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Urban Building Energy Modeling (UBEM) provides a framework for decarbonization decision-making on an urban
scale. However, existing UBEM systems routinely neglect microclimate effects on building energy consumption,
potentially leading to major sources of error. In this work, we attempt to address these sources of error by
proposing the large scale collection of remote sensing and climate modeling data to improve the capabilities of
existing systems. We explore situations when remote sensing might be most valuable, particularly when high
quality weather station data might not be available. We show that lack of access to weather station data is
unlikely to be driving existing errors in energy models, as most buildings are likely to be close enough to collect
high quality data. We also highlight the significance of Landsat8’s thermal instrumentation to capture pertinent
temperatures for the buildings through feature importance visualizations. Our analysis then characterizes the
seasonal benefits of microclimate data for energy prediction. Landsat8 is found to provide a potential benefit
of an 8% reduction in electricity prediction error in the spring and summertime of New York City. In contrast,
NOAA RTMA may provide a benefit of a 2.5% reduction in natural gas prediction error in the winter and spring.
Finally, we explore the potential of remote sensing to enhance the quality of energy predictions at a neighborhood
level. We show that benefits for individual buildings translates to the regional level, as we can achieve improved

predictions for groups of buildings.

1. Introduction

Buildings play a prominent role in the conversation of urban decar-
bonization. Rightly so, as they consume roughly 40% of the electricity
supply in the United States. Urban Building Energy Modeling (UBEM)
provides a framework for decarbonization decision-making. However,
UBEM has limited capacity to accurately model individual building
energy and the energy consumption patterns of larger aggregated
urban regions [1]. While most of the uncertainty within urban energy
modeling seems to be the correct characterization of building features
[2,3], a growing body of research is now exploring how a lack of
adequate microclimate description may be adversely influencing the
quality of models.

Recent work has highlighted existing discrepancies between climate
modeling and energy systems [4,5]. The lack of integration between en-
ergy models and climate models may be particularly detrimental, con-
sidering that the existing tools for UBEM rely on Typical Meteorological
Year (TMY) files to represent climate conditions. These files are gen-
erated from nearby weather stations, which may or may not be in the
same microclimate zones as the simulated buildings. However, given
that climate change has a disproportionate impact on urban areas [6],
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errors caused by the failure to measure urban microclimate are likely to
increase as variance in urban temperatures intensifies.

High thermal mass buildings in urban areas additionally opens the
opportunity for thermal interactions via longwave radiation, which was
estimated to increase cooling demand by up to 3.3% and decrease heat-
ing demand by up to 3.6% in Chicago [7]. A separate, simulation-based
study in Nanjing, China, found that urban morphology significantly in-
fluences urban temperatures and wind speeds. The estimated discrep-
ancy between EPW-based simulations and those inclusive of microcli-
mate was thus estimated to be up to 23% [8]. Shading between buildings
provides another effective mechanism for the perturbation of radiative
heat transfer, with seemingly trivial decisions often responsible for large
inefficiencies. For example, the layout of rooftop units may achieve a
42% efficiency benefit when positioned within shaded regions of the
roof [9].

Vegetation, neighboring structures, and impervious surfaces have
been shown to substantially impact the operating performance struc-
tures by modifying the temperature and climate [10,11]. While wind
is less represented in the research for its impact on building energy
consumption, high wind speeds modify the heat transfer characteris-
tics of the building with its environment. Preliminary studies have indi-
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cated that wind may increase the energy consumption of a structure by
as much as 5% [12]. These works signal the potential benefit of high-
resolution urban climate models, which have been a fixture of the re-
search community for the past two decades, starting with urban canopy
models [13]. Complex heat transfer interactions are often distilled into a
resistive-capacitive (RC) system, which enables the modeler to represent
interactions using an electrical equivalence [14,15]. Modern research
into urban climates now allows utilities to generate files that may be
used for more accurate urban building energy modeling [16].

While work has been conducted to generate utilities for modeling
urban microclimate conditions [16-18], typically, it is done so to ex-
plore the health consequences of UHI [19], pedestrian comfort [20], or
water resources [21]. This work seeks to shed light on the potential ben-
efits of various remote sensing datasets in the context of urban energy
modeling.

As a large variety of climatic subterms may contribute to the heat
transfer of each structure, we focus the scope of work within this pa-
per on a simple exploration of the utility for each data source with-
out extended conversation as to its physical interaction with the struc-
ture. This work therefore addresses a large gap in scientific literature,
which is that of the sensitivity between a building’s energy consumption
and its environmental conditions. A diverse dataset of environmental
features from various climate models and satellites provides an array
of possible interaction effects, with the rationale that this breadth of
sources may help to identify powerful features for deeper integration
with physics based modeling. As building energy modeling is famously
over-constrained, the current standard for model calibration may incor-
rectly classify model error from environmental causes as those caused
by occupancy behavior or building features. Through the systemic in-
corporation of any potent datasources discovered in this analysis, future
modelers might avoid the potential mistake of overcompensating for mi-
croclimate impacts on building energy consumption. Our approach is
then bridged to existing concepts from Urban Building Energy Model-
ing (UBEM) through the use of the popular UBEM metrics CV(RMSE)
and NMBE to better understand the order of magnitude for benefit from
each data source in a common language.

