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Abstract

For the first time the optimal local truncation error method (OLTEM) with 125-point stencils and unfitted Cartesian meshes
has been developed in the general 3-D case for the Poisson equation for heterogeneous materials with smooth irregular
interfaces. The 125-point stencils equations that are similar to those for quadratic finite elements are used for OLTEM.
The interface conditions for OLTEM are imposed as constraints at a small number of interface points and do not require
the introduction of additional unknowns, i.e., the sparse structure of global discrete equations of OLTEM is the same for
homogeneous and heterogeneous materials. The stencils coefficients of OLTEM are calculated by the minimization of the
local truncation error of the stencil equations. These derivations include the use of the Poisson equation for the relationship
between the different spatial derivatives. Such a procedure provides the maximum possible accuracy of the discrete equations
of OLTEM. In contrast to known numerical techniques with quadratic elements and third order of accuracy on conforming
and unfitted meshes, OLTEM with the 125-point stencils provides 11-th order of accuracy, i.e., an extremely large increase
in accuracy by 8 orders for similar stencils. The numerical results show that OLTEM yields much more accurate results than
high-order finite elements with much wider stencils. The increased numerical accuracy of OLTEM leads to an extremely large
increase in computational efficiency.

Also, a new post-processing procedure with the 125-point stencil has been developed for the calculation of the spatial
derivatives of the primary function. The post-processing procedure includes the minimization of the local truncation error and
the use of the Poisson equation. It is demonstrated that the use of the partial differential equation (PDE) for the 125-point
stencils improves the accuracy of the spatial derivatives by 6 orders compared to post-processing without the use of PDE as
in existing numerical techniques. At an accuracy of 0.1% for the spatial derivatives, OLTEM reduces the number of degrees
of freedom by 900 — 4 - 10° times compared to quadratic finite elements. The developed post-processing procedure can be
easily extended to unstructured meshes and can be independently used with existing post-processing techniques (e.g., with
finite elements).
©2023 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson equation for heterogeneous materials with interfaces is used for the description of many important
phenomena such as heat transfer, multiphase flows, neurosciences, electrostatics and many others. Therefore,
many efforts are made for the development of accurate and computationally efficient numerical techniques for
this equation, e.g., see [1-16] and others. Many of these recent publications consider numerical techniques with
unfitted meshes. The use of unfitted meshes for irregular interfaces significantly simplifies the preparation of input
data for numerical simulations because the generation of conforming meshes for complex irregular interfaces may
lead to poor quality elements (e.g., the elements with small angles) and reduced accuracy of numerical results.
One of the popular numerical approaches for heterogeneous materials with unfitted meshes is based on different
modifications of the finite element method, e.g., the cut finite element method, the finite cell method, generalized
finite element method, extended finite element method, immersed finite element method, shifted interface method
and others (see [3,5,7-12,14-16]). These methods provide the same p + 1 order of accuracy as that for finite
elements with conforming meshes where p is the order of finite elements. Another interesting numerical approach
for heterogeneous materials with unfitted Cartesian meshes is related to modifications of the immersed interface
method that is based on the finite difference approximations of the partial derivatives, e.g., see [17-22] and others.
Some of these techniques provide fourth and sixth orders of accuracy for the Poisson equation with interfaces
(e.g., see [19,22]). However, they require special approximations of the normal derivatives for the stencils located
close to curved interfaces. This leads to an increase in the stencil width for the grid points located close to the
interface. Due to a large number of possible locations of the interface with respect to grid points, the implementation
of such techniques is difficult for a high order of accuracy especially in the 3-D case.

Recently we have developed OLTEM with compact stencils for the solution of different PDEs on regular and
irregular domains and interfaces with unfitted Cartesian meshes (e.g., see [23-32]). OLTEM provides the maximum
possible accuracy of discrete equations after the space discretization of the corresponding PDEs. In contrast to finite
elements, OLTEM with similar stencils provides different orders of accuracy for different PDEs (e.g., see [23-32]).
In our paper [30] we showed that OLTEM with 5 x 5 = 25-point stencils (similar to those for quadratic finite
elements) for the 2-D Poisson equation on regular domains with conforming Cartesian meshes and homogeneous
materials provides the 18th order of accuracy, i.e., increase by 15 orders compared to quadratic finite elements. In
our paper [31] we have developed OLTEM with 3 x 3 = 9-point and 5 x 5 = 25-point stencils (similar to those for
linear and quadratic finite elements) and unfitted Cartesian meshes for the 2-D Poisson equation for heterogeneous
materials with smooth irregular interfaces. We showed that the maximum possible accuracy of OLTEM with the
9-point and 25-point stencils in this case is 3 and 11, respectively, i.e., compared to linear and quadratic finite
elements, OLTEM improves accuracy by one and 8 orders, respectively. In our paper [32] we have developed
OLTEM with 3 x 3 x 3 = 27-point stencils (similar to those for linear finite elements) for the 3-D Poisson equation
for heterogeneous materials with irregular interfaces, and we have obtained the 3-rd order of accuracy (similar to
OLTEM in the 2-D case; see [31]). In our paper [32] we have also developed a new post-processing procedure that
improves the accuracy for the calculation of the spatial derivatives of primary functions by the use of the original
PDEs.

The main objectives of this paper are to develop OLTEM with 5 x 5 x 5 = 125-point stencils (similar to
those for quadratic finite elements) for the 3-D Poisson equation for heterogeneous materials with smooth irregular
interfaces and to show that in the general 3-D case OLTEM can provide an extremely large increase in accuracy
compared to that for quadratic finite elements. The second objective is to develop the post-processing procedure
for the calculation of the spatial derivatives of primary functions that significantly improves the accuracy of the
spatial derivatives compared to that for known approaches. The post processing procedure is also based on the
5 x5 x5 = 125-point stencils and on the use of the original PDE. The derivations in Section 4 show that the use of
the Poisson equation for post-processing with the 125-point stencils improves the accuracy of the spatial derivatives
by 6 orders. We should mention that the development of OLTEM with the 125-point stencils in the 3-D case is a
challenging problem due to a large number of the stencil coefficients (125 stencil coefficients) used for each stencil
and for the derivation of the corresponding formulas. For example, we have found that by zeroing some of the
125 stencil coefficients we can significantly simplify the formulas without the reduction in the order of accuracy of
OLTEM; see Sections 3.1.1, 3.1.2 and 4 below. It is also interesting to mention that at the development of OLTEM
with the 125-point stencils for heterogeneous materials, we have found interesting results for homogeneous materials
(a particular case of general heterogeneous materials). It occurs that the maximum possible order of accuracy of
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OLTEM with the 125-point stencils for homogeneous materials in the 3-D case is 14, i.e., it is 4 orders lower
compared to that for OLTEM with 5 x 5 = 25-point stencils (corresponding to quadratic finite elements) in the
2-D case; see our paper [30]. However, because the accuracy of OLTEM for heterogeneous materials is defined
by the lowest accuracy of the heterogeneous stencils (when the 125-point cells are intersected by interfaces), the
11th order of accuracy of OLTEM with 125-point stencils is the same in the 2-D and 3-D cases. This order of
accuracy of OLTEM significantly (by 8 orders) exceeds that of the existing numerical techniques with similar
stencils (corresponding to quadratic elements) for heterogeneous materials on conforming and unfitted meshes,
e.g. see [3,5,7-12,14-16].

The paper is organized as follows. The 3-D Poisson equation for heterogeneous materials with irregular interfaces
as well as the introduction of the local truncation error for stencils equations are presented in Section 2. In
Section 3.1, OLTEM with the 125-point stencils is derived for the 3-D Poisson equation with discontinuous
coefficients and zero source term. Its extension to nonzero source term is considered in Section 3.2. The development
of OLTEM for the calculation of the spatial derivatives of numerical solutions (post-processing) is presented in
Section 4. Numerical examples for 3-D domains with irregular interfaces and unfitted Cartesian meshes as well as
the comparison with FEM are presented in Section 5. For the derivation of many analytical expressions presented
below, we use the computational program Mathematica [33].

2. 3-D Poisson equation for heterogeneous materials and the local truncation error

The Poisson equation in a composite domain 2 = U} ( = 1,2,..., N where N is the total number of
subdomains) can be written down in each subdomain (2 as follows:
aViu = f, I1=1,2,...,N (D)

where ¢; is the material constant for each subdomain (2 and can be discontinuous across the interfaces between
subdomains, f;(x) is the source term that can be also discontinuous across the interfaces between subdomains (2,
u; is the field variable. We also assume that the functions u; and f; are sufficiently smooth in each subdomain (2.
In this paper the Dirichlet boundary conditions u = g; are applied along the boundary I' where g; is the given
function. However, the Neumann boundary conditions can be also used with the proposed approach, e.g., see our
paper [28]. At the interface G between any two subdomains, the following interface conditions are applied:
* * * *% *% *%k

W — ul =5, c*(nxa;’—f +ny8:—yG tn, 3:;) — conlny 3:; +n, agyG tn, 3ch ) =68, @)
where 61(x, y,2) |x,y,0ec and 82(x, y,2) lx,y,-5ec are the given jumps for the function and the flux across the
interface, ny, n, and n, are the x-, y- and z-components of the normal vector at the interface, ¢, (c«) is the
corresponding material constant, and the symbols * and % correspond to the quantities on the opposite sides from
the interface for the corresponding subdomains (2. For zero jumps 8;(x, y, z) = 82(x, y,z) = 0, the functions u;
are continuous across the interfaces but can have the discontinuous spatial derivatives across the interfaces.

