applying this
approach in the tracer experiment. We confirm that the volume averaged forcing are less than 1%

smaller than the forcing, so the effect of the correction on tracer distributions is negligible.

4. Properties of the lateral eddy transport

a. Calculation of the transport coefficient tensor

We calculate the full transport coefficient tensor K by inverting the flux-gradient relation (8)
using two methods. One way is to obtain an exact solution (Haigh et al. 2020). Two independent
tracers are needed in this case since K has four unknowns. As discussed by Kamenkovich et al.
(2021) and Sun et al. (2021), the resulting tensor is different for each tracer pair. An alternative
way is to use multiple tracers to form an overdetermined problem (Bachman et al. 2015), where the
resulting tensor is an approximation that minimizes the mismatch between the reconstructed and

original eddy fluxes in the tracer ensemble. Bachman et al. (2020) showed that this method leads
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to an “optimal” solution of K, judging by errors in reconstructing the eddy fluxes of temperature
and salinity. Similarly, we will here use errors in reconstructing fluxes of tracers withheld from the
inversion method.

To prepare the fields for calculating the tensors, 10 tracers were initialized with vertically uniform
but horizontally different distributions (Appendix A). The tracer model (1) was then integrated
over four consecutive 110-day segments with the first 20 days of each segment overlapped by the
end of previous one, providing a one-year evolution for each tracer. Because of the indeterminate
boundary conditions for the open boundaries, we use a minimization technique with Tikhonov
regularization to remove the rotational eddy flux component (Li et al. 2006; Kamenkovich et al.
2021; Kamenkovich and Garraffo 2022). The method is able to obtain a decomposition without
the need of explicitly specifying boundary conditions.

The reduced transport coefficient tensor K, .4 is also diagnosed from (8) using the same two
inversion methods. The problem has only two unknowns so only one tracer is required for an exact

solution.

b. Properties of the transport tensors

The complexity of the eddy transport tensor has been shown by several earlier studies (Bachman
et al. 2020; Haigh et al. 2020; Kamenkovich et al. 2021; Sun et al. 2021). Below we briefly review
these properties in our model.

Figure 2 shows the eigenvalues A, of K estimated from the full eddy flux F, and from its
divergent component, overlapped with the diffusion angle 6. In agreement with previous studies
(Bachman et al. 2020; Haigh et al. 2020; Kamenkovich et al. 2021; Sun et al. 2021), both 4,3
and 6 exhibit remarkable spatial complexity. The magnitude and spatial structure of A, change
significantly when the rotational component is removed, and the magnitudes are over 10 times
less than those estimated from the full eddy flux. The inhomogeneity of A, and the root mean
square (rms) values are reported in Table 2a. The inhomogeneity is quantified by the spatial
standard deviation of the absolute value. The eigenvalues are mostly of opposite sign (“polarity”
of the tensor), indicating that the eddy-induced diffusion is predominantly a filamentation process
and thus highly anisotropic (Haigh et al. 2021a; Kamenkovich et al. 2021). For the advective

part (Table 2b), the rms tracer EIV u is found to be one order of magnitude larger than the rms
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TaBLE 2. Inhomogeneity and root mean square (rms) values of (a) the diffusive (41 2, Kiso, «) and (b) the
advective (u, w’_ ., x/(h)) parameters in different parametric models estimated from different eddy terms.
Inhomogeneity is defined as the spatial standard deviation of absolute values. The statistics of A; and A, are
similar and are averaged. The statistics of the fluxes are calculated from their norms. Parameters are diagnosed
at day 100, layer 24, using tracers cj-cs. Note that F; = U’{c), F, = U’c’ and F, = F| + F,, with the rotational

1

components removed. For reference the inhomogeneity and rms values of (U)/(h) are 0.014 and 0.023 m s™",

respectively.

(a) Diffusive parameters

/11,2 Kiso K

Eddy terms F. F; F; F. F; F; U-Ve U-V{(c)y U-V

Inhomogeneity [m? s~1] | 3830 3760 466 | 1310 1270 236 1120 0.49 1120

rms [m? s~ 4230 4140 525 | 1510 1470 271 1220 0.56 1220

(b) Advective parameters
ui‘ uz—red x/(h)
Eddy terms F. F, F; F. F F; U-Ve U-V{(c)y U-V

Inhomogeneity [ms™!] | 0.15 0.14 0016 | 0.07 0.07 0.01 0.034 0.019 0.031
rms [ms™!] 0.19 0.19 0.021 | 0.087 0.087 0.012 0.041 0.025 0.035

mean advective velocity (U)/(h) in (16), which results from the importance of a lateral eddy flux
divergence discussed later.