The overall methodology of this paper follows the outline found in
Fig. 1. The data section comprises the content found in phases zero,
one, and two. The methods section covers phase three and the results
are divided into phases four and five.

The contributions of this work and its relation to larger modeling
efforts may additionally be summarized in the following ways:

1. Estimation of value to building energy modeling from various open
access data sources.

2. Contextualization of relative temporal benefits of incorporating open
access data sources.

3. Scaling behavior of multi-building energy models with the incorpo-
ration of auxiliary data sources.

4. A method to enable the interpretation of nonlinear relationships be-
tween environmental features and energy consumption.

5. Quantification of potential data degradation from weather stations
with diminished spatial relevance to a given building.

Abbreviations Table

UBEM Urban Building Energy Modeling

SRTM Shuttle Radar Topography Mission

UHI Urban Heat Island

RTMA Real-Time Mesoscale Analysis

CFD Computational Fluid Dynamics

BES Building Energy Simulation

ESPG European Petroleum Survey Group

CMIP Coupled Model Intercomparison Project

NOAA National Oceanic and Atmospheric Administration
EPW EnergyPlus Weather

TMY Typical Meteorological Year

CV(RMSE) Coefficient of the Variation of the Root Mean Square Error
MAE Mean Absolute Error
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Fig. 1. Flowchart outlining the steps taken throughout the process and inter-
mediate data files created and used for subsequent studies.

Table 1
Schema Data Compression Descriptions.

Schema Q; Q,; Median Qs Qo5

s, v
S, VA v
s, oo VA

2. Data

This analysis can be considered a regression problem, with the task
of predicting the structure’s energy consumption. For all data sets used
in this study, our goal is the prediction of monthly energy consump-
tion. Therefore although each data set has unique collection frequen-
cies, we coerce our measurements into monthly intervals while attempt-
ing to capture pertinent information from the dataset. To accomplish
this, we use three different schemas of compressing the data into the
monthly format. The schema data compression information can be found
in Table 1.

Schema 8, is the simplest and will be used to interpret model re-
sults. In contrast, schema S; is expected to have the best performance,
as the most information about the data is communicated to the machine
learning pipeline.

Underlying the mechanics of compressing data into the monthly do-
main is the conversation about the importance of two themes for the
data. The first is high spatial resolution, the capacity to capture perti-
nent information directly adjacent to the structure. The second is time
resolution, or the data’s ability to capture and communicate extreme
swings throughout the month. As remote sensing data may only collect
1-5 samples per month over a city, it has low temporal resolution and
high spatial resolution. Because of this, schema S, may give us insight
into the potential relative benefit of high spatial resolution, while the
transition to schemas S, and S; will shed light into the value of high
temporal resolution.
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2.1. Energy data

New York City provided the energy data required to conduct this
study as a result of the ordinance called Local Law 84, which man-
dates that buildings over 25,000 sq.ft. must report their energy con-
sumption at a monthly resolution. Unfortunately, not all energy sources
are represented in this data. Notably for New York, there is an absence
of data on steam utilization rates. Electricity and natural gas are the
terms reported on the monthly scale, which will be the focus of this
analysis.

To control that the months have different numbers of days, we con-
vert the monthly consumption into a daily value by dividing the con-
sumption by the number of days in the month. This serves as the con-
sumption pattern of a typical day in the month, which we choose to use
as the predictor.

The energy consumption data is heavily right-skewed, and extreme
values are pruned by only considering energy consumption terms be-
tween the 2nd and 98th percentiles. There is still substantial unbal-
ance in the data, with average daily electricity (Q,5 = 0.49MWh, Qs
= 0.88MWh, Q0,5 = 1.85MWh, skewness = 3.78) having more signifi-
cant skewness than natural gas (Q,s = 0.27MWh, Q5, = 1.21MWh, Q5
= 3.27MWh, skewness = 2.93). Summary statistics for energy consump-
tion may be found in Tables A.1 and A.5.

2.2. Building specific data

The building attributes used in this analysis are provided by the
building footprints dataset of New York, which provides a geometric
representation of the buildings’ outlines in geojson format in addition
to the height and age of the structure. The geometry of the building is
provided in World Geodetic System 1984 format (ESPG 4326), which
does not preserve distances when used in traditional measures. There-
fore the area of the building was computed by first projecting the build-
ings into UTM Zone 18N, which uses meters for its coordinate systems
and preserves the quality of measures between the longitudes of 78°W
and 72°W.

