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change. However, the automation of urban-scale building energy modeling systems required to meet global
urban demand has proven challenging due to the bespoke characteristics of each city. One such point
of uniqueness between cities is that of urban microclimate, which may play a significant role in altering
the performance of energy efficiency in buildings. This research proposes a way to rapidly collect urban
microclimate data through satellite readings and climate reanalysis, enabling researchers to study the invisible
walls of microclimate, which play a critical role in the buildings’ energy consumption.

We demonstrate the utility of this data by composing an analysis against three years of monthly building
energy consumption data from New York City. Our study highlights the significance of urban microclimates in
decreasing the gas consumption of some buildings in New York by 71% and increasing the gas consumption
in others by as much as 221%. Microclimates also seem to be responsible for the decrease of electricity

Urban energy consumption
Remote sensing

consumption by up to 28.6% in regions or increases of up to 77% consumption in others.

1. Introduction

The built environment accounts for around 20% to 40% of the
energy consumed in developed countries, with similar statistics for
their proportion of greenhouse gas emissions (Pérez-Lombard et al.,
2008). To meet climate goals in the Paris Agreement, urban areas
worldwide have adopted policies to reduce their carbon emissions.
However, large-scale energy modeling attempts are laden with uncer-
tainties associated with building modeling, occupancy behavior, and
socio-technical factors (Ali et al., 2021). A particularly challenging
branch of modern research is to blend our understandings between the
built environment and the natural world (Palmer et al., 2005), which
directly segues into urban microclimates. In this vein, the influence of
urban microclimates on energy consumption has been gaining attention
in the research community (Ozyavuz, 2013). Preliminary studies show
potential deviations of up to 100% heating or 65% due entirely to urban
microclimates (Hong et al., 2021).

This research explores the potential advantages of blending high-
resolution climate reanalysis with remote sensing data into a statistical
model of urban energy consumption for New York City. In doing so, we
identify the key features from the data sets and estimate their effects
on regional energy consumption within the city. This work results in
a newfound capacity for high-quality, readily available data to enable
cities with scarce building energy consumption data to estimate the
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effects of microclimate on building energy inefficiency. As New York
City serves as a testbed for our analysis, the results of this study may
be suitable for mid to large-sized cities with cold climates. Finally, we
use the analysis results to define a set of “energy microclimates” (EMC)
which offer an extended definition of urban microclimates to include
features most pertinent to building energy consumption and with a
higher time resolution. We use these microclimate zones to explore how
buildings might shift between microclimates throughout the year.

2. Background

Building energy modeling has been utilized as a valuable tool in
the design phase of buildings for its capacity to estimate the build-
ing’s energy consumption, carbon emissions, and peak electricity de-
mand (Reinhart & Cerezo Davila, 2016). Large-scale energy analysis
often disregards the unique aspects of each building in favor of macro-
scopic grid planning, potentially missing valuable information (Cetin,
2013; Cetin, 2015). More regional models proposed instead attempt to
inject pertinent information about each building by utilizing archetype
buildings in a physics-based model (Cerezo et al., 2017). While recent
works have shown temperature to be a significant variable in both data-
driven modeling and physics-based modeling (Santamouris et al., 2015;
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Luo et al., 2020; Torabi Moghadam et al., 2018), the incorporation of
highly localized weather data is often neglected in practice. Instead,
Typical Meteorological Year (TMY) data is used as a surrogate for the
climate conditions likely to interact directly with the buildings (Xu
et al., 2022; Reinhart & Cerezo Davila, 2016).

However, recent work has shown that TMY poorly tracks localized
effects like urban heat islands (Weclawiak, 2022), and a lack of inte-
gration between building energy models and climate models is noted
as one of the significant engineering obstacles to the continued im-
provement of UBEM (Craig et al., 2022). Recent research has begun to
shed light into the true implications of localized weather on our energy
infrastructure. One study couples the localized cooling effects of trees
with building energy simulations, discovering that buildings directly
adjacent to the park have a cooling demand which is 13.9% lower than
that of the same buildings further away from the park (Toparlar et al.,
2018).

Another study estimated that the removal of waste heat from cool-
ing systems would result in a 1oC drop in temperature and 6% de-
crease in cooling energy consumption for the region of Ootemachi,
Tokyo (Kikegawa et al., 2003). More recent work in San Francisco used
simulation coupled with high-resolution climate sensors to estimate the
impact of microclimate on building energy consumption (Hong et al.,
2021). They find that the failure to consider localized weather may
result in up to 100% differences in annual heating, 65% difference in
annual cooling, and up to 30% difference in peak cooling electricity
demand. Microclimate may play a significant role in driving energy
consumption, although it has yet to reach mainstream adoption in
energy models. To achieve a higher-quality mesh of climate variables
throughout the city, the researchers used interpolation between the sen-
sors as a proxy for missing spatial data. Data collection with sensors is
common for researchers within the domain and is often a limiting factor
in building a more powerful analysis. However, given the difficulty
of deploying and maintaining a fleet of sensors, researchers often opt
to study a single microclimate effect for each analysis (Srebric et al.,
2015; Li et al., 2019; Yang et al., 2020; Yang et al., 2021).