In OLTEM, the discrete system for the Poisson equation after the spatial discretization with a Cartesian
rectangular mesh can be represented as a system of algebraic equations. The algebraic equation of this system
for each internal grid point of the domain is called the stencil equation and can be written down for the case
without interfaces as follows:

M -
Y ku™ = f, 3)
i=1

where u["™ is the numerical solution for function u at the ith grid point, k; are the unknown stencil coefficients to
be determined, f is the discretized source term (see the next Sections and Eq. (25)), M is the number of the grid
points included into the stencil equation. Many numerical techniques such as the finite difference method, the finite
element method, the finite volume method, the isogeometric elements, the spectral elements, meshless methods,
and others can ultimately be reduced to Eq. (3) with some specific coefficients k;. In the derivations below, we will
assume 5 x 5 x 5 = 125-point (M = 125) stencils in the 3-D case that are similar to the 125-point stencils of 3-D
quadratic quadrilateral finite elements on Cartesian meshes. Generally, stencils with any number of points M can

be used.
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Let us introduce the local truncation error used with OLTEM. The replacement of the numerical values of function
u™™ at the grid points in Eq. (3) by the exact solution u; to the Poisson equation, Eq. (1), leads to the residual e

of this equation called the local truncation error of the discrete equation, Eq. (3):

M
€=Zkiui—f_- @
i=1

Calculating the difference between Eqs. (4) and (3) we can get

M M
e — Zki (u; — M?um] — Zkiély , ®)
i=1 i=1

where e = u; — u!™"™ are the errors of function u; at the grid points i. As can be seen from Eq. (5), the local
truncation error e is a linear combination of the errors of the function u at the grid points i that are included into
the stencil equation.

3. OLTEM for the 3-D Poisson equation with discontinuous coefficients

OLTEM with the 125-point stencils for the 3-D Poisson equations with interfaces will be first derived for zero
source term f; = 0. The derivation includes the introduction of the local truncation error for heterogeneous stencils,
the modification of the local truncation error by the addition of the interface conditions at a small number of interface
points as constraints, and the calculation of the stencil coefficients by the minimization of the local truncation error.
Then, the extension of OLTEM to non-zero source term f; #= O will be presented. The non-zero source term does
not affect the calculation of the stencil coefficients and only contributes to the calculation of the right-hand side of
the stencil equation.

3.1. Zero source term f; =0

Consider a 3-D bounded domain and a Cartesian mesh with a mesh size 4 where & is the size of the mesh
along the x-axis, byh, b,h are the sizes of the mesh along the y— and z—axes (b, and b, are the aspect ratios of
the mesh). To simplify derivations, below we consider domains with rectangular boundary and irregular interfaces
between different materials. However, irregular domains can be also considered with OLTEM (see [23,25,34]).
In the paper we will consider the 125-point uniform stencils that are similar to those for quadratic quadrilateral
finite elements. We use the same structure of stencils for homogeneous and heterogeneous materials (the difference
between homogeneous and heterogeneous stencils is in the values of the stencil coefficients only). The spatial
locations of the 124 grid points that are close to the internal grid point i = 63 and contribute to the 125-point
stencil for this grid point are shown in Fig. 1. For convenience, the local numeration of the grid points from 1 to
125 is used in Fig. | as well as in the derivations below. If all grid points of the 125-point stencil belong to the same
material than this stencil is treated as that for homogeneous materials (see Fig. 1a) otherwise as for heterogeneous
materials (see Fig. 1b).

The interface in Fig. 1b divides the 125-point uniform stencil into two parts with different material properties.
In order to impose the interface conditions at the interface, we select a small number of interface points as
follows. First we select one point at the interface with the coordinates x¢ = x¢.1, y¢ = Yg.1 and zg = zg.1-
This point can be selected as the shortest distance from the central grid point i = 63 of the 125-point stencil
to the interface. Then, we additionally select 80 interface points in two perpendicular directions, i.e., we use
totally N¢ = 9 x 9 = 81 interface points for each stencil with interfaces. We select the same distances
h = \/(xG,j —x6.)? + (V6,j — Y6.i)* + (zg,j — z6,i)* between the interface points where i and j designate the
neighboring interface points, see Fig. 1b (we do not show all 81 interface points in Fig. 1b). Numerical experiments
show that small distances & = h/5 yield accurate results. Note that existing mesh generators can be used for finding
the coordinates of the 81 interface points. For example, a mesh generator can discretize the interface in the vicinity
of the first interface point with the coordinates x¢ = x¢.1, Y6 = Y6.1» 26 = 2.1 and can create 80 additional
interface points with approximately the same distances between them.

4
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Fig. 1. The spatial locations of the grid points i (i = 1,2, ..., 125) that contribute to the 125-point uniform stencil for the internal grid
point i = 63 for homogeneous material without interface (a) and for heterogeneous material with interface (b). The red point is the central
grid point of the 125-point stencil, black and green points correspond to the regular Cartesian grid points with different material properties,
purple points G; correspond to the selected interface points with the normal vectors n;. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Let us describe the coordinates of the grid points of the 125 point uniform stencils (see Fig. 1) with respect to
their central point ug; as follow:

Xp = X3 +1xph = xe3+ (0 —3)h, Yp = Y3 + 1y pbyh = ye3 + (j —3)byh,

Zp = 263+ rz,pbzh = ze3+ (t — 3)bh, (6)
where the coefficients ry p, 7y ,, 77, p are:

rx,pz(i_3)a ry,pz(j_3)’ rz,pz(t_3)’ @)

and p=25¢ — 1)+5( — D +iwithi, j,t =1,2,3,4,5.
To describe the coordinates of the selected Ng points on the interface (see Fig. 1b) we introduce 3N coefficients

dep,dypandd;, (p=1,2,..., Ng) with Ng = 81 for the 125-point stencil as follows (see also Fig. 1b):
Xg,j = xg +dy jh, Ye,j = Yo +d, jbyh, 26,j = 2¢ +d. jb.h, j=1,2,...,Ng, (8)
where d, | = d, 1 = d;; = 0 for the central interface point G = G with the coordinates xg = x¢.1, y¢ = Y,

and zg = zg.1 (see Fig. 1b).

Remark 1. Some of the interface points G; (i = 1,2,..., Ng) can be located outside the 125-point cells. The
derivations presented below are also valid for these cases. This scenario is implemented in our code used for all
numerical results in Section 5.

The stencil equation, Eq. (3), for heterogeneous materials with the 125-point uniform stencil for the grid point
ues (see Fig. 1) is assumed to be in the following form:

125
ka[apu;,num +(1 - ap)u}k)*,num] — f_‘, )
p=1



A. Idesman, M. Mobin and J. Bishop Computer Methods in Applied Mechanics and Engineering 417 (2023) 116439

where f = 0 in the case of zero source f; = 0 in Eq. (1). The unknown stencil coefficients k, (p=1,2,...,125)
are to be determined from the minimization of the local truncation error. The coefficients a, = 1 if the grid
point u, belongs to material * or a, = 0 if the grid point u, belongs to another material s#*. Only one
variable u7;™" or u*™" is actually included into Eq. (9) for each grid point. The coefficients a, for Fig. b
are: a, = 1 (p = 1,2,...,15,19,20,25,...,40,44,45,50,...,65,69,70,76,...,125) and a, = 0 (p =
16,17, 18,21, ...,24,41,42,43,46,...,49,66,67,68,71,...,75).

The local truncation error e follows from Eq. (9) by the replacement of the numerical solution u;™™ and u*™""
by the exact solution u), and u":

125
e= kplayu} + (1 —auy]1— f. (10)
p=1
Next, we include the interface conditions for the exact solution at a small number Ng of the interface points into
the expression for the local truncation error, Eq. (10), as additional constraints:

125 Ng

e = Zk,,[apu; + 1 - a,,)u;*] + {Z q],j(u’(k;,j — u’g‘] —81,5)
p=1 j=1

Ng *

oug, ; oug, ; oug
+ ) hgyjledng—= +ny j—L +n, ;—
JZ:; g2, jlcx(ny, ax ny,j dy “i g,
ougy ug oug _
_C**(nx,ja_xj"f‘ny,j 3)1] +ng; azj)_(slj]}_fv (11)

where ny j, ny ; and n. ; are the x-, y-, and z-components of the normal vectors at the N selected interface points
(see Fig. 1b), 8, ; and & ; are the given jumps for the function and fluxes at the Ng selected interface points, the
coefficients gy j and g5 ; (j = 1,2, ..., Ng) are Lagrange multipliers. The expressions after the coefficients g, ; and
q»,; are the interface conditions at the Ng selected interface points. Therefore, the expression in the curled brackets
in Eq. (11) is zero (see Eq. (2)) and Eqgs. (10) and (11) yield the same local truncation error e. The addition of the
interface conditions at Ng points in Eq. (11) with the unknown coefficients ¢y ;, g2.; (j = 1,2, ..., Ng) provides
coupling between the unknown functions u, and u’* used in the stencil equation, Eq. (9), and allows us to get a
high accuracy of the proposed method for general geometry of interfaces.