The anisotropy of eddy-induced diffusion in the mid-latitude oceanic flows has been well known
from Lagrangian studies (Sallée et al. 2008; Klocker et al. 2012a; Rypina et al. 2012; Kamenkovich
et al. 2015). However, the Lagrangian diffusivity (tensor) is conceptually different from the locally
defined K. Although some studies (e.g., Riha and Eden 2011; Abernathey et al. 2013) found
similarities between the two tensors, the asymptotically defined Lagrangian diffusivity is non-local
in space and time, and it, therefore, cannot quantify the transient and local eddy effects. For
example, the polarity of the Lagrangian diffusivity is particularly hard to capture, because the
corresponding filamentation cannot proceed for long time. In addition, the tracer EIV u. cannot
be estimated by Lagrangian diffusivity.

Figure 3 shows the two elements of the reduced tensor K,.;. The inhomogeneity and rms

statistics of K;;, and uj_re are roughly one-third of those for K (Table 2). The reduced magnitudes

d
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Fic. 2. Eigenvalues of S calculated from the total lateral eddy flux F, (top) and its divergent flux component
(bottom), overlapped with the direction of the major axes (direction of the maximal eigenvalue described by the
angle 0) in yellow bars. The tensor is averaged over days 71-80 in layer 24 (~1500 m depth on average) and
is overdetermined from five tracers (cj-c5). Note that the values in the top and bottom rows are an order of

magnitude different. Parameters are smoothed by a 0.4°x0.4° boxcar filter for presentation.

are possibly due to the truncated anisotropic diffusion. Negative values are still common in Kjg,
(~40% of the domain), indicating transient anti-diffusive processes.

The transport tensor is also known to depend on the initial tracer distributions, although the
tracers are stirred by the same flow (Bachman et al. 2015, 2020; Kamenkovich et al. 2021; Sun
et al. 2021). This tracer dependence violates the main assumption that the tensor coefficient is a
function of the flow only. This property is quantified here by calculating K (K,.,) from all possible

tracer pairs (tracers), which results in an ensemble of the corresponding eigenvalues A2 (Kjso).
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Fic. 3. Isotropic diffusivity K;, and anti-symmetric part A,.q of K,.4 (11) calculated from the divergent
component of F,. The tensor is averaged over days 71-80 in layer 24, and calculated from tracers ci-cs.

Parameters are spatially smoothed by a 0.4°x0.4° boxcar filter for presentation.

The resulting values of both 11, and Kj,, change by more than 300% over the entire ensemble.

This result questions the utility of the flux-gradient relation and the diffusion model.

c. Eddy flux components and their importance

The lateral eddy tracer flux F, = U’c is comprised of two components with distinct physical
interpretations: U’(c) and U’c¢’. They represent the eddy advection of the large-scale tracer
contours and the tracer anomalies, respectively. We now discuss their relative importance and

properties of the corresponding transport tensors. For completeness, the properties of the third
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eddy-induced flux, the flux of tracer anomalies by the large-scale flow (U)c’, are also discussed
here.

Figure 4 (top) compares magnitudes of the divergences of these eddy flux terms with that of
(U){c). An intriguing result is that the divergence of the eddy advection of the large-scale tracer

U’(c) is largest among all four. To gain further insight into this term, we split it into two components:

V- (U{c)) = (c)V-U +U - V(c). (17)

Within an isopycnal layer, the first term on the right-hand side represents the effect of volume
convergence, that leads to the squeezing/stretching of the layer and its diapycnal mass exchanges
with the adjacent isopycnal layers. We refer to this term as the “expansion term”. In the mixed
layer, the term corresponds to the vertical convergence of the volume flux. In both regimes, the
term is the main cause of the exaggerated importance of V- (U’(c)), because the second term on
the right-hand side of (17) is of the same order of magnitude as the other eddy advection terms
(Figure 4, bottom). There are two reasons for the dominance of the expansion term {(¢)V -U’": (i)
(c) is generally larger than ¢’, which explains why the expansion term is larger than ¢’V - U’; (ii) the
divergence of U’ tends to be larger than the divergence of the large-scale volume flux (U), which
explains why the expansion term is larger than ¢’V - (U). The expansion term can also be expected
to explain a large part of the tracer dependence in K, since (c)V -U’ strongly depends on the
initial tracer distribution and would also change if a constant were added to ¢ all over the domain.
Note that the expansion term is zero in quasi-geostrophic studies (e.g., Haigh et al. 2020). The
dominance of the expansion term (c)V - U’ and its dependence on (c) thus complicate application
of the flux-gradient relation to the lateral (isopycnal) fluxes, especially U’{c).

All the eddy forcing terms in Figure 4 remain large after being spatially filtered by (...), meaning
that they not only affect the full but also the large-scale tracer distribution. Remarkably, U’{c), as
well as its divergence, is still the largest eddy terms after the filtering. This property results from
the lack of scale separation between the large-scale and eddy fields. Note that for the Reynolds

decomposition, only the eddy-eddy term, U’c’, remains non-zero after long-term time averaging.
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Fic. 4. Domain-median of absolute values of the divergence (top) and advection (bottom) for different lateral
mean and eddy forcing terms over 8 months in layer 24. Bars denote the 20th-80th percentile range. Similar
results are found in other layers. Initial distribution of the tracer is ¢;; (Appendix A). Note that V- (U’{c)) is an

order of magnitude larger than the other forcing terms.