The general lack of adequate, high-resolution data was demon-
strated in recent air-quality research, highlighting that existing data
sources may rapidly fluctuate and are potentially susceptible to lo-
calized sources of error (Apte et al., 2017). Given that microclimate
features have similar spatio-temporal dynamics, it is likely that urban
microclimate readings suffer from similar issues.

The capacity to study the influence of climate on urban spaces
has historically been limited to the resolution of TMY data. While
the past 50 years have seen a continued march of general climate
models towards a higher spatial resolution (Sellers, 1969; Uppala et al.,
2005; Hersbach et al., 2020), the diversity of interaction effects within
urban spaces mitigates the capacity to generalize the results of one
study to a new region. Preliminary research has attempted to curate
a holistic model of urban climate (Salvati et al., 2020, and Ma &
Cheng, 2016), which has grown in parallel with computational fluid
dynamics (CFD) models of urban regions (Toparlar et al., 2017). While
CFD models may provide valuable insights into a city’s heat and wind
distributions, they are challenging to build and validate due to the lack
of ground truth data.

This work provides a potential solution for the deep integration
between sources of high-resolution microclimate data and building
energy modeling. Specifically, we propose integrating high-frequency
satellite data with climate reanalysis for our underlying dataset. By
using these rapidly accessible data sources to curate an energy analysis,
we aim to demonstrate the impact of microclimate on building energy
usage in New York City.

3. Data

For context, a borough map of New York City has been provided
in Fig. 1 for your reference, as various regions will be discussed
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Fig. 1. Overview of Boroughs in New York City.

throughout the analysis. Our data is split into three primary categories.
The first is energy data, the second is building features, and the final
category is environmental data captured from satellites or reanalysis
models.

The environmental data collected from climate reanalysis and re-
mote sensing was captured using Google Earth Engine. The coor-
dination of various spatial resolutions of data is handled internally
by Google Earth Engine, which provides a mechanic of upsampling
lower-resolution data to accommodate requests for higher-resolution
geometries. The process of collecting environmental parameters from
Google Earth Engine is as follows. First, the convex hull of the building
footprint is computed and used in place of the actual building foot-
print. The substitution of simple geometry is due to the complexity of
actual building footprints, which both inflate file sizes and dramatically
increase the computational complexity of subsequent analysis. Next, a
buffer radius of 100 meters is applied to the building’s convex hull,
which will serve as the region of capture for all subsequent data. The
100-meter buffer was selected based on visual inspection of the satellite
data, which may be collected adjacent to the structure. This radius
was designed to capture all potential features adjacent to the building
that might have regular interactions with the structure. As per Google’s
documentation on image reduction (Gorelick et al., 2017), the incoming
data source will attempt to partition into the specified mesh resolution,
which will then be averaged over the area of the buffered region. A
flowchart of the process for curating and cleaning building footprints,
energy consumption, and microclimate features can be found in Fig. 2.

A note on the final quality of the aggregate data set: integrating each
remote sensing instrument into the inference model brings new insights
into the urban microclimate, improving the quality of the model which
can be constructed. However, the requirement of multiple data streams
will introduce new opportunities to embed missing data. In aggregate,
3.9% of the original data is removed from the analysis due to missing
data from remote sources.

3.1. Building data

New York City was chosen as the test bed for this analysis due to the
abundance of publicly reported data. One of the primary sources which
serve as a foundation of this analysis is the monthly building energy
consumption. Privately owned buildings over 25,000ft> (2322m?) and
city-owned buildings over 10,000ft*> (929m?) are required by Local
Law 84 to report their monthly electricity and gas consumption. Each
building can be described with a unique ID in the form of a borough,
block, and lot (BBL) number and a building identification code (BIN).
This analysis links each additional source of building-specific data
through the building’s BBL and BIN.
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(A) Open Data Sources (B) Data Cleaning
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Fig. 2. Data Pipeline: (A) The collection of openly accessible data from New York City building-specific features, energy data, and remote sensing. (B) The cleaning of this open
data for further processing based on availability, followed by (C) identifying highly correlated terms and reducing features based on the variance inflation factor. Finally, (D) shows

the regression of the reduced terms against the logarithmic energy per unit area.

New York City also provides two other critical sources of infor-
mation about the built environment. The first is building footprints.
Building footprints for the 1.08 million buildings in New York City are
captured and provided by New York City’s OpenData platform. The
capture mechanism for these footprints is a mixture of photogrammetry
and manual orthophotography, with details of edge case scenarios
listed in the public disclosure of data quality provided alongside the
data set.

