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a b s t r a c t 

Urban Building Energy Modeling (UBEM) provides a framework for decarbonization decision-making on an urban 
scale. However, existing UBEM systems routinely neglect microclimate effects on building energy consumption, 
potentially leading to major sources of error. In this work, we attempt to address these sources of error by 
proposing the large scale collection of remote sensing and climate modeling data to improve the capabilities of 
existing systems. We explore situations when remote sensing might be most valuable, particularly when high 
quality weather station data might not be available. We show that lack of access to weather station data is 
unlikely to be driving existing errors in energy models, as most buildings are likely to be close enough to collect 
high quality data. We also highlight the significance of Landsat8’s thermal instrumentation to capture pertinent 
temperatures for the buildings through feature importance visualizations. Our analysis then characterizes the 
seasonal benefits of microclimate data for energy prediction. Landsat8 is found to provide a potential benefit 
of an 8% reduction in electricity prediction error in the spring and summertime of New York City. In contrast, 
NOAA RTMA may provide a benefit of a 2.5% reduction in natural gas prediction error in the winter and spring. 
Finally, we explore the potential of remote sensing to enhance the quality of energy predictions at a neighborhood 
level. We show that benefits for individual buildings translates to the regional level, as we can achieve improved 
predictions for groups of buildings. 

1. Introduction 

Buildings play a prominent role in the conversation of urban decar- 
bonization. Rightly so, as they consume roughly 40% of the electricity 
supply in the United States. Urban Building Energy Modeling (UBEM) 
provides a framework for decarbonization decision-making. However, 
UBEM has limited capacity to accurately model individual building 
energy and the energy consumption patterns of larger aggregated 
urban regions [ 1 ]. While most of the uncertainty within urban energy 
modeling seems to be the correct characterization of building features 
[ 2,3 ], a growing body of research is now exploring how a lack of 
adequate microclimate description may be adversely influencing the 
quality of models. 

Recent work has highlighted existing discrepancies between climate 
modeling and energy systems [ 4,5 ]. The lack of integration between en- 
ergy models and climate models may be particularly detrimental, con- 
sidering that the existing tools for UBEM rely on Typical Meteorological 
Year (TMY) files to represent climate conditions. These files are gen- 
erated from nearby weather stations, which may or may not be in the 
same microclimate zones as the simulated buildings. However, given 
that climate change has a disproportionate impact on urban areas [ 6 ], 
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errors caused by the failure to measure urban microclimate are likely to 
increase as variance in urban temperatures intensifies. 

High thermal mass buildings in urban areas additionally opens the 
opportunity for thermal interactions via longwave radiation, which was 
estimated to increase cooling demand by up to 3.3% and decrease heat- 
ing demand by up to 3.6% in Chicago [ 7 ]. A separate, simulation-based 
study in Nanjing, China, found that urban morphology significantly in- 
fluences urban temperatures and wind speeds. The estimated discrep- 
ancy between EPW-based simulations and those inclusive of microcli- 
mate was thus estimated to be up to 23% [ 8 ]. Shading between buildings 
provides another effective mechanism for the perturbation of radiative 
heat transfer, with seemingly trivial decisions often responsible for large 
inefficiencies. For example, the layout of rooftop units may achieve a 
42% efficiency benefit when positioned within shaded regions of the 
roof [ 9 ]. 

Vegetation, neighboring structures, and impervious surfaces have 
been shown to substantially impact the operating performance struc- 
tures by modifying the temperature and climate [ 10,11 ]. While wind 
is less represented in the research for its impact on building energy 
consumption, high wind speeds modify the heat transfer characteris- 
tics of the building with its environment. Preliminary studies have indi- 
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cated that wind may increase the energy consumption of a structure by 
as much as 5% [ 12 ]. These works signal the potential benefit of high- 
resolution urban climate models, which have been a fixture of the re- 
search community for the past two decades, starting with urban canopy 
models [ 13 ]. Complex heat transfer interactions are often distilled into a 
resistive-capacitive (RC) system, which enables the modeler to represent 
interactions using an electrical equivalence [ 14,15 ]. Modern research 
into urban climates now allows utilities to generate files that may be 
used for more accurate urban building energy modeling [ 16 ]. 

While work has been conducted to generate utilities for modeling 
urban microclimate conditions [ 16–18 ], typically, it is done so to ex- 
plore the health consequences of UHI [ 19 ], pedestrian comfort [ 20 ], or 
water resources [ 21 ]. This work seeks to shed light on the potential ben- 
efits of various remote sensing datasets in the context of urban energy 
modeling. 

As a large variety of climatic subterms may contribute to the heat 
transfer of each structure, we focus the scope of work within this pa- 
per on a simple exploration of the utility for each data source with- 
out extended conversation as to its physical interaction with the struc- 
ture. This work therefore addresses a large gap in scientific literature, 
which is that of the sensitivity between a building’s energy consumption 
and its environmental conditions. A diverse dataset of environmental 
features from various climate models and satellites provides an array 
of possible interaction effects, with the rationale that this breadth of 
sources may help to identify powerful features for deeper integration 
with physics based modeling. As building energy modeling is famously 
over-constrained, the current standard for model calibration may incor- 
rectly classify model error from environmental causes as those caused 
by occupancy behavior or building features. Through the systemic in- 
corporation of any potent datasources discovered in this analysis, future 
modelers might avoid the potential mistake of overcompensating for mi- 
croclimate impacts on building energy consumption. Our approach is 
then bridged to existing concepts from Urban Building Energy Model- 
ing (UBEM) through the use of the popular UBEM metrics CV(RMSE) 
and NMBE to better understand the order of magnitude for benefit from 

each data source in a common language. 
The overall methodology of this paper follows the outline found in 

Fig. 1 . The data section comprises the content found in phases zero, 
one, and two. The methods section covers phase three and the results 
are divided into phases four and five. 

The contributions of this work and its relation to larger modeling 
efforts may additionally be summarized in the following ways: 

1. Estimation of value to building energy modeling from various open 
access data sources. 

2. Contextualization of relative temporal benefits of incorporating open 
access data sources. 

3. Scaling behavior of multi-building energy models with the incorpo- 
ration of auxiliary data sources. 

4. A method to enable the interpretation of nonlinear relationships be- 
tween environmental features and energy consumption. 

5. Quantification of potential data degradation from weather stations 
with diminished spatial relevance to a given building. 

Abbreviations Table 

UBEM Urban Building Energy Modeling 
SRTM Shuttle Radar Topography Mission 
UHI Urban Heat Island 
RTMA Real-Time Mesoscale Analysis 
CFD Computational Fluid Dynamics 
BES Building Energy Simulation 
ESPG European Petroleum Survey Group 
CMIP Coupled Model Intercomparison Project 
NOAA National Oceanic and Atmospheric Administration 
EPW EnergyPlus Weather 
TMY Typical Meteorological Year 
CV(RMSE) Coefficient of the Variation of the Root Mean Square Error 
MAE Mean Absolute Error 

Fig. 1. Flowchart outlining the steps taken throughout the process and inter- 
mediate data files created and used for subsequent studies. 

Table 1 
Schema Data Compression Descriptions. 

Schema Q 5 Q 25 Median Q 75 Q 95 

S 1 ✓

S 2 ✓ ✓ ✓

S 3 ✓ ✓ ✓ ✓ ✓

2. Data 

This analysis can be considered a regression problem, with the task 
of predicting the structure’s energy consumption. For all data sets used 
in this study, our goal is the prediction of monthly energy consump- 
tion. Therefore although each data set has unique collection frequen- 
cies, we coerce our measurements into monthly intervals while attempt- 
ing to capture pertinent information from the dataset. To accomplish 
this, we use three different schemas of compressing the data into the 
monthly format. The schema data compression information can be found 
in Table 1 . 

Schema S 1 is the simplest and will be used to interpret model re- 
sults. In contrast, schema S 3 is expected to have the best performance, 
as the most information about the data is communicated to the machine 
learning pipeline. 

Underlying the mechanics of compressing data into the monthly do- 
main is the conversation about the importance of two themes for the 
data. The first is high spatial resolution, the capacity to capture perti- 
nent information directly adjacent to the structure. The second is time 
resolution, or the data’s ability to capture and communicate extreme 
swings throughout the month. As remote sensing data may only collect 
1–5 samples per month over a city, it has low temporal resolution and 
high spatial resolution. Because of this, schema S 1 may give us insight 
into the potential relative benefit of high spatial resolution, while the 
transition to schemas S 2 and S 3 will shed light into the value of high 
temporal resolution. 
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2.1. Energy data 

New York City provided the energy data required to conduct this 
study as a result of the ordinance called Local Law 84, which man- 
dates that buildings over 25,000 sq.ft. must report their energy con- 
sumption at a monthly resolution. Unfortunately, not all energy sources 
are represented in this data. Notably for New York, there is an absence 
of data on steam utilization rates. Electricity and natural gas are the 
terms reported on the monthly scale, which will be the focus of this 
analysis. 

To control that the months have different numbers of days, we con- 
vert the monthly consumption into a daily value by dividing the con- 
sumption by the number of days in the month. This serves as the con- 
sumption pattern of a typical day in the month, which we choose to use 
as the predictor. 

The energy consumption data is heavily right-skewed, and extreme 
values are pruned by only considering energy consumption terms be- 
tween the 2nd and 98th percentiles. There is still substantial unbal- 
ance in the data, with average daily electricity ( 𝑄 25 = 0.49MWh, 𝑄 50 

= 0.88MWh, 𝑄 75 = 1.85MWh, skewness = 3.78) having more signifi- 
cant skewness than natural gas ( 𝑄 25 = 0.27MWh, 𝑄 50 = 1.21MWh, 𝑄 75 

= 3.27MWh, skewness = 2.93). Summary statistics for energy consump- 
tion may be found in Tables A.1 and A.5 . 

2.2. Building specific data 

The building attributes used in this analysis are provided by the 
building footprints dataset of New York, which provides a geometric 
representation of the buildings’ outlines in geojson format in addition 
to the height and age of the structure. The geometry of the building is 
provided in World Geodetic System 1984 format (ESPG 4326), which 
does not preserve distances when used in traditional measures. There- 
fore the area of the building was computed by first projecting the build- 
ings into UTM Zone 18N, which uses meters for its coordinate systems 
and preserves the quality of measures between the longitudes of 78 ◦W 

and 72 ◦W. 
We additionally register information about individual building 

classes, representing one of three options: Commercial, Residential, or 
Manufacturing. While these are not used in the training pipeline or for 
prediction, they allow us to collect an understanding of the model’s ca- 
pacity as it pertains to each building class. 

Natural gas consumption is highly seasonal, with most of the gas 
used in the coldest months between November and March for heating. 
Of note, buildings in New York City still heavily rely on steam for heat. 
As such, the electricity and gas consumption are not fully representative 
of the total energy consumption for the structure. 

2.3. Microclimate 

The data used in this analysis parallels that found in the study con- 
ducted by Dougherty and Jain [ 22 ], which collects precision microcli- 
mate features in the immediate region around the structure from various 
remote sensing sources. These sources include Sentinel-1, Sentinel-2, 
Landsat8, NOAA reanalysis, prospective coupled model intercompari- 
son project (CMIP) data, elevation maps, and nighttime imagery of the 
city. All data sources were collected by Google Earth Engine, and the res- 
olution matching process between pixel regions captured via satellites 
and the boundary of the building is handled internally by Google Earth 
Engine as defined in [ 22 ]. The heightened spatial resolution of these 
data sets therefore provides significant capacity to directly or indirectly 
measure localized microclimate effects. 

The Landsat8 satellite has a dedicated land surface temperature 
instrument which we used to curate an initial survey of the me- 
dian land surface temperature of the city, found in Fig. 2 . This pre- 
liminary temperature distribution motivates our initial intuition that 

Fig. 2. Median temperature readings for each pixel in New York City over three 
years, taken by the Landsat8 satellite. Of note, all images were captured from 

the Landsat instrument between 3:32 PM GMT and 3:41 PM GMT. 

localized temperatures may significantly drive variance within con- 
sumption patterns. Recent research further validates this initial intu- 
ition, highlighting the potential role of land surface temperatures from 

Landsat 8 as a key piece to automate the process of building energy 
modeling [ 23 ]. 

Detailed information contained within each dataset and their sum- 
mary statistics used may be found in a number of tables in the appendix, 
an example of which for the electricity analysis may be seen in A.1, A.2 , 
and A.3 . 

2.4. EPW - Motivations and discrepancies 

The second data set used in the analysis was curated by extracting 
environmental features from EnergyPlus Weather (EPW) files which are 
defined synonymously as TMY files in this analysis. The potential in- 
accuracies of EPW files, identified by Hong et al. [ 24 ], are also iden- 
tified in New York City. Fig. 3 shows the contrast between measure- 
ments taken from the Landsat8 satellite and the expected temperature 
measurements from the EPW files. The Landsat8 satellite readings are 
captured between 3 PM and 4 PM GMT, with a median revisit time of 
8 days. To calibrate the comparison between the two datasets, we only 
consider buildings near Central Park which are closest to the Central 
Park Weather Station (KNYC). We then can filter all readings between 
3 PM and 4 PM GMT from the EPW file, and examine the projected dry- 
bulb temperature of the building based on the EPW file, seen in Fig. 3 as 
the black line. 

For ease of interpretation, a single building is isolated, and its tra- 
jectory through the three years is shown with a dark pinkish color. We 
additionally add the Emissivity Standard Deviation, provided as a Land- 
sat8 Level 2 Collection 1 product, as error bars. Each dot represents the 
direct value captured at exact dates and times from Landsat8, thus the 
points are not always aligned to the month. Additionally, inconsistencies 
in temporal resolution are the cause of natural effects, such as clouds, 
which may cause a poor quality of data capture and is thus filtered from 

the study. 
Consistent under-measurement of the temperature is characteris- 

tic of a strong urban heat island effect, with measurement errors as 
high as 20 ◦C in the summer seasons. Given that the energy con- 
sumption of buildings is highly coupled to the outdoor air tempera- 
ture [ 10 ], this may already have huge impacts on the cooling loads and 
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Fig. 3. Temperature Discrepancy between Landsat8 measurements and EPW files. Measurements for a single building at the intersection of E 46th Street and 3rd 
Street are shown with a dark pinkish color. A random assortment of fifty buildings near Central Park is shown with multicolored lines. 

provide a significant source of uncertainty in energy modeling if left 
ignored. 

2.5. EPW - Collection 

After establishing motivation for further examining EPW files in our 
analysis, we constructed a pipeline to collect data from each file and 
interpret it as part of our machine learning system. To accomplish this, 
we first constructed a system to identify the nearest weather stations 
to each building to utilize the most pertinent weather station for each 
building. A comprehensive data set of available weather stations in the 
United States is provided by NREL [ 25 ], which contains not only the 
location of each weather station in the United States but an associated 
EPW file curated from historical weather data at the station. The data 
types are mapped according to the specification laid out in Chapter 2 
of the EnergyPlus “Auxillary Programs ” documentation, titled “Weather 
Converter Program. ”

A set of candidate weather stations were curated by first computing 
the centroid of all buildings in the analysis and projecting a uniform 

radius of 45km around this centroid. This radius is chosen based on the 
area of New York City, which is recorded to be roughly 783.8 sq.km, and 
on visible inspection to confirm that the radius adequately captures all 
data points. The distance between each point and each weather station 
is then computed, with the smallest distance serving as an indicator of 
the mapping between the building and the weather station. Given that 
prior research has employed a similar distance metric to curate a high- 
resolution model of urban climate [ 24 ], this is an appropriate method 
of mapping buildings to weather stations. 