Because the flux-gradient relation is linear, we can further explore properties of K estimated

from U’(c) and U’¢’ separately:

F =U{c) = (WK V(c), Fr=U'c =—(h)K,V{c). (18)

The rotational component is removed from each of the flux components separately. Table 2a lists
the inhomogeneity and rms magnitudes of both the eigenvalues and tracer EIVs of K;,. Both

variables are much larger for K; than for K;, which is due to large mean values and fluctuations of
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F,. Similarly, the reduced transport tensor K,.; from F; (Table 2) also has larger inhomogeneity
and rms values than K,.; from F5.

The tracer dependence of the tensors is quantified next. We first estimate an ensemble of
tensors Kj » from a set of tracer pairs, and calculate their eigenvalues and tracer EIVs. The tracer
dependence is then defined as the ratio of the ensemble standard deviation to the absolute ensemble
mean of these parameters. The results show that both the diffusion (Figure 5a) and advection
(Figure 5b) tensor components are strongly tracer-dependent (>300% in most of the domain) for
all flux components, although this dependence in K, is weaker than in both K and K;. The tensors
calculated from (U)c’ (not shown) have tracer dependence similar to K;. The tracer dependence in
K,.q is higher than K except for F,. The elevated tracer dependence in F; can be explained by the
expansion term being the leading source of tracer dependence. For example, if a constant is added
to the tracer field, the tensor calculated by —U’(c) - [V{c)]~! will change correspondingly, leading
to unphysical dependence of the tensor on the tracer concentration. In agreement with Sun et al.
(2021), we verified that tensors calculated from large-scale eddy fluxes, (F.), have very similar
properties.

Because of tracer dependence, eddy fluxes reconstructed from K will always have biases regard-
less of the number of tracers used in the calculation. For K calculated from a large ensemble of
tracers (overdetermined problem), the biases are inevitable for each of the eddy fluxes. For K
calculated exactly from a tracer pair, the tracer dependence leads to biases for a third tracer. We use
the relative error in the divergence of the eddy flux to examine the significance of these biases on
tracer distribution, because it is the flux divergence that directly enters the tracer budget. We define
the relative error € that results from using a parametric model Do represent the eddy forcing D

for a given tracer as

e=|——|, (19)

where D =V-F, and D = -V - ((h)KV{(c)). The relative error quantifies the biases in the
reconstructed eddy forcing fields (e.g., in flux divergence) that are caused by the uncertainty (e.g.,
tracer dependence) in the parameters (e.g., K) that represent the eddy forcing. It is zero only when

K is calculated exactly from a pair of tracers that includes the given tracer.
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FiG. 5. Tracer dependence (ratio of the standard deviation to the absolute ensemble mean) of the (a) diffusive
and (b) advective parameters of the two parametric models D, estimated from different eddy forcing terms. Error
bars denote the median and the 20th-80th percentile range of the ratio. (a) Diffusive parameters include the
average of the eigenvalues A1, of S, the isotropic diffusivity Kjs,, and « of the generalized-advective-diffusive
model. (b) Advective parameters include the tracer EIVs associated with A and A,.4, and the generalized
advective flux x normalized by (k). All three ensembles of K;.4, K, and « and x contains 10 estimates, with
K randomly chosen from all the 45 possible estimates (tracer pairs) and k& randomly chosen from the 120
possible estimates (tracer triplets). For a flux, the ratios of its two horizontal components are averaged. The x-axis
denotes different eddy terms from which the parameters are estimated. Note that tensors (K, K ) are estimated
from eddy fluxes (F,F ) whereas k& X are estimated from eddy advections (e.g., U’-Vc¢). All parameters are

diagnosed at day 100, layer 24. Other layers have similar results.
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Figure 6 shows ¢ for F, and F 5, as a function of the number of tracers in the set {c¢,, n=1,..., N}
used to calculate K. The tensor is solved either exactly (N =2) or by using the overdetermined
method (N > 2). The results are shown for the tracer cg, which is not included in the tensor
calculations, but the conclusions are the same for all other tracers. The errors ¢ for different terms
are larger than 100% in most of the domain and are not improved significantly with increasing N.
This implies that the multi-tracer inversion cannot reduce the tracer dependence effectively. It is,
therefore, almost certain that the tracer dependence of K has a significant effect on tracer transport
through the errors in eddy forcing. We also see larger bias in the divergence of U’(c), which is
particularly problematic because it dominates lateral eddy fluxes. As discussed in section 3c, this
flux term is inconsistent with the flux-gradient framework. We have now confirmed that it is one

of the sources of bias in the relation.