The Primary Land Use Tax Lot Output (PLUTO) is the final New
York data set used to collect building features. PLUTO contains over 70
features particular to the structure, including zoning information, zip
code, building use type, and wall/floor dimensions. Of note, our study
intentionally leaves out several terms from the PLUTO dataset which
are specific to New York City. The exclusion of the terms is done to
encourage the generalization of our research into new urban regions of
similar climates. The terms selected for the study from PLUTO are the
tax value assessments (assesstot), useable building area, the year of con-
struction (yearbuilt), and metadata used to link PLUTO data to existing
data sources. The tax value metrics are captured through the Assessed
Total Value and the Assessed Land Value. The usable building floor
area is captured through the Building Area metric, which is procured
through the collection of sources like the Property Tax System (PTS),
the Computer Assisted Mass Appraisal (CAMA) or inferred by using the
number of stories and building footprint (PLUTO Data Dictionary May
2022 (22v1), 2022).

At the time of writing in 2022, the monthly energy consumption
of 9732 buildings was reported throughout the years 2018, 2019, and
2020. Assuming these buildings report energy data for each month,
we should have 350,352 electricity data points and 350,352 gas data
points. After filtering for duplicated IDs and pairing the energy con-
sumption data of the 9732 buildings with those of the building foot-
prints, the total number of unique buildings falls to 9250, with the
number of valid monthly energy consumption points falling to 273,600.

3.2. Mesoscale reanalysis data

Climate reanalysis, often known through the phrase “maps without
gaps”, blends historical climate observations with that of modern cli-
mate models (Uppala et al., 2005). In doing so, reanalysis attempts to
provide a complete picture of the earth’s climate history for all locations
on the planet at hourly intervals. The grid of data points provided
by reanalysis is three-dimensional, spanning the planet’s surface and
extending into space. As cities tend to spread more horizontally than
vertically, climate models’ most pertinent measurements should be
those close to the surface (Kondo et al., 2005).

Without much consideration to high altitude weather patterns,
mesoscale models often only need to consider climate activity within

the first 120 meters from the ground (Shi et al., 2016). In contrast,
the mesh resolution adjacent to the surface becomes a more significant
feature of interest with modern urban canopy models able to achieve
a planar resolution of at least 1 kilometer (Ooka, 2007). Attempts
have been made to transition single-layer urban canopy models to
multi-layer urban canopy models, but they were shown to provide
no appreciable benefit for accurately measuring urban climate fea-
tures (Kusaka et al., 2001). As an illustration of scale, New York City’s
99th percentile of building heights is only 26 m.

As such, we put more weight into selecting a climate reanalysis
with high mesh resolution at the planet’s surface. This work selects
NOAA’s National Weather Service RTMA for the collection of reanalysis
data (Caldwell, 0000). The NOAA RTMA offers historical meteorologi-
cal data with a resolution of 2.5 kilometers per cell over the contiguous
United States since 2011 at an hourly interval. NOAA RTMA provides
the highest spatial resolution among climate reanalysis models, with
comprehensive coverage of our data set.

In considering alternatives, ERA5 climate reanalysis was considered
for its global spatial coverage, which may extend this research to
more regions (Hersbach et al.,, 2020). ERA5 was additionally found
to have a broad temporal reach. Reporting data as early as 1979,
utilization of the ERAS5 data set in energy analysis enables almost
all internationally reported building energy data to be included as
part of a global data set. However, ERA5’s surface level resolution is
roughly 30 km at the equator, making it less ideal for interpreting
microclimate causes of energy consumption. As ERAS5 is often used
for climate modeling research, one of its primary benefits is the high-
resolution perpendicular to the planet’s surface. The lowest altitude cell
is registered at 1hPa of pressure, roughly 80 meters above sea level.
While this is not necessarily a limiting factor in its implementation, the
increased surface resolution of the NOAA reanalysis made it the more
comprehensive and appropriate option for the analysis.

3.2.1. Remote sensing

Three remote sensing products were used as part of the data pipeline
for this project: Sentinel-2 Level-1C, VIIRS, and NASA’s SRTM. These
data sets were selected due to their prominence in scientific discourse,
open access, and high-resolution data.

