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ABSTRACT

We provide a new non-asymptotic analysis of distributed TD(0) with linear function approximation.
Our approach relies on “one-shot averaging,” where N agents run local copies of TD(0) and average
the outcomes only once at the very end. We consider two models: one in which the agents interact
with an environment they can observe and whose transitions depends on all of their actions (which we
call the global state model), and one in which each agent can run a local copy of an identical Markov
Decision Process, which we call the local state model.

In the global state model, we show that the convergence rate of our distributed one-shot averaging
method matches the known convergence rate of TD(0). By contrast, the best convergence rate
in the previous literature showed a rate which, according to the worst-case bounds given, could
underperform the non-distributed version by O(N3) in terms of the number of agents N. In the local
state model, we demonstrate a version of the linear time speedup phenomenon, where the convergence
time of the distributed process is a factor of N faster than the convergence time of TD(0). As far as we
are aware, this is the first result rigorously showing benefits from parallelism for temporal difference
methods.

1 Introduction

Recent years have seen reinforcement learning used in a variety of multi-agent systems, for example, cooperative control
(Wang et al., 2020b), traffic control (Kuyer et al., 2008; Bazzan, 2009), networked robotics (Yang and Gu, 2004; Duan
et al., 2016), and bidding and advertising (Jin et al., 2018). However, a rigorous understanding of how standard methods
in reinforcement learning perform in a multi-agent setting with limited communication is only partially available.

One of the most fundamental problems in reinforcement learning is policy evaluation, and one of the most basic policy
evaluation algorithms is temporal difference (TD) learning, originally proposed in Sutton (1988). TD learning works by
updating a value function from differences in predictions over a succession of steps in the underlying Markov Decision
Process (MDP).

Developments in the field of multi-agent reinforcement learning (MARL) have led to an increased interest in decen-
tralizing TD methods, which is the subject of this paper. We will consider two different MARL settings. These are
described formally below, but, in brief, the “global state” setting considers a collection of agents interacting with an
environment which takes actions depending on the actions of all the agents, which may have different rewards; and the
“local state” setting, involves each agent having its own copy of the same MDP. In both settings, the goal is to find a
policy maximizing the average of the discounted reward streams.

1.1 Related Literature

Analysis of centralized TD algorithm: A natural benchmark to compare the performance of distributed TD methods
to is the performance of centralized TD methods. In the context of linear function approximation, these date to Jaakkola
et al. (1994); Tsitsiklis and Van Roy (1997). Precise conditions for the asymptotic convergence result was first given in
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Tsitsiklis and Van Roy (1997) by viewing TD as a stochastic approximation for solving a Bellman equation. Recently,
there has been an increased interest in non-asymptotic convergence results, e.g., Dalal et al. (2018a); Lakshminarayanan
and Szepesvari (2018); Bhandari et al. (2018). The state of the art results show that, under i.i.d samples, TD algorithm
with linear function approximation converge as fast as O(1/+/T) for value function with step-size 1/+/T and converge
as fast as O(1/t) with step-size O(1/¢t) (Bhandari et al., 2018).

Analysis of distributed TD methods: There has been several recent non-asymptotic analyses of distributed TD with
linear function approximation. All of these were in the global state model informally described above. The first paper
on the subject Doan et al. (2019a) proposed a distributed variant of the TD algorithm by combining consensus step and
local TD updates for the update of each agent. For distributed TD algorithm with projection step and i.i.d samples,
Doan et al. (2019a) provided a O((logT)/+/T) convergence rate for value function with step-size that scales as 1/v/T
and O((logt)/t) convergence rate for optimal value with step-size O(1/1).

However, the constants in these bounds scaled with the spectral gap of the matrix underlying inter-agent communications.
It is mentioned in Doan et al. (2019b) that these could be as bad as O(N?) in terms of the number of agents N. This is
of the main issues we will try to address in this paper: we would like to derive bounds that either benefit from, or are
not hurt by, the multi-agent nature of the system. That is, we would like bounds that either do not get worse with N or
are actually improved as N becomes large.

In Sun et al. (2020), the case of both i.i.d and Markov samples was studied using a Lyapunov approach. It was shown
that all local estimates converge linearly to a small neighborhood of the optimum with constant step-size. The size of
the neighborhood scaled with the inverse of the underlying spectral gap of a matrix based on the pattern of inter-agent
communications (and thus, indirectly, with the number of agents for many communication patterns); this was removed
in Wang et al. (2020a) using a more sophisticated “gradient-tracking” approach, which involves communicating twice
as much information per each step.

Finally, we also mention Shen et al. (2020) although that work deals with actor-critic rather than temporal difference
methods. It is shown there, up to a certain approximation error, it is possible to obtain a linear speedup for a distributed
model of actor-critic with independent samples across agents; this is in the same spirit as what we are attempting to do
in part of this work.

1.2 Our Contribution

This paper provides a simple scheme for both the global state model studied in the previous literature and the local state
model we introduce here under i.i.d. sampling. In contrast to previous papers which required communication between
neighbors at every step of the underlying methods, our schemes requires only one global average computation at the
very end.

We show that we are able to replicate the standard bounds for TD(0) in the global state model, including convergence
to the same limit 8* without any dependence on the number of agents. In the local state model, we show that we can
improve state-of-the-art convergence times for TD(0): in other words, there is a benefit from parallelism in the local
state setting. In particular, to the extent that the variance of the temporal difference error enters the convergence bounds
for the local state model, it can be divided by the number of agents N.

2 Preliminaries

We begin by standardizing notation and providing standard background information on Markov Decision Processes and
temporal difference methods.

2.1 Markov Decision Processes

A discounted reward MDP is described by a 5-tuple (S, A,P,r,7y), where S = [n] = {1,2,--- ,n} is a finite state
space, A is a finite action space, P(s'|s,a) : S x A x S — [0,1] is transition probability from s to s’ determined by a,
r(s,a,s’) : S x A x 8 — R are deterministic rewards and y € (0, 1) is the discount factor.

Let u denote a fixed policy that maps a state s € S to a probability distribution tL(-|s) over the action space A, so that
Y uca t(als) = 1. For such a fixed policy u, define the instantaneous reward vector R* : S — R as

R(s)=Y Y u(als)P(s'|s,a)r(s,a,s").

s'eSac A
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Fixing the policy u induces a probability transition matrix between states:

P(s,s") =Y u(als)P(s'|s,a).
acA

We will use r; = r(s;,ay,5:+1) to denote the instantaneous reward at time ¢, where s, a, are the state and action taken at
step t. The value function of u, denoted by V# : S — R is defined as

4 (S) =Eu; [gyrt

where E;; ;] indicates that s is the initial state and the actions are chosen according to the policy p. In the following,
we will treat V¥ and R* as vectors in R” and treat P# as a matrix in R"*",

; (D

Next, we state a standard assumptions on the underlying Markov chain.

Assumption 1. The Markov chain with transition matrix P* is irreducible and aperiodic.

A consequence of Assumption 1 is that there exists a unique stationary distribution & = (7;, @, -, 7,), @ row vector
whose entries are positive and sum to 1. This stationary distribution satisfies 77 P* = n7 and 7ty = lim;_,e.(P*)'(s,s')
for any two states 5,5’ € S. Note that we use T to denote the stationary distribution and U to denote the policy.

We next provide definitions of two norms that we will have occasion to use later. For a positive definite matrix A € R™*",

we define the inner product (x,y)4 = x’ Ay and the associated norm ||x||4 = v/x” Ax respectively. Since the numbers 7;
are positive for all s € S, then the diagonal matrix D = diag(xy,--- ,m,) € R"*" is positive definite. Therefore, for any
two vectors V.V’ € R", we can also define an inner product as

(Vv ,=ViDV' =Y mV(s)V'(s),
seS

and the associated norm as
IVIE=v'DV =Y mV(s)* )
sES

Finally, we introduce the definition of Dirichlet seminorm, following the notation of Ollivier (2018):

IV i = Z 7P (V(s) =V (s))* 3)

sseS

Note that Dirichlet seminorm depends both on the transition matrix P* and the stationary distribution 7. Similarly, we
introduce the k-step Dirichlet seminorm:

IV 1Birs = Z 7 (PH) (5,8 ) (V(s) =V (5))°.

SYES

2.2 Temporal Difference Learning

Evaluating the value function V* of a policy can be computationally expensive when the number of states is very
large. The classical TD algorithm uses low dimensional approximation Vé1 . For brevity, we will omit the superscript (t
throughout from now on.