5. Generalized-advective-diffusive approach

The results in the last section illustrate challenges of the flux-gradient approach and provide
motivation for the generalized-advective-diffusive approach. In this section, we perform similar
analyses of our new formulation (14), and show the improvement relative to the flux-gradient

method.

a. Properties

One advantage of the new approach is that it can be used to represent any term in the eddy
forcing, such as the lateral eddy tracer flux divergence V - (U’c), the lateral eddy advection U’ - Ve,
the vertical term, and eddy tendency. As mentioned in section 3a, this study focuses on the lateral
eddy-induced transports only. This is for the sake of a direct and fair comparison with the flux-
gradient approach, which can only be applied to the lateral eddy flux. The advection form of the
lateral term U’ - V¢ is anticipated to be more accurate than the flux divergence form V-U’c. for the
following reason. In section 4, we showed that a large portion of the lateral eddy flux divergence
is devolved into the “expansion” term, i.e., (c)V-U’ > U’-V(c). Using the advection form will
thus eliminate the need to account for this expansion term and avoids its elevated sensitivity to (c).
We will later confirm this by analyzing the corresponding tracer dependence and errors in the the

represented eddy forcing. We leave the consideration of the vertical/tendency terms for a future
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Fic. 6. Effects of the tracer dependence in the flux-gradient approach on the accuracy of the represented eddy
forcing. Dots are median of the relative error £ of the eddy flux divergence at day 100, layer 24. Bars denote
the 20th-80th percentile range. Different components of the eddy flux are reconstructed by K for tracer c¢. N
is the number of tracers in the set {c,,} (c¢ ¢ {c.}) that was used to calculate K. Similar results were found for

different times, layers and tracers.

study. We will, however, show in section 6 that the lateral eddy advection effectively captures the
bulk effect of the eddy forcing.

The diffusivity « and GEIA flux x are calculated by inverting (14) from the lateral eddy advection
using the same set of idealized tracers. We use either three independent tracers to get an exact
solution or more than three tracers to get a least-squares solution of the three unknowns. Figure 7
shows snapshots of x and x overdetermined with five tracers. Similar to the diffusivities of

K and K,.4, « is spatially inhomogeneous and exhibits both positive and negative values. The
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inhomogeneity and rms values of k (Table 2a) have similar magnitude with K5, of K,.4, although
the spatial pattern is very different (Figure 3). This is not unexpected because the two isotropic
diffusivities are formulated differently.

The new divergent GEIA flux ) is of particular interest. Its magnitude (divided by (/)) is about
two times less than u;. from both K and K,.; (Table 2b). A key question is on the importance
of the new term UY and whether this part is really divergent, i.e., cannot be represented by the
antisymmetric tensor. Although U¥ and u} (/) cannot be calculated individually in this framework,
we can extract the divergent component of their sum, which equals x +V ({h)«) by definition. The
divergent component then measures the importance of UX because u’. (%) is purely rotational. Using
the same technique as for the eddy tracer flux to calculate the divergent and rotational components,
we found that their rms values, divided by (%), are 0.57 m s™! and 0.04 m s~!, respectively. This
indicates that there is indeed a significant divergent component in the GEIA flux that cannot be
possibly described by a streamfunction and thus by the eddy transport tensor.

We next evaluate the tracer dependence in « and x using the same method as for K and K,.;. We
remind the reader that this dependence contradicts the assumption that the parameters of D are
functions of the flow only and increases uncertainty in estimating these parameters for practical
applications. Figure 5 shows the spread of « and x derived from different eddy advection terms
among the tracer triplets. We observe modest reduction in the tracer dependence relative to the
diffusive and advective parts of K and K,.;. The only exception is the spread of x for the term
U’ - V{(c) which is zero; this is expected because x = U’ in this case.

To examine how the tracer dependence affects the accuracy of representing the eddy forcing, we
recalculated the relative error £ from (19), with O =U’- V¢ and D given by (14). In this case,
k and x are calculated for a subset of tracers triplets and the error is evaluated for the rest of the
tracer ensemble. Figure 8 shows ¢ for different eddy advection terms. We see that ¢ is significantly
reduced compared to the flux-gradient model (Figure 6). We conclude that the new approach
leads to reduced uncertainty in estimating the eddy forcing, despite the remaining sensitivity of its

parameters to tracer distributions.
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FiG. 7. Snapshots of « and /(%) in the new approach, estimated from lateral eddy advection U’ - Vc. They
are averaged over days 71-80 in layer 24 and are overdetermined from tracers ci-cs. k is on the same order
of magnitude with 4; > and Kj,,, but has different spatial structure. Parameters are spatially smoothed by the

0.4°%0.4° boxcar filter for presentation clarity.

6. Application in the high-resolution model

This section aims to evaluate the skill of the flux-gradient relation and the generalized-advective-
diffusive model in reproducing the eddy-induced stirring, as well as the effects of truncating the
eddy forcing D, to its lateral part. This is done by performing a series of tracer experiments (15)
with various forms of eddy forcing D, and by quantifying how close the approximate solution ¢
is to the reference solution. To assess the robustness of conclusions, our analysis on the tracers is
carried out in two distinct parts of the domain: in the mixed layer and below the isopycnal layer

15 (~500 m depth) of the model. We remind the reader, that the tracer in the mixed is stirred
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Fic. 8. Effects of tracer dependence on the accuracy of modeling of the eddy forcing in the generalized-
advective-diffusive approach. Median of the relative errors £ between the eddy advection reproduced by « and x
and the original advection term, for the tracer concentration cg in layer 24. Bars denote the 20th-80th percentile

range. The relative error for U’ - V{(c) is nearly zero (not shown).