The Sentinel satellite provides imagery at a spatial resolution of up
to 10 meters per pixel, capturing wavelengths between 0.44 and 2.2 pm
with a revisit interval of 5 days. The raw data captured by the Sentinel
satellite is processed through a series of quality control systems internal
to the European Space Agency (ESA) before releasing the data to the
public. The ESA released the data used in this analysis as a Level-1C
product, which provides top-of-atmosphere reflectances in cartographic
geometry. Before building any analysis, cloud masking was applied to
the sentinel data using the provided bitwise mask band, QA60.
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Table 1
Final variables description.
Variable Description Unit Resolution Data source VIF
1 avg_rad Nighttime Light Radiance oW sr! em™? 500 m JPSS VIIRS/DNB 1.45
2 Bl Aerosols (443 nm) W sr! m2 60m Sentinel-2 Level-1C 2.61
3 B11 Shortwave Infrared (1612nm) W sr™! m™ 20m Sentinel-2 Level-1C 4.00
4 NDVI Vegetation Index - 10m Sentinel-2 Level-1C 2.09
5 WIND Average Wind Speed m s~ 2.5km NOAA RTMA 1.60
6 TCDC Total Cloud Cover % 2.5km NOAA RTMA 2.81
7 ACPCO1 Total Precipitation kg m™2 2.5km NOAA RTMA 1.60
8 hdd Heating Degree Days - 2.5km NOAA RTMA 3.37
9 cdd Cooling Degree Days - 2.5km NOAA RTMA 3.23
10 elevation Elevation m 30m NASA SRTM 1.16
11 assesstot Total Property Value $ - PLUTO 1.15
12 yearbuilt Year of Construction - - PLUTO 1.03
Because of its high spatial resolution, the Sentinel-2 Level-1C prod- Variables - PCA
uct provides hyper-local, regional features like vegetation and impervi- To-

ous surfaces, which may significantly influence the structure’s energy
consumption (Robineau et al., 2022). The vegetation was measured
using the Normalized Difference Vegetation Index (NDVI), a common
method of locating vegetation growth based on the reflection of low
frequency infrared and absorption of red light during photosynthesis
as seen in Bhandari et al. (2012).

Urban nightlights were the next source of exploration in remote
sensing data as they are shown to provide insights into the spatial
connectivity of urban spaces (Small et al., 2013). Urban night lights ad-
ditionally provide hints into economic activity (Dasgupta, 2022; Maatta
et al., 2021). We hypothesize that the high saturation of night lighting
may indicate higher rates of commercial activity, which may serve as a
valuable feature for prediction. The Earth Observation Group provided
the night lights data at the Payne Institute for Public Policy, Colorado
School of Mines (Elvidge et al., 2017). They capture radiance using the
VIIRS instrument on the Joint Polar Satellite System (JPSS) between
the wavelengths of 412nm and 12 pm.

Finally, ground elevation data was folded into the analysis through
the incorporation of NASA’s Shuttle Radar Topography Mission (SRMT)
in 2000. The static map created by this endeavor provides a 30-meter
resolution map of global elevation.

4. Methods

Having conducted a general survey of potential climate models and
satellite data, we proceed with analysis by conducting linear regression
against the final variables found in Table 1.

4.1. Endogenous terms

The endogenous terms (Y) are defined by the equation Y; = In
(E;/A)), with i € B and B defined by the set of all buildings in the
data set. Two variables are selected as the endogenous terms (E): the
monthly electricity consumption and the monthly gas consumption,
both in units of MWh. These terms are divided by the useable floor
area (A) of the buildings (B), provided by the PLUTO dataset as sq.ft
and translated to square meters. A logarithm is then applied to this area
normalized energy consumption, reducing the influence of right skew
and permitting analysis of each variable’s effect size per unit increase
in the term.

4.2. Exogenous terms

Of particular interest for this inference-based study is the issue of
multicollinearity, a thorough analysis of which is captured in the study
by Kim (2019), which may cause the coefficients of our regression
parameters to fluctuate if the exogenous terms are too highly correlated
wildly. The terms are evaluated by computing their variance inflation
factors (VIF), which indicate the degree of multicollinearity by quan-
tifying the capacity of the exogenous terms to act as predictors for
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Fig. 3. Visualized Correlation of Variables.

another term. The plot in Fig. 3 is a correlation matrix of the exogenous
variables, which are sequentially removed until all VIF terms are below
5.

A single feature from these highly related groups serves as a rep-
resentative for each correlated group. For example, bands B1-B12,
except B11, were represented by the single band of B1. The specific
humidity and dewpoint temperature are captured using temperature
measurements from the NOAA reanalysis and represented using heating
degree days and cooling degree days, commonly used terms in the
building energy domain (D’Amico et al., 2019). Gust, directional wind
speeds, pressure, and visibility were all highly correlated with wind
speed and thus removed. Finally, land value was removed for its high
correlation with total property value and redundant elevation terms.

The final variables selected, the data set of origin, and its computed
VIF value can be found in Table 1.