We next introduce the update rule of the classical temporal difference method with linear function approximation Vg, a
linear function of 8:

K
5)=1) 6i¢i(s) Vs€S, (4)
=1

where ¢ = (¢;(1),---,¢,(n))T € R" for I € [K] are K given feature vectors. Together, all K feature vectors form a n x K
matrix ® = (¢y,--- , k). For s €S, let ¢(s) = (¢ (s), -, 9k (s))? € RX denote the s-th row of matrix ®, a vector that
collects the features of state s. Then, Eq. (4) can be written in a compact form Vg (s) = 67 ¢ (s).

The TD(0) method maintains a parameter 6(¢) which is updated at every step to improve the approximation. Supposing
that we observe a sequence of states {s(7)}cn,. then the classical TD(0) algorithm updates as:

0(t+1)=06(t)+8(1)9(s(r)), (5)
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where {0 },cn, is the sequence of step-sizes, and letting s'(¢) denote the next state after s(¢), the quantity () is the
temporal difference error

8(r) = r(t) + 78T (9 (5'(1)) — 8" (1)9(5(1))- (6)

A common assumption on feature vectors in the literature (Tsitsiklis and Van Roy, 1997; Bhandari et al., 2018) is that
features are linearly independent and uniformly bounded, which is formally given next.

Assumption 2. The matrix ® has full column rank, i.e., the feature vectors {@1,...,9x} are linearly independent.
Additionally, we have that || (s)||3 < 1 for s € S.

Under Assumption 1 and 2, we introduce the steady-state feature covariance matrix ®’ D®. That this is a positive
definite matrix as an immediate consequence of Assumptions 1 and 2, and we let @ > 0 be a lower bound on its smallest
eigenvalue.

We will use the fact, shown in Tsitsiklis and Van Roy (1997), that under Assumptions 1-2 as well as an additional
assumption on the decay of the step-sizes ¢, the sequence of iterates {6, } generated by TD(0) learning converges
almost surely a vector satisfying a certain projected Bellman equation; we will use 8* to refer to this vector.

2.3 Two Models of Distributed Temporal Difference Methods

We now introduce two distributed models, which we will refer to as the global state and local state models. The global
state model was previously introduced in Doan et al. (2019a) and studied in Wang et al. (2020a); Sun et al. (2020). We
are not aware of the local state model being considered in the previous literature.

2.3.1 The Global State Model

The problem is characterized by the 6-tuple (S,V, Ay, P,ry,¥). Here, S, P, and 7 have the same definition as before;
VY = [N]={l,...,N} is the set of agents; Ay, = A; x --- X Ay is the set of joint actions, where .4, is a set of actions
only available to agent v; and ry = {r, },¢y is a set of reward functions, where r,(s,a,s’) : S x Ax S — R is the reward
function of agent v.

The policy p now takes the form p(als) = [T, y(ay|s), where ,(ay|s) is the probability to select action a, € A,
when in state s. After the action a(r) = {a;(¢),--- ,an(¢)}, the system moves to a new state s'(z) with probability

P(s'(¢)]s(z),a(r)); then all the agents observe the new state and obtain local rewards r,(¢) = r,(s,(¢),a(r),s,(¢)).

"oy

The value of a policy will depend on the average of the rewards obtained by the individual agents:

V(s)=Epu, i% Z r(sy(2),a(t),s, ()|, i€S. @)

t=0"" veV

In distributed policy evaluation, the agents wish to cooperate to estimate the reward V. We could do this by applying
TD(0) to the reward average (1/N)Y., r,(¢). However, this is not naturally distributed since the reward average depends
on what happens at every node in the network. Nevertheless, let 0;1 be the limit point of this method; our goal is to

converge to this Gg*l with a fully distributed method.

A natural way to do this is to distribute the TD(0) method as we do in Algorithm 1. Informally, Algorithm 1 starts
from an arbitrary parameter vector 6,(0). At each iteration ¢ € Ny, the agents take actions, the system moves to a new
random state s(¢) based on these actions, and agent v observes the a tuple (s(¢),s’(¢),r,(¢)). It then executes the TD(0)
algorithm on this tuple. This is done for T steps, and then the system “outputs” the average across the network of the
running averages of the iterates maintained by each individual node, and the average across the network of the latest
estimates. Communication among workers is required only in the final step to average their parameters.

Message complexity: Under the assumption that the nodes are connected to a server, computing the average in step 10
takes a single round of communication with a server. In the nearest-neighbor model where the nodes are connected
over an undirected graph and nodes know the total number of nodes N, it is possible to find an €-approximation of the
average in O(Nlog(1/¢)) time using the algorithm from Olshevsky (2017). If such knowledge is not available, and the
communication graph is further time-varying, it is possible to do the same in O(N?log(1/¢€) using the algorithm from
Nedic et al. (2009). As we will later discuss, it suffices to choose € proportional to a power of 1/7, so that the message
complexity of step 10 in the fully distributed setting is at most O(log T'). For large enough T, this is an exponential
improvement over the previous papers Doan et al. (2019a, 2020); Sun et al. (2020); Wang et al. (2020a) which required
communication at every step and thus needed 7 communications.
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Algorithm 1 TD(0) with Global State

1: For v €V, initialize 6,(0), s(0)
2: fort=0to 7T —1do

3 forveVdo
4: Observe a tuple (s(z),s'(¢),r,(2)).
5 Compute temporal difference:
T
8u(1) = (1) = (9(s(t)) — ¥9(s'(1)))" 6,(1).
6: Execute local TD update:
ev(t+1):ev(t)+a16v(t)¢(s(t))' 3
7: Update running average:

8: end for
9: end for B
10: Return 6(T) and 0(T):

2.3.2 The Local State Model

We next consider a model where each agent has its own independently evolving copy of the same MDP. Although this
seems quite different form the global state model, the two models can be treated with a very similar analysis.

More formally, each agent has the same 6-tuple (S,V, A, P, r,7); at time ¢, agent v will be in a state s,,(¢); it will apply
action a,(t) € A with probability t(a,(r)|s,(r)); then agent v moves to state s}, (r) with probability P (s, (¢)|s,(¢),a,(¢)),
with the transitions of all agents being independent of each other; finally agent v gets a reward r, (1) = r(s, (r),a, (¢), 5, (¢)).
Note that, although the rewards obtained by different agents can be different, the reward function r(s,a,s’) is identical
across agents.

We define 6;; to be the fixed point of TD(0) on the MDP (S,V, A, P, r, 7). Naturally, each agent can easily compute 6}
by simply ignoring all the other agents. However, this ignores the possibility that agents can benefit from communication
with each other.

We propose a distributed TD method in this setting as Algorithm 2. It is very similar to to Algorithm 1: each agent runs
TD(0) locally at each agent, and, at the end, the agents just average the results. The message complexity of this method
is the same as the message complexity of Algorithm 1: one communication with a server if a server is assumed to be
available and O(log T') communications in the fully distributed setting.

2.4 Why Two Models?

The global state model was introduced in the previous literature Doan et al. (2019a); Wang et al. (2020a); Sun et al.
(2020). It is a natural starting point for multi-agent RL where the state of the system depends on what all the agents do.

However, a shortcoming of the global state model is that it cannot be used to parallelize temporal difference learning.
Indeed, consider the global state model with the proviso that all rewards except the rewards of the first agent are zero,
and only the action of the first agent affects the transition of the global state. Then the global model reduces to the
regular policy evaluation problem for one agent. As a consequence, the best we can hope to achieve in the global state
model is to recover the guarantees for classical TD learning.

It may be objected that it is somewhat artificial to only have the first agent make decisions that matter, but it is easy
to come up with more involved examples with the same property (e.g., when all rewards are the same and the system
evolves according to the action chosen by the most agents).

By contrast, in the local state model, there is the possibility of doing better than the regular TD(0) because the agents
are “collectively” observing n tuples (s, (), s, (¢), r,(¢)) per step, whereas classical TD(0) only gets to observe a single
tuple (though it must be stressed that each agent in the local state model only observes its own tuple). Since these tuples
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Algorithm 2 TD(0) with Local State

1: For v € V, initialize 6,(0), 5,(0)
2: fort=0t0o 7T —1do

3 forveVdo
4: Observe a tuple (s,(2),s,,(¢),r,(2)).
5 Compute temporal difference:
T

6v([) = rv(t) - (¢(Sv(l>> - ’)/(P(S(,(I))) 6v<t)- )

6: Execute local TD update:
0,(t+ 1) = 6,() + 5, () By (s, (£)). (10)

7: Update running average:

A 1 A 1
6,(t+1)=(1-—= 1)+ ——=06,(t+1).
o= (1 5 ) 80+ 00

8:  end for

9: end for B

10: Return 6(T) and 0(T):

o) = 5 L4, 6=y T o),

are generated independently, to the extent that the variance of the temporal difference error affects the performance of
TD(0), there is the possibility of achieving performance that is a factor of N times better.