Remark 2. Only 125+2Ng—1 out of the 1254+2Ng coefficients k,, 1., q2,; (p =1,2,...,125,j =1,2,..., Ng)
in Eq. (11) can be considered as unknown coefficients. This limitation can be explained as follows. In the case of
zero jumps §; = 8, = 0 (see Eq. (2) as well as Eq. (17) below), zero source f; = 0 and f = 0, Eq. (9) can
be rescaled by the division of the left- and right-hand sides of Eq. (9) by any scalar, i.e., one of the coefficients
k, can be selected as unity and there will be only 125 + 2N — 1 unknown rescaled coefficients. The case of
nonzero term f # O can be similarly treated because the term f is a linear function of the coefficients kp, q1,j
g, (p=1,2,...,125; j = 1,2,..., Ng); see below. For convenience, we will scale the stencil coefficients in
such a way that kg3 is kg3 = 1.

For the minimization of the local truncation error e, we first expand it into a Taylor series. In order to do this
expansion, let us expand the exact solution at the grid points and at the N selected interface points in Eq. (11) into
a Taylor series at small 4 < 1 in the vicinity of the central interface point G for the 125-point stencils as follows:

dvg dvg dvg
v, =vg + W[(rx,p —dxg)h] + W[(ry.p —dyg)byh] + a_z[(rz,p —dzg)b h]

%G [(ry,p — dxg)h]? n 3%vg [(ry,, — dyg)byhT* n 3%*vg [(r.,p — dzg)b;h]?

ox? 21 0y2 2l 22 2
820 [(rv.p — dxc)h)[(ry. p — dyg)byh
120706 0oy Zdx@hNCyp = dyabWh] s gy sty 4
0xdy 2!
with i, j,t=1,2,3,4,5 (12)
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with dxg = XG—)%% ,dyg = ¢ }ylm and dzg = ZGb:;63’ and
Jw 2w dy ih
wj =wg + —— [dx ihl + [d) jbyhl -|— [dz]b ] + sz [ 2]' I?
?wg [dyjbyh]z wg [d, jb.h>  _9*wg [dy ;hlldy, b, h]
’ ’ 2 i =1,2,....Ng (13
T 9y? 2! + 072 2! + dxdy 21 J ¢ (13)

uy, . dupt. duy . dupt.  duy
*k G,j G,j G,j G,j G,j
in Eq. (13) the function w; is ug ;, ug ;, —:5 =555 By > Ty 0 ez

G —%i  the coefficients dy j, dy j, and d; ; are defined in Eq. (8) and Ng = 81. The exact solution ug, and ug; to the
P01sson equations, Eq. (1), at the central interface point x = xg, ¥y = yg and z = z¢ meets the following equations:

In Eq (12) the function v, is u’

p’ I7’

8214”(‘; _ _Bzu*G _ 82u*& n if* azu’&* _ _Bzu*é‘ _ azu*&* n Lf** (14)
dx2 9y? 972 e ax? dy? 972 Cos ’

a(i+j+t+2)u>»(<; _ 3(i+j+t+2)u>8 B 3(i+j+t+2)u*G la(i+j+t)f*

9z' 9y ax@t)) 7'y itDaxi  9ztDJyidxs ¢, 079yl xS’

3(i+j+r+2)u*G* _ a(i+_i+t+2)u>gk . 3(i+j+z+2)u*G* ia(i+j+r)f** 15)
9z' 9y ox@t)) 0z/0yi+Doxs  9z0tD9yiox] ¢y 0710y 0xI

with i, j,t = 0,1,2,3,4,.... Eq. (15) is obtained by the differentiation of Eq. (14) with respect to x, y and z.
Inserting Eqgs. (12)—(15) with zero source term f* = f** = 0 into Eq. (11) we get the following local truncation
error in space e:

= by}, + boulf +h(b;—C< +b +b G S +b +bg—C
¢ =biug +baug (3 48 3y dy 7ax ox )
82 * 82 ** 3u* 831/{** a2u* aZu** aSu* 8314**
+h?*(bg—C + b Y +b +b S +b +b +b + o
(o 07922 “azay2 Pazay? Py UMy TP %z0x2 T 0 hz0x2
3214* 821/{**
b S +b G
+ 178)58)1 + o 8x8y)
aSu* aSu** 331/!* 83 ** aSu* aSu** 8314*
+h3(b G 1+b S 1+b ey +b S +b S p G
(b1o 023 20 922 21 3220y 22a 28 23 920y’ 248z8y2 25 9y3
3 ** 3 * 83 *kk 83 * 3 k% 8314* aSu**

b b b Ty S 4+ S +b S 4b G
thy—L + 278 28 + B9 29y + 29818 ox + 308Za Py + 3]8x8y2 + 328x3y2)

4 * 4 ** 5 * 5 ** 6 * 6, , %%

(b 4 b 1 (b A R (b } bog oG
+ (33 Py Syt 0 5%y )+ (51 4.4 2 5dy <)+ (73 St 988x8y5)

87 T, %%
7 (boy G 4 4 by
077 9xdy®

8 * 8 ** 0 9 * 9M*G* 0 810,[&

Wb o4 b b o4 b Wby —G 4+ ...
+h7(b129 328 Cto 4 1625 By )+ 10 (be3 3 Cpot 2008x8y8)+ (b201 570 T
LA AT 311”2 o by MG

Mo 5y? 243 2885 5010 ay10

alZu* 12 ** 8131,{* alSu**

B2 (hreo—08 1+ ...+ b W3 G 4 o4 hrgy—O

+h " (basy g Tt bt 3y 9-) + 1 (bsso g Tt 3928x8y12)
al4u* 8141/[**

hl4 b b G

+h " (b393 gos Tt 4508x8y13)
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15,,% 15, %% 16,,% aléu**

G Ug 16 0 ug G
T X niop it bhegg— G
+---+ )+ h 7 (bs13 9216 +---+ 5783x8y15)

a
h"(b
+h 7 (bssy PHE S5 y1a

Ng

~[f + > (q1.j81.; + hq2;82. )] + O
j=1

NG
=ep—[f+ Y _(q1;81) + hr ;62 )] + OR") (16)

j=1
where the coefficients b, (p = 1, 2, .. .) are expressed in terms of the coefficients k; and g ;, g>,; (i = 1,2, ..., 125,
j=1,2,..., Ng) and are given in Appendix A, the term e, includes only the sum of all terms with the coefficients

b, in the expression for the local truncation error (compare the expressions after the first and second equalities in
Eq. (16)). The expression for the local truncation error, Eq. (16), includes only the first order derivatives with respect
to x (the higher order derivatives with respect to x are excluded with the help of Egs. (14)—(15)). Zeroing the last
expression in the square brackets in Eq. (16), we can find the right-hand side of the stencil equation f due to the
given jumps &; and 8;:

Ng
F== @b +hq;8)). (17)
j=1
Due to Eq. (17), the local truncation error e in Eq. (16) is independent of the right-hand side of the stencil equation
f and the jumps §; and 8, as well as e = e;,.

3.1.1. Homogeneous materials (without interface)

For homogeneous materials all a,, (p =1, 2, ..., 125) coefficients are a; = 1 (see Eq. (9) if we consider material
x)as well as all g ; = ¢2; =0 (j =1,2,..., Ng) are zero. In this case the derivation of the local truncation
error is similar to that in the previous section with b, = 0 (p = 2,4,6,8, ...) in Eq. (16) if we consider material
*. The unknown stencil coefficients k; (i = 1,2,...,125) can be found by zeroing the coefficients b, = 0 (p
= 1,3,5, ...) in Eq. (16) with the smallest numbers of index p. Symbolic computations with Mathematica show
that after zeroing the first 144 coefficients b, = 0 (p = 1,3,5, ..., 287) for rectangular meshes (b, # 1 and/or
b, # 1), at least one of the coefficients b, (289 < p < 338) is always non-zero, i.e., the maximum possible order
of the local truncation error is 12 for rectangular meshes. Similarly, after zeroing the first 256 coefficients b, = 0
(p = 1,3,5,...,511) for square meshes (b, = b, = 1), at least one of the coefficients b, (513 < p < 578)
is always non-zero, i.e., the maximum possible order of the local truncation error is 16 for square meshes and it
is 4 orders higher than that for rectangular meshes. Symbolic computations also show that in order to have 125
algebraic equations for finding 125 stencil coefficients k; for square meshes, we should also zero some of coefficients
b, (513 < p < 578) corresponding to the 16th order with respect to 4 in Eq. (16). However, we can significantly
simplify the calculations by zeroing the stencil coefficients ki3 = ks3 = kg1 = ks = k73 = k113 = 0 corresponding
to the grid points located at the centers of the six faces of the 125-point cell. This simplification does not change
the maximum possible order of the local truncation error but this allows us to avoid the use of a very large number
of the long expressions of the coefficients b, (451 < p < 578) corresponding to the 15th and 16th orders with
respect to i in Eq. (16).