horizontally by a combination of mesoscale and partially-resolved submesoscale currents and is

homogenized vertically at each time step.

a. Tracer experiments

The total of five experiments are listed in Table 1. The MEAN run has O =0 with tracers
transported by the large-scale volume flux, and the FULL run is the reference (control) simulation
with the full flow. The EXP-ADV run illustrates the importance of the lateral eddy advection
(D =U’-Vc) in the eddy forcing and serves to quantify the effect of omitting the non-lateral terms
in eddy forcing (7). It also represents the “best scenario” when this advection term is represented
accurately.

The other two experiments examine how well the flux-gradient approach (EXP-K,.;) and the new
approach (EXP-«kx) represent the lateral eddy forcing. In both experiments, Zs(x, v,2,t) is applied
to simulate tracers that were not used to calculate the parameters of this D. The tracer dependence in

these parameters will inevitably cause bias in D, which leads to the difference between & and ¢ from
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the FULL simulation. The difference between solutions thus mainly quantifies the impact of tracer
dependence and the “goodness” of the approaches. Our previous analysis on the relative errors in
eddy forcing is a complementary measure in a diagnostic way. The other source of the difference is
the omitted eddy tendency and vertical/diapycnal terms, whose effect is measured by EXP-ADV. In
the EXP-K,.; run, we use the reduced transport tensor (11) to represent the lateral eddy flux. The
new approach (14) is applied in the EXP-xx run. Both representations are the combination of an
isotropic diffusion and an eddy-induced advection. As discussed in section 3b, we did not employ
the anisotropic diffusion because it is numerically unstable as a result of negative diffusivities.
The comparison serves to evaluate the implications of the generalized advection. We used five
tracers (ci-cs) to estimate K, .4, « and x, which ensures that the same amount of information is
provided for both approaches. Note that these experiments are not eddy parameterizations because
the parameters are diagnosed from the reference simulation, and the experiments are carried out in
the same high-resolution model.

Figure 9 shows the snapshots of tracer solutions in the five experiments. Comparison of MEAN
and FULL illustrates that eddies influence the tracer distribution mainly in two ways: (i) they
smooth out sharp large-scale tracer concentration fronts (gradients) and the peak values on each
side of a front; and (ii) they induce small-scale concentration structures all over the domain, and
especially along the large-scale fronts. The tracer field in EXP-ADV and EXP-«x is visually similar
to FULL. We then quantify the difference between the solutions of FULL and the other runs by the
Frobenius norm (Figure 10a) and the correlation coefficients (Figure 10b-e). The results show that
the EXP-ADV solution (green line and Figure 10e) is significantly closer to the FULL than is the
MEAN (black line and Figure 10b), indicating an improvement because of using the lateral eddy
advection. The remaining bias results from the truncated terms 4’9;c + (ds(w'c) — cdsw’) in (7),
and are confirmed small. This justifies our choice to model the lateral term by the new approach.
In contrast, the same bias for the flux-gradient approach cannot be quantified because an additional
experiment with 9 = V- (U’c) (not shown) exhibits unrealistic tracer concentration patterns, which
is a possible consequence of excessively large biases caused by the absent terms d;(ch’) + d;(w'c)
in (6). The solution of EXP-«xx (red line and Figure 10d) is closer to FULL than EXP-K,.; (blue

line and Figure 10c), indicating a statistical improvement brought by the new approach.

30



640

641

647

648

649

650

651

652

653

654

655

FiG. 9. Tracer concentration anomalies from the five experiments (Table 1) in layer 15 (~500 m depth) after

200 days of advection. The initial distribution (c;1) is subtracted out.

Mesoscale eddies can have cumulative effect on the large-scale tracer distribution through stir-
ring and dispersion. We next consider two physically meaningful processes for the sensitivity
experiments: evolution of a large-scale tracer gradient and dispersion of a tracer patch along the

Gulf Stream path.

b. Evolution of a large-scale tracer gradient

The analysis in this section is focused on the efficiency of eddy stirring in reducing the meridional
gradients. Simulations are initialized with the tracer cg which has a sinusoidal structure in the
meridional direction and is uniform zonally and vertically. Over time, the eddy stirring reduces the

meridional gradients and the tracer slowly approaches a uniform distribution.
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Fic. 10. The skill of the truncated and the approximated eddy forcings in reproducing the eddy effects. (a)
The Frobenius norm of the vertically-averaged tracer concentration differences between the four experiments
and FULL as a function of time. The Pearson correlation of tracer fields between (b) MEAN, (c) EXP-K,..4, (d)
EXP-«kx and (e) EXP-ADV and FULL, over 270 days. The initial distribution is ¢;;. Tracers are averaged within

the mixed layer. Similar results are observed for tracers averaged below layer 15.