Projected back onto a map in Fig. 4 , weather stations in the city’s 
center have excellent coverage of Manhattan, the Bronx, and Queens. 
However, Staten Island and Brooklyn have notably higher average dis- 
tances to the nearest weather station. 

The time resolution of the EPW files used in this analysis is hourly. 
To capture the profiles of each weather variable without the redun- 
dancy of data associated with hourly weather for each building, we 
aggregated statistics about each building by compressing daily values 
into maximum, median, and minimum terms. Therefore for each day 
we have three values for each variable to express the variability of the 
term throughout the day. 

Fig. 4. Distance between each building and the closest weather station, mea- 
sured in meters. The map projection is UTM Zone 18N; thus the gridline differ- 
ences are measured in meters. 

3. Methods 

3.1. Model 

As this work focuses not on the model selection but on the data qual- 
ity, the model architecture and endogenous terms remain static while 
the exogenous data is modified to reflect the utilization of a new data 
source. This permits conversation on data quality which exists in isola- 
tion from the quality of the model. Random Forest regressors are chosen 
to reduce the amount of preprocessing associated with the data, as ran- 
dom forest models do not require normalization prior to prediction. Ad- 
ditionally, prior work has validated the benefit of decision trees, which 
live at the heart of random forest regression, for the task of predicting 
building energy consumption [ 26 ]. The EvoTrees.jl package was used 
as an interface to random forest regression for its support with graph- 
ics processing units, which was utilized through its interface in the MLJ 
package [ 27 ]. 

4 
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3.2. Training pipeline 

In splitting our data, we seek to avoid the overfitting of a building 
against its historical data. To avoid overfitting, we do not split by unique 
data points, which capture the monthly energy consumption of a given 
structure, but instead split the data by buildings. After aggregating all 
terms for electricity and natural gas into standard datasets and removing 
missing data, 9483 buildings are represented in the electricity data and 
8891 buildings are contained in the final natural gas dataset. 

The test dataset is composed by randomly selecting 20% of the build- 
ings, amounting to 1701 structures for electricity and 1584 buildings for 
natural gas. The training sets are therefore composed of 7782 buildings 
for electricity and 7229 buildings for natural gas. With an average of 
about 24 samples per building represented in the data for both datasets, 
189,625 unique data points exist for electricity and 172,213 data points 
exist for natural gas within this three-year window. 

To determine the appropriate hyperparameters for each dataset, 
cross-validation was used by splitting against the buildings in the train- 
ing dataset. Each cross-validation set was composed of 475 buildings 
for both electricity and natural gas. The RMSE is the loss function for 
training, defined in Eq. (1) . 

RMSE = 

√ 
∑𝑛 

𝑖 =1 ( ̂𝑦 𝑖 − 𝑦 𝑖 ) 
2 

𝑛 
(1) 

Fifteen folds were used, with the RMSE calculated for each fold and 
averaged into a single value. This process happens for each set of hyper- 
parameters. A tuning engine was constructed using the Adaptive Par- 
ticle Swarm optimization scheme, which uses inspiration from genetic 
algorithms to converge on a generally optimal set of hyperparameters 
[ 28 ]. This tuning process comprised 75 unique trials within the domain 
of possible hyperparameter permutations for the random forest. Some 
data sets have significantly more parameters than others, which in turn 
impacts the hyperparameters of each model as the particle swarm opti- 
mization balances bias and variance. While we attempt to build consis- 
tency by only using Random Forest Regressors, this hyperparameter tun- 
ing for each data source introduces nuanced differences to each model. 
Thus for the rest of this analysis, references to a data set’s model will 
simply imply that the Random Forest Regression with Particle Swarm 

Optimization was conducted against the source of data, selecting unique 
hyperparameters for it. 

3.3. Validation metrics 

The standard validation metrics used in this analysis parallel those 
portrayed in ASHRAE Guideline 14 [ 29 ]. Three metrics are used to es- 
tablish the quality of a building energy model: 

CV(STD) = 100 ⋅

√ 
∑𝑛 

𝑖 =1 ( 𝑦 𝑖 − ̄𝑦 ) 
2 

( 𝑛 −1) 

𝑦̄ 
(2) 

CV(RMSE) = 100 ⋅

√ 
∑𝑛 

𝑖 =1 ( 𝑦 𝑖 − ̂𝑦 𝑖 ) 
2 

( 𝑛 − 𝑝 ) 

𝑦̄ 
(3) 

NMBE = 100 ⋅

∑𝑛 
𝑖 =1 ( 𝑦 𝑖 − 𝑦̂ 𝑖 ) 

( 𝑛 − 𝑝 ) ̄𝑦 
(4) 

The same ASHRAE document outlines the standard of quality for 
monthly computer simulations of building energy consumption, with 
NMBE ≤ 5% and CV(RMSE) ≤ 15% . 

3.4. Model interpretation 

After the model has achieved a relative level of accuracy in pre- 
diction, we want to understand better how we might explore the role 

Fig. 5. Process of Aggregating terms from the hourly EPW file into three rep- 
resentative points. Seen here is an example of this process on the drybulb tem- 
perature for a typical day in June. 

of each variable in making an accurate prediction. To do this, we uti- 
lize an approximation for Shapely values for complex, nonlinear models 
[ 30,31 ]. 

Shapely values originate from game theory [ 32 ], with the original 
task of optimally allocating resources to members of a cooperative team 

based on their contribution to the team’s success. Extending the idea to 
statistical models allows us to explore how each variable may play a role 
in the final prediction relative to a mean prediction with typical values. 
For this analysis, the shapely values in this study provide an insight into 
how the magnitude of a variable is likely to impact the daily energy 
consumption of a standard building in the New York City dataset in 
MWh. Negative values imply that the term is likely to decrease energy 
consumption, while positive terms indicate that the building is likely to 
experience an increase in energy consumption. 

4. Theory/Calculation 

Three research questions are explored in this study to give better in- 
sights into the particular benefits of microclimate data for Urban Build- 
ing Energy Models. 

1. How does distance from the nearest weather station impact predic- 
tion quality? 

2. Does remote sensing have a seasonality of benefits? 
3. How might aggregated predictions benefit from remote sensing? 

To better contextualize the quality of our results, a Null model is used 
for every scenario and is composed simply of building features without 
microclimate data. This null model may provide insight into the exist- 
ing benefits of EPW data. Additionally, the null model may help contex- 
tualize the additional improvements possible through remote sensing 
( Fig. 5 ). 

4.1. Weather station distance 

Given that building energy consumption is quite sensitive to tem- 
perature fluctuations, inaccurate measurements of the building’s expe- 
rience may drive significant errors. We explore the relationship between 
the quality of predictions which are possible with greater distances from 

the nearest weather station to a building. 
In pursuing this research question we predict the energy consump- 

tion of all buildings in our test set and examine their relative prediction 
quality compared to the null model at a discrete set of distances from 

the nearest weather station. 
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4.2. Seasonal benefits of remote sensing 

The question of seasonal benefits was inspired by the inconsistent 
relationship between typical EPW readings and the seasonality of the 
urban heat island (UHI) effect, demonstrated in Fig. 3 . In this section, 
we explore potential seasonal benefits provided by remote sensing. 

To explore this research question, the seasonal benefits of each 
model are calculated by comparing the typical prediction losses for each 
month, using mean absolute error, to that of the baseline model. The 
baseline model used in this section is selected as the model trained 
against the EPW data, which is meant to provide the most realistic re- 
flection of real-world modeling. The average difference in prediction 
for the model, measured as the average MAE across all predictions for 
the month, is defined as 𝛿𝑚 . This error is then compared to the average 
baseline error for the month, which uses the same process to procure a 
baseline error for each month 𝛿𝑏 . The relative difference between these 
error profiles, defined as Δ𝑚 = 100 ⋅ ( 

𝛿𝑚 − 𝛿𝑏 
𝛿𝑏 

) , is used to gauge the relative 

benefit of the new model compared to the baseline. Negative values in- 
dicate an improvement compared to the baseline, while positive values 
indicate that the model’s error has increased relative to the baseline. 

4.3. Aggregated prediction quality 

So far, this analysis has focused on the quality of predictions avail- 
able on the individual building scale in New York. However, some appli- 
cations in energy modeling instead require the aggregate consumption 
of a neighborhood or city [ 33 ]. While single building energy prediction 
has its merits in modeling retrofit scenarios [ 34 ], research into energy 
storage requirements on the urban scale often abstracts the region into a 
single node representing the aggregated energy demand [ 35–37 ]. Typi- 
cally past research hints at the potential relationship between a reduc- 
tion in error with regional predictions [ 38 ]. This study instead follows 
a similar process to that of Streltsov et al. [39] by formalizing the po- 
tential error trajectory of aggregated energy models of various sizes. 

In an effort to study aggregation effects, we first use the same mod- 
els trained against individual buildings, both the null model using only 
building features and the microclimate models which incorporate data 
from open access data sources. Individual predictions against buildings 
may be summed by region within the city, simulating an energy model 
for a number of buildings within a district of the city. The sum of these 
predictions may be compared to the sum of the recorded monthly val- 
ues, which enables us to understand how the common error metrics 
from UBEM might scale as more buildings are included in this energy 
analysis. The individual building predications may be built using the 
null model, without any microclimate information, or through one of 
the models which incorporates microclimate data. The formal process 
taken is seen in Eq. (5) . 

𝐴𝐸 [ 𝑗 ] = 
∑

𝐵[ 𝑗] ∣ ( 𝐵 ∈ 𝑍, 𝑗 ∈ 1 …12 ) (5) 

The zipcode of the building, 𝑍, is used to aggregate a set of build- 
ings contained within the zipcode 𝐵. The zipcode was selected as a 
convenient utility to organize buildings into groups of various sizes. 
Equation (5) outlines the process of summing the predictions and mea- 
surements for each building in the zipcode at each timestep, 𝑗. As our 
timestep is limited to that of the reported monthly energy consumption, 
the temporal resolution of the data is also on the monthly scale. We use 
the same validation metrics found in 3.3 for each region. 

5. Results 

Our results for individual building prediction can be found in 
Table B.21 . One of the more intuitive metrics, RMSE, highlights the 
significant benefit of including particular microclimate data sets in ur- 
ban energy models. In particular we see that the inclusion of Landsat8 
data and NOAA reanalysis data has a substantial reduction in model 

Fig. 6. S 3 error at various distance intervals away from the nearest weather sta- 
tion, measured as a percent difference to the EPW model with negative values 
indicating an improvement. Dots represent individual measurements for each 
error percent relative to the baseline EPW model, with the smooth lines show- 
ing the trend profile of the predictions. Pink horizontal lines are also shown to 
highlight the zero benefit scenario, or the EPW model compared to itself. 

RMSE. We also highlight challenges associated with the spatially ho- 
mogeneous nature of a single city with heterogeneous energy sources, 
which are likely driving our validation metrics to higher numbers than 
other studies on the urban scale [ 40 ]. The CV(STD) values are included 
in Table B.21 to remind the reader that the same data was used for each 
model. 

5.1. Weather station distance 

The results of our predictions for individual buildings against their 
respective distance to the nearest weather station can be found in Fig. 6 . 
Two datasets are highlighted based on their prominence for improved 
energy prediction overall: Landsat8 and NOAA. 

Fig. 6 highlights the benefits of improved spatial resolution data 
compared to the EPW file. However, due to a lack of apparent downward 
trends, we cannot confidently make a statement about improvements to 
predictive performance relative to the EPW file related to weather sta- 
tion distance. Poor predictions around the 20km mark may be an artifact 
of the New York City data and less telling of EPW failures. The build- 
ings with a minimum weather station distance of more than 20km can 
be seen on 4 , which are often older and may be experiencing unusual 
coastal weather effects. 

5.2. Seasonal benefits 

The seasonal benefits for two of the highest performing annual mod- 
els from B.19 , NOAA and Landsat8, can be found in Fig. 7 . Only the 
positive monthly contributions are shown, with each zero value indicat- 
ing that the EPW model had better performance for this month. 

Landsat8 provides substantial opportunities for improved electricity 
prediction. Particularly between April and October, Landsat8 will likely 
offer a relative improvement of anywhere between 5% and 10%. NOAA 
provides the most substantial benefit for natural gas prediction, with 
most of this benefit occurring in the year’s coldest months. For New 

York City, the winter and Spring months are between December and 
May. As natural gas is more heavily used for heating, NOAA is likely 
more accurate than EPW for predicting gas consumption due to freezing 
temperatures. 
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Fig. 7. S 3 monthly average MAE relative to EPW. Only the improved predic- 
tion months are shown. The seasons listed here are defined for the northern 
hemisphere. 

5.3. Aggregated benefits 

The results of the aggregated analysis from S 3 are found in 
Table B.24 . Summary statistics for the number of buildings in each group 
is as follows: Group size summary statistics: 𝑄 25 = 3, 𝑄 50 = 6, 𝑄 75 = 12. 
We find a substantial benefit in utilizing Landsat8 data for electricity 
prediction and NOAA data for natural gas prediction. We find that the 
inclusion of Landsat8 as a feature may have the capacity to improve 
CV(RMSE) predictions by 2.5 and NMBE by around 3.7 compared to 
EPW files. The inclusion of NOAA data seems to have the capacity to 
improve natural gas CV(RMSE) by 1.8 and NMBE by 2.5. 

We now attempt to understand the relationship between the number 
of buildings in a set and the metrics computed against them. Fig. 8 vi- 
sualizes the relationship between the number of buildings on the x-axis 
and the error metrics on the y-axis. We see a rapid decrease of CV(RMSE) 
and NMBE with additional buildings in each set, which aligns with find- 
ings from prior research [ 38 ]. Of note is how rapidly these metrics drop, 
as most of the reduction compared to the individual building comes with 
less than ten buildings in a group. 

5.4. Feature importance & model interpretation 

We again focus on the top-performing models for interpreting model 
results: Landsat8 and NOAA. Due to the length required to properly 
highlight the significance of features from a single model, this sec- 
tion will only focus on explaining the potential benefits of Landsat8 for 
electricity prediction and NOAA for natural gas prediction. 

5.4.1. Electricity 
Fig. 9 highlights the top ten statistically significant features for mak- 

ing electricity predictions using the Landsat8 dataset. The most signif- 
icant by far are the building-specific terms. This matches our intuition 
as we were unlikely to see deviations between models of more than 5%. 
Among the Landsat8-specific terms, we see that they are dominated by 
readings associated with Landsat8’s thermal instruments indicating that 
this suite of sensors is what was responsible for its high level of perfor- 
mance. 

Fig. 8. Relationship between validation metrics and aggregation scales. Ran- 
dom noise was added to the number of buildings to give insight into the marginal 
distribution of buildings in each group. 

Let us focus on a single variable like the extreme minimum values 
from the Shortwave Infrared 2 reflectance measurements, which cap- 
tures light between wavelengths of 1.57μm and 1.65μm. To extend our 
intuition into the potential relationship between the Landsat measure- 
ments and electricity consumption, we now compute the shap value for 
every surface reflectance point within our test set. Doing so enables us to 
study how the variable is likely influencing the electricity consumption 
of the structure through its domain. 

Fig. 10 sheds light on the potential utility of shortwave infrared mea- 
surements from Landsat8 for electricity prediction. In reading this plot, 
we see that a decrease of infrared surface reflectance to 0.0 is likely to 
intersect with the x axis at a shap value of about 0.05. As the shap values 
indicate the variables estimated impact on daily energy consumption in 
MWh, this would amount to an increase in the daily electricity con- 
sumption of the average structure by 50kWh per day. This represents a 
roughly a 3% increase to the baseline consumption of 1.78MWh. On the 
other side of this nonlinear curve, we see that higher values of infrared 
surface reflectance, like 0.3 are likely to correspond to a drop in elec- 
tricity consumption. With a shap value of around − 0.08, or an estimated 
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Fig. 9. S 3 Feature Importance of Landsat8 
value using the mean absolute shapely val- 
ues. 