We additionally register information about individual building
classes, representing one of three options: Commercial, Residential, or
Manufacturing. While these are not used in the training pipeline or for
prediction, they allow us to collect an understanding of the model’s ca-
pacity as it pertains to each building class.

Natural gas consumption is highly seasonal, with most of the gas
used in the coldest months between November and March for heating.
Of note, buildings in New York City still heavily rely on steam for heat.
As such, the electricity and gas consumption are not fully representative
of the total energy consumption for the structure.

2.3. Microclimate

The data used in this analysis parallels that found in the study con-
ducted by Dougherty and Jain [22], which collects precision microcli-
mate features in the immediate region around the structure from various
remote sensing sources. These sources include Sentinel-1, Sentinel-2,
Landsat8, NOAA reanalysis, prospective coupled model intercompari-
son project (CMIP) data, elevation maps, and nighttime imagery of the
city. All data sources were collected by Google Earth Engine, and the res-
olution matching process between pixel regions captured via satellites
and the boundary of the building is handled internally by Google Earth
Engine as defined in [22]. The heightened spatial resolution of these
data sets therefore provides significant capacity to directly or indirectly
measure localized microclimate effects.

The Landsat8 satellite has a dedicated land surface temperature
instrument which we used to curate an initial survey of the me-
dian land surface temperature of the city, found in Fig. 2. This pre-
liminary temperature distribution motivates our initial intuition that
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Fig. 2. Median temperature readings for each pixel in New York City over three
years, taken by the Landsat8 satellite. Of note, all images were captured from
the Landsat instrument between 3:32 PM GMT and 3:41 PM GMT.

localized temperatures may significantly drive variance within con-
sumption patterns. Recent research further validates this initial intu-
ition, highlighting the potential role of land surface temperatures from
Landsat 8 as a key piece to automate the process of building energy
modeling [23].

Detailed information contained within each dataset and their sum-
mary statistics used may be found in a number of tables in the appendix,
an example of which for the electricity analysis may be seen in A.1, A.2,
and A.3.

2.4. EPW - Motivations and discrepancies

The second data set used in the analysis was curated by extracting
environmental features from EnergyPlus Weather (EPW) files which are
defined synonymously as TMY files in this analysis. The potential in-
accuracies of EPW files, identified by Hong et al. [24], are also iden-
tified in New York City. Fig. 3 shows the contrast between measure-
ments taken from the Landsat8 satellite and the expected temperature
measurements from the EPW files. The Landsat8 satellite readings are
captured between 3 PM and 4 PM GMT, with a median revisit time of
8 days. To calibrate the comparison between the two datasets, we only
consider buildings near Central Park which are closest to the Central
Park Weather Station (KNYC). We then can filter all readings between
3 PM and 4 PM GMT from the EPW file, and examine the projected dry-
bulb temperature of the building based on the EPW file, seen in Fig. 3 as
the black line.

For ease of interpretation, a single building is isolated, and its tra-
jectory through the three years is shown with a dark pinkish color. We
additionally add the Emissivity Standard Deviation, provided as a Land-
sat8 Level 2 Collection 1 product, as error bars. Each dot represents the
direct value captured at exact dates and times from Landsat8, thus the
points are not always aligned to the month. Additionally, inconsistencies
in temporal resolution are the cause of natural effects, such as clouds,
which may cause a poor quality of data capture and is thus filtered from
the study.

Consistent under-measurement of the temperature is characteris-
tic of a strong urban heat island effect, with measurement errors as
high as 20 °C in the summer seasons. Given that the energy con-
sumption of buildings is highly coupled to the outdoor air tempera-
ture [10], this may already have huge impacts on the cooling loads and
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Fig. 3. Temperature Discrepancy between Landsat8 measurements and EPW files. Measurements for a single building at the intersection of E 46th Street and 3rd
Street are shown with a dark pinkish color. A random assortment of fifty buildings near Central Park is shown with multicolored lines.

provide a significant source of uncertainty in energy modeling if left
ignored.

2.5. EPW - Collection

After establishing motivation for further examining EPW files in our
analysis, we constructed a pipeline to collect data from each file and
interpret it as part of our machine learning system. To accomplish this,
we first constructed a system to identify the nearest weather stations
to each building to utilize the most pertinent weather station for each
building. A comprehensive data set of available weather stations in the
United States is provided by NREL [25], which contains not only the
location of each weather station in the United States but an associated
EPW file curated from historical weather data at the station. The data
types are mapped according to the specification laid out in Chapter 2
of the EnergyPlus “Auxillary Programs” documentation, titled “Weather
Converter Program.”