Figure 11 shows the relative difference of tracer fields (“tracer bias”) between the FULL and three
sensitivity experiments, MEAN, EXP-K,.; and EXP-«, as a function of time and latitude. In both
the mixed layer and deeper layers, EXP-« is closer to FULL than EXP-K,.;, showing that the new
approach captures the eddy stirring more accurately than the flux-gradient approach. An intriguing
feature in the mixed-layer tracer concentrations (Figure 11, top) is the large relative difference at
about 42°N. We attribute this difference to the presence of a transport barrier at the Gulf Stream

core (Rypina et al. 2011) in the FULL run. Since velocities at this core in MEAN is smeared out
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Fic. 11. The skill of different D in reproducing eddy stirring effect on a large-scale tracer profile. The figures
show the temporal evolution of the relative difference in the zonally- and vertically-averaged tracer concentrations
between the three sensitivity experiments and FULL. Tracer concentrations were averaged over the mixed layer

(top row) and over the isopycnal layers below layer 15 (bottom row). The initial distribution is cg.

by the spatial filter, the associated transport barrier breaks down, leading to a significant bias in

tracer distributions.

c. Dispersion of a tracer patch

Mesoscale eddies disperse tracers anisotropically. The efficiency and preferential direction of

the dispersion can be measured by the time rate of change of the second moment for a tracer patch
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(Rypina et al. 2012). The second moment is defined as a covariance matrix (Wagner et al. 2019):

2 /f(xi_x,-c)(xj—Xj)c(x,y)dxdy
O-ij:
ffC(X,y)dxdy

» Lj=12 (20)

where x{ = //xl.c(x, y) dx dy/f/c(x,y) dx dy is the position of center of mass.

We released a tracer anomaly near the Gulf Stream axis at 35.5°N, 63.5°W. The initial tracer
concentration distribution is vertically uniform and has a shape of a round patch with the diameter
of 3 degrees. It is larger than the typical length scale of mesoscale eddies to prevent the tracer
from being trapped in a single eddy like a Gulf Stream ring. Figure 12 shows the evolution of
the vertically-averaged tracer patch in the sensitivity experiments. In all simulations, the patch
propagates along the Gulf Stream axis due to the mean advection and disperses away due to the eddy
stirring. Unsurprisingly, the tracer in FULL spreads much farther away from its initial position
than in MEAN. The shape of the tracer patch in EXP-«x is similar to that in the FULL run, which
demonstrates the efficiency of GEIA in capturing anisotropic dispersion. In contrast, the spreading
in EXP-K,..; is more isotropic than in FULL.

A quantitative comparison is done through the dispersion covariance matrix. Similar to the
symmetric tensor S, the covariance matrix can be rotated onto a new coordinate, where the major
axis is along the maximum dispersion direction, and the minor axis is perpendicular to it. Figure 13
compares the dispersion of the vertically-averaged tracers within the mixed layer. Along the major
axis, all results are similar, because the large-scale sheared flow in the Gulf Stream dominates
over the eddy effects. In contrast, the differences between the experiments are significant in the
transverse direction, along the minor axis (e.g., Oh et al. 2000). We see that the FULL dispersion
increases much faster and asymptotes to a larger value than in MEAN (Figure 13, bottom). Across
the Gulf Stream, the dispersion in both the EXP-K,.; and EXP-kx cases is close to FULL,
demonstrating that they can capture the eddy dispersive effects.

The improvement due to the generalized-advective-diffusive approach can be seen most clearly
in the deeper layers (Figure 14). Along each axis, the dispersion in EXP-«kx is close to FULL.
In contrast, the EXP-K,.; dispersion along the minor axis is highly overestimated. The eddy-
induced spreading in the Gulf Stream region is known to be strongly anisotropic (Rypina et al.

2012; Kamenkovich et al. 2015). Our results from EXP-K,.; show that the instantaneous isotropic
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Fic. 12. The skill of different D in reproducing eddy-induced dispersion of an isolated tracer patch. Shown is
the vertically-averaged tracer concentration below layer 15 at day 120 after release. Circle in magenta represents
the initial tracer patch (c;2). Tracer concentration less than 1x1073 (0.1% of the initial concentration) is set to

Z€10.

diffusivity with an anisotropic antisymmetric part mixes excessively along the minor axis. In
contrast, the anisotropic dispersion is reproduced effectively by using the generalized advection

(EXP-kx).

7. Conclusion and discussion

This study aims to make progress in understanding effects of large-scale and mesoscale currents

on passive tracer distribution. In light of the complexity of representing the eddy-induced transport
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Fic. 13. Dispersion along the major (top panel) and minor (bottom panel) axes of the isolated tracer patch

averaged within the mixed layer.

by the traditional flux-gradient relation, the study explores a new representation approach and
evaluates the two approaches in a high-resolution model of the Gulf Stream region.