4.3. Regression construction

For each regression constructed, two variations are proposed. The
first analysis is created by regressing endogenous energy consumption
against mean-centered exogenous terms. By choosing not to normalize
unit variance prior to regression, we can estimate the percentage
change in energy per unit area given a unit increase in the exogenous
terms. The second regression is instead constructed by mean centering
and normalizing the exogenous terms, with the intention of interpreting
the magnitude of significance for the term, given that some features
might have more significant variance throughout the city.
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Table 2
Linear model — mean centered.
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Dependent variable:

log( Electric/Area )

log( Gas/Area )

avg_rad 0.002*** (0.00004) —0.003*** (0.0001)
Bl 0.060 (0.114) 3.007*** (0.276)
B11 —2.001** (0.061) 3.971** (0.148)
NDVI —0.754*** (0.029) 0.007 (0.070)
WIND —0.041*** (0.003) 0.096*** (0.008)
TCDC —0.002*** (0.0003) 0.006*** (0.001)
ACPC01 0.783*** (0.028) —0.133* (0.069)
hdd —0.015*** (0.0004) 0.097*** (0.001)
cdd 0.047** (0.001) —0.060*** (0.003)
elevation —0.003*** (0.0001) —0.0001 (0.0003)
assesstot 0.000*** (0.000) —0.000*** (0.000)
yearbuilt 0.001*** (0.00003) 0.0001 (0.0001)
Constant —8.651** (0.002) —8.769** (0.004)
Observations 220,820 217,883

R? 0.116 0.171

Adjusted R? 0.116 0.170

Residual Std. Error
F Statistic

0.748 (df = 220807)

2,408.626"** (df = 12; 220807)

1.794 (df = 217870)
3,731.927** (df = 12; 217870)

Note: *p<0.1; **p<0.05; ***p<0.01.

4.4. Regression and microclimate identification

After removing all zero terms from the endogenous variable and
corresponding exogenous features, relationships are discovered through
linear regression. The results of the mean-centered regression can be
found in Table 2, while the results of the normalized regression can be
found in Table 3. The regression is utilized as a point of information
for subsequent clustering to help identify microclimate regions within

the city.
Standard linear regression looks to minimize the sum of mean
squared loss L(f) = |Xp — Y||®. X# thus becomes a matrix—vector

product for an array of samples. The dimensionality of X is NxM,
where N is the number of samples while M is the number of features
used to describe each building. As g represents the coefficients from
the regression, its dimensionality is M x1, and thus the matrix—vector
product results in the prediction p; = E/Ai 1 X;;B;. If instead the summa-
tion is removed and an augmented matrix A of dimensionality NxM
is created such that A;; = X;;§;, then clustering against A will uncover
microclimate communities which are particularly significant for energy
consumption. Two A matrices will be constructed, one for gas - A, and
one for electricity A,.

As underlying land use changes often link environmental parame-
ters, it may be unlikely that a single environmental variable will ever
be shifted without modification to others. Thus for a more accurate
simulation of potential modifications to the urban microclimate, we
propose that shifts between clusters instead be simulated. For this
analysis, gaussian mixture models were explored as potential clustering
mechanics for A.

5. Results

The results of the regression may be found in Tables 2 and 3
below. Our results indicate that localized microclimate indeed seems to
play a significant role in urban energy consumption, and many of the
pertinent microclimate features may be captured using the resolution
of data provided by modern climate models and satellite imagery.

5.1. Electricity

The microclimate causes of electricity consumption in New York
seem relatively heterogeneous, as seen in the regression results from Ta-
ble 3. The most significant microclimate features to drive consumption
habits are cooling-degree days, heating-degree days, and B11 readings.
B11 captures light at a wavelength of 1610 nanometers, classified as

short-wave infrared radiation. An increase in measured values of short-
wave radiation might indicate that the material can dissipate thermal
energy, whereas lower readings might indicate a level of thermal
trapping that the urban canopy may cause.

Night light emissions (avg_rad) are also significant in the regression
model. While night light emissions may be a direct indicator of elec-
tricity consumption due to indoor lighting, it is perhaps more likely
that buildings with higher levels of night-time emissions correlate to
commercial regions in the city.

We may also use these results to explore localized microclimate
effects and estimate the influence of various urban features. For ex-
ample, with a coefficient of —0.754, the mean-centered regression
indicates that an increase of one unit in NDVI would correspond to
a decrease of 75% in electricity consumption. In practice, the typical
NDVI in New York City might swing between —0.05 and 0.2 depending
on the region’s season and density of vegetation. For example, the
average NDVI values in Midtown (middle of Manhattan) are —0.04.
With a regression coefficient of —0.754, NDVI is expected to modify the
electricity consumption in Midtown by 100 - (exp(—0.754 - —=0.04) — 1) =
3.06%.

Buildings adjacent to Central Park on the Upper West Side (northern
Manhattan) have average readings closer to 0.11. The estimated impact
from vegetation on electricity is thus 100 - (exp(-0.754 - 0.11) — 1) =
—7.96%. This example result indicates that an identical building next
to Central Park on the Upper West Side is likely to have 11% lower
electricity consumption than in Midtown due to the difference in
vegetation, which is similar to the results found by Toparlar et al. in
their analysis of cooling demand in Antwerp, Belgium (Toparlar et al.,
2018). The same method of computation may be applied to any of the
regression coefficients in Table 2 to estimate the feature’s impact on
the endogenous term.