Fig. 10. A sample of SHAP values computed throughout the Shortwave Infrared 
2 Surface Reflectance domain. Note: these are specific to electricity prediction 
in New York City and relative to a baseline prediction. 

Fig. 11. S 3 Shap values computed for Landsat8 Band 10 Surface Temperature 
measurements. 

impact of − 80kWh per day, for surface reflectance readings of 0.3, this 
would correspond to a decrease in electricity consumption of roughly 
4–5%. 

We can turn to a more intuitive metric from Landsat8, the land sur- 
face temperature, to understand how New York City’s buildings respond 
to extreme heat. As New York City’s buildings are almost entirely reliant 
on electricity for cooling, the relationship between the two is quite pro- 
nounced. Fig. 11 explores how extreme temperature readings, those in 
the 95th percentile of Landsat surface temperature readings at a location 
for the month, are likely to impact electricity consumption. 

Notably, three distinct phases are seen. The first, below 25 ◦C, has 
no particular relationship with electricity consumption. A jump from 

the shap value of − 0.02 to 0.01 is made as the temperature crosses the 
26.5 ◦C (80 ◦F) threshold, corresponding to an immediate 2% increase. 
In this second phase, we see a linear increase until we get to 43 ◦C 
(110 ◦F), at which point a third phase is triggered with a shap value jump 
from 0.2 (20 kWh per day) to 0.7 (70 kWh per day). This corresponds 
to another overall increase in electricity consumption of roughly 3%, a 
total displacement of roughly 5–6% compared to the baseline scenario. 
This behavior profile reinforces the paradigm that energy required to 
meet cooling demands has a nonlinear relationship with temperature, 
particularly pronounced on sweltering days. 

5.4.2. Natural gas 
As NOAA provides the most substantial benefit for natural gas pre- 

diction, it is explored in detail in this section. As the NOAA data used 
within this analysis is averaged into the monthly interval, there is no dif- 
ference between the schemas regarding added information. Therefore to 
reduce the complexity of the feature significance visualization, schema 
S 1 is used, which only assumes the single value for each month. 

The feature importance of each variable within the NOAA dataset 
can be found in Fig. 12 . Surprisingly, the model’s gas consumption pre- 
diction was more sensitive to temperature than the conditioned volume 
of the building. We can visualize the likely relationship between gas con- 
sumption and temperature in New York City by examining the shapely 
values through the domain of temperatures in New York City as seen in 
Fig. 13 . 

6. Discussion 

Two datasets are particularly promising to improve the quality of 
energy predictions for large, cold cities like New York: NOAA’s cli- 
mate reanalysis and Landsat8. Landsat8 offers a 4-point improvement 
to CV(RMSE) for electricity prediction. NOAA offers the highest quality 
prediction for natural gas consumption, with a more marginal improve- 
ment of 1.3 points to CV(RMSE). Given that we utilized a statistical en- 
gine instead of a physics-based simulation, these are reasonable upper 
bounds to the added benefits. 

The Landsat8 model benefited the most with the improved temporal 
resolution of schema S 3 . This is likely a result of Landsat8’s high revisit 
frequency and dedicated onboard temperature sensor suite. Cloud ob- 
structions are one of the primary sources of missing data, making the 
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Fig. 12. NOAA Feature Importance - Natural Gas. 

Fig. 13. S 1 Shap values computed against NOAA RTMA temperature measure- 
ments. 

redundancy of measurements each month more valuable for accurate 
prediction. 

The improved resolution of temperature measurements possible due 
to Landsat8 enable us to examine extreme temperature events in the city 
and how the energy demands of the structures might respond in turn. 
The exponential response of electricity consumption with temperatures 
above 43 ◦C is an example of this new insight, with further inquiries into 
extreme temperatures likely continuing to be valuable with the acceler- 
ation of climate change. Extreme temperature effects on energy infras- 
tructure may be particularly pertinent in dense urban areas such as New 

York City, which experiences high levels of urban heat island effect. 
Figure 14 plots the predictive errors for the Landsat8 model against 

extreme temperature measurements. This figure highlights our capacity 
to accurately predict cooling demand response to temperatures below 

45 ◦C with the assumption that high electricity consumption levels may 
serve as a surrogate for cooling demand in New York City. 

The RMSE of the best performing schema, s 3 found in Table B.21 , 
shows that the CMIP dataset seems to provide a benefit which is at least 
as good as that of the EPW data. The other UBEM metrics seem to tell the 

Fig. 14. MAE bucketed into temperature bins shows errors in estimation with 
extreme temperatures ( Q 95 ) from schema S 3 . 

same story, with similar and slightly lower CV(RMSE) and NMBE. This 
makes sense, as both datasets contain temperature data which is com- 
monly recognized as the meteorological parameter most closely linked 
to energy consumption [ 41 ]. Likewise, with lower RMSE, CV(RMSE), 
and NMBE than EPW, this study serves as a promising indicator that 
CMIP may be a valuable resource for the prediction of building energy 
consumption through the lens of climate change. Assuming no signif- 
icant retrofit modifications to the existing building stock, a statistical 
model like the one constructed in this study may be utilized for energy 
forecasting. To further extend the benefits of this work to explore retrofit 
scenarios, future research may also design a utility to conveniently link 
CMIP projections with simulation-based energy modeling for climate- 
aware retrofit analysis. 

We recognize the potential benefits of more granular energy models, 
which may yield predictions specific to indoor air temperature or en- 
ergy consumption of dwellings concerning their vertical displacement 
from the street [ 42 ]. While this research cannot provide similar benefits 
to high-resolution simulation-based models, the low RMSE of Sentinel- 
1’s Synthetic Aperture Radar gives credence to the notion that remote 
sensing might be used to classify materials or surface roughness bet- 
ter [ 43,44 ]. Additionally, remote sensing and climate models might be 
used in a CFD-BES (Computational Fluid Dynamics and Building Energy 
System) study to enhance prediction quality and more easily design for 
new regions. A coupling of NOAA wind speed and Landsat8 land surface 
temperature measurements might provide boundary conditions for both 
wind and temperature, as required in the CFD-BES coupling of buildings 
in Tehran [ 9 ]. NASA’s SRTM provides a rough elevation map of all points 
worldwide, providing valuable information for fluid simulations. 

A lingering question exists as to why NOAA / CMIP temperature mea- 
surements were more significant for natural gas prediction than those 
collected from Landsat8. This performance gap in gas consumption pre- 
diction may be due to NOAA’s awareness of minimum nighttime temper- 
atures, whereas Landsat8’s measurements are restricted between 3 PM 

and 4 PM. NOAA is likely to contain additional benefits for energy pre- 
diction, which was limited in this study. As the NOAA data was limited 
to a monthly resolution by Google Earth Engine’s memory constraints, 
we imagine that expanded information in the full RTMA dataset may be 
more valuable. Further investigation of the synthesis of reanalysis data 
with energy modeling should be pursued to improve global coverage of 
buildings and enhance the spatial resolution of climate data. 

Given that the entire dataset used is from New York City, which ex- 
periences one of the most significant urban heat island effects in the 
United States, we may be underestimating some local effects. The sig- 

9 



T.R. Dougherty and R.K. Jain Advances in Applied Energy 10 (2023) 100138 

nificance of the urban heat island effect in increasing cooling demand 
and decreasing heating demand is likely understated in this study, po- 
tentially tucked into the bias of our model. 

Finally, we note that many of our models used historically accurate 
recordings to make predictions, which is fundamentally different from 

the EPW files that always estimate weather. However, localized trends 
like those seen in 3 and 2 demonstrate a high consistency in the displace- 
ment of climate variables to EPW files. Thus future research seeking to 
generate hyperlocalized EPW files will likely capture most of the bene- 
fits presented in this work. 

7. Conclusion 

Microclimate data improves the quality of energy predictions in New 

York City across all metrics. The results of schema S 3 B.21 may give us 
the most straightforward idea of potential benefits from each dataset. 
The schema S 3 results indicate that Landsat8 may provide a nearly 4- 
point improvement in CV(RMSE) compared to the EPW model for in- 
dividual building prediction. The natural gas model, which generally 
has a more challenging time accurately predicting consumption, may 
only appreciate a more modest benefit of 1.2 points to CV(RMSE). How- 
ever, recent research highlights the potential of automating the process 
of collecting microclimate for use in building energy modeling [ 22 ]. 
Given this newfound capacity within microclimate modeling, the bene- 
fits of remote sensing may potentially be seen as “free money ” to energy 
modelers. 

We additionally explored the potential seasonal benefit of micro- 
climate data, which is in the same spirit of research as other modern 
works in attempting to quantify the significance of microclimate in en- 
ergy modeling [ 8 ]. We found that while Landsat8 provides benefit to 
electricity prediction consistently throughout the year, these benefits 
are particularly pronounced in the summer months as seen in Fig. 7 , 
peaking with a nearly 10% improvement to EPW data in June. This 
study serves as validation that Landsat8’s thermal imaging suite may be 
a valuable tool to better understand cooling loads caused by UHI. The 
incorporation of NOAA’s RTMA is likely to provide predictive benefit for 
natural gas consumption in the winter and spring seasons of the northern 
hemisphere. The most significant improvements relative to EPW come 
between the months of Janurary and May in New York City, with a pre- 
dictive improvement of roughly 3% during these months. 

This study takes advantage of the relatively high quantity of monthly 
energy data from this three-year interval to additionally contextualize 
existing paradigms of aggregation prediction errors as laid out in [ 1 ]. 
Even small neighborhoods of buildings might appreciate most of the 
benefit of aggregation, making it easier to reach the accuracy compli- 
ance standards of ASHRAE Guideline 14. 

A study area with more heterogenous climate scenarios and greater 
diversity of building distances from the nearest weather station will be 
required to conduct a more thorough investigation of EPW data qual- 
ity. In addition, a more robust study of microclimate impact on tradi- 
tional validation metrics like CV(RMSE), NMBE, and RMSE will require 

monthly and hourly disclosure of geolocated building energy consump- 
tion by more cities or countries. At the time of writing, New York City is 
the only city with a publicly available dataset at the temporal resolution 
of a month. The monthly interval is the highest resolution of time se- 
ries data available, yet it also represents the lowest resolution at which 
UBEM validation metrics are defined. Without a larger pool of data from 

multiple cities, it will not be easy to test the robustness of urban energy 
models when applied to new locations on the planet. 

Finally, this work serves as a validation study for the potential utility 
of CMIP data, which seems to have the same data quality as existing EPW 

files for energy prediction based on the RMSE scores of both models. By 
blending CMIP projections into simulation-based models, we may now 

have a viable path forward to estimate the effects of climate change on 
our urban energy demands. 

The decarbonization of the built environment is one of the most 
difficult challenges in the effort to mitigate climate change. This work 
contextualizes the benefits of remote sensing and climate modeling for 
building energy modeling, helping us better understand the role of 
remote sensing in urban decarbonization. Perhaps as significant, the 
worldwide coverage of satellites makes it an attractive option to ex- 
tend the benefits of building energy modeling to a global audience. This 
research represents a step forward in our capabilities and ability to link 
communities. 

Data availability 

All the environmental data was collected using Google Earth Engine, 
with the process outlined in [ 45 ]. The link to the GitHub repo with 
the tools required for convenient collection can be found here: https:// 
github.com/trdougherty/tom.d . The reader may additionally find the 
source code, data, and intermediate processed results as the Zenodo 
repository: https://doi.org/10.5281/zenodo.7897689 . 
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Appendix A. Data summary 

A1. Electricity data summary 

Tables A.4, A.6 and A.7 . 

Table A.1 
Electricity Data Summary: 1. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

- Building Classification nothing nothing Commercial nothing nothing nothing Residential 
- Daily Electricity (MWh) 1.83 2.755 0.1137 0.493 0.8841 1.848 24.46 
- Date nothing nothing 2018-01-01 2018-11-01 2019-08-01 2020-05-01 2020-12-01 
- Distance to Weather Station (km) 9.168 5.206 0.5509 5.061 8.411 12.42 24.15 
- Month 6.43 3.267 1 4 7 9 12 
- Property Id 5.935 ⋅10 6 3.071 ⋅10 6 7365 3.072 ⋅10 6 6.297 ⋅10 6 6.794 ⋅10 6 16911026 
- Zipcode 1.077 ⋅10 4 540.6 10,001 1.031 ⋅10 4 1.11 ⋅10 4 1.123 ⋅10 4 11694 
CMIP Daily Maximum Temperature ( ◦𝐶) 19.14 8.787 4.541 10.93 20.23 27.74 32.15 
CMIP Daily Minimum Temperature (C) 9.629 8.221 − 4.057 2.061 9.868 17.46 21.47 
CMIP Precipitation (kg ⋅𝑚 −2 ⋅ 𝑠 −1 ) 1.541 ⋅10 −5 6.118 ⋅10 −6 1.5 ⋅10 −6 1.197 ⋅10 −5 1.436 ⋅10 −5 1.812 ⋅10 −5 3.425 ⋅10 −5 

Dynamic World Coverage by Bare Land 0.05629 0.03267 0.02436 0.03981 0.04471 0.05586 0.3896 
Dynamic World Coverage by Built Environment 0.6635 0.137 0.02958 0.6732 0.7154 0.7295 0.7654 
Dynamic World Coverage by Crops 0.03201 0.005377 0.0192 0.02937 0.03169 0.0335 0.2454 
Dynamic World Coverage by Flooded Vegetation 0.03279 0.003448 0.01962 0.03073 0.03265 0.03479 0.09522 
Dynamic World Coverage by Grass 0.03026 0.005561 0.02123 0.02747 0.02923 0.03146 0.2987 
Dynamic World Coverage by Shrub 0.03818 0.02176 0.0213 0.02883 0.03088 0.0357 0.2397 
Dynamic World Coverage by Snow or Ice 0.04748 0.04746 0.0236 0.03245 0.03532 0.04018 0.4832 
Dynamic World Coverage by Trees 0.03904 0.02354 0.0229 0.0303 0.03316 0.03897 0.7473 
Dynamic World Coverage by Water 0.05553 0.03276 0.02409 0.03878 0.04468 0.05614 0.5136 
Dynamic World Likely Coverage Class 5.991 0.4073 0.6247 6 6 6 8 
Null Building Floor Area (m 2 ) 1385 1957 13.78 565.7 828.3 1496 8.969 ⋅10 4 

Null Building Height (m) 79.61 66.46 0 46.73 64.24 81 1019 
Null Construction Year 1945 31.71 1706 1925 1931 1963 2022 
Null Ground Elevation (m) 52.81 37.16 − 4 25 44 70 331 
SAR Incidence Angle from Ellipsoid (Deg.) 38.2 2.254 35.37 37.12 37.49 37.81 46.01 
SAR Vertical Transmis / Horizontal Receive (dB) − 8.885 4.193 − 19.7 − 12.1 − 9.73 − 6.705 9.692 
SAR Vertical Transmit / Vertical Receive (dB) − 1.321 3.383 − 12.01 − 3.899 − 2.088 1.022 16.29 
VIIRS Average DNB Radiance ( 𝑛𝑊 ⋅ 𝑐𝑚 −2 ⋅ 𝑠𝑟 −1 ) 75.34 50.85 0 49.14 64.15 84.82 726.5 
VIIRS Number of Cloud-free Observations Used 10.63 2.659 0 8.897 10.51 13 19 