For square meshes the stencils coefficients k; (i = 1,2, ..., 125) with kg3 = 1 and ki3 = ks3 = k¢1 = kes =
k73 = k113 = 0 can be analytically found by zeroing the first 225 coefficients b, =0 (p = 1,3, 5,...,449) up to
the 14th order with respect to 4 (the Mathematica program can select just linearly independent algebraic equations

from this system). These coefficients k; (i = 1,2, ..., 125) are:
3645 96173 194003
k= ———  hy = e = 18
: 477569996 2 2149064982 ’ 4298129964 (18)
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(see the attached file k-coeff-cubic.nb for the all stencil coefficients k;, i = 1, 2, ..., 125) with the following local
truncation error:
i [— 536345375 63 2145381500 0" ugy 4534176182 8 uss
e = — —
900729869271724800 3y29z14 3y*9z12
316

6093693296 6"‘6‘:0 — 6873451853

8]6 16 6 16 816

UGS 6003693206 016 _ 453417618206 _ 21453815000 "6 _ 536345375 KLY

3y8818 3 10976 a 12574 8 14572 a

As can be seen from Eq. (19), for homogeneous materials and square (b, = b, = 1) Cartesian meshes, the stencil
coefficients k; (i = 1,2, ..., 125) provide the 16th order of the local truncation error. It can be also shown that on
rectangular (b, # b, # 1) Cartesian meshes, OLTEM with the 125-point stencils provides the 12th order of the
local truncation error. Note that in the 2-D case OLTEM with the 5 x 5 = 25-point stencils (similar to those for
quadratic finite elements) provides 16th and 20th orders of the local truncation error on the rectangular and square
(b, = 1) Cartesian meshes, respectively (see our paper [30]). These results mean that the maximum possible orders
of accuracy of OLTEM with the 5 x 5 = 25-point stencils in the 2-D case and the 5 x 5 x 5 = 125-point stencils
in the 3-D case are different, i.e., we have a special superconvergent case of OLTEM for the Poisson equation with
homogeneous materials in the 2-D case. We have not observed different orders of convergence of OLTEM in the
2-D and 3-D cases with similar stencils (having the same number of points along the Cartesian axes) for other
PDEs such as the time-independent elasticity equations as well as the time-dependent scalar wave and heat transfer
equations and elastodynamics equations, e.g., see our paper [35].

3.1.2. Heterogeneous materials with an irregular interface

In our paper [31] on OLTEM for the 2-D Poisson equation with irregular interfaces we showed that the maximum
possible order of the local truncation error for heterogeneous 25-point stencils is 12. In order to get the same order
of the local truncation error for the heterogeneous 125-point stencil in the 3-D case considered here, we will use
the following procedure.

We use the 280 unknown stencil coefficients k; (i = 1,2, ..., 125 with kg3 = 1 as well as kj3 = ks3 = kg1 =
kes = k73 = k113 = 0; see Section 3.1.1), and q1 ;, g»,; (j = 1,2, ..., 81) in order to minimize the local truncation
error. Symbolic computations with Mathematica for homogeneous materials show that starting from the ninth order
with respect to & in Eq. (16), some of the coefficients b, are linearly dependent. Therefore, we zero the first 200
coefficients b, in Eq. (16) up to the ninth order with respect to #, i.e.,

b,=0, p=1,2,...,200. (20)

Then, in order to have a sufficient number of equations for the calculation of the 280 unknown stencil coefficients
k; and q1 ;, q2,j, we use the least square method for the minimization of coefficients b, related to the 10th, 11th,
12th, 13th and 14th, orders of the local truncation error with the following residual R:

242 288 338 392 450
2 2 2 2 2
R = E bp+h1 E bp+h2 E bp+h3 E bp+h4 E bp, 201
p=201 p=243 p=289 p=339 p=393

where hy, hy, hs and hy are the weighting factors to be selected (e.g., the numerical experiments show that #; = 0.2,
hy = 0.2hy, hs = hy = 0.2h, yields accurate results).

In order to minimize the residual R with the constraints given by Eq. (20), we can form a new residual R with
the Lagrange multipliers A;:

200 242 288 338 392 450

R = Zkzb,+2b2+h12b +h Y by by b+ ha Y by (22)
p=201 p=243 p=289 p=339 p=393

The residual R is a quadratic function of the stencil coefficients k; gi = 1,2,...,125) and q1 5, q2,; (j =

1,2,...,81) and a linear function of the Lagrange multipliers A;, i.e., R = R(k;, q1,j, q2,j, »;). In order minimize

9
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the residual R = R(ki, q1,j» 92, A1), the necessary conditions are given by:

dR dR AR dR
R . —0, —0, 2Ky 23)
8]{,' aquj 36]2'1' 3%[
i=1,2,...,125, j=12,...,81, [1=1,2,...,200,
where equation STR = 0 (@ = 63,13,53,61,65,73,113) in Eq. (23) should be replaced by k¢ = 1 and

kiz = ks3 = kg1 = 7%5 = k73 = k113 = 0 (see Remark 2). Eq. (23) forms a system of 487 linear algebraic equations
with respect to 287 coefficients k; (i = 1,2,...,125) and gy ;, q2,;(j = 1,2, ..., 81) as well as 200 Lagrange
multipliers A; (I =1, 2, ..., 200). Solving these linear algebraic equations numerically, we can find the coefficients
ki (i =1,2,...,125) for the 125-point uniform stencils as well as g; ;, g»,; (j = 1,2, ..., 81). The presented
procedure provides the 12th order of the local truncation error for the 125-point uniform stencils with the general
geometry of the interface. As can be seen from the above procedure, we use the coefficients k; (i = 1,2, ..., 125)
and q1,j,q; (j=1,2,..., Ng with Ng = 81) in order to zero and minimize the coefficients b, in Eqs. (20)—-(23).
At a small number Ng of the interface points, we do not have a sufficient of number of the coefficients ¢, ;, ¢2,;
(j =1,2,..., Ng) for the minimization of the coefficients b, and cannot obtain a very high accuracy. Similar to
the 2-D case with Ng = 9 (see our paper [31]), in the 3-D case we select N¢ = 9 x 9 = 81 interface points and
obtain the 12th order of the local truncation error similar to that in the 2-D case. The 125-point uniform stencils
of OLTEM for a homogeneous material (without interface) provide the 16th order of the local truncation error
for square meshes (see Eq. (19)). In this case the global error is defined by the order of accuracy of the 125-point
stencils with interfaces. This accuracy of the OLTEM stencils leads to the 11th order of accuracy of global solutions
(see the numerical examples below). Moreover, the new approach also minimizes the leading high-order terms b,
of the local truncation error in Eq. (22).

Remark 3. We should mention that the representation of the coefficients b; in Eq. (16) as b; = 2}2:51 sijk; +
Z?lzl(ciqul,j + c,»zjqz,j) ,i=1,2,...,578 as well as the explicit analytical formulas for %, %, %, % (see
Eq. (23)) in terms of the coefficients s;;, cilj and cizj (see Appendix B) significantly simplify the derivation of the
local system of algebraic equations for finding the stencil coefficients k; (i = 1,2, ..., 125) allowing us to extend
our approach to the 3-D case.

The global discrete system of equations includes the 125-point stencils for homogeneous materials without
interfaces and the 125-point stencils for heterogeneous materials with interfaces between different materials (see
Fig. 1) for all internal grid points located inside the domain. The global system of equations for OLTEM has
the non-symmetric stiffness matrix and can be solved with an iterative solver (e.g., we use the built-in Matlab
solver ‘gmres’ [36] without preconditioners). The new approach does not use unknowns at the interfaces, and the
global discrete system of equations has the same unknowns for homogeneous and heterogeneous materials (the
same structures of the sparse global matrices, the difference is only in the values of the stencil coefficients k, (see
Eq. (9)) of the global matrices for homogeneous and heterogeneous materials).

Remark 4. To estimate the computation costs of the formation and solution of 487 linear algebraic equations given
by Eq. (23), we formed and solved 10* such systems with a general Matlab solver [36] on a desktop computer
(Processor: Intel (R) Core(TN) 19-9900 CPU @3.10 Hz 3.10 Hz). The computation ‘wall’ time was T = 200 s for
103 systems, or the average time for one system was 0.2 s. Because the coefficients k » are independently calculated
for different stencils, the computation time of their calculation for different stencils can be significantly reduced on
parallel computers. These local systems are numerically solved only for the grid points located close to the interface
(for heterogeneous stencils). For the stencils with homogeneous materials, the stencil coefficients are analytically
defined; see Eq. (18). Therefore, for large global systems of equations, the computation time for the calculation
of the coefficients k, is very small compared to that for the solution of the global system of algebraic equations.
Note that the coefficients g j, g2,; calculated from the local system of equations, Eq. (23), are only used for the
calculation of non-zero right-hand side vector (see below Section 3.2) while the Lagrange multipliers A; in the local
system of equations, Eq. (23), are not used in the global system of equations at all. We should also mention that
for variable material properties (not considered in the paper), the stencil coefficients should be calculated for each
internal grid point. In this case the computation time for the calculation of the stencil coefficients for all stencils
will be proportional to the number of internal grid points.