3 Convergence Analyses of Our Methods

We next describe the main results of this paper, which are convergence analyses of Algorithms 1 and 2 under the
assumption that the tuples are i.i.d. In the literature, the i.i.d model is sometimes referred to as having a “generator” for
the MDP and is a more restrictive assumption compared to assuming that the state evolves as a Markov process with
a fixed starting state. Nevertheless, this is a standard assumption under which many TD and Q-learning methods are
analyzed (e.g., (Sutton et al., 2008; Dalal et al., 2018a,b; Lakshminarayanan and Szepesvari, 2018; Doan et al., 2019a;
Chen et al., 2019; Kumar et al., 2019)).

3.1 Distributed TD(0) with Global State Model

Before stating our result, we need to introduce notation for the variance of the temporal difference error. Let 7(1) =
(1/IN|) ¥, rv(t) be the average of the instantaneous rewards received by the agents at time ¢. Then we define

5= (0~ (90600 - 105 0)" 63)|.

Recall that the expectation is taken with respect to the distribution that generates the state s with probability 7, then
actions (ay,...,a,) from the policy, and the next state s'(r) from the transition of the MDP.

Our first main result bounds the performance of distributed TD(0) with global state in terms of 62 as well as the initial
distance to the optimal solution.

Theorem 1. Suppose Assumptions 1-2 hold. Suppose further that {0,(t)},ey and {0,(t)},ey are generated by
Algorithm 1 in the global state model where the state s(t) is sampled i.i.d according to the stationary distribution T.
Then,

(a) For any constant step-size sequence tp = ---=ar = o, < (1 —y)/8,
A * (|12 —a(l-y)oT A * (|2 206°
E[|6r)-6al] <e E[160) - 6ilE] + e
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(b) For any T > (124;)2 and constant step-size sequence 0 = -+ = Oy = ﬁ
{ 6(0)—6 ’ 2
5| [a) -6y} +o
2 2 gll|,
(1=7E U’V% ‘VémM +27E [HV% Vi) Dir] = VT
(c) For a decaying step-size sequence 0 = H% with o = (1727,)60 and T = ﬁ, we have,

_ 2
where { = max {20{262, T HG(O) — 6y 2}.
A formal proof can be found in the supplementary material.

The first takeaway here is that the convergence rates to Gg*l in parts (b) and (c) are exactly the same as the existing
convergence times for regular TD(0). Indeed, the state-of-the-art finite-time convergence analysis for TD(0) was given
in the paper Bhandari et al. (2018), and the bounds given there are exactly the same as the ones in the above theorem,
up to constant factors'. As discussed earlier, the best one can hope for is to replicate the bounds for regular TD(0) as
Algorithm 1 contains the usual TD(0) as a special case.

Similarly part (a) shows convergence of the distributed method to an O(a6?/(w(1 — 7)) neighborhood of the optimal
solution (measured in terms of the performance measure on the left-hand side). This is also equivalent to the asymptotic
performance in their state-of-the-art analysis of regular TD(0) with fixed step-size from Bhandari et al. (2018).

Message complexity of the final consensus step: For simplicity, we have given Theorem 1 under the assumption
that the final averages é(T)7 6(T) are computed exactly. We now come back to the question of how many inter-
neighbor communication steps are needed to implement step 10 (and preserve our theoretical guarantees) when only
nearest-neighbor communications in a graph are allowed.

It is immediate that all the quantities we bound in Theorem 1 (i.e., the left-hand sides of all the equations) are Lipschitz
in a neighborhood of 9;,. Consequently, to preserve a constant error in part (a), or 1/ VT and 1 /T errors in parts (b)
and (c), it suffices to average with an error that is a small enough constant in part (a), and a small enough multiple of
1/v/T and 1/T respectively in parts (b) and (c).

As discussed earlier, to obtain an €-approximate average using state of the art distributed “average consensus” methods
takes O(log(1/€)) steps, where the constant in the O(-) notation will depend on N or the spectral gap as well as
assumptions we make about the graph. Thus we need to take € = O(1/+/T),& = O(1/T) in cases (b),(c). This means
we will need to run an average consensus method for O(log T') communications to approximately implement step 10 of
Algorithm 1 after running the previous loop for T steps. Thus the final message complexity is O(logT).

Comparison to earlier work: A similar algorithm was analyzed in Doan et al. (2019a). The difference is that the
agents were assumed to be connected by a (possibly time-varying) sequence of graphs; each agent communicated with
neighbors at each step. The bound derived in Doan et al. (2019a) for step-size that scales as 1/+/k with iteration k was

of the form _ 2 1
1= 5| |vey ~vaer [} <0 (w(o)—egﬂj; (”)1@) |

where A was related to the spectral gap of the communication graphs; crucially, it was remarked in Doan et al. (2019b)
that in the worst case, 1/(1 — 1) was as large as N* on a fixed network of N nodes.

In other words, the bounds of Doan et al. (2019a) allowed for the possibility that distributed TD(0) performs worse
than regular TD(0) in this setting. It might have been natural to guess that something like this is inevitable due to the
multi-agent nature of the system. Our results show this is not the case. Not only can we match the performance of
regular TD(0), we do not even need to communicate with neighbors except to average the estimates at the very end.

! Actually, the results here are slightly stronger compared to the results in Bhandari et al. (2018). The difference is that we give

2 2
bounds on the quantity (1 —y)E |:HV9* - Vé(T) HD] +2YE |:HV9* — Vé(T)‘ } , whereas the bounds of Bhandari et al. (2018), after

Dir

2
some rearrangement, give the same upper bound on just (1 — y)E {HV@;«I -Va (1) HD} .
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We remark that Doan et al. (2019a) also considered the fixed step-size, and the follow-up paper Doan et al. (2020) also
considered step-sizes that scale with 1/¢. The comparison of parts (a) and (c) with these results is similar, as is the
comparison of our results with the analysis of Sun et al. (2020): relative to all these papers, we both remove the scaling
with the number of agents or with the eigengap of the underlying graph, while requiring no communication except for
average computation at very end.

We next compare this theorem with the results of Wang et al. (2020a). That paper considered a more sophisticated
"gradient tracking" scheme, where multiple quantities are shared among neighbors in an underlying graph at every
step. Only the fixed step-size case was analyzed, and it was shown that the system converges to a neighborhood of the
optimal solution whose size does not depend on the number of agents or the spectral gap of a communication matrix.

The above theorem improves on Wang et al. (2020a) in several ways. Besides significantly saving on communication
by not requiring communication any communication until the very end, we give a clean expression for the final error:
the right-hand side of Theorem 1(a) is @62 /(@(1 — 7)) in the limit as T — 0. Most importantly, in Theorem 1(b) and
Theorem 1(c) we show convergence to the optimal solution itself without any dependence » or a spectral gap (rather
than only a neighborhood of it).

3.2 Distributed TD(0) with Local State Model

We now turn to the analysis of the local state model, beginning with some notation. Recall that, for regular TD(0) in the
global state model, convergence analysis will scale both with the distance to the initial solution, and with the variance
62 of the temporal difference error with average reward. For the local model, the variance is identical to the variance
defined in the centralized model:

T \2
0" =8| (r(s.0.8) ~ (00 - v0) " 61) .
As before, the expectation is taken with respect to the distribution that generates the state s with probability 7, then

actions (ay,...,a,) from the policy, and the next state s'(¢) from the transition of the MDP.

In the multi-agent case, we need some notion of the initial distance to the optimal solution; we simply take the maximum
over all the agents to define:

5 2
Ro=maxE [[16,(0) - 613
veV
In the case where all agents start with the same initial condition, this reduces to the same quantities as we had before,
: Y 2
ie,Ro=/6(0)—6%|5.
The following theorem is our second main result.