A set of candidate weather stations were curated by first computing
the centroid of all buildings in the analysis and projecting a uniform
radius of 45km around this centroid. This radius is chosen based on the
area of New York City, which is recorded to be roughly 783.8 sq.km, and
on visible inspection to confirm that the radius adequately captures all
data points. The distance between each point and each weather station
is then computed, with the smallest distance serving as an indicator of
the mapping between the building and the weather station. Given that
prior research has employed a similar distance metric to curate a high-
resolution model of urban climate [24], this is an appropriate method
of mapping buildings to weather stations.

Projected back onto a map in Fig. 4, weather stations in the city’s
center have excellent coverage of Manhattan, the Bronx, and Queens.
However, Staten Island and Brooklyn have notably higher average dis-
tances to the nearest weather station.

The time resolution of the EPW files used in this analysis is hourly.
To capture the profiles of each weather variable without the redun-
dancy of data associated with hourly weather for each building, we
aggregated statistics about each building by compressing daily values
into maximum, median, and minimum terms. Therefore for each day
we have three values for each variable to express the variability of the
term throughout the day.

Building Distance to Weather Station (m)
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Fig. 4. Distance between each building and the closest weather station, mea-
sured in meters. The map projection is UTM Zone 18N; thus the gridline differ-
ences are measured in meters.

3. Methods
3.1. Model

As this work focuses not on the model selection but on the data qual-
ity, the model architecture and endogenous terms remain static while
the exogenous data is modified to reflect the utilization of a new data
source. This permits conversation on data quality which exists in isola-
tion from the quality of the model. Random Forest regressors are chosen
to reduce the amount of preprocessing associated with the data, as ran-
dom forest models do not require normalization prior to prediction. Ad-
ditionally, prior work has validated the benefit of decision trees, which
live at the heart of random forest regression, for the task of predicting
building energy consumption [26]. The EvoTrees.jl package was used
as an interface to random forest regression for its support with graph-
ics processing units, which was utilized through its interface in the MLJ
package [27].
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3.2. Training pipeline

In splitting our data, we seek to avoid the overfitting of a building
against its historical data. To avoid overfitting, we do not split by unique
data points, which capture the monthly energy consumption of a given
structure, but instead split the data by buildings. After aggregating all
terms for electricity and natural gas into standard datasets and removing
missing data, 9483 buildings are represented in the electricity data and
8891 buildings are contained in the final natural gas dataset.

The test dataset is composed by randomly selecting 20% of the build-
ings, amounting to 1701 structures for electricity and 1584 buildings for
natural gas. The training sets are therefore composed of 7782 buildings
for electricity and 7229 buildings for natural gas. With an average of
about 24 samples per building represented in the data for both datasets,
189,625 unique data points exist for electricity and 172,213 data points
exist for natural gas within this three-year window.

To determine the appropriate hyperparameters for each dataset,
cross-validation was used by splitting against the buildings in the train-
ing dataset. Each cross-validation set was composed of 475 buildings
for both electricity and natural gas. The RMSE is the loss function for
training, defined in Eq. (1).

RMSE = Z?:](j’i - yi)2 )
n

Fifteen folds were used, with the RMSE calculated for each fold and
averaged into a single value. This process happens for each set of hyper-
parameters. A tuning engine was constructed using the Adaptive Par-
ticle Swarm optimization scheme, which uses inspiration from genetic
algorithms to converge on a generally optimal set of hyperparameters
[28]. This tuning process comprised 75 unique trials within the domain
of possible hyperparameter permutations for the random forest. Some
data sets have significantly more parameters than others, which in turn
impacts the hyperparameters of each model as the particle swarm opti-
mization balances bias and variance. While we attempt to build consis-
tency by only using Random Forest Regressors, this hyperparameter tun-
ing for each data source introduces nuanced differences to each model.
Thus for the rest of this analysis, references to a data set’s model will
simply imply that the Random Forest Regression with Particle Swarm
Optimization was conducted against the source of data, selecting unique
hyperparameters for it.

3.3. Validation metrics

The standard validation metrics used in this analysis parallel those
portrayed in ASHRAE Guideline 14 [29]. Three metrics are used to es-
tablish the quality of a building energy model:

T 92
(n—1)
y

CV(STD) = 100 - @
| Zisi 0i=9:)*
(n—p)
CV(RMSE) = 100 - + 3)
NMBE — 100. 22101 =51 @)
(n—p)y

The same ASHRAE document outlines the standard of quality for
monthly computer simulations of building energy consumption, with
NMBE < 5% and CV(RMSE) < 15%.

3.4. Model interpretation

After the model has achieved a relative level of accuracy in pre-
diction, we want to understand better how we might explore the role
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Fig. 5. Process of Aggregating terms from the hourly EPW file into three rep-
resentative points. Seen here is an example of this process on the drybulb tem-
perature for a typical day in June.

of each variable in making an accurate prediction. To do this, we uti-
lize an approximation for Shapely values for complex, nonlinear models
[30,31].