10
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Remark 5. The stencil coefficients can be also derived using the Taylor series expansion about the central grid
point with the coordinates x¢3, ye3 and zg3 instead of the interface point with the coordinates xg, yg and zg.

3.2. Nonzero source term f; # 0

The inclusion of non-zero source term f; in the partial differential equation, Eq. (1), leads to the additional
contribution to the term f in the stencil equation, Eq. (9). The functions f; can be discontinuous across the interfaces.
The expression for the term f can be calculated from the procedure used for the derivation of the local truncation
error in the case of zero source term as follows. In the case of non-zero source term f;(x) # 0, the insertion of
Eqgs. (12)—(15) into Eq. (11) yields the following local truncation error in space e;:

81 125
- 1 ~ ~
er=e —[f+ 2(611,181,1' +hq,j82,5) — hz{z S0 = dxg)ajf+ (1 —a;) f5Hk;
=1 =1
81
1 2 ok Pk £ rE ] 3
+ Z[de/(fG —JG )ql,j +dx,jnx,j(c*fG - C**fG )6]21]} —h ] s (24)
=1

where e, is the local truncation error in space given by Eq. (16) for zero source term, fg and fg* designate functions
i (’C"y 2 and £ ix’y 2 calculated at the interface point with the coordinates x = xg, y = yg and z = zg.

Equating to zero the expression in the square brackets in the right-hand side of Eq. (24), we will get the expression
for f:

81 125 81
F==>(q1;81;+ha;o )+ flki + Y (Flar; + fia2))
j=1 j=1 j=1
81 125 1 81 1
== 2 @101 +haa80) + WY S — dxo)a; fg + (L —ap fOk; + ) I5d? (G — fhan
j=1 Jj=1 J=1
dy jne (e f — cofEDa 1} + 10 (25)

as well as we will get the same local truncation errors e = ¢, for zero and non-zero source term. The coefficients
fj1 (j=12,...,125), sz and ff(j =1,2,...,81) in Eq. (25) are:

A 1 ~ -
fl= hz(z(rx,j —dxg)a; fo+ (L —a)fEn+hn.,

£ h2(ld2 ( fx N**)) +h3 r3 h2d . ( fx ~**) + h3 (26)
T =WGR o= Jen e f =Wdinejiecfs —enfi)+0
see the attached file RHS.nb for the detailed expressions of fj', sz and ff. This procedure means that the coefficients
ki (i = 1,2,...,125) of the stencil equations are first calculated for zero source term f; = 0 as described in

Section 3.1. Then, the nonzero source term f given by Eq. (25) is used in the stencil equation, Eq. (9).

4. OLTEM for post-processing of numerical results — calculations of spatial derivatives

For the analysis of engineering problems the calculations of the spatial derivatives of primary functions are
necessary in many cases, e.g., the spatial derivatives of function u; in Eq. (1). Therefore, after the calculation of
the numerical solution for the primary functions, many computer codes include special post-processing procedures
for the calculation of the spatial derivatives of the numerical solution for the primary functions. Here we show the
application of OLTEM with the 125-point stencils (the same as we used in the previous section; see also Fig. 1)
for the calculation of a”;;m s 3”;;m and a";;m. Because the calculations of these three derivatives are similar then we
show the procedure in detail for au;).:m-

The 125-point stencils for the calculation of auan:m at the central stencil point with the coordinates xg3, y¢3 and
z63 (see Fig. 1) can be selected similar to Eq. (9) as follows:

8u*,num au**,num 125 B
— lags ;; + (- a63)%]h + ka[apu;,num +(1— ap)u}k)*,num] =7, 27)
p=1

11
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where ag3 = 1 if the central stencil point belongs to material * and agz = 0 if the central stencil point belongs to
material **. The local truncation error e, for Eq. (27) can be obtained by the replacement of the numerical solution

w,™" and u)"™™ in Eq. (27) by the exact solution u), and u}":
ou; ouzy -
ep = —lags— 2 + (1 —ae) L1+ 3 kplagu;, + (1 = apuyl = f. (28)
p=1

Similar to Eq. (11) in Section 3, we include the interface conditions for the exact solution at the same small number
Ng of the interface points into the expression for the local truncation error in Eq. (28) as constraints:

. 125 NG

ous ou
ep = —lag— 2 + (1 —ag) - 1+ Y kplapu, + (1 —apu’] + 3 q1(ug ; —ug; = 81.5)
p=1 j=1
Ne 8u*G’j BM’&I‘ Bu’(‘;j
+ ;h%,_i [C*(nx,jw + ”y,jT' +ng; 3z )
oug ouy oug -
- C**(nx,j Ix ! + Ny, j ay : + nzj 9z ! ) - 82,j]} - f s (29)

(see the corresponding explanations in Section 3.1). Similar to Section 3, first we consider the case of zero source
term f; = f = 0. For the accurate calculation of the derivative %, we should minimize the local truncation
error e, in Eq. (29). Repeating the procedure described in Section 3.1 and using Eqs. (12)—(15) with zero source
term f* = f* = 0 we will also get the local truncation error in space e, given by Eq. (16) with the coefficients
b, (p =1,2,...) expressed in terms of the coefficients k; and q1,j, g2 ; (i =1,2,...,125, j =1,2,..., Ng) and
given in the file b-coef-post.nb’(these coefficients b, (p =1, 2, ...) are slightly different from those used in basic
computations in the previous Section 3).

For homogeneous materials (without interfaces), the coefficients g; ; = g»; =0 (j = 1,2, ..., Ng) are zero
and the stencils coefficients k; (i = 1,2, ..., 125) can be analyzed and calculated similar to those in Section 3.1.1.
Symbolic computations with Mathematica show that in the case of post-processing, after zeroing the first 121
coefficients b, =0 (p =1, 3,5, ...,242), at least one of the coefficients b, (289 < p < 338) is always non-zero
for rectangular and square meshes, i.e., the maximum possible order of the local truncation error is 11. Symbolic
computations also show that in order to have 125 algebraic equations for finding 125 stencil coefficients k; for
square meshes, we should also zero some of coefficients b, (513 < p < 578) corresponding to the 16th order with
respect to 4 in Eq. (16). However, we can significantly simplify the calculations by zeroing the stencil coefficients
ke = ki3 = ks3 = kg1 = k¢s = k73 = k113 = 0 corresponding to the grid point located at the center of the 125-point
cell as well as to the grid points located at the centers of the six faces of the 125-point cell. This simplification
does not change the maximum possible order of the local truncation error but allows us to avoid the use of a very
large number of the long expressions for the coefficients b, (451 < p < 578) corresponding to the 15th and 16th
orders with respect to & in Eq. (16).

For square meshes and homogeneous materials, the stencils coefficients k; (i = 1,2, ..., 125) with kg3 = ki3 =
ks3 = k1 = kes = k73 = k113 = 0 can be analytically found by zeroing the following coefficients b, = 0 (p =
1,3,5, ..., 377, 389, 391, 393, 395, 397) (the Mathematica program can select just linearly independent algebraic
equations from this system) that do not include the coefficients b, (p > 450) corresponding to the 15th order and

higher orders with respect to /. These coefficients k; (i = 1,2, ..., 125) are:
221 727
- ky = ———, ks =0,... 30
! 630000 ? 770000 : 30)

(see the attached file k-coeff-cubic-post.nb for the all stencil coefficients k;, i = 1,2, ..., 125). They provide the
following local truncation error, Eq. (29):

hll 8111463 8111463 311'463

=— o). 31

°r = 7519750 Loxayoat T axaysaz2 T axayol T O (3D

For heterogeneous materials with interfaces, the stencil coefficients k; and ¢ ;, ¢»; (G = 1,2,...,125,

j = 1,2,..., Ng) are calculated similar to those in Section 3.1.2 from 487 linear algebraic equations formed

12
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by Eq. (23) where equat1on =0 (i =63, 13,53,61, 65,73, 113) in Eq. (23) should be replaced by ke3 = ki3 =
ksz3 = kg1 = kgs = k713 = km = 0. Similar to homogeneous materials, the stencil coefficients for heterogeneous
materials provide the 11th order of accuracy for the local truncation error e,.

The case of nonzero source term f; 7# 0 is treated similar to that in Section 3.2. The final expression for the
term f in Eq. (27) is also described by Eq. (25); see the attached file RHS-post.nb for the detailed expressions of
Ajl, sz and ff

To summarize, for the calculation of the derivative 2

a";m using OLTEM with the 125-point stencils, we follow
the following procedure:

e Calculate the stencil coefficients k; and ¢, ¢»,; (. = 1,2,...,125, j = 1,2,..., Ng) for each internal
grid point as described above in Section 4 for homogeneous (without interfaces) and heterogeneous (with
interfaces) materials.

e Using these stencil coefficients, calculate the right-hand side f in Eq. (27) for each internal grid point using
Eq. (25).