We focus on the lateral mesoscale eddy tracer transport, with “lateral” being defined as horizontal
in the surface mixed layer and along-isopycnal in the ocean interior. Mesoscale eddies are defined
broadly via a high-pass spatial filter, which is motivated by the need to study transient eddy-
induced processes missing in coarse-resolution models. In this definition, the eddies include
submesoscale currents that are contained mainly in the surface mixed layer and are partially
resolved in our numerical simulations. This scale-based filter is different from the conventional
Reynolds decomposition in that it introduces new eddy-mean “cross terms” that represent inter-

scale interactions. Our results showed that these terms have distinct implications on tracer transport.
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Fic. 14. Same with Figure 13 but for tracer patches averaged below layer 15.

For example, the divergence of U’(c) dominates the lateral transport due to the divergence of the
lateral eddy volume flux amplified by the large-scale tracer, (c)V -U’. This flux term not only
contributes the most to the spatial variability of the eddy transport tensor, but is also a major source
of biases in representing the eddy forcing by the flux-gradient relation. Using the mixing length
theory, we also showed that U’(c) cannot be properly approximated by the turbulent diffusion.
These properties compromise the utility of the flux-gradient relation in isopycnal layers.

Besides the complications from the cross terms, the flux-gradient approach is also affected by the
ambiguity due to the rotational (non-divergent) component in eddy tracer flux. The definition of this
component and, thus, of the transport tensor, is not unique and is highly sensitive to the ill-defined
boundary conditions. At the same time, errors in parameterization of the rotational component will

be significant for tracer evolution, because the component tends to dominate the eddy tracer flux.
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In addition, several non-flux and w-flux terms in the eddy forcing, i.e., 9;ch’+ d;w’c, cannot be
readily represented by the flux-gradient relation in isopycnal layers and in a general computational
domain. These challenges motivated us to consider an alternative to the flux-gradient model.

The proposed generalized-advective-diffusive approach is able to resolve the aforementioned
issues by including a divergent generalized eddy-induced advective (GEIA) flux x and modeling
the local eddy forcing. This study considered a simplified form of the approach that consists of
isotropic diffusion and generalized advection. Although the GEIA flux is advective and introduces
a well-defined direction in the eddy-induced stirring, a full diffusivity tensor would still be needed
to capture anisotropic diffusive effects. We did not, however, use such a tensor in our tracer
simulations because of persistent numerical instability that plausibly results from the opposite-
signed diffusivities. Our results showed that the new model leads to reduced biases in representing
the tracer eddy forcing. The biases cannot, however, be completely eliminated, because the
parameters in both the flux-gradient and the new formulations still depend on tracers, and thus
cannot be uniquely defined.

This study is one of the first attempts to use the eddy-induced advection and eddy-induced
diffusion with their full spatio-temporal variability to represent the eddy effects. By performing a
series of targeted tracer simulations in a high-resolution model, we showed the importance of the
eddy-induced lateral advection. We also demonstrated that the new approach is more accurate in
reproducing the stirring and dispersing effect of eddies than the flux-gradient approach.

One of the notable advantages of the generalized-advective-diffusive approach is that it can
represent any form of the local eddy forcing. In this study, we focused on the lateral stirring for
a direct comparison with the flux-gradient model. We used the new approach to represent the
lateral eddy advection U’ - V¢, and our analysis showed that it captures the full eddy effects more
effectively than does the lateral eddy flux divergence V- (U’c). This could be one of the main
reasons why the new approach outperforms the flux-gradient model besides the reduced tracer
dependence.

The proposed approach could eventually lead to new eddy parameterizations. It should be re-
emphasized, however, that this study is not a direct attempt at eddy parameterization for several
reasons. Firstly, we do not consider eddy-induced mass fluxes. The isopycnal layer thickness

eddy-induced velocity (EIV) u* that can be parameterized by the Gent and McWilliams (1990)
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closure in not studied here. In future developments, the GEIA flux x can be combined with u* to
advect tracers, uniting these two distinct eddy-induced advective effects: the former represents the
advective eddy transport of tracers whereas the latter is the eddy advection of water mass in which
the tracer is embedded. However, our calculation of u* (%), defined as (U) — (u){h), showed that it
is at least one order of magnitude smaller than x. This result is in agreement with the conclusions
from an idealized quasi-geostrophic study (Haigh et al. 2021b) that systematically compared the
tracer EIV u} and u*.

Secondly, the parameters K,.4, k and x were diagnosed from the high-resolution reference
simulation and applied to the same model. The use of a high-resolution model avoids additional
errors associated with extrapolation and re-discretization of relevant physical terms to a coarser
grid. In contrast, a parameterization scheme would need to be developed and tested on a coarse
numerical grid and must involve a closure, that is, calculation of all the parameters from large-scale
quantities. Development of closures is a difficult and unsettled task. For example, the physical
expressions of Redi and GM coefficients are still challenging to derive (Marshall and Speer 2012;
Mak et al. 2017), although their application has been fairly successful.