Shapely values originate from game theory [32], with the original
task of optimally allocating resources to members of a cooperative team
based on their contribution to the team’s success. Extending the idea to
statistical models allows us to explore how each variable may play a role
in the final prediction relative to a mean prediction with typical values.
For this analysis, the shapely values in this study provide an insight into
how the magnitude of a variable is likely to impact the daily energy
consumption of a standard building in the New York City dataset in
MWh. Negative values imply that the term is likely to decrease energy
consumption, while positive terms indicate that the building is likely to
experience an increase in energy consumption.

4. Theory/Calculation

Three research questions are explored in this study to give better in-
sights into the particular benefits of microclimate data for Urban Build-
ing Energy Models.

1. How does distance from the nearest weather station impact predic-
tion quality?

2. Does remote sensing have a seasonality of benefits?

3. How might aggregated predictions benefit from remote sensing?

To better contextualize the quality of our results, a Null model is used
for every scenario and is composed simply of building features without
microclimate data. This null model may provide insight into the exist-
ing benefits of EPW data. Additionally, the null model may help contex-
tualize the additional improvements possible through remote sensing
(Fig. 5).

4.1. Weather station distance

Given that building energy consumption is quite sensitive to tem-
perature fluctuations, inaccurate measurements of the building’s expe-
rience may drive significant errors. We explore the relationship between
the quality of predictions which are possible with greater distances from
the nearest weather station to a building.

In pursuing this research question we predict the energy consump-
tion of all buildings in our test set and examine their relative prediction
quality compared to the null model at a discrete set of distances from
the nearest weather station.
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4.2. Seasonal benefits of remote sensing

The question of seasonal benefits was inspired by the inconsistent
relationship between typical EPW readings and the seasonality of the
urban heat island (UHI) effect, demonstrated in Fig. 3. In this section,
we explore potential seasonal benefits provided by remote sensing.

To explore this research question, the seasonal benefits of each
model are calculated by comparing the typical prediction losses for each
month, using mean absolute error, to that of the baseline model. The
baseline model used in this section is selected as the model trained
against the EPW data, which is meant to provide the most realistic re-
flection of real-world modeling. The average difference in prediction
for the model, measured as the average MAE across all predictions for
the month, is defined as §,,. This error is then compared to the average
baseline error for the month, which uses the same process to procure a
baseline error for each month §,. The relative difference between these
error profiles, defined as A, = 100 - (%), is used to gauge the relative

benefit of the new model compared to the baseline. Negative values in-
dicate an improvement compared to the baseline, while positive values
indicate that the model’s error has increased relative to the baseline.

4.3. Aggregated prediction quality

So far, this analysis has focused on the quality of predictions avail-
able on the individual building scale in New York. However, some appli-
cations in energy modeling instead require the aggregate consumption
of a neighborhood or city [33]. While single building energy prediction
has its merits in modeling retrofit scenarios [34], research into energy
storage requirements on the urban scale often abstracts the region into a
single node representing the aggregated energy demand [35-37]. Typi-
cally past research hints at the potential relationship between a reduc-
tion in error with regional predictions [38]. This study instead follows
a similar process to that of Streltsov et al. [39] by formalizing the po-
tential error trajectory of aggregated energy models of various sizes.

In an effort to study aggregation effects, we first use the same mod-
els trained against individual buildings, both the null model using only
building features and the microclimate models which incorporate data
from open access data sources. Individual predictions against buildings
may be summed by region within the city, simulating an energy model
for a number of buildings within a district of the city. The sum of these
predictions may be compared to the sum of the recorded monthly val-
ues, which enables us to understand how the common error metrics
from UBEM might scale as more buildings are included in this energy
analysis. The individual building predications may be built using the
null model, without any microclimate information, or through one of
the models which incorporates microclimate data. The formal process
taken is seen in Eq. (5).

AE[jl= Y Bl (BEZ jEl...12) ®)

The zipcode of the building, Z, is used to aggregate a set of build-
ings contained within the zipcode B. The zipcode was selected as a
convenient utility to organize buildings into groups of various sizes.
Equation (5) outlines the process of summing the predictions and mea-
surements for each building in the zipcode at each timestep, j. As our
timestep is limited to that of the reported monthly energy consumption,
the temporal resolution of the data is also on the monthly scale. We use
the same validation metrics found in 3.3 for each region.

5. Results

Our results for individual building prediction can be found in
Table B.21. One of the more intuitive metrics, RMSE, highlights the
significant benefit of including particular microclimate data sets in ur-
ban energy models. In particular we see that the inclusion of Landsat8
data and NOAA reanalysis data has a substantial reduction in model
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Fig. 6. S; error at various distance intervals away from the nearest weather sta-
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indicating an improvement. Dots represent individual measurements for each
error percent relative to the baseline EPW model, with the smooth lines show-
ing the trend profile of the predictions. Pink horizontal lines are also shown to
highlight the zero benefit scenario, or the EPW model compared to itself.