*,num 1 125

ou: .
g; - E[Z kplapu, ™™ + (1 —ap)u ™" — f1, 32
p=1

if the central stencil point belongs to material * (agz = 1) and

gy romum 1 125 ~
—2—= E[[; kplapus™™ + (1= ap)uy ™" — f1, (33)
if the central stencil point belongs to material *x (ag3 = 0).

Jumum 3u
ay d 8

as described above.

Remark 6. If any of the grid points included into the stencil is located on the boundary with the Dirichlet boundary
conditions then for this point p in Egs. (32) and (33) we use the exact value of u};™" or u}""" defined by the
boundary conditions. In the case of the Neumann boundary conditions, the procedure can be modified similar to
that in our paper [28] for OLTEM with irregular boundaries and the Neumann boundary conditions.

It is interesting to note that for homogeneous materials the post-processing procedure described above can be
also used for the calculation of the spatial derivatives without the application of the partial differential equation as in
other post-processing techniques (e.g., see [37-39] for finite and isogeometric elements). Let us assume that we can
: ;u at the neighboring
grid points. For simplicity, we will use a uniform Cartesian mesh and 125 grid points for the calculation of the
derivative ;’; at the central grid point (see Fig. 1a) as follows:

num

125
num
8 u 63

+ Z k unum _ (34)
with the following local truncation error:
o 125
- —h—“ + Zk,,up (35)

Repeating the procedure described in Section 3.1 without the use of Eqgs. (14) and (15) and zeroing the corresponding
coefficients b, in the Taylor expansion of the local truncation error e,, we can show that the maximum possible
order of the local truncation error, Eq. (35), without the application of the Poisson equation is 5. For example,
for square meshes we can zero all coefficients b, up to the fifth order with respect to & except one b, coefficient

13
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corresponding to the fifth order. This non-zero coefficient yields the following local truncation error, Eq. (35),
without the use of PDE:

/’lS 85u63
© 30 9x°
In this case the order of the local truncation error corresponds to that for the well-known finite-difference
approximation of the first order derivative auan:m with 5 grid points along x-axis. Comparing Eqs. (31) and (36)
we can see that the use of PDE for post-processing improves the accuracy of the spatial derivative by 6 (!) orders
for the same 125-point compact stencils. We should also mention that the approximation given by Eq. (34) cannot
be used for the stencils with interfaces (as those in Fig. 1b).

To summarize, the proposed post-processing procedure provides the optimal accuracy of the spatial derivatives
of primary functions calculated with the help of compact stencils. It can be developed with or without the use of
PDEs. However, the use of PDEs significantly improves the accuracy of the spatial derivatives for the given stencils.
Finally, the post-processing procedure developed can be independently used with any known numerical technique
(e.g., with finite elements).

+0h®. (36)

€p

Remark 7. Despite the fact that we have applied the proposed post-processing technique to the stencils defined on
Cartesian meshes, it can be also used for non-uniform locations of grid points with the corresponding coefficients
Tx.p» Ty,ps ¥z,p in Eq. (6) (similar to OLTEM developed in our papers [23,25,28] for irregular boundaries).

5. Numerical examples

In this section the computational efficiency of OLTEM with unfitted meshes and the 125-point stencils developed
for the solution of the 3-D Poisson equation with discontinuous coefficients will be demonstrated and compared with
conventional linear and high order (up to 7th order) tetrahedral finite elements. For finite element calculations, the
commercial finite element software COMSOL [40] with isoparametric finite elements and geometrically conforming
meshes is used. In order to compare the accuracy of OLTEM with FEM, the following errors are considered below.
The relative error ey, for the function w at the jth grid point is defined as:

] | wr}um _ ngact |
o) =—~— 7 ji=12,...,N. (37)

exact
wmax

The maximum relative error e))** for the function w is defined as:

eﬁ‘”‘:mj@xei, j=1,2,...,N. (38)
In Egs. (37)—(38) the superscripts ‘num’ and ‘exact’ correspond to the numerical and exact solutions, N is the total
number of the grid points used in calculations, w**" is the maximum absolute value of the exact solution over the
entire domain for the function w. We also use the L? error norm for finite elements (e.g., see [41]) and the 12 error

norm (e.g., see [42]) for OLTEM:

Nx N)’ Nk
2 1
ehy ={dxdydz » > > (W™, yi. ) — wN i, yj. 202 /[w Y o (39)
i=0 j=0 k=0
where N,, N, and N; are the numbers of Cartesian grid points along x, y and z-axes, x;, y; and z; are the coordinates
of Cartesian grid points, respectively. As function w in Egs. (37)—(39) we consider u, g—;‘c, g—g and ‘;—”

5.1. 3-D bi-material cube with a spherical inclusion

The focus of the paper is OLTEM for interface problems. Therefore, here we solve the problem with a regular
boundary and a curved interface. The development of OLTEM for domains with curved boundaries is considered
in our papers [25,28]. Consider the 3-D Poisson equation with discontinuous coefficients for the bi-material cube
with dimensions 2 x 2 x 2 as shown in Fig. 2a. The cube consists of a spherical inclusion (subdomain {2;) at the
center of the cube and the matrix (subdomain {2;;) with the circular interface described by the following equation:

R+ PR+ =12, (40)
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Fig. 2. A 3-D cube with a spherical inclusion (a), examples of an unfitted Cartesian mesh for OLTEM (b) and a conforming tetrahedral
finite element mesh generated by the commercial software COMSOL (c).

where r = 0.4 is the radius of the circular interface. The following material properties are assumed: ¢; =

% 1(1)0, ¢ 50 100; 200 in 27 and ¢;; = 1 in £y, with the material contrasts - = 53 553 z55: 50; 100; 200.

Using the method of manufactured solution, the following exact solution to the P01sson equation is selected:
2
cos(f—j +5+ f—z) in
u(x, y,z) = 4D
cos(" + + 2) (C—’ — Dcos(l) in 24

This solution meets the 1nterface conditions, Eq. (2), with zero jumps 6; = &, = 0. The source terms can

be calculated by the substituti02n of the exact solu;ion into the Poisson equaztion, Eq. (1), and are given below:
2 2 2 2 .2 2 .

fitx,y,2) = —2c1[l(X— o+ Z—z)cos(;‘—z + 5+ 5+ GsinG + 5+ 5] in 25 fulk,y2) =

~20/[3(5 + %5 + S)cos( + % + 5) + (3)sin(; + 5 + )] in 2. The Dirichlet boundary conditions

along all faces of the cube are 1mposed according to the exact solution, Eq. (41). The problem is solved by OLTEM

with the 125- point stencils as well as by linear and high order (up to the 7th order) finite elements for different
material contrasts _-. To get a high accuracy for OLTEM with cut 125-point stencils located close to the boundary,
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Fig. 3. The maximum relative error e)** (a) and the [? error norm ef, (b) as a function of the mesh size & at mesh refinement in the

logarithmic scale. The numerical solutions of the 3-D Poisson equation for the cube with the spherical inclusion (see Fig. 2a) are obtained
by OLTEM on square (by =1 and b, = 1) Cartesian meshes with the following material contrasts: (LI—’, = % (curve 1), Lf[—’[ = ﬁ (curve
JLSY A

o = ﬁ (curve 3), CLTII =50 (curve 4), CLTII = 100 (curve 5) and ;Tl, =200 (curve 6). The reference line 7 designates the 11th order
of convergence.

the high-order numerical boundary conditions similar to those developed in our papers [24,35] are used. Fig. 2b,c

shows a typical unfitted Cartesian mesh with aspects ratios b, = b, = 1 used for OLTEM as well as a typical
conforming tetrahedral finite element mesh.

First, we present the application of OLTEM to the solution of the Poisson equation for heterogeneous materzials

9] P as

with different material contrasts - Fig. 3 shows the maximum relative error ¢;'** and the 1% error norm e/

a function of the mesh size & in the logarithmic scale for OLTEM with the 125-point stencils and the material
contrasts CLT[I = %; ﬁ; ﬁ; 50; 100; 200. As can be seen from Fig. 3, OLTEM yields convergent results with the
order of convergence close to eleven for all material contrasts. The reference line (line 7) corresponds to the 11th
order of convergence. These observations are in agreement with the theoretical results in the previous Section 3.
Next, we present the accuracy comparison of OLTEM with linear and high order (up to the 7th order — the

highest order in COMSOL) finite elements for the material contrast CCTII = % (similar results can be also obtained

for other material contrasts). Fig. 4 shows the maximum relative errors e/'“* and the errors eﬁz in the L? norm
as a function of the number N of degrees of freedom in the logarithmic scale for the numerical results obtained
by OLTEM and by finite elements. As can be seen from Fig. 4, at the same N the numerical results obtained by
OLTEM are much more accurate than those obtained by linear and higher order finite elements (see Fig. 4a,b).
This increase in accuracy by OLTEM is impressive considering the fact that higher order finite elements have much
wider stencils (e.g., 15 x 15 x 15 = 3375-point stencils for the 7th order finite elements) compared to those for
OLTEM (the width of the stencils for OLTEM corresponds to that for quadratic finite elements) and require a much
greater computation time. We should also mention that at an accuracy of 0.1%, OLTEM with the 125-point stencils
reduces the number N of degrees of freedom by a factor of greater than 180 for the maximum relative error e]“*
and greater than 27 for the L? error norm ef;z compared to that for quadratic finite elements. This will lead to an
extremely large reduction in the computation time for OLTEM compared to quadratic finite elements at a given
accuracy.