An important source of ambiguity in modelling eddy effects lies in the definition of eddies. This
study used a spatial coarsening that may explain the strong variability in the eddy-induced diffusion
and eddy-induced advection. Studies that use a long-term time- and/or zonal averaging alone (e.g.,
Bachman and Fox-Kemper 2013; Klocker and Abernathey 2014) or combine the temporal and
spatial averaging (e.g., Bachman et al. 2020; Zhang and Wolfe 2022) to separate mesoscale and
large-scale fields could find reduced variability of K. For example, Zhang and Wolfe (2022)
reported only occasional negative eigenvalues and a modest tracer dependence. This could be a
result of the intensive smoothing they applied to eddy fluxes, which reduces variations in the tensor.
Dynamically meaningful definition of eddies as the type of currents missing in coarse-resolution
models is needed. A recently novel method is to define “dynamically unresolved eddies” (Agarwal
et al. 2021; Berloff et al. 2021; Ryzhov and Berloff 2022), but it requires additional computations
for passive tracers. The sensitivity of properties of the modeled eddy-induced transport to the
definition of eddies and eddy forcing is an important research topic.

It is also an intriguing and practical question of how the (Eulerian) eddy diffusivities of the

approaches in this study (S and «) could be estimated by the Lagrangian method using drifters
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(e.g., Lumpkin et al. 2002; LaCasce 2008) or a dye release experiment (e.g., Ledwell et al. 1998) in
the real ocean. The task would be difficult in practice, because the required dense spatio-temporal
coverage of the concurrent tracer and velocity fields is not available on a global scale. Besides
the limitation of sparse observations, this open question roots in the unsettled physical connection
between the Eulerian and Lagrangian (particle- or tracer-based) estimates in the complex oceanic
flows. Even if a sufficient amount of Lagrangian observations can be obtained in a numerical
model, the consistency between the two estimates has only been evaluated in a strongly zonal flow
(Abernathey et al. 2013). This question is out of the scope of our study. We refer readers to Klocker
et al. (2012b) and Qian et al. (2019) who used theoretical considerations to reconcile the different
estimates of eddy diffusivities.

This study is motivated by the recently uncovered issues with the flux-gradient relation. However,
we emphasize that these issues do yet not prove that the relation is fundamentally unsuitable for
parameterization of eddies. The new approach suffers from some of the same issues: e.g., the
tracer dependence in parameters is still large. Future works should be extended to include the
non-flux eddy terms such as the time tendency of tracer mass (ch), and the anisotropic diffusion,

which we leave in a companion study.
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APPENDIX A

Initial distributions of tracers

Ten tracers were used in total for diagnosing the parameters in the flux-gradient and generalized-

advective-diffusive approaches. Tracer concentrations were initialized with different horizontal
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20 distributions and were taken constant in the vertical direction (Figure A1):

Ity
c1=coS2m—+2,
Ny

n
€y = COS2m— +2,
Ny

n, n
c3=cos2m (—x+—y) +2,

N, — n
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cg=cos47r( al nx+—y)+2,

Ny N,
n, 2 ny 2
N (0.4N—x _ 1) (0.4N—y _ )
= %k +
€10 9 16 .

= Where n, and n, are grid indices in the zonal and meridional directions, respectively, and N, = 1573
=2 and N, = 1073 are the total numbers of grid points in the corresponding directions. Tracers used

s for the experiments in section 6 have different initial distributions:

Ty
c1 =0.5«cosm— +0.5,
y

3-2+Lif d? = (n, —900)2 + (n, — 400)2 < 757 (A2)
C2 = .

0, otherwise

41



Fic. Al. Initial distributions of tracer fields. Tracers are constant in the vertical direction.
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APPENDIX B

Derivation of the generalize-advective-diffusive approach

We start by modeling the eddy forcing field with combining the flux-gradient framework and a

generalized advection:

D =-V-((hKV{c))+U¥ - V(c), (B1)
where UY is an independent (vector) parameter that can be divergent. Realizing that the spatial

gradient of K also corresponds to advection, we expand (B1) as
D = —~(h)K;;3:0;(c) +{=0,((h)K;j) + U} (c), (B2)

where i and j are used to index the spatial coordinates, and summation over the repeated indices
is assumed. By splitting K;;, in the first term on the right hand side, into its symmetric §;; and

antisymmetric A;; parts, and by taking A;; = —Aj;, (B2) becomes
D = —(hY{S110:0,(c) +28120,:0,(c) + S200,0,(c)} +Xx - V{(c), (B3)

where x(x,y,z,) [m? s~!] incorporating all advective terms, —0;((h)Si;) +ZxV((h)Az1)+UX, is
generally divergent, and is referred to as generalized eddy-induced advective (GEIA) flux. Both
S;; and x need to be diagnosed from tracer fields as independent parameters. Thus, the proposed
approach involves a set of point-wise local problems (on each grid node).

This study considers a simplified form of (B3) by taking the diffusive part to be isotropic (S12 =0
and S1; = S22 = «) and by incorporating the antisymmetric part of the tensor into the generalized
advection:

D = (V) +x - V{c), (B4)

where «(x,y,z,¢) [m? s™!] is an isotropic diffusivity. Here, we assumed that the anisotropy can
be partly captured by the eddy-induced advection, since the advection has a well-defined direction

(anisotropic).
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