Theorem 2. Suppose Assumptions 1-2 hold. Suppose further that {6,(t)},cy and {8,(t)},cy are generated by
Algorithm 2 in the local state model under i.i.d sampling. Then,

(a) For any constant step-size sequence Qg = -+-= oy = & < (1 —17)/8, we have
O R W G LR e e I =
(b) For any T > ﬁ and constant step-size sequence Oy = --- = O = ﬁ we have
o=l —va v ] < 77 (< leo- i)+ 57) + - (557,
(c) For the decaying step-size sequence 0 = t% with o0 = ﬁ and T = ﬁ. Then,
! (2 E ([0 8l
Eflloc+1)-6:[3] < 2Oi2ff/N+ it S F(He:):) tele),

where { = max {2062, 7Ry }.
The proof of Theorem 2 is given in the supplementary material.

To parse Theorem 2, note that all the terms in brown are “negligible” in a limiting sense. Indeed, in part (a), the first
term scales as O(1/T) and consequently goes to zero as T — oo (whereas the remaining terms do not). In parts (b) and
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(¢), the terms in brown go to zero at an asymptotically faster rate compared to the dominant term (i.e., as 1/7T vs the
dominant 1/+/7 term in part(b) and as 1/¢2,1/t* compared to the dominant 1/¢ in part (c)). Finally, the last term in part
(a) scales as O(a?) and will be negligible compared to the term preceding it, which scales as O(«), when « is small.

Moreover, among the non-negligible terms, whenever 62 appears, it is divided by N; this is highlighted in blue.

To summarize, parts (b) and (c) show that, when the number of iterations is large enough, we can divide the variance
term by N as a consequence of the parallelism among N agents. Part (a) shows that, when the number of iterations is
large enough and the step-size is small enough, the size of the final error will be divided by N.

Note that, in part (c), the result of this is a factor of N speed up of the entire convergence time (when T is large enough).
In part (a), this results in a factor of N shrinking of the asymptotic error (when the step-size ¢ is small enough). In
part (b), however, this only shrinks the “variance term” by a factor of N; the term depending on the initial condition is
unaffected. The explanation for this is that in parts (a) and (c), the variance of the temporal difference error dominates
the convergence rate, while in part (b) this is not the case.

As far as we are aware, these results constitute the first example where parallelism was shown to help for distributed
temporal difference learning. They also justify the introduction of the local state model in this paper: indeed, even if
there is nothing multi-agent about the underlying problem, one might still choose to distribute the MDP among agents
(which could be nodes in a computer cluster) in order to speed-up computation as guaranteed by this theorem.

4 Numerical Experiments

In this section, we perform some experiments to verify the conclusions of our theorems and compare Algorithm 2
with earlier work from Doan et al. (2019a) and Wang et al. (2020a). Our experiments are performed on classic control
problems from OpenAl gym and Gridworld; details are given in the supplementary materials.

We focus on the case of constant step-size, since this both matches what is usually done in practice (where a fixed
but small step-size is typically picked) and results in faster convergence fitting within our limited computation budget.
Normally, a choice of step-size of o = a results in an error of O(¢) around the optimal solution. But according to

Theorem 2(a), choosing N = 5/ will result in a final error that is a much smaller O(a?).

In other words, if we were to plot the inverse of the variance of the final answer, we should see it grows linearly in
one agent, and quadratically with N agents chosen as above. This is exactly what Figure 1 below shows, plotting as a
function of o~ ! to make the quadratic vs linear distinction happen when o — +oo, thus making it more visible.

Note that the step-size & can be thought of trading off between the quality of the final solution, which is O(a), and the
convergence time (which scales with a~!). These graphs show that we can use parallelism to get a much more accurate
solution (O(a?) error instead of O(a)).

Our second set of simulations compare Algorithm 2 with earlier distributed TD methods stated in Doan et al. (2019a),
Sun et al. (2020) and Wang et al. (2020a) in terms of TD error. The distributed TD methods of Doan et al. (2019a) and
Sun et al. (2020) are the same expect that Doan et al. (2019a) has an additional projection step (these two methods
can be viewed as the same if one chooses a large enough set for the projection step). Again, we consider constant
step size. The number of agents N = 100. The communication graph among agents is generated by the Erdos—Renyi
model, which is connected. Recall that our method only uses one run of average consensus at the end, whereas
the other methods require a communication at every step. The graphs for our method show the TD error at each
iteration if we stopped the method and run the average consensus to average the estimates across the network. Figure 2
shows that the TD errors of Algorithm 2 perform essentially identically to the other methods in spite of the reduced
communication.

5 Conclusion

We have presented convergence results for distributed TD(0) with linear function approximation. Our results improve
on the previous literature both in terms of utilizing almost no communication: only one run of average consensus is
needed. The convergence bounds we derive match state-of-the-art analysis of TD(0) or reduce the variance by a factor
of N when the nodes generate their samples independently.
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Supplementary Information

We now provide proofs of the theorems in the main text of the paper. We begin with a sequence of definitions, notation,
and simple observations we will use later.

A Notations and Preliminary Results

A.1 Linear Equations Satisfied by the Fixed Point

Let X (1) = (s(¢),s'(¢),r(z)) be a triple that generates s(¢) with steady-state distribution 7; and generates s’(¢), r(t) from
the MDP. It is well-known Tsitsiklis and Van Roy (1997) that the limit point 8% of centralized TD(0) is the unique
solution of the linear system

AB =b, (11)

where
A= EIAX )] = E [9(s(1)) (r0(5'(1)) ~ 6 (s(1))) | (12)
and
b= E[bX(1))] = E[r(1)¢(s(1))]-
We give a quick generalization of this to the global state in the following lemma.

Lemma 1. Suppose that Assumption 1-2 hold and suppose that the iterates {0,(t) },cy are generated by Algorithm
1 where the step-size sequence 0y is positive, nonincreasing, and satisfies Y52, 0y = oo and Y. o? < oo. Then 0(t)
converges to 0 a1 with probability 1, where 6 o1 is the unique solution of equation

Z by, (13)
vEV
where
by =E[r(t)9(s(1))]. (14)

Proof. Let 8(t) = (1/N) Y, 6,(t) be the average of the iterates for all the agents in the network. Following the update
Eq. (8), we have

6(t1+1)=0(1)+ o~ 26

=6(1) + o <;] ; R (09 (1) = 9(s(1)) (9(s(1) = ¥9(s'(1)))" 90))

In other words, 6 (t) follows the TD(0) recursion with (1/N) Y, E[r,(t)] as the reward. We thus apply Theorem 2 of
Tsitsiklis and Van Roy (1997) to obtain this lemma.

A.2 The Expectation of the TD Direction
For agent v, as shown in Eq. (8), the direction of the distributed TD(0) with global state update at iteration ¢ is
0,(¢)9(s(¢)). We split it into two terms

8,(1)9(s(t)) = hy(t) +my (1),

where
hy(t) = b, —AB,(1), (15)
my(t) = 8,(2)¢(s(t)) — hy(2). (16)

It is worth mentioning that, for a given 6,(¢), the quantity A, (¢) can be interpreted as the conditional expectation of the

direction 8, ()¢ (s(¢)):
hy (1) = E[8,(1)9 (s(2)) 16, (1)]
Indeed,

E[8,(1)9(5()16,(0)] =E [ (1) = (6(s(0)) = 79(5' 1)) 8u(6) ) 9 (1)) 61(1)

14
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=E (0 (s(0))] ~ E [9(5(0) (0(5(0)) ~ 70(5'1))"] 8,1
=b, —A8,(1), (17)
where the second equality follows because r,(r), ¢(s(¢)), ¢ (s'(¢)) have the same distribution regardless of 6,(r).

It is immediate then that m,(r) represents the error, i.e., the difference between the direction J,(¢)¢(s(¢)) and its
conditional expectation. Hence, the update of Eq. (8) for TD(0) can be written as:

6u(t +1) = 0,(1) + 0 (hy (1) +mu(1)). (18)

Let O(¢) denote the matrix whose v-th row is the estimates of agent v at time ¢, i.e., 87 (¢). Thus,

— 60 —
@(l): .. GRNXK.
— 0 —
The matrix form of Algorithm 1 then can be written as
O(+1)=00)+o[H(t)+M()], (19)

where H (t), M(t) are the matrices, whose v-th rows are h? (¢), m! (t) respectively.