5.2. Spatial analysis — Electricity

In general, the more densely packed urban areas in New York suffer
from the adverse effects of urban microclimate concerning electric-
ity consumption. The lower B11 readings in Manhattan indicate that
trapping of low-frequency light might disproportionately impact the
structures’ efficiency. Fig. 4 shows both the overall estimated impact
of environmental features on electricity consumption and the specific
regional influence of vegetation on electricity consumption.

The same maps can be used to explore the regional effects of
vegetation on electricity consumption. For example, a regional effect
due to vegetation can be found on the periphery of Central Park, as seen
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Table 3

Linear model — mean centered & normalized.
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Dependent variable:

log( Electric/Area )

log( Gas/Area )

avg_rad 0.115** (0.111, 0.119) —0.158*** (-0.167, —0.149)
Bl 0.001 (-0.004, 0.006) 0.068"** (0.055, 0.080)
B11 -0.104*** (-0.110, —0.098) 0.207*** (0.192, 0.222)
NDVI —0.060*** (—0.064, —0.055) 0.001 (-0.010, 0.011)
WIND —-0.026"** (—0.030, —0.022) 0.062*** (0.052, 0.071)
TCDC —-0.016"* (-0.021, —0.010) 0.053*** (0.040, 0.065)
ACPC01 0.055*** (0.051, 0.059) —0.009* (-0.019, 0.0002)
hdd —0.097*** (-0.102, —0.091) 0.638"** (0.624, 0.651)
cdd 0.128"* (0.122, 0.134) -0.166*** (—0.180, —0.152)
elevation —0.049*** (-0.053, —0.046) —0.002 (-0.010, 0.006)
assesstot 0.073** (0.070, 0.077) —0.256*** (—0.264, —0.248)
yearbuilt 0.082*** (0.079, 0.086) 0.003 (-0.005, 0.012)
Constant —8.651*** (-8.654, —8.648) —8.769** (-8.776, —8.761)
Observations 220,820 217,883

R? 0.116 0.171

Adjusted R? 0.116 0.170

Residual Std. Error
F Statistic

0.748 (df = 220807)

2,408.626"** (df = 12; 220807)

1.794 (df = 217870)
3,731.927** (df = 12; 217870)

Note: *p<0.1; **p<0.05; ***p<0.01.
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Fig. 4. Environmental Effects — Electricity.

in the upper right quadrant of Fig. 4. The higher levels of vegetation
from the park are estimated to reduce the electricity consumption of
adjacent buildings by 5%-7% per unit area compared to their peers in
the same neighborhood.

5.3. Gas

The gas data is observed to have much more homogeneous sources
of deviation. This source diversity is evidenced in the regression re-
sults found in Table 2. The regression is dominated by the heating
degree days, with a coefficient of 0.638. B11 readings from Sentinel-
2, capturing short-wave radiation, are again identified as a significant
indicator. For the gas regression, we find that higher B11 readings
seem to indicate higher gas consumption. As higher B11 readings would
indicate that the region is less effective at trapping thermal energy,
this matches our intuition that regions with a greater capacity to trap
heat may need less heating energy in the form of gas. The summation
of the absolute value coefficients for B1, B11, NDVI, WIND, TCDC
(cloud coverage), and ACPCO1 (precipitation) is 0.49. While heating
degree days provide significant insights into the behavioral mechanics
of gas consumption, nearly half of the potential sources for deviation
are missed when alternative environment variables are not included.

Regarding social indicators, the night light radiance may provide
an essential clue for the discrimination of building class. The average

radiance coefficient of —0.158 indicates that higher night-time lighting
may indicate lower gas consumption. Regions with a higher intensity
of night lighting may correspond to commercial zones, which may
not require heat throughout the night. Additionally, the total property
value of the building serves as a more significant indicator for gas
consumption, likely as more expensive buildings may have transitioned
away from gas.

5.4. Spatial analysis — Gas

Regions in the south of New York City that interface the ocean
seemed to have the most significant likely increase in gas consumption,
as seen in Fig. 5. This difference is unlikely to be due to discrepancies
with vegetation, as the vegetation of the city seems to have almost no
appreciable effect on gas consumption. The greenest regions of New
York are likely to see a marginal increase of 0.11% in gas consumption
due to vegetation. While prior work has shown trees typically provide
a cooling effect in the summer months from evapotranspiration, they
are dormant in the winter when heating may be necessary (Kleerekoper
et al., 2012).