Number of Buildings: 7782, Number of Data Points: 189,625 
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Table A.2 
Electricity Data Summary: 2. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

Landsat8 Atmospheric Transmittance 0.7969 0.152 0.422 0.6992 0.8697 0.9312 0.9728 
Landsat8 Blue 0.09598 0.03913 − 0.1532 0.07445 0.09389 0.1154 0.9082 
Landsat8 Downwelled Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 0.7138 0.5583 0.061 0.223 0.451 1.131 1.974 
Landsat8 Emissivity Standard Deviation 0.008015 0.002772 0 0.006345 0.007783 0.009504 0.03586 
Landsat8 Emissivity of Band 10 0.9676 0.005805 0.9311 0.9644 0.9675 0.9701 0.9904 
Landsat8 Green 0.1155 0.0421 − 0.1616 0.09061 0.1132 0.1386 0.848 
Landsat8 NDVI 0.06535 0.04642 − 0.07266 0.0296 0.05593 0.09005 0.5599 
Landsat8 Near Infrared 0.1696 0.06102 − 0.05958 0.1301 0.1674 0.2107 0.8048 
Landsat8 Pixel Distance to Cloud (km) 0.9878 1.158 0.01 0.1545 0.5773 1.377 12.47 
Landsat8 Red 0.1227 0.0447 − 0.1569 0.09607 0.1205 0.1474 0.8284 
Landsat8 Shortwave Infrared 1 0.1658 0.0557 − 0.006333 0.1336 0.1655 0.2014 0.6068 
Landsat8 Shortwave Infrared 2 0.1396 0.04805 0.002208 0.1103 0.1383 0.1693 0.4804 
Landsat8 Surface Temperature ( ◦C) 22.94 14.83 − 14.38 10.61 24.12 36.01 55.28 
Landsat8 Surface Temperature Uncertainty (C) 4.314 1.223 1.893 3.326 4.101 5.466 7.64 
Landsat8 Thermal Band Converted to Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 8.356 1.502 4.633 7.084 8.605 9.643 11.86 
Landsat8 Ultra Blue, Coastal Aerosol 0.08601 0.03716 − 0.1921 0.06665 0.08402 0.1034 0.9147 
Landsat8 Upwelled Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 1.502 1.278 0.093 0.383 0.855 2.394 4.489 
NOAA Dewpoint Temperature (C) 7.571 8.703 − 7.155 − 0.5361 9.167 14.89 21.74 
NOAA Pressure (Pa) 1.015 ⋅10 5 296.6 1.004 ⋅10 5 1.013 ⋅10 5 1.015 ⋅10 5 1.017 ⋅10 5 1.022 ⋅10 5 

NOAA Specific Humidity (kg/kg) 0.007818 0.004044 0.002656 0.003946 0.007772 0.01086 0.01649 
NOAA Temperature (C) 13.98 8.54 − 1.367 6.119 14.65 21.86 27.12 
NOAA Terrain Elevation (m) 17.92 12.97 0 8 16 27 89 
NOAA Total Cloud Cover (%) 45.66 8.447 28.12 38.21 47.21 52.39 63.41 
NOAA U-component Wind Speed (m/s) 0.6528 0.7238 − 1.791 0.117 0.4897 1.242 3.624 
NOAA V-component Wind Speed (m/s) − 0.07602 0.5462 − 3.19 − 0.4717 − 0.1012 0.2279 2.118 
NOAA Visability (m) 1.479 ⋅10 4 570.8 1.225 ⋅10 4 1.435 ⋅10 4 1.48 ⋅10 4 1.532 ⋅10 4 1.619 ⋅10 4 

NOAA Wind Direction (Deg.) 195 24.47 116.2 177.5 199.7 212 244.1 
NOAA Wind Speed (Gust) (m/s) 6.314 1.042 4.154 5.332 6.5 7.109 10.74 
NOAA Wind Speed (m/s) 3.007 0.6231 1.71 2.549 2.96 3.306 7.458 
Sentinel-2 Aerosols 0.1814 0.01996 0.08526 0.1681 0.1806 0.1937 0.5017 
Sentinel-2 Blue 0.1575 0.02361 0.08645 0.1421 0.1562 0.1718 0.3102 
Sentinel-2 Green 0.1387 0.02811 0.06213 0.1201 0.1364 0.1564 0.3072 
Sentinel-2 NDVI 0.07168 0.08379 − 0.1966 0.01509 0.05667 0.1125 0.7589 
Sentinel-2 Near Infrared 0.162 0.04612 0.0327 0.1306 0.16 0.1951 0.3585 
Sentinel-2 Red 0.1375 0.03381 0.04306 0.1153 0.1351 0.1586 0.4719 
Sentinel-2 Red Edge 1 0.1415 0.0343 0.04092 0.1197 0.1396 0.1631 0.481 
Sentinel-2 Red Edge 2 0.1616 0.04325 0.03881 0.1324 0.1595 0.1921 0.6953 
Sentinel-2 Red Edge 3 0.1724 0.04989 0.03698 0.1373 0.1688 0.2088 0.721 
Sentinel-2 Red Edge 4 0.1775 0.05349 0.03305 0.1399 0.1738 0.2167 0.725 
Sentinel-2 Shortwave Infrared 1 0.168 0.05076 0.01865 0.1357 0.1657 0.2015 0.4255 
Sentinel-2 Shortwave Infrared 2 0.138 0.04368 0.01239 0.1099 0.1347 0.1653 0.4304 
Sentinel-2 Water Vapor 0.05969 0.02122 0.0001865 0.04494 0.05769 0.07391 0.2833 

Number of Buildings: 7782, Number of Data Points: 189,625 
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Table A.3 
Electricity Data Summary: 3. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

EPW Aerosol Optical Depth (thousandths) Daily Maxium 0.07226 0.08398 0 0 0 0.134 0.221 
EPW Aerosol Optical Depth (thousandths) Daily Median 0.07207 0.08382 0 0 0 0.133 0.221 
EPW Aerosol Optical Depth (thousandths) Daily Minimum 0.07187 0.08362 0 0 0 0.133 0.221 
EPW Albedo Daily Maxium 0.0671 0.07277 0 0 0 0.14 0.17 
EPW Albedo Daily Median 0.0671 0.07277 0 0 0 0.14 0.17 
EPW Albedo Daily Minimum 0.06686 0.07247 0 0 0 0.14 0.17 
EPW Atmospheric Station Pressure (Pa) Daily Maxium 1.02 e5 303.5 1.015 e5 1.018 e5 1.02 e5 1.023 e5 1.026 e5 
EPW Atmospheric Station Pressure (Pa) Daily Median 1.017 e5 304.4 1.005 e5 1.016 e5 1.016 e5 1.018 e5 1.024 e5 
EPW Atmospheric Station Pressure (Pa) Daily Minimum 1.013 e5 267.1 1.001 e5 1.012 e5 1.013 e5 1.015 e5 1.018 e5 
EPW Days Since Last Snowfall Daily Maxium 88 0 88 88 88 88 88 
EPW Days Since Last Snowfall Daily Median 88 0 88 88 88 88 88 
EPW Days Since Last Snowfall Daily Minimum 88 0 88 88 88 88 88 
EPW Dewpoint Temperature ( ◦C) Daily Maxium 10.34 7.822 − 3.3 2.8 8.6 17.5 22.2 
EPW Dewpoint Temperature ( ◦C) Daily Median 6.861 8.653 − 7.225 0 6.7 14.6 20 
EPW Dewpoint Temperature ( ◦C) Daily Minimum 3.142 9.581 − 14.7 − 2.2 2.2 11.1 18.3 
EPW Diffuse Horizontal Illuminance (lux) Daily Maxium 3.27 e4 9694 1.692 e4 2.41 e4 2.945 e4 4.146 e4 4.861 e4 
EPW Diffuse Horizontal Illuminance (lux) Daily Median 3296 3512 0 0 1775 7222 1.07 e4 
EPW Diffuse Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Maxium 287.4 82.66 147 215.5 260 359 421 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Median 28.61 30.12 0 0 13 56 90.5 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Direct Normal Illuminance (lux) Daily Maxium 5.335 e4 1.376 e4 126 4.353 e4 5.162 e4 6.77 e4 7.15 e4 
EPW Direct Normal Illuminance (lux) Daily Median 474.9 784.2 0 0 0 606 3050 
EPW Direct Normal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Maxium 639.6 94.42 2 608 658 689 745 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Median 11.7 18.44 0 0 2.75 14.5 79 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Drybulb Temperature ( ◦C) Daily Maxium 17.82 8.771 2.2 11.1 16.7 26.1 31.1 
EPW Drybulb Temperature ( ◦C) Daily Median 14.21 8.274 − 1.7 8.3 13.05 22.65 26.4 
EPW Drybulb Temperature ( ◦C) Daily Minimum 10.55 8.081 − 4.4 4.4 10 18.3 22.8 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Maxium 1364 31.96 1322 1332 1358 1398 1414 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Median 723.5 558 0 93.5 923.8 1322 1336 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Maxium 1008 215.6 612 825 1056 1234 1253 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Median 129.2 132.3 0 1.75 74.75 287.5 343 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Global Horizontal Illuminance (lux) Daily Maxium 7.485 e4 2.186 e4 1.684 e4 6.077 e4 7.936 e4 9.47 e4 1.049 e5 
EPW Global Horizontal Illuminance (lux) Daily Median 4366 4700 0 0 2100 8950 1.243 e4 
EPW Global Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 

Number of Buildings: 7782, Number of Data Points: 189,625 
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Table A.4 
Electricity Data Summary: 4. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

EPW Global Horizontal Radiation (Wh/m 2 ) Daily Maxium 670.8 188.8 147 518.5 697.5 831 895.5 
EPW Global Horizontal Radiation (Wh/m 2 ) Daily Median 40.09 42.64 0 0 19.5 80.5 113.5 
EPW Global Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Maxium 365 48.46 288 320 355.5 416 448 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Median 338.2 46.23 257 301.5 329 381.8 417.5 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Minimum 307.5 43.61 231 274 305 347 380 
EPW Liquid Precipitation Depth (mm) Daily Maxium 0 0 0 0 0 0 0 
EPW Liquid Precipitation Depth (mm) Daily Median 0 0 0 0 0 0 0 
EPW Liquid Precipitation Depth (mm) Daily Minimum 0 0 0 0 0 0 0 
EPW Liquid Precipitation Quantity (hr) Daily Maxium 1 0 1 1 1 1 1 
EPW Liquid Precipitation Quantity (hr) Daily Median 1 0 1 1 1 1 1 
EPW Liquid Precipitation Quantity (hr) Daily Minimum 1 0 1 1 1 1 1 
EPW Opaque Sky Cover Daily Maxium 9.81 0.4646 8 10 10 10 10 
EPW Opaque Sky Cover Daily Median 4.787 1.376 3 3.75 4.75 5.5 10 
EPW Opaque Sky Cover Daily Minimum 0.05576 0.3274 0 0 0 0 3 
EPW Precipitable Water (mm) Daily Maxium 118.5 124.4 9 18.5 37 194.5 400 
EPW Precipitable Water (mm) Daily Median 102.5 111.3 7 15.25 33.5 170 390 
EPW Precipitable Water (mm) Daily Minimum 87.15 100.4 5 12 28 129 379 
EPW Relative Humidity Daily Maxium 82.51 7.217 60 79 83 88.5 100 
EPW Relative Humidity Daily Median 61.44 7.404 46.5 57 61 65.75 96 
EPW Relative Humidity Daily Minimum 43.7 6.565 31 39 44 49 58 
EPW Snow Depth (cm) Daily Maxium 0 0 0 0 0 0 0 
EPW Snow Depth (cm) Daily Median 0 0 0 0 0 0 0 
EPW Snow Depth (cm) Daily Minimum 0 0 0 0 0 0 0 
EPW Total Sky Cover Daily Maxium 10 0 10 10 10 10 10 
EPW Total Sky Cover Daily Median 6.474 1.463 3 5.5 7 7.5 10 
EPW Total Sky Cover Daily Minimum 0.1337 0.4263 0 0 0 0 3 
EPW Visibility (km) Daily Maxium 25.79 5.873 16 24 24.1 32 32.2 
EPW Visibility (km) Daily Median 18.45 4.116 3.2 16 19.3 21.6 24.1 
EPW Visibility (km) Daily Minimum 11.82 3.626 0.8 8 12.8 14.4 16.8 
EPW Wind Direction (deg) Daily Maxium 324.3 16.73 300 310 320 340 360 
EPW Wind Direction (deg) Daily Median 203.6 39.26 50 180 200 230 275 
EPW Wind Direction (deg) Daily Minimum 46.47 49.47 10 20 20 40 220 
EPW Wind Speed (m/s) Daily Maxium 8.239 1.209 5.95 7.2 8.2 9.05 10.8 
EPW Wind Speed (m/s) Daily Median 5.22 0.902 3.6 4.6 4.9 5.8 7.7 
EPW Wind Speed (m/s) Daily Minimum 2.368 0.6251 1.5 2.1 2.6 2.6 5.2 
EPW Zenith Luminance (Cd/m 2 ) Daily Maxium 7414 1395 4160 6522 7610 8434 9980 
EPW Zenith Luminance (Cd/m 2 ) Daily Median 792.4 876.7 0 0 474.2 1278 2701 
EPW Zenith Luminance (Cd/m 2 ) Daily Minimum 0 0 0 0 0 0 0 

Number of Buildings: 7782, Number of Data Points: 189,625 
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Table A.5 
Natural Gas Data Summary: 1. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

- Building Classification nothing nothing Commercial nothing nothing nothing Residential 
- Daily Natural Gas (MWh) 2.504 3.547 0.002838 0.2737 1.21 3.273 30.74 
- Date nothing nothing 2018-01-01 2018-12-01 2019-08-01 2020-05-01 2020-12-01 
- Distance to Weather Station (km) 9.238 5.201 0.5509 5.166 8.463 12.48 24.15 
- Month 6.413 3.282 1 4 6 9 12 
- Property Id 5.921 ⋅10 6 3.083 ⋅10 6 8604 2.977 ⋅10 6 6.297 ⋅10 6 6.794 ⋅10 6 16911026 
- Zipcode 1.077 ⋅10 4 534.8 10,001 1.045 ⋅10 4 1.11 ⋅10 4 1.123 ⋅10 4 11694 
CMIP Daily Maximum Temperature ( ◦C) 19.03 8.774 4.541 10.88 20.22 27.3 32.15 
CMIP Daily Minimum Temperature (C) 9.517 8.204 − 4.057 2.061 9.868 17.39 21.47 
CMIP Precipitation (kg ⋅𝑚 −2 ⋅ 𝑠 −1 ) 1.538 ⋅10 −5 6.086 ⋅10 −6 1.5 ⋅10 −6 1.197 ⋅10 −5 1.436 ⋅10 −5 1.812 ⋅10 −5 3.425 ⋅10 −5 