Let us adopt the convention that given a collection of vectors, one for each agent in the network, putting a bar will
denote their average. Then

6(r+1)=0(t)+ oy [h(t) +m(r)] . (20)

Our next proposition introduces some useful properties of A(t) and m(t).
Proposition 1. Suppose Assumptions 1-2 hold, and suppose that {6, (t) },cy are generated by Algorithm 1. Then,

(a) h(t) is a linear function of 0(t):
h(t) =b—A0(t),

where A, b, are defined in Eq. (12) and Eq. (14), and b = %Zvev by,
(b) The conditional expectation of m(t) given ©(t) is equal to zero:

Elm(1)|©(1)] = 0. @1

Proof of Proposition 1. (a) Following the definition of /(¢), it can be observed that:

_ 1 - _
h(r)y=—Y h(1)= N Y (by—A6,(1)) =b—AB(1),

vey vey
where b = %Zvev by.
(b) Recall that A,(¢) is exactly the conditional expectation of 6,(¢)¢(s(¢)) given 6,(¢). Actually, the more general
statement

E[8,(1)9(s(1))|0(1)] = M (1),

is true; for a proof, one can simply repeat all the steps of Eq. (17) replacing 6, (¢) by O(¢).

Furthermore, m, (¢) is defined as
by Eq. (16). Therefore: 60,(t):

E[m,(1)|0(t)] = E[8,(1)¢(s(1)) — h(2)|O(1)]

By the definition of /7(t), we then have

15
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A.3 Averages of TD Updates

In this subsection, we introduce an equality satisfied by the inner product between the averages of TD updates throughout
the agents in the network and the direction from the averages of the iterates throughout the network to the fixed point of
distributed TD algorithm.

Lemma 2. Suppose Assumptions 1-2 hold. Further suppose that {0,(t)},c\ are generated by Algorithm 1. For any
integert > 0, we have that

2 2
ot YHV% ~Veu) Dir:| @2)

B [[3) +m(0)]" (6~ 8())] = E |1 =) [Vay Vi

Proof.

E[[h)+m(0)])" (65~ 0(0)] =E [E] () +m(0))" (83— B(1))I0(1)]
—E [ (1) (65— 6(1)

where in the second equation, we use Eq. (21). Here, by Proposition 1 part (a), we have that h(t) is a linear function of
(1), i.e., h(t) = b—AB(t). Furthermore, if we let 2(8) denote the linear function b — A, we can obtain that h(G*) =0.

Corollary 1 in Liu and Olshevsky (2020) states that for any 8 € RX,
(6" —6)"2(6) = (1 =7)IVo: —Vallp +¥lIVe- —Vollpir,

where g(6) in that paper denote the steady-state expectation of r(s,s' )9 (s(1)) — ¢ (s(t)) (¢ (s) — y¢(s'))" 6, which is
indeed b — A6 and 0* is the limit point of centralized TD(0) method such that g(6*) = 0.

Now applying Corollary 1 in Liu and Olshevsky (2020), we can obtain Eq.(22).

B Proof of Theorem 1

With the above preliminaries in place, we can now begin the proof of Theorem 1. Our first step is to analyze the
recurrence relation satisfied by the averages of the iterates throughout the network.

Lemma 3. Suppose Assumptions 1-2 hold. Further suppose that {0,(t)},c\ are generated by Algorithm 1. For any
integert > 0, we have that
.

+}/HV9* Va

E|[06+1)-65]3] <E |6()~ 63][3] + o7 [26‘2+SHV9*1 Vi

20, {1— HVQ Vs

: :|
) )
Dir

Proof of Lemma 3. By Eq. (20), we have

16+ 1) — 6415 =8(c) + o [A(t) +m(e)] - 65
=(|8(1) — 63[|5 + 204 [A(r) +m(1)]" (8(r) — 63)) + 02 ||A(z) +1m(r)][3

Taking expectations we obtain that
E66+1) - eul3] = E[18¢) - 613] + 02E [[(0) + (1) [3] —2e4E [ (hte) +m(0))" (63— 6() | 23)

Consider the second term on the right hand side of Eq. (23). Following the definition of A() and (), we have that

E [Hmt)m(t)u;] -

2

26

VEV

2

16
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Plugging in the expression for TD error 8, (¢) with Eq. (6), we obtain

E :Hiz(z)+ﬁz(t)|]ﬂ
_ 2
£ (|| & T n@o6(0) 3 T 9()) (9(s(6)) — 19(5'1))) 6,(0) ]
L vey VEV 2
- 1 5
= || L [0~ (0060~ 10/0)" €3] 061) ~ 7 T 0t6(0) (016(0) ~ 00501 (610~ 65) ]
L ve ve 2
Denote
zv [1(0) = (9(5()) = 0(5' (1)) 03] 9(s(0)),
5 zv 0(s (1) =19 (0))" (B,(1) ~ 6.
Using inequality ||a* —b*||> < 2||a*||? 4-2||b*||?, we obtain
E([[ae)+m(@)|3] <2E [la*|2] +2£ 15" (24)
We first bound E [|a*[|?]:
| 2
ElllaF] =E || 5 L n09(s(0) = ((#(6(6) = 19(/01) 65) 6(5(1) ]
- | )
<E (N Y r(0) = (8(s(0) = y9(s' (1)) " ;‘1) ] =6, (25)
I vey
where the inequality follows by Assumption 2 and the equality is just the definition of &2.
The next step is to find the bound for E [||b*||?]:
2
E[|6*|°] =E Xl,}fb (1) = 70(5'(1)))" (8,(r) — 63) ]
I _ 2
[0 (66 - 90" (50— 05) }
<4|[vey Vo Z (26)
where the last line follows from the proof of Lemma 5 in Bhandari et al. (2018).
Plugging Eq. (25) and Eq. (26) into Eq. (24), we get
E [|[fte) + () |[3] < 267 +8 [V, — Vg Z 27)

The argument we just made bounds one of the terms in Eq. (23). We next consider a different term in the same equation,
namely we consider the third term on the right hand side of Eq. (23) which satisfies the equality in Lemma 2:

E [[30) + m(0)]" (6.~ 8(0)] = £ | (1= [Vay Vi ~Vay

2
} (28)

Dir
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Finally, combining equations Eq. (23), Eq. (28), and Eq. (27), we obtain

E[l6+1)-6a]3] <E[l80) - 65[3] + o [252+g [ves = vai

.

2
—204E {(1 -7 Hveg*l Ve D+7HVegl Ve

2
Dir |’

which is what we needed to show. ]
With this lemma in place, we next prove Theorem 1.

Proof of Theorem 1. Starting with the statement of Lemma 3, which we reproduce here for convenience,

2 ]

+yHV9* Ve

“\9 (t+1)— 64| } <E {Hé(r)—eg*luﬂ +af [252+8“V9*1—Vé(t)

2
Zoc,E{l HVW Va DJ. (29)

we will plug in different choices of step-size.

Proof of part (a): We consider a constant step-size sequence o = --- = o7 < (1 —¥)/8. Let a denote this constant
step-size. Since a < (1 —¥)/8, it follows that

8a? —2a(l1—7) < —a(l—y).
Plugging this into Eq. (29) and rearranging,
Ell|6@+1)- 053]
£ (100~ 6313] - o1 - 9 | vy i,
— %112
<E [||9(f)*9g1||2} —oa(l-y)E [HV% —Va)

<(1-a(l-7)o)E [[8() - 65]3] +20%67

2 252
D] +20°6° - 2avE {HV% Ve

2
Dir

2
] +20262
D

2

~ is non-negative and the third inequality uses Lemma 1 in

where the second inequality follows that HV"g*u Ve b
1r

Bhandari et al. (2018) which states that

Vol < [[Vellp < [16]2-
Iterating this inequality establishes that after T iterations

E[|6(r) - 053] <(1-a(1-ne) E[||6(0) gl||}+za“21— (1-po)
<170l g [Hé(o) - eg*1||ﬂ + (1_%

where the last inequality follows because 1 — ot(1 — y)@ < e~ *=1® and the standard formula for the sum of a
geometric series.