A study of the stability of the numerical results with respect to grid positioning is shown for OLTEM in Fig. 5.

For this study, we solve the test problem with the material contrast L% = % on 501 Cartesian meshes with the
mesh sizes h; = hy + U”‘g”% and a very small variation of the mesh size & where hy = 2/15, hy = 2/20
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Fig. 4. The maximum relative error e}/** (a) and the L? error norm ef (b) as a function of /N at mesh refinement in the logarithmic scale

(N is the number of degrees of freedom). The numerical solutions of the 3-D Poisson equation for the cube with the spherical inclusion and

the material contrast C‘I—’I = % (see Fig. 2a) are obtained by OLTEM on unfitted square (by =1 and b, = 1) Cartesian meshes (curve 1)

as well as by linear and high-order tetrahedral finite elements (curves 2-8) on conforming meshes. Curves 2, 3, ...,8 correspond to linear,
quadratic, ..., and the 7th order finite elements.
-3 -3
-4+ -4 4
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Fig. 5. The logarithm of the maximum relative errors e/ (a) and the [?> error norm eflz (b) as a function of the mesh size /. The numerical
solutions of the 3-D Poisson equation for the cube with the spherical inclusion (see Fig. 2a) are obtained by OLTEM on unfitted square
(by =1 and b, = 1) Cartesian meshes with the material contrast c% = %. Each curve is calculated on 501 meshes; see the text.

and i = 1,2,...,501. For these meshes, three grid planes always coincide with the left, bottom and rear faces of
the cubical domain and at the small variation of the mesh size & we have very different locations of the circular
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interface with respect to the grid points. The curves in Fig. 5 correspond to curves 1 in Fig. 3. As can be seen
from Fig. 5, the numerical results obtained by OLTEM on these meshes converge with the decrease in the grid
size h. Small oscillations in Fig. 5 decrease with the decrease in the mesh size. This oscillatory behavior can be
explained by the fact that at small variations of the mesh size /, there is a discontinuous change in the location
of the grid points with respect to the interface (e.g., some grid points that belong to one material for the previous
mesh can belong to another material for the next mesh; this change in location leads to the discontinuous change
of some stencils equations for the meshes with a small difference in /). Note that small oscillations in numerical
convergence curves are typical for many numerical techniques at small variations of A. For example, the change in
the angles of finite elements at small variations of the element size & also leads to such oscillations in convergence
curves for finite element techniques.

The application of the new post-processing procedure for the calculation of the spatial derivatives of numerical
solutions is presented in Figs. 6 and 7. Here, we solve the test problem with the material contrast fl—’l = % by
OLTEM with the 125-point stencils as well as by linear and high order finite elements and compare the accuracy
of the spatial derivatives 8”;:m, 8”;:m and a“; ™ of the numerical solutions ™™, Figs. 6 and 7 show the maximum

) 2

max ,max ,max L2 L2
o> €ae s €5, and the errors e, , €5, , €5,

ax dy dz ax dy ur
of freedom for different techniques. As can be seen from Figs. 6 and 7, at the same N the spatial derivatives ™

3unum aunum dx

NE and “5— obtained by OLTEM are much more accurate than those obtained by linear and high-order (up to
the 7th order) finite elements for the both selected error norms. To compare OLTEM with the 125-point stencils and
quadratic finite elements (these techniques have similar computational costs), let us estimate the number of degrees
of freedom required for an accuracy of 0.1% with these methods. In order to do this estimation, we need to find the
intersection of curves 1 and 3 in Figs. 6 and 7 with the horizontal line -3 along the vertical axis corresponding to
the accuracy of 0.1% (we extrapolated the curves 3 using the constant slope related to the last two finest meshes).
The numerical results in Figs. 6 and 7 show that at an accuracy of 0.1% for the spatial derivatives, OLTEM reduces
the number N of degrees of freedom by a factor of greater than 3.8 x 10° for the maximum relative error and
greater than 900 for the L? error norm compared to that for quadratic finite elements. This reduction in the number
of degrees of freedom will lead to an extremely large reduction in the computation time for the calculation of the
spatial derivatives by OLTEM compared to those obtained by finite elements at a given accuracy.

Z

relative errors e e%" in the L? norm as a function of the number N of degrees

5.2. 3-D cube with three spherical inclusions

Let us consider a cube of dimensions 2 x 2 x 2 with three spherical inclusions (subdomains (2, i = 1, 2, 3)
and the matrix (subdomain (); see Fig. 8. The three circular interfaces are described by the following equation:

4yt =r, i=1,2,3 (42)

where ri = 0.4, r, = 0.3, r3 = 0.2 are the radii of the three circular interfaces. The centers of the inclusions
are located at the points with the following coordinates: (—0.2, 0.2, —0.4), (0.6, —0.6, 0.2), (—0.6, 0.6, 0.4). The
following material properties of the inclusions and the matrix are assumed: ¢; =2, ¢, = 5, ¢3 = 10, ¢4 = 1. Using
the method of manufactured solution, the following exact solution to the Poisson equation is selected in the cubic
domain:

cos(ax)cos(B1y)cos(yi1z) in {2, () and (X
ux,y,z)= , (43)
cos(azx) cos(Bry) cos(y2z) in 24

with oy = 4, B; =7, y1 = 15 for the inclusions and o, = 5, B, = 20, y» = 17 for the matrix. Inserting this exact
solution, Eq. (43), in the interface conditions, Eq. (2) and the Poisson equation, Eq. (1), we can find the jumps §;
and &, at the interfaces as well as the source terms f;(x) (I = 1,2, 3, 4). The Dirichlet boundary conditions along
all faces of the cube are imposed according to the exact solution, Eq. (43). The problem is solved by OLTEM with
the 125-point stencils. To get a high accuracy for OLTEM with cut 125-point stencils located close to the boundary,
the high-order numerical boundary conditions similar to those developed in our papers [24,35] are used. Fig. 9
shows the maximum relative error ¢”%* and the /> error norm ¢’ as a function of the mesh size 4 in the logarithmic

u

scale for OLTEM with the 125-point stencils. As can be seen from Fig. 9, OLTEM yields convergent results with
18
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Fig. 6. The maximum relative errors for the spatial derivatives e'g“” (a), e’g’j” (b), e’[}f" (c) as a function of «/N at mesh refinement in

the logarithmic scale (N is the number of degrees of freedom) The numencal solutlons of the 3-D Poisson equation for the cube with

the spherical inclusion and the material contrast :III = 50 (see Fig. 2a) are obtained by OLTEM on unfitted square (by =1 and b, = 1)

Cartesian meshes (curve 1) as well as by linear and high-order tetrahedral finite elements (curves 2-8) on conforming meshes. Curves 2, 3,
.,8 correspond to linear, quadratic, ..., and the 7th order finite elements.

the order of convergence close to eleven. The reference line (line 2) corresponds to the 11th order of convergence.
These observations are in agreement with the theoretical results in the previous Section 3.

6. Concluding remarks

OLTEM with the 125-point stencils for heterogeneous materials with smooth irregular interfaces and unfitted
Cartesian meshes has been developed for the Poisson equation in the general 3-D case. The main idea in the
development of OLTEM is to provide the maximum possible accuracy of discrete equations after the space

19



A. Idesman, M. Mobin and J. Bishop Computer Methods in Applied Mechanics and Engineering 417 (2023) 116439

1 ; 1
0 o
’2
1t ’ At
-2t 2t
S e 4
S -3r S 37 5
[=3] =13}
3 S
4t vy
-E-1(QLTEM) ((L)LTEM) 7
5/ -9-§(L|near) . 5l (anegr)t 8
(Quadratic) 3(Quadratic)
“7~4(Cubic) ~7-4(Cubic)
—+—=5(Quartic) 6! —+—-5(Quartic)
-6 |- 6(Quintic) = 6(Qumt|c
-O-7(Sextic) 7(Sextic)
- 8(Septic) 8( Septlc | ‘ | ‘ ‘
’ 1 1.2 1.4 1.6 1.8 2 2.2 2.4 1 1.2 14 1.6 1.8 2 2.2 2.4
L0g10 W LOglO \/ﬁ
a) b)
1
O L
’2
1r
2t
g
S -3t 5
=T}
]
—
-5-1(OLTEM) 7
| 9—2 Lmear) 8

16 1.8 2 22 24

Fig. 7. The L? error norm of the spatial derivatives ed“ (a), e (b) ed“ (c) as a function of &/N at mesh refinement in the logarithmic

scale (N is the number of degrees of freedom). The nurnerlcal solutlons of the 3-D Poisson equation for the cube with the spherical inclusion
and the material contrast C% = % (see Fig. 2a) are obtained by OLTEM on unfitted square (b, =1 and b, = 1) Cartesian meshes (curve 1)
as well as by linear and high-order tetrahedral finite elements (curves 2-8) on conforming meshes. Curves 2, 3, ...,8 correspond to linear,
quadratic, ..., and the 7th order finite elements.

discretization of PDEs. The derivation of OLTEM is based on the minimization of the local truncation error of the
stencil (discrete) equations using the entire PDEs. The global system of equations for OLTEM has the non-symmetric
stiffness matrix and can be solved with an iterative solver (e.g., we use the built-in Matlab solver ‘gmres’ [36]
without preconditioners). At similar numbers of degrees of freedom and similar widths of the stiffness matrices,
the accuracy of OLTEM is much higher than that for existing numerical techniques. In contrast to our previous
publications, for the first time we have developed OLTEM with 125-point stencils for irregular geometry in the
general 3-D case.