RMSE. We also highlight challenges associated with the spatially ho-
mogeneous nature of a single city with heterogeneous energy sources,
which are likely driving our validation metrics to higher numbers than
other studies on the urban scale [40]. The CV(STD) values are included
in Table B.21 to remind the reader that the same data was used for each
model.

5.1. Weather station distance

The results of our predictions for individual buildings against their
respective distance to the nearest weather station can be found in Fig. 6.
Two datasets are highlighted based on their prominence for improved
energy prediction overall: Landsat8 and NOAA.

Fig. 6 highlights the benefits of improved spatial resolution data
compared to the EPW file. However, due to a lack of apparent downward
trends, we cannot confidently make a statement about improvements to
predictive performance relative to the EPW file related to weather sta-
tion distance. Poor predictions around the 20km mark may be an artifact
of the New York City data and less telling of EPW failures. The build-
ings with a minimum weather station distance of more than 20km can
be seen on 4, which are often older and may be experiencing unusual
coastal weather effects.

5.2. Seasonal benefits

The seasonal benefits for two of the highest performing annual mod-
els from B.19, NOAA and Landsat8, can be found in Fig. 7. Only the
positive monthly contributions are shown, with each zero value indicat-
ing that the EPW model had better performance for this month.

Landsat8 provides substantial opportunities for improved electricity
prediction. Particularly between April and October, Landsat8 will likely
offer a relative improvement of anywhere between 5% and 10%. NOAA
provides the most substantial benefit for natural gas prediction, with
most of this benefit occurring in the year’s coldest months. For New
York City, the winter and Spring months are between December and
May. As natural gas is more heavily used for heating, NOAA is likely
more accurate than EPW for predicting gas consumption due to freezing
temperatures.
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Relative Benefits to EPW by Season - MAE
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Fig. 7. S; monthly average MAE relative to EPW. Only the improved predic-
tion months are shown. The seasons listed here are defined for the northern
hemisphere.

5.3. Aggregated benefits

The results of the aggregated analysis from S; are found in
Table B.24. Summary statistics for the number of buildings in each group
is as follows: Group size summary statistics: Q,5 = 3, Q5y = 6, Q75 = 12.
We find a substantial benefit in utilizing Landsat8 data for electricity
prediction and NOAA data for natural gas prediction. We find that the
inclusion of Landsat8 as a feature may have the capacity to improve
CV(RMSE) predictions by 2.5 and NMBE by around 3.7 compared to
EPW files. The inclusion of NOAA data seems to have the capacity to
improve natural gas CV(RMSE) by 1.8 and NMBE by 2.5.

We now attempt to understand the relationship between the number
of buildings in a set and the metrics computed against them. Fig. 8 vi-
sualizes the relationship between the number of buildings on the x-axis
and the error metrics on the y-axis. We see a rapid decrease of CV(RMSE)
and NMBE with additional buildings in each set, which aligns with find-
ings from prior research [38]. Of note is how rapidly these metrics drop,
as most of the reduction compared to the individual building comes with
less than ten buildings in a group.

5.4. Feature importance & model interpretation

We again focus on the top-performing models for interpreting model
results: Landsat8 and NOAA. Due to the length required to properly
highlight the significance of features from a single model, this sec-
tion will only focus on explaining the potential benefits of Landsat8 for
electricity prediction and NOAA for natural gas prediction.

5.4.1. Electricity

Fig. 9 highlights the top ten statistically significant features for mak-
ing electricity predictions using the Landsat8 dataset. The most signif-
icant by far are the building-specific terms. This matches our intuition
as we were unlikely to see deviations between models of more than 5%.
Among the Landsat8-specific terms, we see that they are dominated by
readings associated with Landsat8’s thermal instruments indicating that
this suite of sensors is what was responsible for its high level of perfor-
mance.
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Metric Scaling Behavior
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Fig. 8. Relationship between validation metrics and aggregation scales. Ran-
dom noise was added to the number of buildings to give insight into the marginal
distribution of buildings in each group.

Let us focus on a single variable like the extreme minimum values
from the Shortwave Infrared 2 reflectance measurements, which cap-
tures light between wavelengths of 1.57um and 1.65um. To extend our
intuition into the potential relationship between the Landsat measure-
ments and electricity consumption, we now compute the shap value for
every surface reflectance point within our test set. Doing so enables us to
study how the variable is likely influencing the electricity consumption
of the structure through its domain.