Proof of part (b): We now take the step—size Oy="=0r= % Since the step-size is constant once we fix T,

we can denote it by o. Since T > —=, it can be observed that o« = ﬁ < 1%’ . Plugging this into Eq. (29) and

(1 7)
rearranging it, we obtain

+2va9* Vai

E{(l_”HV%‘V@(r) Dlr]SE[Hé(I)_e’;H;] E[I186+1) -85 +206"
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Summing over ¢ gives

2
b + 2’}/HV9g*] — Vg(t)

2 ) ) _
" ] <efl60 - os1E] - [jor) - o5l +2rater

E[[600) - 83| +270%?,

T-1
t;) aE [(1 -7 HVeg*] —Va)

Dividing by & on both sides, we obtain:
T-1
t;) E {(1 -7 HVeg*l —Vau

Finally, recall our notation 6(T) = LY, 6(t). Then, by convexity

1 L 2 2
D1r:| I:ZIE [ 1 - Y> Hvegl B Vé(t) D Dir:|

E[[60) - 63| + 2052 (30)

2
27 |Vey = Vay

R I ]
DJ < —£[|[6(0) - 63] + 2705

+2yHV9§l ~ Va0

2
{1 vy Va4 275 Vi

IN

1
ol
Plugging in that @ = e we have that

£ [0y Vaen [, 21~V [}, < 16001 - 6502] + 2

2
E {H J +26?

we have that for # > 0, it can once again be observed that

\/T

Proof of part (¢): From oy < ap = ¢ = 1%/ ,

8a? —204(1—7) < —ay(1—7).
Applying this to Eq. (29), we have

2 2
D] —204YE [HVGQ Va0 Dir]
2
D] ’

p, We obtain

E[[6¢+1)-64]3] <E[]60) - 04]13] +2025> ~ (1 - E [HV% Va0

< [j80)- 055] + 207 -1 - [ o, vy

Applying Lemma 1 in Bhandari et al. (2018) stating that 1/®||0]|> < ||Ve|

E[06+1)-65]3] < (1- (1 - p)@)E [ [[6() - 053] +2076".

Wwe will next prove by induction that this last inequality implies that

E[ow - 0] < >

_ 2
where § = max{2a262,‘cH6(0) — 6y 2}.
Indeed, the assertion clearly holds at + = 0. Suppose that the assertion holds at time ¢, i.e., suppose that

[HG gl } < h% Then,

E[|86+1) - 03] <01 -1 —pp) =

(418 —a(l-y)wl+2026>
B (t+71)?

+207262
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t+1-1)¢+¢—a(l -yl +2a%6
(t+71)?
(t+t-1)¢—¢{+20%62
(t+1)?
(t+7t-1)¢  (r+7—1)¢
= (t+1)? S(t+r)2—1

__ &
t+1+7
where note that, at the first equal sign, we plug in the expression for ¢o;; and the second inequality, we use that
¢ >2a%62. [ |

Next, we state Eq. (30) in the proof of part(b) as the following Corollary.

Corollary 1. Suppose Assumptions 1-2 hold. Suppose further that {6,(t)},cy are generated by Algorithm 1 in the
global state model. Then, For any constant step-size sequence op=---=ar =a < (1 —7)/8,

2

2 1 - _
E [(13/)”\/9;vé(T)"DJrz;f"vgglvé(T)‘ ] < - [He(o)feg*l”ﬂ +206°.

Dir

We believe this corollary is of independent interest, as it gives a very clean expression for steady-state error of O(G?)
when evaluated in terms of the metric on the left-hand side. Note that there is no scaling here withe either the number
of agents or the spectral gap, either in the final steady-state error or in the convergence time that comes from the first
term on the right-hand side.

We state this as a corollary, rather than a theorem, since our theorem uses the metrics in the previous work, i.e.,
|16 — 6(T)|3 in the case of fixed step-size, to make the comparison between this paper and earlier papers clear.
However, the relatively clean expression for the final steady-state error in this corollary suggests that, rather than
using the distance to the optimal solution as the metric of performance, it is better to use the distances between the
corresponding value vectors.

C Proof of Theorem 2

We now turn to the proof of Theorem 2. We now assume, for the remainder of this section, that we are analyzing
Algorithm 2 in the local state model, subject to Assumptions 1 and 2. It turns out that, in many respects, the local state
model can be treated analogously to the global state model.

Our starting point is similar. For a particular agent v, as shown in Eq. (10), the direction of the distributed TD(0) update
at iteration ¢ is 8,(¢)@ (s, (¢)). As before, we split this into two terms

(1) (sv(1)) = hy(t) +my (1),
where

(1) = b—A6,(0),

my(1) = 8,(1)9 (sy(1)) — hy (1),
where

A=Eu [0(5,0) (9054 ~ 95, (0)) .

where, note that the right-hand side does not actually depend on v since s,(¢), s, (¢) have the same joint distribution

regardless of v, and
b=Ey;s[r(t)9(s(1))]

where, again, the right-hand side actually does not depend on v.
It is worth mentioning that, although here we use the same notation 4, and m,, as in our earlier treatment of the global
state model, the definitions are now slightly different since each agent maintains its own state s, ().
As before we let O(z) be

— 6/ —

@(l): eRNXK.
— oy —
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Our first observation is that the quantity 4, (¢) can be interpreted as the conditional expectation of the update direction:

hy(t) = E[6,() 9 (5.(1))[©(1)] -

An identical argument as in Eq. (17) can be carried out since r, (), ¢ (s,(¢)), ¢ (s/,(¢)) have the same distribution for all
agents v.

Similarly to before, we have the following proposition for the local state model. Recall here our notation of putting a
bar to denote the network-wide average.

Proposition 2. Suppose Assumptions 1-2 hold, and suppose that {6, (t) },cy are generated by Algorithm 2. Then,
(a) h(t) is a linear function of O(t): B

h(t) =b—A0(t).
(b) The conditional expectation of m(t) given ©(t) is equal to zero:

E[i(t)|©(t)] = 0. 31)

The proof of this proposition is essentially identical to the proof of Proposition 1 and we omit it.

Our next step is to prove a recurrence relation satisfied by the average of the iterates, stated as the following lemma.
The key differences between this lemma and the previously-proved version in the global state model is that the quantity
o2 that appears in this recursion will now be divided by N, at the cost of the addition of an extra term we will have to
deal with. Recall that 6y is the fixed point of TD(0) on the MDP (S,V, A, P,r,7).

Lemma 4. Suppose Assumptions 1-2 hold. Further suppose that {6, },cy are generated by Algorithm 2. Fort € N,
we have that

E[loc+1)-6:5] <e o) @A]+,G“+ Y E (Ve \%%D

vey
2
—204E {(1 -7 HVel*C —Va) Dir] ’

2
bt

Vo: —Vaq)

Proof of Lemma 4. Similarly to our argument for the global state model,
6(r+1)=0(t)+ oy [h(t) +m(r)] .
Therefore,
6(+1) 91CH2 =|6() - el*cui +20; [A(t) +m(z)]T (6(t) — 05) + o || () +m(t)]]; -

Taking expectations:
E[Hé(m)_egug}:E[Hém_egH]+atE[y|h H] za,E[( £+ <>)T(e;;_é<;>)]. (32)

We consider the second term on the right hand side of Eq. (32). Following the definition of /() and r(t), we have that

2
E[[3)+m()]3] = Z 8.t
LEV 2
Plugging in the expression for TD error J,(¢) with Eq. (9), we obtain
E [Hi_z(t) +m(,)||§}
2
£ Zm () = 5 X 05s(0) (6(0) ~ 19(s51))” 61(0)
i veV veV 2
r 2
—E ;;ﬁmwmemewwﬁwmm%;;ﬂmmwmw—w@wf@m—%
L ve ve 2
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Denote |
@' =5 L [n0 = (00 =10 ()" 6] 950 (0), (33)

vey
b’ % Z;’;q)(s”(t)) (9(s0(1) =79 (s0())" (B(r) — 650). (34)

Using inequality ||a* — b*||> < 2||a*||* 4 2||b*||, we obtain

E [Hiz(r) —Hh(t)”ﬂ <2E [[|a*|?] +2E [|1p*]*] - (35)

We first bound E [[|a*||?]. Let a* = %ZVGV Py, Where

py = {rv(f) — (¢(s(r) — 79 (L))" 6{;} 0 (s,(7)).