Dynamic World Coverage by Bare Land 0.05523 0.03133 0.02436 0.03966 0.04444 0.05495 0.3896 
Dynamic World Coverage by Built Environment 0.6679 0.1292 0.0316 0.6758 0.7158 0.7296 0.7654 
Dynamic World Coverage by Crops 0.03207 0.005401 0.0192 0.02947 0.03174 0.03354 0.2454 
Dynamic World Coverage by Flooded Vegetation 0.03277 0.003425 0.01962 0.03074 0.03265 0.03476 0.08482 
Dynamic World Coverage by Grass 0.03026 0.005587 0.02123 0.02749 0.02923 0.03143 0.2987 
Dynamic World Coverage by Shrub 0.03756 0.02044 0.02251 0.02885 0.03088 0.03549 0.2397 
Dynamic World Coverage by Snow or Ice 0.04584 0.04318 0.0236 0.03243 0.03527 0.04 0.4828 
Dynamic World Coverage by Trees 0.03908 0.0237 0.0229 0.03032 0.03317 0.03887 0.7195 
Dynamic World Coverage by Water 0.05455 0.03152 0.02409 0.03867 0.04447 0.0553 0.5136 
Dynamic World Likely Coverage Class 5.984 0.3869 0.9036 6 6 6 8 
Null Building Floor Area (m 2 ) 1382 1985 13.78 562.6 819.6 1483 8.969 ⋅10 4 

Null Building Height (m) 76.95 60.04 0 47 64.14 79.74 1019 
Null Construction Year 1945 31.52 1706 1925 1931 1962 2022 
Null Ground Elevation (m) 53.55 37.97 − 4 25 44 72 331 
SAR Incidence Angle from Ellipsoid (Deg.) 38.18 2.222 35.37 37.14 37.5 37.81 46.01 
SAR Vertical Transmis / Horizontal Receive (dB) − 9.069 4.022 − 19.7 − 12.14 − 9.814 − 7.049 9.692 
SAR Vertical Transmit / Vertical Receive (dB) − 1.467 3.3 − 12.01 − 3.949 − 2.238 0.7958 15.59 
VIIRS Average DNB Radiance ( 𝑛𝑊 ⋅ 𝑐𝑚 −2 ⋅ 𝑠𝑟 −1 ) 73.24 47.43 0 48.84 63.45 83.4 711.6 
VIIRS Number of Cloud-free Observations Used 10.64 2.641 0 8.978 10.53 13 19 

Number of Buildings: 7229, Number of Data Points: 172,213 
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Table A.6 
Natural Gas Data Summary: 2. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

Landsat8 Atmospheric Transmittance 0.7988 0.151 0.422 0.6998 0.8704 0.9313 0.9728 
Landsat8 Blue 0.09622 0.03908 − 0.1532 0.0747 0.09395 0.1155 0.9082 
Landsat8 Downwelled Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 0.7063 0.5547 0.061 0.223 0.45 1.127 1.974 
Landsat8 Emissivity Standard Deviation 0.008029 0.002719 0 0.00637 0.007785 0.009494 0.03586 
Landsat8 Emissivity of Band 10 0.9676 0.005671 0.9311 0.9644 0.9675 0.9701 0.9904 
Landsat8 Green 0.1158 0.04195 − 0.1616 0.09095 0.1133 0.1387 0.848 
Landsat8 NDVI 0.06635 0.04675 − 0.07266 0.03027 0.05711 0.09115 0.5599 
Landsat8 Near Infrared 0.1707 0.06057 − 0.05958 0.131 0.1683 0.2115 0.8048 
Landsat8 Pixel Distance to Cloud (km) 0.991 1.163 0.01 0.1551 0.5767 1.381 12.47 
Landsat8 Red 0.1231 0.04451 − 0.1569 0.09644 0.1206 0.1475 0.8284 
Landsat8 Shortwave Infrared 1 0.1667 0.05514 − 0.006333 0.1347 0.166 0.2019 0.6068 
Landsat8 Shortwave Infrared 2 0.1404 0.0477 0.002208 0.1112 0.1388 0.1697 0.4804 
Landsat8 Surface Temperature ( ◦C) 22.78 14.78 − 14.38 10.45 23.94 35.75 55.28 
Landsat8 Surface Temperature Uncertainty (C) 4.31 1.221 1.893 3.324 4.097 5.461 7.64 
Landsat8 Thermal Band Converted to Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 8.341 1.497 4.633 7.068 8.584 9.629 11.86 
Landsat8 Ultra Blue, Coastal Aerosol 0.0862 0.03715 − 0.1921 0.06683 0.08406 0.1034 0.9147 
Landsat8 Upwelled Radiance ( 𝑊 ⋅ 𝑚 −2 ⋅ 𝑠𝑟 −1 ⋅ 𝜇𝑚 −1 ) 1.484 1.269 0.093 0.383 0.853 2.385 4.489 
NOAA Dewpoint Temperature (C) 7.445 8.669 − 7.155 − 0.5827 9.063 14.83 21.74 
NOAA Pressure (Pa) 1.015 ⋅10 5 297.1 1.004 ⋅10 5 1.013 ⋅10 5 1.015 ⋅10 5 1.017 ⋅10 5 1.022 ⋅10 5 

NOAA Specific Humidity (kg/kg) 0.007752 0.004021 0.002656 0.003929 0.00775 0.01085 0.01649 
NOAA Temperature (C) 13.86 8.511 − 1.367 6.078 14.58 21.78 27.12 
NOAA Terrain Elevation (m) 17.96 13.01 0 8 16 27 89 
NOAA Total Cloud Cover (%) 45.66 8.411 28.12 38.24 47.31 52.37 63.41 
NOAA U-component Wind Speed (m/s) 0.6603 0.7206 − 1.791 0.1302 0.4937 1.248 3.624 
NOAA V-component Wind Speed (m/s) − 0.08125 0.5402 − 3.19 − 0.4722 − 0.1056 0.2211 2.118 
NOAA Visability (m) 1.479 ⋅10 4 571.8 1.225 ⋅10 4 1.434 ⋅10 4 1.48 ⋅10 4 1.531 ⋅10 4 1.619 ⋅10 4 

NOAA Wind Direction (Deg.) 195.2 24.34 116.2 177.6 199.8 212.1 244.1 
NOAA Wind Speed (Gust) (m/s) 6.325 1.039 4.154 5.349 6.52 7.116 10.74 
NOAA Wind Speed (m/s) 3.014 0.6236 1.71 2.558 2.967 3.312 7.458 
Sentinel-2 Aerosols 0.1816 0.01979 0.08526 0.1684 0.1807 0.1938 0.5017 
Sentinel-2 Blue 0.1578 0.02339 0.09001 0.1424 0.1563 0.1718 0.3102 
Sentinel-2 Green 0.139 0.02783 0.06213 0.1204 0.1365 0.1565 0.3072 
Sentinel-2 NDVI 0.0741 0.08397 − 0.1966 0.01677 0.05891 0.1146 0.7119 
Sentinel-2 Near Infrared 0.163 0.04555 0.0327 0.1315 0.1607 0.1958 0.3585 
Sentinel-2 Red 0.1379 0.03351 0.04438 0.1156 0.1352 0.1587 0.4719 
Sentinel-2 Red Edge 1 0.142 0.03389 0.04092 0.1202 0.1398 0.1633 0.481 
Sentinel-2 Red Edge 2 0.1624 0.04271 0.03881 0.1332 0.16 0.1927 0.6953 
Sentinel-2 Red Edge 3 0.1733 0.04934 0.03698 0.1381 0.1694 0.2094 0.721 
Sentinel-2 Red Edge 4 0.1785 0.0529 0.03305 0.1408 0.1746 0.2175 0.725 
Sentinel-2 Shortwave Infrared 1 0.1689 0.05009 0.01865 0.1366 0.1662 0.2019 0.4255 
Sentinel-2 Shortwave Infrared 2 0.1388 0.04326 0.01239 0.1107 0.1352 0.1658 0.4304 
Sentinel-2 Water Vapor 0.06035 0.02102 0.0001865 0.0459 0.05822 0.07451 0.2833 

Number of Buildings: 7229, Number of Data Points: 172,213 
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Table A.7 
Natural Gas Data Summary: 3. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

EPW Aerosol Optical Depth (thousandths) Daily Maxium 0.07481 0.08418 0 0 0 0.134 0.221 
EPW Aerosol Optical Depth (thousandths) Daily Median 0.07461 0.08402 0 0 0 0.133 0.221 
EPW Aerosol Optical Depth (thousandths) Daily Minimum 0.0744 0.08381 0 0 0 0.133 0.221 
EPW Albedo Daily Maxium 0.06965 0.07296 0 0 0 0.14 0.17 
EPW Albedo Daily Median 0.06965 0.07296 0 0 0 0.14 0.17 
EPW Albedo Daily Minimum 0.06939 0.07265 0 0 0 0.14 0.17 
EPW Atmospheric Station Pressure (Pa) Daily Maxium 1.021 e5 302.4 1.015 e5 1.018 e5 1.02 e5 1.023 e5 1.026 e5 
EPW Atmospheric Station Pressure (Pa) Daily Median 1.017 e5 305.7 1.005 e5 1.016 e5 1.016 e5 1.018 e5 1.024 e5 
EPW Atmospheric Station Pressure (Pa) Daily Minimum 1.013 e5 269 1.001 e5 1.012 e5 1.013 e5 1.015 e5 1.018 e5 
EPW Days Since Last Snowfall Daily Maxium 88 0 88 88 88 88 88 
EPW Days Since Last Snowfall Daily Median 88 0 88 88 88 88 88 
EPW Days Since Last Snowfall Daily Minimum 88 0 88 88 88 88 88 
EPW Dewpoint Temperature ( ◦C) Daily Maxium 10.24 7.801 − 3.3 2.8 8.6 17.5 22.2 
EPW Dewpoint Temperature ( ◦C) Daily Median 6.743 8.631 − 7.225 0 6.35 14.6 20 
EPW Dewpoint Temperature ( ◦C) Daily Minimum 3.019 9.557 − 14.7 − 2.2 2.2 11.1 18.3 
EPW Diffuse Horizontal Illuminance (lux) Daily Maxium 3.25 e4 9656 1.692 e4 2.41 e4 2.945 e4 4.146 e4 4.861 e4 
EPW Diffuse Horizontal Illuminance (lux) Daily Median 3269 3514 0 0 1775 7222 1.07 e4 
EPW Diffuse Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Maxium 285.8 82.41 147 215.5 260 359 421 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Median 28.32 30.09 0 0 13 56 90.5 
EPW Diffuse Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Direct Normal Illuminance (lux) Daily Maxium 5.373 e4 1.38 e4 126 4.373 e4 5.389 e4 6.77 e4 7.15 e4 
EPW Direct Normal Illuminance (lux) Daily Median 474.2 784.7 0 0 0 606 3050 
EPW Direct Normal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Maxium 639.8 94.65 2 608 661 689 745 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Median 11.38 17.99 0 0 2.75 14.5 79 
EPW Direct Normal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Drybulb Temperature ( ◦C) Daily Maxium 17.74 8.758 2.2 11.1 16.7 26.1 31.1 
EPW Drybulb Temperature ( ◦C) Daily Median 14.12 8.25 − 1.7 8.3 13.05 22.65 26.4 
EPW Drybulb Temperature ( ◦C) Daily Minimum 10.46 8.061 − 4.4 4.4 10 18.3 22.8 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Maxium 1364 31.93 1322 1332 1358 1398 1414 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Median 718 558.5 0 93.5 923.8 1322 1336 
EPW Extraterrestrial Direct Normal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Maxium 1006 215.8 612 825 1056 1234 1253 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Median 128 132.2 0 1.75 74.75 287.5 343 
EPW Extraterrestrial Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Global Horizontal Illuminance (lux) Daily Maxium 7.454 e4 2.182 e4 1.684 e4 6.077 e4 7.936 e4 9.47 e4 1.049 e5 
EPW Global Horizontal Illuminance (lux) Daily Median 4313 4682 0 0 2100 8950 1.243 e4 
EPW Global Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0 

Number of Buildings: 7229, Number of Data Points: 172,213 
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A2. Natural gas data summary 

Table A.8 

Table A.8 
Natural Gas Data Summary: 4. 

Model Variable Mean Std. Dev Min. Q25 Median Q75 Max. 

EPW Global Horizontal Radiation (Wh/m 2 ) Daily Maxium 670.8 188.8 147 518.5 697.5 831 895.5 
EPW Global Horizontal Radiation (Wh/m 2 ) Daily Median 40.09 42.64 0 0 19.5 80.5 113.5 
EPW Global Horizontal Radiation (Wh/m 2 ) Daily Minimum 0 0 0 0 0 0 0 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Maxium 365 48.46 288 320 355.5 416 448 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Median 338.2 46.23 257 301.5 329 381.8 417.5 
EPW Horizontal Infrared Radiation Intensity (Wh/m 2 ) Daily Minimum 307.5 43.61 231 274 305 347 380 
EPW Liquid Precipitation Depth (mm) Daily Maxium 0 0 0 0 0 0 0 
EPW Liquid Precipitation Depth (mm) Daily Median 0 0 0 0 0 0 0 
EPW Liquid Precipitation Depth (mm) Daily Minimum 0 0 0 0 0 0 0 
EPW Liquid Precipitation Quantity (hr) Daily Maxium 1 0 1 1 1 1 1 
EPW Liquid Precipitation Quantity (hr) Daily Median 1 0 1 1 1 1 1 
EPW Liquid Precipitation Quantity (hr) Daily Minimum 1 0 1 1 1 1 1 
EPW Opaque Sky Cover Daily Maxium 9.81 0.4646 8 10 10 10 10 
EPW Opaque Sky Cover Daily Median 4.787 1.376 3 3.75 4.75 5.5 10 
EPW Opaque Sky Cover Daily Minimum 0.05576 0.3274 0 0 0 0 3 
EPW Precipitable Water (mm) Daily Maxium 118.5 124.4 9 18.5 37 194.5 400 
EPW Precipitable Water (mm) Daily Median 102.5 111.3 7 15.25 33.5 170 390 
EPW Precipitable Water (mm) Daily Minimum 87.15 100.4 5 12 28 129 379 
EPW Relative Humidity Daily Maxium 82.51 7.217 60 79 83 88.5 100 
EPW Relative Humidity Daily Median 61.44 7.404 46.5 57 61 65.75 96 
EPW Relative Humidity Daily Minimum 43.7 6.565 31 39 44 49 58 
EPW Snow Depth (cm) Daily Maxium 0 0 0 0 0 0 0 
EPW Snow Depth (cm) Daily Median 0 0 0 0 0 0 0 
EPW Snow Depth (cm) Daily Minimum 0 0 0 0 0 0 0 
EPW Total Sky Cover Daily Maxium 10 0 10 10 10 10 10 
EPW Total Sky Cover Daily Median 6.474 1.463 3 5.5 7 7.5 10 
EPW Total Sky Cover Daily Minimum 0.1337 0.4263 0 0 0 0 3 
EPW Visibility (km) Daily Maxium 25.79 5.873 16 24 24.1 32 32.2 
EPW Visibility (km) Daily Median 18.45 4.116 3.2 16 19.3 21.6 24.1 
EPW Visibility (km) Daily Minimum 11.82 3.626 0.8 8 12.8 14.4 16.8 
EPW Wind Direction (deg) Daily Maxium 324.3 16.73 300 310 320 340 360 
EPW Wind Direction (deg) Daily Median 203.6 39.26 50 180 200 230 275 
EPW Wind Direction (deg) Daily Minimum 46.47 49.47 10 20 20 40 220 
EPW Wind Speed (m/s) Daily Maxium 8.239 1.209 5.95 7.2 8.2 9.05 10.8 
EPW Wind Speed (m/s) Daily Median 5.22 0.902 3.6 4.6 4.9 5.8 7.7 
EPW Wind Speed (m/s) Daily Minimum 2.368 0.6251 1.5 2.1 2.6 2.6 5.2 
EPW Zenith Luminance (Cd/m 2 ) Daily Maxium 7414 1395 4160 6522 7610 8434 9980 
EPW Zenith Luminance (Cd/m 2 ) Daily Median 792.4 876.7 0 0 474.2 1278 2701 
EPW Zenith Luminance (Cd/m 2 ) Daily Minimum 0 0 0 0 0 0 0 