20



A. Idesman, M. Mobin and J. Bishop Computer Methods in Applied Mechanics and Engineering 417 (2023) 116439

Fig. 8. A 3-D cube with three spherical inclusions.
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Fig. 9. The maximum relative error e/** (curve 1 in a) and the {2 error norm elu2 (curve 1 in b) as a function of the mesh size & at mesh
refinement in the logarithmic scale. The numerical solutions of the 3-D Poisson equation for the cube with the three spherical inclusions
(see Fig. 8) are obtained by OLTEM on unfitted square (by = 1 and b, = 1) Cartesian meshes. The reference line 2 designates the 11th

order of convergence.

The main advantages of the developed numerical technique can be summarized as follows:

e OLTEM with the 125-point stencils (similar to those for quadratic finite elements) provides an extremely large
increase in accuracy for the Poisson equation for heterogeneous materials with irregular interfaces. Compared
with the existing finite element techniques with quadratic elements that provide the third order of accuracy
on conforming and unfitted meshes (e.g., see [3,5,7-12,14-16]), OLTEM provides the 11th order of accuracy
with an extremely large increase by 8 orders at similar stencils.
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e OLTEM uses trivial unfitted Cartesian meshes independent of the location of interfaces. These unfitted meshes
significantly simplify the preparation of input data for numerical simulations of heterogeneous materials.

e OLTEM does not approximate irregular geometry of interfaces. The exact interface conditions, Eq. (2), are used
at a small number of interface points located on the exact interface. For regular geometry without interfaces,
OLTEM usually provides a higher order of convergence compared to that for curved interfaces, e.g., see our
papers [30,31].

e In contrast to the different modifications of finite element techniques with unfitted meshes, OLTEM does not
introduce additional unknowns for the description of the interface conditions. OLTEM uses just the regular
unknowns at the internal Cartesian grid points. The sparse structure of the global discrete equations for OLTEM
is the same for homogeneous (without interfaces) and heterogeneous (with interfaces) materials, i.e., the
difference is only in the values of the coefficients of the global matrices for homogeneous and heterogeneous
materials.

e OLTEM with the 125-point stencils and unfitted meshes provides much more accurate results than high-order
(up to the 7th order — the maximum order implemented in the commercial finite element software COMSOL)
finite elements with much wider stencils (e.g., 3375-point stencils for the 7th order finite elements). At an
accuracy of 0.1%, OLTEM reduces the number of degrees of freedom by 27— 180 times compared to quadratic
finite elements for the considered test problem with the spherical interface.

e In contrast to the finite difference method (see also a short discussion in the Introduction), OLTEM does not
need the approximation of the normal derivatives for the grid points located close to the interfaces, the width
of the homogeneous and heterogeneous stencils is the same, as well as OLTEM provides much a higher order
of accuracy for interface problems compared to that for known finite difference techniques, e.g., see [17-22]
and others.

e A new post-processing procedure with 125-point stencils (similar to those used in basic computations) has
been developed for the calculation of the spatial derivatives of the primary function. It is based on the solution
of a small local system of algebraic equations and the use of the original PDE (the Poisson equation). It was
shown that the use of PDE for the 125-point stencils improves the accuracy of the spatial derivatives by 6
orders compared to the calculations without the use of PDE as in the existing numerical techniques. Due to
the new post-processing procedure, the difference in accuracy for the spatial derivatives calculated by OLTEM
with the 125-point stencils and by high-order (up to the 7th order) finite elements is much greater than that
for the primary function. At an accuracy of 0.1% for the spatial derivatives, OLTEM reduces the number of
degrees of freedom by 900 —4-10° times compared to quadratic finite elements for the considered test problem
with the spherical interface. The developed post-processing procedure can be easily extended to unstructured
meshes and can be independently used with existing numerical techniques (e.g., with finite elements).

In the future, we plan to develop OLTEM with adaptive mesh refinement similar to 2— and p— mesh refinements
for finite elements (it was shown in papers [27,30] that OLTEM can easily combine different stencils). We plan to
use quadtrees/octrees meshes that allow a simple refinement strategy with Cartesian meshes. Currently, we analyze
smooth interfaces without singular points that intersects the 125-point cell as well as we assume sufficiently smooth
exact solutions. The extension of OLTEM to non-smooth solutions as well as to non-smooth interfaces that also
includes the case of singular points with three or more different materials in contact will be considered. We should
mention that the numerical results for the 1-D wave equation in our paper [34] show that OLTEM can accurately
solve the problems with propagating discontinuity. However, we expect a lower order of convergence of OLTEM
for the problems with non-smooth solutions compared to that for smooth solutions. The extension of OLTEM to
other PDEs with discontinuous coefficients as well as to non-linear PDEs will be also considered in the future. We
plan to extend the new post-processing procedure with OLTEM to other PDEs.
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Appendix A. The coefficients b, used in Eq. (16) for the 125-point stencils.

The first 10 coefficients b, (p =1, 2, ..., 10) are presented below. Please see also Appendix B and the attached
file b-coef.nb.
125 81
b] :Zajkj+ ql,j
j=1 j=1

125 81
by=Y (I—apk; =Y qu,
=1 =1
125 81
b3 = szaj(rz,j —_ dZG)kj —+ Z(dz’qu’j -+ C*nz’quj)
=1 =1
125 81
by=Y b1 —aj)(r.; —dza)kj — Y _(d:jq1; + Cusntz jq2.7)
=1 j=1
125 81
bs = Zb)’aj(ry,j —dyg)k; + Z(dy,jéh,j + ciny jqa.5)
=1 =1

125 81
be = Zby(l —a;)ryj —dyc)k; — Z(dy,jm,j + Caslty G2, )

=1 =1

125 81

by = beaj(rx,j —dxg)k; + Z(dx,jéh.j + ciny jq2,5)
=1 =1
125 81
by = be(l —a;)ry,j —dxg)k; — Z(dx,jéh,j + Canllx, jq2,})
=1 =1
125 8L
by =D 5ajlbire; —dze)’ — (e j — dyo Ik + D _[5(2; = df panj + ealde jnej = d jns )]
=1 =1
125 814
bio = Z 5(1 —ap)b2(r,; —dzg)* — (rv,; —dyg)*1k; — Z[z(dzz,j - df,j)éh,j + cldz jny j — dz jnx j)q2, )]

Jj=1 j=1
Appendix B. The explicit form of Eqs. (23) for the determination of the stencil coefficients.

The coefficients b; in Eq. (16) can be represented as a linear function of the stencil coefficients k;, g; ; and g ;
as follows:

125 81
bi= Y sijkj+ Y (charj+chan)).  i=1.2,....5T8, (B.1)
j=1 j=1
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where the coefficients s;;, c}j and cl.2j can be found from the expressions for the coefficients b;; see Appendix A

and the attached file b-coef.nb.
Then using Eq. (B.1), the local system of linear algebraic equations for finding the stencil coefficients, Egs. (23),

can be rewritten as follows:

200 242 288 338 392
aR A ab’ b,—L + h LI b + h b,—2
= Z 2| 2 3 Y Y
P ak P 8k P akm P ak
p=201 p=243 p=289 p=339
450
ob,
th 3 Pr ok
=393 m
200 125 [ 242 288 338 392
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+hy § : SpiSpm | kj
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392 450
+h3 Z CPJ pm + hy Z CPJ pm qu.j
p=339 p=393
81 [ 242 288 338
+Z Zcm Pm+h1 ZCPJ pm+h2 ZCP] Cpm
j=1 \ p=201 p=243 =289
392 450
2 _
+hs Z CPJ pm + ha Z CPJ pm | 42.i1=0, (B.4)
p=339 p=393
m=1,2,...,81,
125 81
R
P =bn = Swikj+ > (Chiq1j+Coiq2)) =0,  m=12,..,200, (B.5)

j=1 j=1

where Egs. (B.2)-(B.5) form a system of 487 linear algebraic equations for the determination of the stencil
coefficients k; (j = 1,2,...,125), q1,; and q»; (j = 1,2,...,81) as well as 200 Lagrange multiplier A,
(l=1,2,...,200).
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