Recall that, in the local state model, we are just running TD(0) on the identical MDP with the identical rewards across
nodes. Hence the quantity 6] satisfies Equation (11), i.e., for all agents v,

E[ () = (6(s(0) = v (54(0)))" 8) 9(s1(1))| =0.
We thus have that E[p,] = 0 for v € V. Then

E[la" ) =E [(a")" a']

| (vee) ()]

Y oleu+ Y ploy
vey AV

1 1
=~E ol p1] + V2 v;,E[pv]TE[pv/]

1

1 |
=~E lpip1] = ~E [llp1]I*]

where the forth line follows because we are assuming the quantities {s,(¢) },cy are generated i.i.d. across time steps ¢
and the last line uses that E[p,] = 0. Next,

E[Ip1]?) =E [H (0= (061~ 70(51(1)) " 6% ¢<s1<r>>H2]
< | (n) = (06100 - rotsi ) 8) | = o2
where, the inequality follows Assumption 2 and recall that 62 is defined by,

0 = | (1) (005,00 - v0(5,0) ) |

‘We have thus shown:
(36)

Our next step is to bound E [||b*[|*], where b* is defined in Eq.(34):

5 X (004(0) ~ 1 (616) (80) - 800 (51(0)

vey

|

E (5] £ [
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2
= nE Zv(qxsv(r))—y¢<s3<r>>)T<ev<r>—elt>¢<sv<r>>
<3N L E| (06400 =040))" (0 ~60)) o) |
<N L E| (000 =000 (0.0~ 60))
< T E [V Ve;g||12)]a (37
VGV

where the first inequality uses | YV, a;x; <N YN, @2||xi||?; the second inequality follows Assumption 2; and the last
line follows from the proof of Lemma 5 in Bhandari et al. (2018).

Plugging Eq. (36) and Eq. (37) into Eq. (35), we get

E {Hh(t) Olx } + Z E [ Ve, () Veg”%} : (38)

VGV

This equation bounds bounds one of the terms in Eq. (32). We next consider a different term in the same equation,
namely we consider the third term on the right hand side of Eq. (32):

£ [h()+m(0)]" (6 —6(0)] =E [E | (k) +m(0)" (6.~ 8(1)) 001
—E [ (1)(6: ~ 6(1))]

where in the second equation, we use Eq. (31).

By Proposition 2 part (a), we have that (t) = b — A6(¢). Furthermore, if we let 2(6) denote the linear function b — A6,
we have that 4(6;7) = 0. Now applying Corollary 1 in Liu and Olshevsky (2020), we have that

E [[h) +mi0)]" (6~ 8] = | (1= Ve iy [, +7ve Voo [, (9)
Combining equations (32), (39), and (38), we obtain
E (ot 1) - 6 ] <z ) - 6] + o2 (2N + 8 L E Ve v%ng)
—2aE [(1 ) HV% ~Vaw|, g yHV% _. ZD] .
|

With this lemma in place, we are now ready to provide a proof of Theorem 2. This will be similar, but not identical, to
the proof of Theorem 1, as the recursion we have just proved as an extra term multiplying O( ;) relative to Lemma 3.

Proof of Theorem 2. Starting from Lemma 4,

_ . - i} 202 8
E[||6+1) -6 <E[[|6) - 8x[fy] +a? <§+ v LE Va0 —ve;;n%})

—20E [(1 —y) HV% Vs

-H/HVG* Ve()

] (40)
Dir

we first consider the bound for the term Y., ¥V | E {HV& — Ve ||%} . We can plug in that N = 1 into Lemma 4 to
obtain the next inequality:

E[l6v(+1) = 8zl13] <E [16.) 65215 +0F (20 +8E [ Ve, — Ve I3])
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2
Dir|

_20E [(1 — 1 |Va Voo Z+ v||Veg ~Vao

If the sequence of step-sizes are non-increasing and satisfies
8oy —204(1—7) < —ay(1-7),

then we obtain

E {(1 -7) HVel*c —Va, )

2+2va9*—‘/ ’ <E[\|9(r)—e*||2]—E[||9(z+ )— 6 ||] 20262
D e 0,() pir| = v Icll2 v Ic

2
} is non-negative, it now follows that
Dir

Since E [ZVHV% —Vo,0)

£ [(1 =7)||Va, ~Van Z] <E[I6.0) - 8:13] — E 160+ 1) - 6 15] + 2070

Multiplying ¢y on both sides and summing over ¢, we have

)

_ T—1
—aok [[16,(0) - 6:113] + Zatl—at [16.(0) — 8i113] — ar—1E [ll6u(T) — 6] +2 ¥ a0
=1 t=0

T-1
Y o’E [(1 —-7) HVe;; Vo,
=0

<at [1.0)- 615 +2 T, oo

where the last inequality is because that { ¢4 }, are non-increasing step-sizes. Summing over agents v , we get

]<ZaoE[||9( — o ]+222a o

v=It=

N T-1

Yy a2E{ 1—y HV"* Vo, (1)

v=It=

<NogRy +2N Z a’c?, (41)
1=0

where Ry = max,cy E [H 6,(0) — 6 Hﬂ . With this equation in place, we now turn to the proof of all the parts of the
theorem.

Proof of part (a): We consider the constant step-size sequence 0y = --- = o7 < (1 —¥)/8. Then let o denote the
constant step-size. Plugging into Eq. (40) and rearranging it, we get

o] <2 (1801~ 6212] - £ [60-+ 1) - 6]
(2 5 X EIVa ve;;n%)]).

VEV
2
Dir

M= 1 ~ 27T o 8 1=
<t [|60) - 82 2] ~ £ [|18(r) - 5] + 2L ﬁzz oE [|IVa, ) — Ve I3

20E {(1 ) |[Ve, ~Vai —H/HVQ* Vao

Summing over ¢ gives

ZZaE{l HV"* Va +}/HV9* Vs

(e

s 1, 2Ta’c? | 8 '
<E[[6(0) - o2 + 222 NZ Y oE [||vev<,>—ve;g||%>}
- : 1=0 veV

- 1 2T o?c? 8 A s
<E[[[6(0) - 6i[3] + N N(I-7p (NaROHNt;oa G)
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- 2To’c? 8o
E[GO—G*Z} — + —— (Ro+2T
H ( ) ICHZ + N +1 ,},( + OC )
where the second inequality follows that £ M o(T)—6 Hﬂ is non-negative; the third inequality uses Eq. (41).

Now dividing by 2¢ on both sides:

2 1 ~ . Tao? 4
} <5qF [HG(O)—GIC\@] +—+j(Ro+2Ta2oz).

2
Vo —Vp
D+YH O — 00 || i N 1

T—1
Z%)E {(1 —7) HVG;; —Va)
t=

Let 6(T) = 1Y, (). Then, by convexity

2 2 2
O s 5 T A e o )
1 4R, ac? 8alo?
<T(2 o0l 725 ) + -+ =5
which is what we wanted to show.
Proof of part (b): We now consider the step-size o = --- = Qr = \f When T > = )2 , it can be observed that

l%y . As a consequence of part (a), it is immediate that,

2

_ .21 207 1 (4Ry+80?
DJ 2\F (E [16(0) 65 +N> +7 (1—7/> !

. is non-negative and rearranging Eq. (40), we have
1r

_ 1
a=J-<

|9 Vi —Vagn [, 7V Vi

which is what we wanted to show.

2
Proof of part (c): Using that yHV% —Va

E[l86+1-6il3] <E[[160) -6 ]3] + e ( =Y E Ve velzn%)})may)EHveﬁve(f)Z

VGV

Applying Lemma 1 in Bhandari et al. (2018), which states that
Vol < [Vellp < [16]2,

we get
_ - 262 8
E[HG(H-I 910||] (1-204(1—7 w)E{HB(t)—OltHﬂ—i—af(;+NZE[|V9V<,)—VQE|%}). 42)
vey

We first consider the last term on the right hand side, i.e., £ {”V&y(t) —Ver ||%} . Since each agent in the system executes

the classical TD(0) at time ¢ for # € Ny, then by part (c) of Theorem 2 and Lemma 1 in (Bhandari et al., 2018), forv € V,
we have that

2 w112 ¢
E [”VG"(’) _V612||D:| <E [Hev(t) - 910”2] < m7
where A )
¢ = max {2a*c%, 7Ry},
recall that Ry = max,cy E {H 6,(0) — 912”;] and T = ﬁ_ Hence,

8¢
o T E[Va — v I < =
VEV T

and plugging it into Eq. (42), we can obtain
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E[[06+1) - 6il3] <01 -2a(1-no)E [|6() 61 ]3] + o <2;+fff>

2.2 25
(1_4) {He e{gHﬂJrzaG/NJr Bo’d

t+7 (t+71)2  (t+71)¥
where we use that o = t% with o0 = (172?/) 5 and T = m to get the last line. This recursion implies that
_ _ 2 20262 Ul
E[[06+1 - 6il5] E[[800) - 6i]f3] +
H (+ ) ICH H( f+T— ) H ( ) ICHZ N lz +T_12JIO t+T—l