The distribution of heating degree days in New York is reasonably
flat, with an average monthly spread between 6 and 8, as seen on the
leftmost image in Fig. 5. This distribution map indicates that given
temperature alone, we might expect the typical building in the Bronx
to have a 10% greater gas consumption than those of Brooklyn. How-
ever, we do not see this expressed in the regression for the complete
prediction of environmental effects, as evidenced by Fig. 5.

Prior work has demonstrated that the effect of infiltration is more
pronounced in older buildings (Antretter et al., 2007). Since Brooklyn
has a high density of older buildings, we might expect the wind to
impact their overall gas consumption significantly. Indeed, the wind
significantly influences gas consumption in Brooklyn, with the coastal
wind playing a dominant role among the potential causes for increased
gas consumption. In the coastal regions of southern Brooklyn and Staten
Island, the impact of wind on gas consumption rivals that of heating
degree days. We find that in the southern part of New York City, the
wind is regularly estimated to increase gas consumption by 5%-15%
per unit area, as seen in Fig. 5.

Wind speeds drop off when they interface with larger bodies of
vegetation, which likely increases the surface roughness of the urban
texture. The reduced wind speeds in Midwood, Flatbush, and Staten
Island leads the predictions for environmental effects to hover between
a 0 and 15% increase in gas consumption. The results for the more
interior parts of Brooklyn live in stark contrast to the nearby region
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of Sunset Park, in which buildings regularly may expect between a
20%-30% increase in gas consumption primarily due to increased wind
speeds.

Another interesting topic is the role of B11 measurements from
Sentinel-2. With a positive coefficient, higher readings of B11 indicate
the likelihood of a greater quantity of gas consumption per unit area.
Higher B11 readings indicate that the region is less effective at naturally
trapping thermal energy, which may be detrimental to the building’s
energy efficiency throughout the cold winter months.

5.5. Microclimate transitions

A microclimate is commonly framed as inducing a consistent en-
vironmental impact on a small city region. Urban Heat Island, one of
the commonly cited forms of urban microclimate, is often portrayed
as the consistent addition of heat to a region due to modified heat
capacitance, changes in land use, or urban canyon effects (Yin et al.,
2018). As microclimate analysis is typically conducted on the scale of
a year, less granular temporal readings for land surface temperature
are nonetheless likely to provide valuable information when developing
policy for urban decarbonization (Reinhart & Cerezo Davila, 2016).

The utilization of monthly energy consumption data also permits the
exploration of how a building might transition between environmental
microclimates throughout the year. To explore the dynamics of micro-
climate transitions, the regressed microclimate significance matrix A is
clustered into ten unique groups for illustration. To maintain consistent
terminology, we will use the term “energy microclimate” (EMC) to
describe the results of the clustering against A. EMCs are perhaps most
similar to Homogeneous Urban Zones (HUZ), which are introduced in
the urban land use classification (L6pez-Moreno et al., 2022). A notable
difference between HUZs and EMCs is that EMCs are curated against
statistically significant microclimate features conditioned using energy
consumption. In practice, EMC groups represent the distinct environ-
mental conditions that significantly influence the energy consumption
of buildings.

Notably, almost every building in New York City will experience
transitions through at least eight of the ten potential energy microcli-
mates. The high transition rate speaks to the dominance of seasonal
weather patterns, as the partitioning of microclimate features overlaps
with seasonal weather trends. The plot of unique microclimate counts
in Fig. 6 shows the presence of two potentially significant factors to
drive the behavior of New York City’s urban climate. The first is the
potential presence of an urban core, which exists in southern Manhattan
and dips into the western part of Queens. The more climatically stable
urban core is likely related to a lack of vegetation, which in other
parts of the city has a consistent annual growth pattern. This theory is
validated by the high number of transient regions stretching into Long
Island, which is often much greener than the rest of the city.
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The second interesting point of note is coastal climates, which
also have lower transition rates between urban microclimates. These
regions may be seen on the eastern coast of Staten Island and the
southern coast of Brooklyn in Fig. 6. While our intuition might be
that high rates of microclimate transition would lead to higher energy
consumption, these southern regions cast doubt on this theory. With
more predictable, high-speed coastal winds, buildings on this southern
interface regularly consume more gas.

6. Discussion

The process laid out in this research demonstrates that the energy
consumption of buildings may be coupled with readily available en-
vironmental data to interpret the effect sizes of various microclimate
events on the urban scale. In recognizing the influence of microclimate
on building energy consumption, we propose that the city may be
spatially split into “zones”, which serve as a more compact way to refer-
ence significant microclimate archetypes. Approaches to cluster urban
spaces into representative regions have been conducted before, with
particular emphasis on urban morphology (Joshi et al., 2022), building
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archetypes (Dogan & Reinhart, 2017), or urban heat island (Shen et al.,
2021). The clustering approach in this analysis instead slots into the gap
of research in the building energy domain, providing both a method of
automatically collecting data and clustering buildings based on critical
microclimate variables to explain their energy performance.