Fig. 10 sheds light on the potential utility of shortwave infrared mea-
surements from Landsat8 for electricity prediction. In reading this plot,
we see that a decrease of infrared surface reflectance to 0.0 is likely to
intersect with the x axis at a shap value of about 0.05. As the shap values
indicate the variables estimated impact on daily energy consumption in
MWh, this would amount to an increase in the daily electricity con-
sumption of the average structure by 50kWh per day. This represents a
roughly a 3% increase to the baseline consumption of 1.78MWh. On the
other side of this nonlinear curve, we see that higher values of infrared
surface reflectance, like 0.3 are likely to correspond to a drop in elec-
tricity consumption. With a shap value of around —0.08, or an estimated
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Electricity Feature Importance - Landsat8
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Fig. 9. S; Feature Importance of Landsat8
value using the mean absolute shapely val-
ues.
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Fig. 11. S; Shap values computed for Landsat8 Band 10 Surface Temperature
measurements.

impact of —80kWh per day, for surface reflectance readings of 0.3, this
would correspond to a decrease in electricity consumption of roughly
4-5%.

We can turn to a more intuitive metric from Landsat8, the land sur-
face temperature, to understand how New York City’s buildings respond
to extreme heat. As New York City’s buildings are almost entirely reliant
on electricity for cooling, the relationship between the two is quite pro-
nounced. Fig. 11 explores how extreme temperature readings, those in
the 95th percentile of Landsat surface temperature readings at a location
for the month, are likely to impact electricity consumption.

Notably, three distinct phases are seen. The first, below 25 °C, has
no particular relationship with electricity consumption. A jump from
the shap value of —0.02 to 0.01 is made as the temperature crosses the
26.5 °C (80°F) threshold, corresponding to an immediate 2% increase.
In this second phase, we see a linear increase until we get to 43 °C
(110°F), at which point a third phase is triggered with a shap value jump
from 0.2 (20 kWh per day) to 0.7 (70 kWh per day). This corresponds
to another overall increase in electricity consumption of roughly 3%, a
total displacement of roughly 5-6% compared to the baseline scenario.
This behavior profile reinforces the paradigm that energy required to
meet cooling demands has a nonlinear relationship with temperature,
particularly pronounced on sweltering days.

5.4.2. Natural gas

As NOAA provides the most substantial benefit for natural gas pre-
diction, it is explored in detail in this section. As the NOAA data used
within this analysis is averaged into the monthly interval, there is no dif-
ference between the schemas regarding added information. Therefore to
reduce the complexity of the feature significance visualization, schema
S, is used, which only assumes the single value for each month.

The feature importance of each variable within the NOAA dataset
can be found in Fig. 12. Surprisingly, the model’s gas consumption pre-
diction was more sensitive to temperature than the conditioned volume
of the building. We can visualize the likely relationship between gas con-
sumption and temperature in New York City by examining the shapely
values through the domain of temperatures in New York City as seen in
Fig. 13.

6. Discussion

Two datasets are particularly promising to improve the quality of
energy predictions for large, cold cities like New York: NOAA’s cli-
mate reanalysis and Landsat8. Landsat8 offers a 4-point improvement
to CV(RMSE) for electricity prediction. NOAA offers the highest quality
prediction for natural gas consumption, with a more marginal improve-
ment of 1.3 points to CV(RMSE). Given that we utilized a statistical en-
gine instead of a physics-based simulation, these are reasonable upper
bounds to the added benefits.

The Landsat8 model benefited the most with the improved temporal
resolution of schema S;. This is likely a result of Landsat8’s high revisit
frequency and dedicated onboard temperature sensor suite. Cloud ob-
structions are one of the primary sources of missing data, making the
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Fig. 13. S, Shap values computed against NOAA RTMA temperature measure-
ments.

redundancy of measurements each month more valuable for accurate
prediction.

The improved resolution of temperature measurements possible due
to Landsat8 enable us to examine extreme temperature events in the city
and how the energy demands of the structures might respond in turn.
The exponential response of electricity consumption with temperatures
above 43 °C is an example of this new insight, with further inquiries into
extreme temperatures likely continuing to be valuable with the acceler-
ation of climate change. Extreme temperature effects on energy infras-
tructure may be particularly pertinent in dense urban areas such as New
York City, which experiences high levels of urban heat island effect.

Figure 14 plots the predictive errors for the Landsat8 model against
extreme temperature measurements. This figure highlights our capacity
to accurately predict cooling demand response to temperatures below
45 °C with the assumption that high electricity consumption levels may
serve as a surrogate for cooling demand in New York City.