Number of Buildings: 7229, Number of Data Points: 172,213 
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Appendix B. Results 

B1. Monthly MAE results 

Tables B.1-B.8 

Table B.1 
Individual Monthly Building MAE for Schema S 1 - Commercial Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 40.1 36.8 35.1 35.2 40.6 41.5 47.9 46.1 42.6 39.4 36.5 36.3 
NOAA 40.4 36.5 34.8 35 40 41.3 47.2 45 42.1 39.8 36.4 36.2 
CMIP 40.8 37 35.2 35.4 40.7 41.7 47.4 45.3 43.2 40.1 37 36.5 
EPW 40.8 36.9 35.3 35.7 40.6 42.5 48.4 46.5 43.2 40.5 37.1 36.6 
Landsat8 41 36.9 34.7 34.3 38.6 40.8 46.3 45.1 41.7 39.2 36.5 36.3 
VIIRS 39.4 35.9 35.5 34.9 39.4 39.7 46.3 45.3 41 38.7 37 38.7 
SAR 39.7 36.3 34.8 34.9 40.2 40.3 46.5 45.1 41.5 38.2 35.8 36.1 
Dynamic World 40.6 36.5 34.2 33.7 39.4 41.2 47.4 45.7 41.9 38.1 36.3 37.6 
Sentinel-2 40.3 36.2 34.1 34 39.1 41 46.6 45.4 42.2 38.8 36.6 36.5 

Table B.2 
Individual Monthly Building MAE for Schema S 1 - Manufacturing Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 40.2 36.6 43.2 39.9 43 42.1 42.2 43 41.8 42.4 41.2 42.4 
NOAA 38.8 34.3 40.1 36.2 39.2 45 47.8 48 43.8 39.4 36.8 37.8 
CMIP 37.9 34.1 38.9 35.9 39.5 45.5 49 49.1 43.4 39 37.1 38.2 
EPW 39.5 35.1 40.9 37.5 40.1 46.3 47.9 48.3 43.5 41 37.8 39 
Landsat8 37.8 32.1 37.9 33.3 38.8 42.2 45.6 45.1 44.2 38.1 36.8 36.8 
VIIRS 41.7 36.5 43.5 40.5 42.6 44.1 43.8 43.6 41.4 43.2 42.1 42.8 
SAR 40.4 35.7 41.9 39 42.7 42.6 42.4 42.9 42 42 40 40.6 
Dynamic World 41.9 36.1 41.9 37.2 41.1 41 42.3 42.7 41 42.2 40.4 43 
Sentinel-2 39.2 33.2 38.3 34.1 38.6 41.4 45.9 45.5 43.1 42.7 40.7 40.6 

Table B.3 
Individual Monthly Building MAE for Schema S 1 - Residential Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 16.7 18 17.9 17.7 18.6 16.1 19 16.9 16.7 18.9 18 16.8 
NOAA 15.6 16.5 15.7 15 16.4 17 19.2 17.7 17.5 16.7 15.2 13.7 
CMIP 16.1 17.3 16.3 16.1 17.8 18.1 20.2 18.4 18.1 17.8 16.3 15.2 
EPW 15.7 16.9 16 15.9 16.9 17.3 19.2 17.5 17.5 17.2 15.7 14.4 
Landsat8 15.4 16 15.3 14.3 16.4 15.9 17.9 16.5 17.6 16.1 15.5 14.4 
VIIRS 16.4 17.3 17.3 16.7 16.3 15 18.8 16.8 15.7 16.5 17.4 17.1 
SAR 15.4 16.8 16.5 16.1 17.4 15.3 19 16.8 15.6 16.9 16.3 15.1 
Dynamic World 16.7 17.6 16.8 16.4 17.6 16.2 18.6 16.6 16.9 18.4 17.9 16.6 
Sentinel-2 15.9 16.3 15.4 14.4 16.1 15.7 18.1 16.5 17.6 18 17.6 15.5 

Table B.4 
Individual Monthly Building MAE for Schema S 1 - Commercial Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 101 89.3 80.7 60.1 59.5 64 67.4 68.6 67 63.2 65.2 90.3 
NOAA 99.7 88.7 84.1 63.3 44.2 31.3 30.2 30.8 32.9 45.5 71.5 92.9 
CMIP 101 90.1 85.4 63.4 43.9 30.8 29.8 30.9 33.7 47.8 72.4 97.8 
EPW 101 91.7 84.4 63.7 44.3 31.1 29.4 29.9 32.6 52.7 71.3 94.2 
Dynamic World 98.3 88.4 84.6 65.3 50.6 35.7 36.4 40.8 44.3 53.4 72.1 95.4 
Landsat8 99.4 88 83.7 61.3 43.5 30.9 29.1 30 31.4 50.9 75.1 96 
SAR 102 89 81 60.8 59.8 65.5 67.8 69.9 67.3 63.6 66.2 89.6 
VIIRS 100 89.1 82.8 63.3 48.2 61.3 60 66.6 63.1 54.4 67.9 90.9 
Sentinel-2 98.5 87.9 85.2 67.6 47 32 29.9 32.1 37.1 51.6 70.2 94.6 
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Table B.5 
Individual Monthly Building MAE for Schema S 1 - Manufacturing Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 78 66.4 62.8 54.5 62.7 72.5 73.3 76.2 71.2 66.4 52.3 71.5 
NOAA 88.8 75.7 76.4 59.7 40.6 34.5 34.4 35.4 34.6 43.8 58.1 81.2 
CMIP 88 74.3 76.7 57.7 38.9 34 34.5 36.4 34.8 43.6 59.7 84.3 
EPW 85.7 77.5 77.1 62.5 41.2 35.5 34.4 35.2 34.7 50.8 61 79.5 
Dynamic World 80.1 70.4 71.9 59 47.7 40.1 41.5 47.3 54.4 62.7 59.7 79.3 
Landsat8 83.7 73.8 74.9 53 41.1 34.6 33.2 34.8 33 51.5 60.7 83 
SAR 79.2 67.8 64.3 54.4 61.1 71.9 72 73.4 69 63.7 51.9 73.1 
VIIRS 77.5 65.5 65.9 57.2 45.6 64.8 67.1 74 71 58.5 56.7 72.9 
Sentinel-2 81.1 75.7 77.8 68 47.7 35 33.1 37.9 43.5 51.8 58.5 83.7 

Table B.6 
Individual Monthly Building MAE for Schema S 1 - Residential Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 112 97.4 85.6 53.8 38.8 44.9 50.1 49.3 47 41 68.3 98.5 
NOAA 85.6 75.4 70.2 50.7 34.4 26 23.9 21.4 24.4 37.6 61.2 75.5 
CMIP 86.4 76.5 70.4 51.3 34.8 25.9 23.7 21.6 24 38 61.6 75.1 
EPW 86.5 76.1 71.7 51.6 35.1 25.9 23.7 21.2 24 41.8 62 76 
Dynamic World 89.7 79.8 73.2 55.3 37.5 27 25.7 25.2 29.1 41.1 65.8 76.4 
Landsat8 87.5 76.4 71.4 52.8 35.1 26 23.8 21.4 24.3 38.8 60.6 75 
SAR 111 97.1 84.5 52.8 38.3 44.5 48.9 49.1 46 40.5 67.2 96.4 
VIIRS 106 93.5 81 53.4 36 43.3 43.6 47.6 44.1 39.7 68.9 97.5 
Sentinel-2 88.3 76.5 71.4 52.6 36 26.1 23.8 21.8 25.9 39.4 63.6 76.4 

Table B.7 
Individual Monthly Building MAE for Schema S 2 - Commercial Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 40.5 37 35.4 35.5 40.9 41.6 48 46.4 42.8 39.6 36.9 36.4 
NOAA 40.9 36.9 35 35.4 40.5 41.8 47.7 45.6 42.6 40.2 36.7 36.6 
CMIP 41.1 37.1 35.1 35.2 40.3 42.3 48.4 46.8 43.3 40.1 36.8 35.9 
EPW 41.1 37.7 35.7 35.7 40.9 42.8 48.3 46.6 43.8 41 38 37.2 
Landsat8 40.4 36 33.8 33.5 37.4 39.6 45.3 44.3 40.9 38.1 35.9 35.9 
VIIRS 40.4 36.7 35.9 35.3 39.8 40 46.6 45.9 41.6 39.4 37.4 39.1 
SAR 39.5 36.1 34.6 34.6 39.9 40.1 45.9 45 41.3 38.1 35.4 35.9 
Dynamic World 41.5 36.3 34.4 34 39.7 41 46.9 45.7 42.7 39.1 37 40 
Sentinel-2 41.3 36.9 35.4 35.2 40.1 42.1 47.2 46.1 43.1 39.9 36.9 37.5 

Table B.8 
Individual Monthly Building MAE for Schema S 2 - Manufacturing Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 40.5 36.8 43.4 40 43.5 42.8 42.6 43 41.8 42.7 41.5 42.3 
NOAA 39.6 35.1 41.2 37.5 40.1 45.7 48.2 48.1 44.2 40.2 37.8 38.8 
CMIP 38.6 34.5 40.8 37 40.4 45.5 48.2 47.8 44.8 39.7 38.6 39.3 
EPW 40 35 39.8 36.9 39.1 45.7 49.8 50.5 44.4 40.4 37.9 39.4 
Landsat8 37.8 33 37.4 33.8 38.3 40.4 45.6 44.7 42.7 37.9 36.8 37.3 
VIIRS 42.3 37.1 44 40.6 42.7 43.8 43.5 44 41.8 42.9 42.5 43.2 
SAR 39.4 35.9 41.3 38.8 41.6 41 43.3 42 40.8 40.6 39.7 40 
Dynamic World 39.3 33.8 38.8 33.9 37.8 39.6 42.3 42.7 40.8 40.1 39 40.7 
Sentinel-2 38.3 34 39.6 34.8 38.9 40.3 44.7 46.5 43.4 42.3 38.9 39.3 
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B2. Individual building results 

Tables B.9-B.18 

Table B.9 
Individual Monthly Building MAE for Schema S 2 - Residential Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 16.7 17.9 17.8 17.6 18.5 15.9 18.7 16.7 16.6 18.8 17.9 16.5 
NOAA 15.6 16.6 15.8 15.2 16.4 17 19.2 17.5 17.5 16.9 15.5 14.1 
CMIP 15.8 17.2 16.4 16.2 17.6 17.7 19.7 17.9 18.3 17.4 16.5 15 
EPW 15.6 16.7 15.3 14.7 16 16.4 19 17.6 17.7 16.7 15.2 13.3 
Landsat8 15.3 16 15.3 14.2 16.1 15.3 17.6 16.4 16.7 15.8 15.3 14.7 
VIIRS 16.4 17.3 17.3 16.6 16.5 15 18.6 16.6 15.7 16.6 17.5 17.4 
SAR 15.1 16.3 16.1 15.6 16.6 15.1 18.8 16.8 15.2 16.3 15.6 14.6 
Dynamic World 16.2 17.1 16.1 15.8 16.8 15.9 18.1 16.2 16.5 17.4 17.3 16 
Sentinel-2 15.3 16.1 15.3 14.2 15.8 15.6 17.7 16.3 17 17.1 16.4 14.3 

Table B.10 
Individual Monthly Building MAE for Schema S 2 - Commercial Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 101 89.3 80.6 61 60.7 65.6 68.5 70.4 68.1 64.3 66.2 89.2 
NOAA 101 90.9 85.3 64.5 44.4 31.4 30.3 31.2 33.4 46.2 72.5 95.3 
CMIP 101 90.5 85.2 64.4 43.5 30.5 29.4 30.7 33 44.7 72.5 95 
EPW 104 93.4 88 65.5 45 34 30.4 29.9 33.4 50.7 74.7 96.6 
Dynamic World 100 91 84.5 65.1 49 36.5 34.6 38.6 42.9 53.9 71.9 95.5 
Landsat8 99 88.4 83.4 61.5 43.6 31 29 30.7 31.9 47.3 73.8 94.4 
SAR 102 89.4 81.8 61.3 60.2 66.5 56.8 67.6 65.4 63.7 67 89.5 
VIIRS 100 88.8 82.1 61.6 47.3 59.3 59.2 64.8 61.2 53.5 66.8 90.6 
Sentinel-2 101 90.1 88.1 67.4 47 34.2 31.3 32.6 37 53.1 73.5 95.7 

Table B.11 
Individual Monthly Building MAE for Schema S 2 - Manufacturing Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 78.7 68 63.4 55 61.9 71.8 72.9 75.7 70 65.1 52.2 72.6 
NOAA 88.3 76.4 77.3 60.8 40 33.8 34.4 35.2 34.1 43.4 59.2 82.5 
CMIP 87.4 75.2 78.4 59.2 38.9 32.6 32.7 34.4 33.6 43.8 61.5 81.9 
EPW 88.7 77.6 80.7 59.3 41.7 36.3 34 33.6 34.2 47.4 61.1 78.3 
Dynamic World 83.8 72.5 73.5 60.8 46.3 43 42.1 47.1 53.6 65 61.5 83.3 
Landsat8 86.2 75.4 75.5 54.7 40.7 34 32.5 36.1 33.2 44.1 61.1 83.1 
SAR 78.1 67.5 63.3 54.8 60.8 72.2 62.7 69.3 67.5 65.1 51.8 72.3 
VIIRS 76.1 65.1 65.4 57.9 46 64.5 68.5 74.7 72.9 57.6 57.3 74.8 
Sentinel-2 82.4 72.2 80.5 64.1 45.5 37.5 35 39.4 43.2 54.1 59.7 80.8 

Table B.12 
Individual Monthly Building MAE for Schema S 2 - Residential Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 112 98 86 54.2 38.8 44.9 49.8 49.4 46.8 41 68.6 98.6 
NOAA 86 75.9 70.1 50.6 34.5 25.8 23.7 21.2 24 37.6 61.3 75.2 
CMIP 86.6 76.2 71 51.6 35.4 26 24 21.6 24.4 38.1 62.2 77.1 
EPW 86.6 76.7 71.9 51.7 35.4 26.3 23.5 21.1 23.9 38.7 61.8 76.2 
Dynamic World 88.5 78.2 73.7 54.7 37.2 27.1 25.3 24.1 28.2 40.8 65.2 76.5 
Landsat8 86.9 75.3 70.8 51.5 35 26.2 24 21.5 24.2 38.2 60.1 74.6 
SAR 110 95.4 83.3 52.6 38.7 45.4 43.3 46.7 44.6 41.3 66.4 92.2 
VIIRS 107 94 81.7 53.9 35.6 42.4 43.1 46.7 43.3 39.2 69.5 98.1 
Sentinel-2 88.4 77.5 71.1 52.4 36.6 27 24.3 22 26 39.9 63.4 78.4 
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Table B.13 
Individual Monthly Building MAE for Schema S 3 - Commercial Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 39.8 36.3 34.8 35.1 40.4 41.4 47.7 46.2 42.5 39.4 36.1 36.1 
NOAA 41.2 37.1 35.3 35.6 40.5 42.3 47.9 45.9 42.7 40.3 36.9 36.2 
CMIP 40.9 37.6 35.4 35.1 40.6 41.8 47.9 45.7 43.2 40.2 37 36.5 
EPW 40 36.7 34.6 34.8 40.2 41.8 47.9 45.8 43 39.8 36.3 35.9 
Landsat8 40 35.7 33.7 33.1 37.2 39.1 45.1 44.1 40.6 38.1 35.4 35.6 
VIIRS 40.3 36.7 35.6 35.2 40.3 40.2 47.3 46.1 41.7 39.3 37.1 38.6 
SAR 39.4 35.8 34.4 34.8 40.1 39.8 45.8 44.8 41.2 38.2 35.7 35.6 
Dynamic World 40.7 36 33.9 32.8 37.8 39.3 45.1 43.8 41 37.4 35.5 37.4 
Sentinel-2 40 35.4 34.1 33.7 38.5 40.6 46.3 44.7 41.4 38.1 35.8 36.9 