In providing this pipeline for cities with access to building energy
data, this research provides a mechanism for utilizing building energy
data to monitor the interaction effects of bespoke urban microclimates
on building energy efficiency.

A city with disclosed building energy consumption data may now
apply our methodology to identify the primary environmental features
driving the inefficiency of its structures. Additionally, this research
provides a significant step forward for cities with sparse resources
to monitor their structures’ interactions with urban microclimates.
Without building energy data, the city may utilize the coefficients
discovered in our study, which may provide insights for other cities
around the latitude of 40.7N within the United States and Canada.

Some of the unique cultural features of New York City may also
introduce challenges to the generalization of our research to new en-
vironments. For example, the distribution and intensity of urban night
lights captured by VIIRS may be a unique signature for New York City’s
vibrant commercial activity. New York City additionally provides a
uniquely high-quality dataset describing the geometries of its buildings.
Cities without a comprehensive database of building footprints may
have limited capacity to generate a comprehensive building energy
model of their city. While there is growing potential to automate the
task of extracting building footprints (Microsoft, 2018), the current
quality of building footprints in dense urban areas is not suitable for
analysis.

To our knowledge, energy benchmarking for buildings, a branch
of energy-related research which seeks to rank buildings against their
peers, does not consider the implications of urban microclimate in
establishing relational metrics to score buildings. Given that prior work
has demonstrated other microclimate phenomena like surface urban
heat island (SUHI) may not have an equitable impact on all members
of society (Hsu et al., 2021), we believe that the automatic curation of
environmental parameters using our system will play a valuable role in
promoting more comprehensive metrics for benchmarking research.

7. Limitations and future work

While this analysis demonstrates the potential value of using remote
sensing systems combined with climate reanalysis, there are some
notable limitations regarding the scope of potential applications. As our
system was not curated with the primary purpose of predicting building
energy consumption, it likely misses meaningful nonlinear relationships
between variables. For example, building age and urban night lighting
may host a wealth of information about the construction quality of
buildings and their occupancy patterns. However, a city region with
one-fifth of the urban night lighting compared to the archetypical com-
mercial region does not necessarily have one-fifth of the commercial
activity. Nightlights are thus likely best expressed through nonlinear
relationships with energy consumption.

The 100-meter buffer around buildings as a region of data collection
may be a point of further investigation, which may be approached
based on the results of techniques like saliency mapping (Dougherty
et al., 2021). Additionally, the relationship between regions in the city
needs to be explicitly incorporated as a mechanism within this model.
Our results from the spatial analysis of gas consumption found that high
wind speeds were predicted to increase gas consumption on the city’s
southern coast. However, as our system cannot predict the change of
environmental variables associated with modifications to the region’s
microclimate, it cannot simulate the impact of something like efforts
to reduce the wind speed in southern Brooklyn.

8. Conclusion and implications

This study is one of the first examples of the direct impact of urban
microclimate on building energy consumption based on real-world,
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historical monthly data over three years. In this study, we demon-
strated a method of rapidly extracting hyper-localized environmental
features around buildings using a variety of satellite imagery and high-
resolution reanalysis data. The tools used to capture this data will be
made available for all researchers as an open-source tool, enabling the
rapid collection of historical microclimate data for all research related
to the built environment.

This study demonstrates the potential value of high-resolution, his-
torical microclimate data with a small case study in New York City.
Through this case study, we show the significant effects of wind on
gas consumption in Brooklyn. We estimate that wind in Brooklyn may
increase the gas consumption of buildings in coastal regions by 10%.
We also note the effect of parks on electricity consumption, as buildings
directly adjacent to Central Park are predicted to consume 5%-7% less
electricity.

Upon aggregating the effects of various microclimate features, we
show that localized microclimate effects on a building may decrease
gas consumption by as much as 71% or increase it by as much as 221%.
We additionally recognize the potential of microclimate effects to drop
the electricity consumption of a typical building in New York City by
24.4% or increase the electricity consumption by 55.2%.

In summary, modern research in urban energy consumption has
shown urban microclimate to be a significant hurdle for improved accu-
racy of urban energy modeling. This study demonstrates a mechanism
of rapidly collecting high-resolution urban microclimate data, utilizing
it in a brief case study to explore microclimate effects on energy
consumption in New York City. We also explore correlations between
environmental microclimate features, using a cleaned version of the
data to compose a definition of Energy Microclimates (EMCs) which
enables microclimate archetypes to be defined as it pertains to building
energy consumption. Finally, we show that the urban microclimate
in New York is expressed through dynamic, competing forces which
may have significant localized effects both in time of year and spatial
arrangement. The process in this research may be used to rapidly collect
microclimate data for accelerated research into urban microclimate
design strategies.
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