+8a2§Z (43)

i—1
(t+7— 3,0< t+r—l>

! t+1—4 t+17-5 T—4
n( t—H’—z): 1 t+t—1 T
_ (t—1)(t—2)(t—3)(t—4)
D)+ T-D(E+T-2)(t+7-3)
T—1 7-2 -3 T—4
it t+t—1 1+71-2 t+7-3
—1\*
<<t—|—r> . 44)

The last inequality follows because that last three terms in equation is smaller than (t— 1) /(7 4 7). Indeed, fori = 1,2,3,

we have that
1:—i—1_1:—1+ T—i—1 71-1
t+T—i t+7 t+t—i t+7T

_ -1 +(t+‘L')(T—i—1)—(T—1)(I+T—i)

Consider the product

t+7 (t+7)(t+7—10)
T—1 (i+1)t
Tt 4+ +T—i)
T—1
< :
r+7

For the other product H;:(l) ( in Eq. (43), applying the same method of Eq. (44), we thus have

i1 A4
H(l 4 )S(HT z) ' 45)
=0 r+1-1 t+7

Using Eq. (44) and Eq. (45), Eq. (43) becomes
£ [[l86+1)- 6]

17— l)

t—1\* [ - 2] 20207 ¢ 1 t+T—i r+1—i\*
<(+—) E[ll60) - 6[)] 802
_<t+r> 1600) — 8]l + N Z’ (t+1:—i)2< +7 ) * CZ t+1—l)3( 47 )
—1\* 1A 21 20?0 L (t+T— r+7—
<=2 E[ 8(0)— 6 } o> 46
(H—r) 16(0) = &illy] + N ig’) (t+1: CZ (t+1)* (46)
Next, we bound summations of the second and the third on the right hand side ¥, t(::rl“ and Y ’:ff 1 separately.

(t+7—i)?

t+T)4 , we have

For the summation in the second term, i.e. ):’

07 Y
(t+7— Do+
l.;) (t+r Z(
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1 t
<
i

+7T )

i
(t+7)* ;
1
6

(t+1)° (41 +T+1) (2 4+2T+1)

gt I B0+)
1
NER3

1 t+T—i
i=0 (141)%

(47)

For the summation in the third term, i.e.,

, it is immediately that

1 (t+1)(t+27)

(t+1)* 2

S () @a+0)
1
=i (48)

Therefore, combining Eq. (46), Eq. (47), and Eq. (48), we obtain

22N saré (- 1E[[|6(0) 6]
t+7 (t+1)2 (t+1)* '

E[l66+1n-6il3] <

D Numerical Experiments

In this section, we provide details of the simulations done in the main body of the paper. These simulations were done
on OpenAl control problems and GridWorld. We first give the details of the Gridworld setup, which is fairly standard.

D.1 Settings on the Gridworld MDP

In this subsection, we introduce the specific problem settings for the grid-world MDP. We consider a 4 x 4 grid, where
the states are S = {1,2,...,16}. There are four possible actions for each state, A = {left, right, up, down}. If the action
leads out of the grid, then the next state will remain to be the current state. Set the discount factor in the MDP to be 0.8,
y=0.8. Let deterministic rewards r(s,a) be randomly chosen from a normal distribution N(1,100).

1|12]3] 4
S|16 718
9 |10 | 11 | 12
1314 |15 16
Table 1: State space of grid world

In this experiment, we will consider a random policy, i.e., each agent chooses an action from the 4 possi-
ble actions uniformly at random. Feature vectors are generated as ¢(s) = (1,0,0,0)7 for four upper-left states
s € {1,2,5,6}; ¢(s) = (0,1,0,0) for four upper-right states s € {3,4,7,8}; ¢(s) = (0,0,1,0)7 for four lower-left
states s € {9,10,13,14}; and ¢(s) = (0,0,0,1)” for four lower-right states s € {11,12,15,16}. In this case, for any
parameter 8 € R*, we have Vj (s) = 87 ¢(s) as the approximation for the value function of state s. Furthermore, samples
are generated i.i.d and are equally likely chosen from the state space.
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Due to the relatively small state space and the fixed policy, it is simply for us to use both the transition matrix P, and
further get stationary distribution 7. We can also get 8], by solving Eq.(11). Therefore, the left-hand side of Theorem

2(a):
2
Dir] ’

where recall that norm || - || p and semi-norm || - ||y, is defined as Eq.(2) and Eq.(3) with stationary distribution 7, can be
obtained exactly for any constant step-size.

2
E [(1 =) HV"I’E ‘V9<T)HD+7HV911 _Vé(T)‘

D.2 Settings on the Classic Control Problems

Unlike the grid world case, for a more involved RL problem we do not have an explicit solution for the final limit 6,
that we can compare to. In other words, it is not possible to plot the left-hand side of Theorem 2 which contains the
optimal parameter vector 6. As a consequence, we use the empirical variances among several runs of the method,
which is a plausible measure for accuracy of the method in place of the left-hand side of Theorem 2(a).

For classic control problems, we use the tile coding Sutton and Barto (2018) to deal with multi-dimensional continuous
spaces. A tiling is a partition of the state space and a tile is an element of a partition. We set the parameter dimension K
be the total number of tiles among all tilings. The feature vector of state s, ¢ (s) € RX, is a vector has one component
for each tile in each tiling. For a state s, it falls in exactly one tile for each tiling. The element in the ¢ (s) corresponding
to the tile that s falls within is one and all others are zeros. Hence, the number of ones in the feature vector is always
equal to the number of tilings.

The numbers of tiling and grid are similar to those used in Lakshminarayanan and Szepesvari (2018). We use 5 tilings,
and each tiling has 7 x 7 grids for two dimensional MountainCar-v1 and MountainCarContinous-v0; 3 x 3 x 3 grids for
three dimensional Pendulum-v1; 3% grids for four dimensional CartPole-v1; and 26 grids for six dimensional Acrobot-vl1.
We considered uniform random policy for all problems. The discount factor was 0.8. The initial condition 6,(0) were
sampled form standard normal distribution and for a fixed initialization. We applied Algorithm 2 several times and
then computed the empirical variance in the final estimates. As in the previous subsection, the step-size were chosen to
be constant. In Figure 1, each subplot shows the empirical variance for many different choices of & with N =1 and
1-y

N = 18;067 As we expected, all the blue lines for N = " are approximately quadratic in shapes while all the red lines

are generally linear, consistent with our theoretical results.

D.3 TD Errors of Distributed TD Methods

We now discuss the details of the simulations that generated Figure 2, the comparison of our Algorithm 2 with earlier
distributed TD methods from Doan et al. (2019a) and Wang et al. (2020a). We plot the averaged TD error among the
network, i.e., %ZVGV 0,(t) vs iteration ¢ on the x-axis.

The number of agents N = 100. For the distributed TD algorithms proposed in Doan et al. (2019a) and Wang et al.
(2020a), the communication graph among agents is generated by the Erdos—Renyi model, which is connected. In the
grid world case, all the settings are the same as stated in subsection D.1 except that deterministic rewards r(s,a) be
randomly chosen from a normal distribution A/(1,0.01). The step-size is constant as & = 0.3. The parameters selection
is mainly based on the parameters used in the simulations of Wang et al. (2020a).

For two dimensional MountainCar-v1 and MountainCarContinous-v0, we used 5 tilings, each tiling has 7 x 7 grids, and
step-size o¢ = 0.3. For three dimensional Pendulum-v1, we used 5 tilings, each tiling has 5 x 5 x 5 grids, and step-size
a = 0.05. For four dimensional CartPole-v1, we used 5 tilings, each tiling has 8* grids, and step-size o = 0.3. For six
dimensional Acrobot-v1, we used 5 tilings, each tiling has 2° grids, and step-size o = 0.05. The constant step sizes
for open AI gym problems are chosen from the the set A = {0.3,0.25,0.2,---,0.05}. For each problem, we choose
the largest step size from the set A such that all methods converge or the smallest of these step sizes 0.05 even if there
exists one method does not converge for all step sizes in the set A. Note that the experiments of CartPole and Pendulum,
the method in Wang et al. (2020a) does not converge with any step sizes in the set A; but Algorithm 2 in this paper
and method in Doan et al. (2019a) do converge with all step sizes in the set A. We only show experimental result with
a = 0.05 in the main text.
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