Table B.14 
Individual Monthly Building MAE for Schema S 3 - Manufacturing Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 40.8 37.3 43.2 39.9 42.9 42.1 43.1 43.8 41.4 42.4 40.8 42.2 
NOAA 39 34.8 40.5 36.2 39.8 45.3 48.1 47.5 43.9 39.6 37.1 38 
CMIP 39.9 35.7 40.8 36.7 38.7 44.8 47.6 47.6 43.3 39 38 39.9 
EPW 38.6 34.1 39.6 36.5 39.5 44.7 47.4 47.3 42.1 39.5 36.8 38.3 
Landsat8 37.5 32.2 37 32.6 36.1 39.6 44.4 44.6 41.3 37.1 36.2 36.9 
VIIRS 41.4 37.3 43.9 40.4 41.8 42.9 42.6 42.6 41.6 42.3 42.7 44.8 
SAR 39.1 35.6 41.7 38.5 41.7 41.4 42 42 41.2 40.6 39.6 40.7 
Dynamic World 37 31.7 36 31.6 35.3 36.1 39.4 40.8 40.3 39 37 38 
Sentinel-2 38.9 33.5 38.5 33.3 37.3 41 46.2 45.9 43.3 42.2 39.4 38.9 

Table B.15 
Individual Monthly Building MAE for Schema S 3 - Residential Electricity. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 16.6 17.9 17.7 17.5 18.5 15.9 18.9 16.8 16.6 18.7 17.7 16.6 
NOAA 15.8 16.8 15.9 15.2 16.6 16.9 19.4 17.7 17.6 16.8 15.5 13.9 
CMIP 15.5 16.7 15.7 15.2 16.1 16.9 18.9 17.5 17.3 16.7 15.6 14.3 
EPW 15.8 17.1 16.1 15.7 16.8 17.2 19.2 17.8 17.8 17.5 16 14.5 
Landsat8 14.9 15.6 14.8 14 15.5 15.1 17.6 16.1 16.5 15.4 14.6 13.9 
VIIRS 16.4 17.5 17.3 16.6 16.6 15.1 18.7 16.8 15.7 16.7 17.1 17 
SAR 15.4 16.7 16.3 15.9 17.3 15.3 18.7 16.6 15.7 16.8 16.1 14.9 
Dynamic World 15.7 16.5 15.6 15.1 15.7 16 18 16.3 16.5 16.4 16.3 15 
Sentinel-2 15.6 16.3 15.5 14.2 15.8 15.7 18 16.8 17.5 17.5 16.8 14.2 

Table B.16 
Individual Monthly Building MAE for Schema S 3 - Commercial Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 101 88.8 80.3 60.7 60.7 65.7 68.8 70.5 68.3 64.5 65.2 89.4 
NOAA 99.9 89.6 84.1 62.8 43.3 30.3 28.8 29.2 31.8 44.3 71.4 93.7 
CMIP 99.7 89.8 82.7 61.6 43.3 30.1 28.3 28.8 32.3 45.7 70.8 93.9 
EPW 102 92.9 87.8 65.7 44.9 31.4 28.5 28.7 31.7 48.2 73.3 94.2 
Dynamic World 98.1 88.8 82.8 62.8 47.1 35.2 34.5 37.9 42.3 52.1 70.2 92.5 
Landsat8 101 91.6 85.6 62.9 45.6 32.7 30.3 31.5 33.2 49.5 75.2 97.3 
SAR 100 88.6 80.2 59.9 59 65.9 55.9 66.8 64 63 66 89.8 
VIIRS 101 89.4 82.4 62.2 46.1 58 57.6 63.4 59.6 52.4 66.6 91.6 
Sentinel-2 101 88.3 84.9 64.3 44.2 31.5 28.3 30 34.8 48.6 71.4 94.8 

Table B.17 
Individual Monthly Building MAE for Schema S 3 - Manufacturing Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 79.2 68.4 64.1 54.6 62 71.1 72.3 74.2 69 65.1 52.5 73.7 
NOAA 87 74.5 74.7 57.4 39.4 34.2 33.5 34.3 33.5 42.1 58.6 80.1 
CMIP 87.1 76.3 77.3 57.5 39.3 33.7 31.9 33.1 33.5 43.3 58.7 81.4 
EPW 84.6 75.5 76 60.3 41.7 35 33 32.9 32.3 45.5 60.4 77.3 
Dynamic World 80 68.6 70.2 57 47.4 41.1 40.8 46.8 53.3 63.1 57.3 78.6 
Landsat8 85.9 75.5 73 54.6 43.7 36.7 34.7 37.7 34.6 47.1 60.4 83.4 
SAR 79.9 68.1 64.6 54.9 58.7 70.7 61 67.4 65.7 62.9 52.7 73.9 
VIIRS 78.5 66.4 67.8 59.3 47 64.6 69.2 75.3 73.3 59.7 57.4 74.9 
Sentinel-2 81.6 72.9 77.7 63.8 39.8 33.6 31.3 34.3 40.2 51.7 57.7 81.9 
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Table B.18 
Individual Monthly Building MAE for Schema S 3 - Residential Natural Gas. 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Null 112 97.9 86 53.8 39.1 45.4 50.4 49.9 47.3 41.3 68.6 98.7 
NOAA 84.7 74.4 69.6 50.6 34.4 25.8 23.6 21.4 24 37.2 60.9 74.6 
CMIP 85.2 74.6 69.9 51.3 34.8 25.7 23.4 21 24 37.9 61.6 75.9 
EPW 86.1 76.2 71.2 51.8 35 25.7 23.5 20.9 23.8 39.3 61.2 76.6 
Dynamic World 88.8 78.2 73 54.4 36 26.2 24.6 23.5 27.3 40.4 64.5 76.2 
Landsat8 88.1 76.5 71.4 52.4 35.4 26.2 24.2 21.9 24.7 38.4 60.7 75.3 
SAR 109 95.4 82.9 52.3 38.3 45.4 42.9 46.1 44.2 41.2 65.9 91.8 
VIIRS 107 94.2 81.5 53.8 36.3 42.9 43.2 46.9 43.5 39.6 69.4 98.1 
Sentinel-2 86.4 76.5 70.6 51.9 35.5 26.4 23.8 21.1 25 39.3 62.3 77.2 

Table B.19 
Individual Building Results for Schema S 1 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity VIIRS 94.01 − 0.8161 25.79 65.26 50.17 
Electricity SAR 94.22 1.381 25.56 65.26 50.28 
Electricity Sentinel-2 94.27 − 0.1591 25.58 65.26 50.3 
Electricity Landsat8 94.41 0.361 25.25 65.26 50.38 
Electricity Dynamic World 95.3 − 0.1949 26.06 65.26 50.85 
Electricity NOAA 95.81 − 0.3424 25.72 65.26 51.13 
Electricity CMIP 96.74 − 2.388 26.47 65.26 51.63 
Electricity EPW 96.88 − 1.624 26.24 65.26 51.7 
Electricity Null 97.56 0.4302 26.54 65.26 52.06 
Natural Gas NOAA 115 2.838 50.04 71.38 87.05 
Natural Gas CMIP 115.2 1.427 50.46 71.38 87.26 
Natural Gas EPW 115.5 0.1371 50.92 71.38 87.46 
Natural Gas Landsat8 115.9 3.42 50.49 71.38 87.73 
Natural Gas Sentinel-2 116.4 2.218 51.54 71.38 88.11 
Natural Gas Dynamic World 119.8 2.438 53.78 71.38 90.71 
Natural Gas VIIRS 128.1 1.143 62.83 71.38 97 
Natural Gas SAR 129.9 0.5474 65.22 71.38 98.37 
Natural Gas Null 130.6 1.145 65.56 71.38 98.92 

B3. Aggregated results 

Tables B.20 , B.22 , B.23 , B.25 , B.26 , B.27 . 

Table B.20 
Individual Building Results for Schema S 2 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity Landsat8 93.1 1.477 24.76 65.26 49.68 
Electricity VIIRS 93.6 − 1.088 25.97 65.26 49.95 
Electricity SAR 93.85 1.967 25.18 65.26 50.08 
Electricity Dynamic World 95.44 − 0.693 25.78 65.26 50.93 
Electricity NOAA 95.76 − 0.4093 25.97 65.26 51.1 
Electricity Sentinel-2 95.78 1.646 25.6 65.26 51.11 
Electricity Null 96.72 0.2819 26.56 65.26 51.62 
Electricity EPW 96.76 − 1.207 26.08 65.26 51.64 
Electricity CMIP 97.31 − 0.4502 26.47 65.26 51.93 
Natural Gas Landsat8 115.1 3.197 50.1 71.38 87.16 
Natural Gas NOAA 115.4 2.393 50.29 71.38 87.4 
Natural Gas EPW 115.9 − 0.9957 51.26 71.38 87.74 
Natural Gas CMIP 116.1 0.9616 50.5 71.38 87.88 
Natural Gas Sentinel-2 117.4 1.153 52.21 71.38 88.87 
Natural Gas Dynamic World 119.7 1.096 53.45 71.38 90.6 
Natural Gas VIIRS 128 3.495 62.45 71.38 96.9 
Natural Gas SAR 128.9 1.157 63.99 71.38 97.6 
Natural Gas Null 131.6 0.6646 65.89 71.38 99.63 
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Table B.21 
Individual Building Results for Schema S 3 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity Landsat8 92.58 2.102 24.42 65.26 49.4 
Electricity SAR 93.41 1.423 25.34 65.26 49.85 
Electricity Dynamic World 93.9 2.243 24.87 65.26 50.11 
Electricity Sentinel-2 94.01 − 0.2982 25.27 65.26 50.17 
Electricity VIIRS 94.46 0.2878 25.99 65.26 50.41 
Electricity NOAA 95.94 − 0.5896 26.04 65.26 51.2 
Electricity CMIP 96.17 − 0.0328 25.94 65.26 51.32 
Electricity EPW 96.51 − 0.4866 26.05 65.26 51.5 
Electricity Null 97.03 1.104 26.4 65.26 51.78 
Natural Gas NOAA 114.3 2.472 49.56 71.38 86.59 
Natural Gas CMIP 114.5 1.811 49.7 71.38 86.69 
Natural Gas EPW 115.5 0.09753 50.64 71.38 87.47 
Natural Gas Sentinel-2 115.8 2.914 50.75 71.38 87.68 
Natural Gas Landsat8 115.9 1.43 51.06 71.38 87.73 
Natural Gas Dynamic World 117.9 3.662 52.51 71.38 89.26 
Natural Gas VIIRS 128.3 4.012 62.45 71.38 97.12 
Natural Gas SAR 128.4 1.683 63.45 71.38 97.22 
Natural Gas Null 131.1 0.07637 65.98 71.38 99.26 

Table B.22 
Aggregated Building Results for Schema S 1 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity Landsat8 27.01 − 9.299 72.95 350.6 86.61 
Electricity NOAA 27.21 − 10.31 73.27 350.6 81.25 
Electricity Sentinel-2 28.58 − 7.669 74.96 350.6 85.67 
Electricity EPW 28.63 − 11.3 77.21 350.6 89.44 
Electricity SAR 29.06 − 5.232 76.87 350.6 93.86 
Electricity CMIP 29.39 − 14.17 71.43 350.6 88.65 
Electricity Dynamic World 30.56 − 8.163 85.37 350.6 95.62 
Electricity VIIRS 31.3 − 8.132 84.8 350.6 97.36 
Electricity Null 31.41 − 8.751 78.07 350.6 93.07 
Natural Gas EPW 41.5 − 5.591 153.3 141 203.4 
Natural Gas CMIP 42.63 − 4.474 148.4 141 191 
Natural Gas NOAA 44.82 − 3.33 133.5 141 179.4 
Natural Gas Landsat8 46.51 − 2.409 150.4 141 188.8 
Natural Gas Sentinel-2 48.24 − 2.017 159.6 141 211.3 
Natural Gas Dynamic World 48.95 − 1.401 185 141 220.9 
Natural Gas VIIRS 71.75 − 1.378 262.2 141 307.7 
Natural Gas Null 76.94 − 4.749 274.6 141 323.7 
Natural Gas SAR 79.19 − 5.245 274.3 141 323.6 

Table B.23 
Aggregated Building Results for Schema S 2 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity Landsat8 25.98 − 5.899 72.71 350.6 83.3 
Electricity EPW 28.37 − 8.728 71.93 350.6 80.63 
Electricity NOAA 28.56 − 10.17 76.15 350.6 87.3 
Electricity CMIP 28.57 − 12.9 73.78 350.6 85.17 
Electricity Dynamic World 28.71 − 8.081 80.2 350.6 93.86 
Electricity SAR 28.84 − 4.483 74.28 350.6 88.93 
Electricity Sentinel-2 29.03 − 5.309 80.1 350.6 90.11 
Electricity VIIRS 31.22 − 10.73 79.99 350.6 95.42 
Electricity Null 31.51 − 9.297 80.04 350.6 93.67 
Natural Gas CMIP 42.28 − 4.95 145.5 141 194 
Natural Gas Landsat8 43.42 − 0.1227 145.2 141 190.6 
Natural Gas EPW 44.21 − 7.446 156.7 141 196.9 
Natural Gas NOAA 45.13 − 4.095 137.5 141 179 
Natural Gas Sentinel-2 49.13 − 5.049 170.8 141 209.9 
Natural Gas Dynamic World 50.16 − 3.409 172.4 141 214.9 
Natural Gas VIIRS 71.41 − 2.03 257.6 141 307.2 
Natural Gas SAR 74.12 − 4.754 265.9 141 331.5 
Natural Gas Null 78.92 − 6.163 275.6 141 333.7 
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Table B.24 
Aggregated Building Results for Schema S 3 . 

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE 

Electricity Landsat8 25.7 − 6.813 69.19 350.6 79.49 
Electricity Dynamic World 26.65 − 4.752 70.12 350.6 85.51 
Electricity Sentinel-2 26.95 − 8.267 77.69 350.6 84.4 
Electricity NOAA 27.68 − 11.47 72.87 350.6 81.94 
Electricity EPW 28.26 − 10.49 72.63 350.6 84.19 
Electricity CMIP 28.42 − 9.798 76.31 350.6 85.54 
Electricity SAR 29.13 − 6.787 76.86 350.6 92.88 
Electricity VIIRS 31.62 − 8.535 79.7 350.6 95.15 
Electricity Null 31.88 − 8.094 78.78 350.6 95.74 
Natural Gas NOAA 42.52 − 1.922 135.1 141 179.6 
Natural Gas CMIP 43.1 − 3.032 132.7 141 167.4 
Natural Gas EPW 44.3 − 5.405 146.6 141 189.9 
Natural Gas Landsat8 45.65 − 3.373 156.5 141 198.4 
Natural Gas Dynamic World 46.1 − 0.3658 170.4 141 215.3 
Natural Gas Sentinel-2 46.23 − 2.027 150.1 141 192.8 
Natural Gas VIIRS 70.54 − 1.666 249.3 141 307.1 
Natural Gas SAR 74.13 − 2.701 264.5 141 312.5 
Natural Gas Null 77.5 − 5.936 274 141 329.3 
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Table B.25 
Individual Building Results by Zone for Schema S 1 . 

Energy Class Zone Model CV(RMSE) NMBE CV(STD) RMSE MAE 

Electricity Commercial SAR 79.12 9.463 78.14 65.32 39.36 
Electricity Commercial VIIRS 79.19 6.623 78.14 65.38 39.46 
Electricity Commercial Sentinel-2 79.25 9.735 78.14 65.43 39.5 
Electricity Commercial Landsat8 79.78 8.726 78.14 65.86 39.54 
Electricity Commercial Dynamic World 80.02 10.12 78.14 66.07 39.58 
Electricity Commercial CMIP 80.77 9.118 78.14 66.68 40.35 
Electricity Commercial NOAA 81.08 9.611 78.14 66.94 39.86 
Electricity Commercial Null 81.22 11.44 78.14 67.06 40.15 
Electricity Commercial EPW 81.98 9.139 78.14 67.68 40.69 
Electricity Manufacturing Landsat8 122.6 − 34.79 77.07 50.58 39.12 
Electricity Manufacturing NOAA 124.1 − 38.87 77.07 51.2 40.66 
Electricity Manufacturing CMIP 124.2 − 44.43 77.07 51.22 40.64 
Electricity Manufacturing Sentinel-2 125.2 − 38.02 77.07 51.65 40.31 
Electricity Manufacturing Dynamic World 125.9 − 40.14 77.07 51.95 40.8 
Electricity Manufacturing EPW 126.8 − 42.41 77.07 52.3 41.46 
Electricity Manufacturing Null 127.9 − 38.26 77.07 52.76 41.5 
Electricity Manufacturing VIIRS 130.6 − 39.57 77.07 53.88 42.14 
Electricity Manufacturing SAR 130.8 − 36.38 77.07 53.97 41.05 
Electricity Residential VIIRS 102.1 − 6.586 61.95 38.64 16.75 
Electricity Residential SAR 102.8 − 5.269 61.95 38.92 16.51 
Electricity Residential Landsat8 103 − 6.867 61.95 38.98 16.06 
Electricity Residential Sentinel-2 103.4 − 9.035 61.95 39.12 16.53 
Electricity Residential NOAA 104.3 − 9.233 61.95 39.48 16.53 
Electricity Residential Dynamic World 104.8 − 9.405 61.95 39.65 17.24 
Electricity Residential EPW 105.4 − 11.31 61.95 39.87 16.86 
Electricity Residential CMIP 107.7 − 12.88 61.95 40.77 17.48 
Electricity Residential Null 108.8 − 9.749 61.95 41.17 17.65 
Natural Gas Commercial CMIP 151.3 − 21.37 58.14 95.31 57.86 
Natural Gas Commercial Landsat8 151.5 − 17.54 58.14 95.41 57.32 
Natural Gas Commercial NOAA 151.5 − 18.37 58.14 95.42 57.01 
Natural Gas Commercial EPW 152 − 21.51 58.14 95.73 57.99 
Natural Gas Commercial Sentinel-2 153.8 − 19.73 58.14 96.91 58.73 
Natural Gas Commercial Dynamic World 157.2 − 20.73 58.14 99.04 61.44 
Natural Gas Commercial VIIRS 166.1 − 20.92 58.14 104.6 68.94 
Natural Gas Commercial Null 168.9 − 20.86 58.14 106.4 71.66 
Natural Gas Commercial SAR 170.1 − 22.15 58.14 107.1 72.2 
Natural Gas Manufacturing CMIP 174.9 − 20.18 52.65 97.77 54.68 
Natural Gas Manufacturing NOAA 175.4 − 21.23 52.65 98.04 54.84 
Natural Gas Manufacturing Landsat8 176 − 16.72 52.65 98.39 54.39 
Natural Gas Manufacturing EPW 176.9 − 24.29 52.65 98.91 56.18 
Natural Gas Manufacturing Sentinel-2 178.7 − 24.31 52.65 99.88 57.73 
Natural Gas Manufacturing Dynamic World 181 − 23.5 52.65 101.2 59.38 
Natural Gas Manufacturing VIIRS 187.5 − 21.12 52.65 104.8 63.78 
Natural Gas Manufacturing SAR 189 − 17.47 52.65 105.6 65.77 
Natural Gas Manufacturing Null 189 − 20.79 52.65 105.7 66.33 
Natural Gas Residential NOAA 97.88 11.94 80.15 81.69 46.23 
Natural Gas Residential EPW 98.39 9.419 80.15 82.12 47.03 
Natural Gas Residential CMIP 98.4 11.01 80.15 82.12 46.49 
Natural Gas Residential Sentinel-2 98.78 11.71 80.15 82.44 47.53 
Natural Gas Residential Landsat8 99.22 12.24 80.15 82.8 46.82 
Natural Gas Residential Dynamic World 102.4 12.36 80.15 85.44 49.58 
Natural Gas Residential VIIRS 110.7 10.48 80.15 92.37 59.73 
Natural Gas Residential SAR 111.6 9.917 80.15 93.15 61.71 
Natural Gas Residential Null 113.2 10.44 80.15 94.46 62.47 
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Table B.26 
Individual Building Results by Zone for Schema S 2 . 

Energy Class Zone Model CV(RMSE) NMBE CV(STD) RMSE MAE 

Electricity Commercial Landsat8 78.28 10.03 78.14 64.63 38.65 
Electricity Commercial SAR 78.93 9.259 78.14 65.17 39.09 
Electricity Commercial VIIRS 79.66 6.834 78.14 65.76 39.97 
Electricity Commercial Dynamic World 81.05 7.678 78.14 66.91 39.99 
Electricity Commercial Null 81.3 11.49 78.14 67.12 40.38 
Electricity Commercial EPW 81.62 8.005 78.14 67.39 41.05 
Electricity Commercial NOAA 81.67 10.06 78.14 67.42 40.32 
Electricity Commercial Sentinel-2 82.25 10.56 78.14 67.9 40.39 
Electricity Commercial CMIP 82.55 11.7 78.14 68.15 40.55 
Electricity Manufacturing Dynamic World 122.2 − 34.2 77.07 50.4 38.99 
Electricity Manufacturing Landsat8 122.9 − 28.71 77.07 50.71 38.83 
Electricity Manufacturing NOAA 126 − 40.67 77.07 51.98 41.42 
Electricity Manufacturing Sentinel-2 126.2 − 34.31 77.07 52.05 40.12 
Electricity Manufacturing CMIP 126.3 − 44.73 77.07 52.08 41.32 
Electricity Manufacturing SAR 127.1 − 34.41 77.07 52.41 40.4 
Electricity Manufacturing EPW 128.1 − 40.7 77.07 52.84 41.55 
Electricity Manufacturing Null 128.2 − 40.68 77.07 52.89 41.75 
Electricity Manufacturing VIIRS 130.6 − 41.84 77.07 53.85 42.35 
Electricity Residential VIIRS 99.88 − 7.279 61.95 37.8 16.75 
Electricity Residential Sentinel-2 101.5 − 6.193 61.95 38.41 16.07 
Electricity Residential Landsat8 102.2 − 6.422 61.95 38.66 15.79 
Electricity Residential SAR 102.6 − 3.831 61.95 38.81 16.09 
Electricity Residential NOAA 102.7 − 9.788 61.95 38.87 16.62 
Electricity Residential Dynamic World 103.5 − 8.073 61.95 39.17 16.69 
Electricity Residential CMIP 105.5 − 11.54 61.95 39.93 17.31 
Electricity Residential EPW 105.6 − 9.098 61.95 39.96 16.38 
Electricity Residential Null 106.1 − 9.942 61.95 40.16 17.52 
Natural Gas Commercial Landsat8 150.4 − 18.21 58.14 94.74 56.88 
Natural Gas Commercial CMIP 150.9 − 21.34 58.14 95.06 57.33 
Natural Gas Commercial NOAA 152.8 − 19.86 58.14 96.26 57.88 
Natural Gas Commercial EPW 153.4 − 25.76 58.14 96.62 59.51 
Natural Gas Commercial Sentinel-2 156 − 23.46 58.14 98.24 60.14 
Natural Gas Commercial Dynamic World 158.5 − 21.78 58.14 99.82 61.25 
Natural Gas Commercial VIIRS 164.2 − 17.07 58.14 103.4 67.88 
Natural Gas Commercial SAR 169.3 − 20.61 58.14 106.6 71.11 
Natural Gas Commercial Null 170.8 − 22.7 58.14 107.6 72.43 
Natural Gas Manufacturing NOAA 177 − 19.48 52.65 98.94 55.05 
Natural Gas Manufacturing CMIP 177 − 21.22 52.65 98.95 54.61 
Natural Gas Manufacturing EPW 177.3 − 22.67 52.65 99.11 55.95 
Natural Gas Manufacturing Landsat8 177.4 − 15.75 52.65 99.18 54.14 
Natural Gas Manufacturing Sentinel-2 180.4 − 23.09 52.65 100.9 57.84 
Natural Gas Manufacturing Dynamic World 183.3 − 26.45 52.65 102.5 60.91 
Natural Gas Manufacturing VIIRS 187.2 − 22.3 52.65 104.6 64.05 
Natural Gas Manufacturing SAR 188.4 − 15.64 52.65 105.3 64.64 
Natural Gas Manufacturing Null 190.7 − 18.48 52.65 106.6 66.21 
Natural Gas Residential NOAA 97.91 11.78 80.15 81.72 46.18 
Natural Gas Residential EPW 98.32 9.323 80.15 82.06 46.82 
Natural Gas Residential Landsat8 98.46 12.13 80.15 82.17 46.45 
Natural Gas Residential Sentinel-2 99.27 11.54 80.15 82.85 47.87 
Natural Gas Residential CMIP 99.69 10.38 80.15 83.2 46.81 
Natural Gas Residential Dynamic World 101.5 10.99 80.15 84.7 49.05 
Natural Gas Residential SAR 110.5 10.12 80.15 92.18 60.41 
Natural Gas Residential VIIRS 111.3 12.44 80.15 92.89 59.64 
Natural Gas Residential Null 113.7 10.34 80.15 94.9 62.62 
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Table B.27 
Individual Building Results by Zone for Schema S 3 . 

Energy Class Zone Model CV(RMSE) NMBE CV(STD) RMSE MAE 

Electricity Commercial Landsat8 77.77 9.675 78.14 64.21 38.38 
Electricity Commercial Dynamic World 78.48 9.921 78.14 64.79 38.55 
Electricity Commercial Sentinel-2 78.84 8.75 78.14 65.09 39.02 
Electricity Commercial SAR 79.19 9.537 78.14 65.38 39.06 
Electricity Commercial VIIRS 80.39 8.637 78.14 66.37 40.03 
Electricity Commercial EPW 80.78 10.61 78.14 66.69 40.09 
Electricity Commercial Null 80.97 11.79 78.14 66.84 39.96 
Electricity Commercial CMIP 81.1 10.2 78.14 66.96 40.46 
Electricity Commercial NOAA 81.39 9.737 78.14 67.19 40.49 
Electricity Manufacturing Dynamic World 116.6 − 28.07 77.07 48.1 36.83 
Electricity Manufacturing Landsat8 119.4 − 27.73 77.07 49.27 37.93 
Electricity Manufacturing SAR 124.7 − 35.63 77.07 51.42 40.34 
Electricity Manufacturing EPW 125 − 38.26 77.07 51.54 40.39 
Electricity Manufacturing NOAA 125.4 − 39.51 77.07 51.74 40.88 
Electricity Manufacturing CMIP 125.9 − 40.25 77.07 51.93 40.97 
Electricity Manufacturing Sentinel-2 126 − 36.41 77.07 51.98 39.94 
Electricity Manufacturing VIIRS 127.2 − 43.02 77.07 52.46 41.95 
Electricity Manufacturing Null 129.8 − 35.07 77.07 53.56 41.62 
Electricity Residential SAR 101 − 5.33 61.95 38.22 16.38 
Electricity Residential VIIRS 101.4 − 6.206 61.95 38.35 16.78 
Electricity Residential Landsat8 102.1 − 4.617 61.95 38.62 15.44 
Electricity Residential Sentinel-2 103.4 − 8.284 61.95 39.11 16.31 
Electricity Residential NOAA 103.9 − 9.905 61.95 39.33 16.69 
Electricity Residential Dynamic World 104.8 − 4.563 61.95 39.67 16.18 
Electricity Residential CMIP 105.2 − 9.12 61.95 39.79 16.52 
Electricity Residential EPW 106.9 − 10.85 61.95 40.46 16.96 
Electricity Residential Null 107.6 − 8.893 61.95 40.7 17.5 
Natural Gas Commercial CMIP 149.4 − 19.98 58.14 94.1 56.27 
Natural Gas Commercial NOAA 150.9 − 17.91 58.14 95.04 56.43 
Natural Gas Commercial Landsat8 152.6 − 22.25 58.14 96.14 58.68 
Natural Gas Commercial Sentinel-2 152.7 − 18.65 58.14 96.22 57.6 
Natural Gas Commercial EPW 153.3 − 21.11 58.14 96.56 58.2 
Natural Gas Commercial Dynamic World 155.4 − 17.33 58.14 97.87 59.72 
Natural Gas Commercial VIIRS 164.2 − 14.46 58.14 103.4 67.34 
Natural Gas Commercial SAR 168 − 19.26 58.14 105.8 70.08 
Natural Gas Commercial Null 169.3 − 23.53 58.14 106.6 72.33 
Natural Gas Manufacturing NOAA 176.3 − 17.31 52.65 98.56 53.65 
Natural Gas Manufacturing CMIP 177.4 − 18.34 52.65 99.19 54.04 
Natural Gas Manufacturing EPW 177.5 − 22.8 52.65 99.21 54.41 
Natural Gas Manufacturing Landsat8 177.9 − 17.15 52.65 99.47 55.02 
Natural Gas Manufacturing Dynamic World 178.5 − 24.1 52.65 99.78 58.5 
Natural Gas Manufacturing Sentinel-2 178.6 − 19.03 52.65 99.86 55.53 
Natural Gas Manufacturing VIIRS 187.3 − 24.5 52.65 104.7 65.18 
Natural Gas Manufacturing SAR 188.3 − 13.44 52.65 105.3 64.2 
Natural Gas Manufacturing Null 191.8 − 16.89 52.65 107.2 66.15 
Natural Gas Residential NOAA 97.17 11.06 80.15 81.09 45.85 
Natural Gas Residential EPW 97.81 9.144 80.15 81.63 46.62 
Natural Gas Residential CMIP 97.95 10.94 80.15 81.75 46.13 
Natural Gas Residential Sentinel-2 98.4 12.05 80.15 82.13 47.01 
Natural Gas Residential Landsat8 98.59 11.2 80.15 82.28 47 
Natural Gas Residential Dynamic World 100.4 12.86 80.15 83.82 48.5 
Natural Gas Residential SAR 110.3 10.26 80.15 92.04 60.11 
Natural Gas Residential VIIRS 111.7 12.3 80.15 93.24 59.82 
Natural Gas Residential Null 113.6 9.737 80.15 94.77 62.82 
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B4. Individual building results by zone 

Figures B.1 and B.2 

Fig. B.1. MAE bins showing mean absolute error by month, model, and building class. From schema S 1 . 

29 



T.R. Dougherty and R.K. Jain Advances in Applied Energy 10 (2023) 100138 

Fig. B.2. MAE bins showing mean absolute error by month, model, and building class. From schema S 2 . 
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B5. Monthly errors - Mean absolute value 

Figures B.3 

Fig. B.3. MAE bins showing mean absolute error by month, model, and building class. From schema S 3 . 
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