The RMSE of the best performing schema, s; found in Table B.21,
shows that the CMIP dataset seems to provide a benefit which is at least
as good as that of the EPW data. The other UBEM metrics seem to tell the
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Fig. 14. MAE bucketed into temperature bins shows errors in estimation with
extreme temperatures (Qys) from schema S;.

same story, with similar and slightly lower CV(RMSE) and NMBE. This
makes sense, as both datasets contain temperature data which is com-
monly recognized as the meteorological parameter most closely linked
to energy consumption [41]. Likewise, with lower RMSE, CV(RMSE),
and NMBE than EPW, this study serves as a promising indicator that
CMIP may be a valuable resource for the prediction of building energy
consumption through the lens of climate change. Assuming no signif-
icant retrofit modifications to the existing building stock, a statistical
model like the one constructed in this study may be utilized for energy
forecasting. To further extend the benefits of this work to explore retrofit
scenarios, future research may also design a utility to conveniently link
CMIP projections with simulation-based energy modeling for climate-
aware retrofit analysis.

We recognize the potential benefits of more granular energy models,
which may yield predictions specific to indoor air temperature or en-
ergy consumption of dwellings concerning their vertical displacement
from the street [42]. While this research cannot provide similar benefits
to high-resolution simulation-based models, the low RMSE of Sentinel-
1’s Synthetic Aperture Radar gives credence to the notion that remote
sensing might be used to classify materials or surface roughness bet-
ter [43,44]. Additionally, remote sensing and climate models might be
used in a CFD-BES (Computational Fluid Dynamics and Building Energy
System) study to enhance prediction quality and more easily design for
new regions. A coupling of NOAA wind speed and Landsat8 land surface
temperature measurements might provide boundary conditions for both
wind and temperature, as required in the CFD-BES coupling of buildings
in Tehran [9]. NASA’s SRTM provides a rough elevation map of all points
worldwide, providing valuable information for fluid simulations.

Alingering question exists as to why NOAA / CMIP temperature mea-
surements were more significant for natural gas prediction than those
collected from Landsat8. This performance gap in gas consumption pre-
diction may be due to NOAA’s awareness of minimum nighttime temper-
atures, whereas Landsat8’s measurements are restricted between 3 PM
and 4 PM. NOAA is likely to contain additional benefits for energy pre-
diction, which was limited in this study. As the NOAA data was limited
to a monthly resolution by Google Earth Engine’s memory constraints,
we imagine that expanded information in the full RTMA dataset may be
more valuable. Further investigation of the synthesis of reanalysis data
with energy modeling should be pursued to improve global coverage of
buildings and enhance the spatial resolution of climate data.

Given that the entire dataset used is from New York City, which ex-
periences one of the most significant urban heat island effects in the
United States, we may be underestimating some local effects. The sig-
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nificance of the urban heat island effect in increasing cooling demand
and decreasing heating demand is likely understated in this study, po-
tentially tucked into the bias of our model.

Finally, we note that many of our models used historically accurate
recordings to make predictions, which is fundamentally different from
the EPW files that always estimate weather. However, localized trends
like those seen in 3 and 2 demonstrate a high consistency in the displace-
ment of climate variables to EPW files. Thus future research seeking to
generate hyperlocalized EPW files will likely capture most of the bene-
fits presented in this work.

7. Conclusion

Microclimate data improves the quality of energy predictions in New
York City across all metrics. The results of schema S; B.21 may give us
the most straightforward idea of potential benefits from each dataset.
The schema S; results indicate that Landsat8 may provide a nearly 4-
point improvement in CV(RMSE) compared to the EPW model for in-
dividual building prediction. The natural gas model, which generally
has a more challenging time accurately predicting consumption, may
only appreciate a more modest benefit of 1.2 points to CV(RMSE). How-
ever, recent research highlights the potential of automating the process
of collecting microclimate for use in building energy modeling [22].
Given this newfound capacity within microclimate modeling, the bene-
fits of remote sensing may potentially be seen as “free money” to energy
modelers.

We additionally explored the potential seasonal benefit of micro-
climate data, which is in the same spirit of research as other modern
works in attempting to quantify the significance of microclimate in en-
ergy modeling [8]. We found that while Landsat8 provides benefit to
electricity prediction consistently throughout the year, these benefits
are particularly pronounced in the summer months as seen in Fig. 7,
peaking with a nearly 10% improvement to EPW data in June. This
study serves as validation that Landsat8’s thermal imaging suite may be
a valuable tool to better understand cooling loads caused by UHI. The
incorporation of NOAA’s RTMA is likely to provide predictive benefit for
natural gas consumption in the winter and spring seasons of the northern
hemisphere. The most significant improvements relative to EPW come
between the months of Janurary and May in New York City, with a pre-
dictive improvement of roughly 3% during these months.

This study takes advantage of the relatively high quantity of monthly
energy data from this three-year interval to additionally contextualize
existing paradigms of aggregation prediction errors as laid out in [1].
Even small neighborhoods of buildings might appreciate most of the
benefit of aggregation, making it easier to reach the accuracy compli-
ance standards of ASHRAE Guideline 14.

A study area with more heterogenous climate scenarios and greater
diversity of building distances from the nearest weather station will be
required to conduct a more thorough investigation of EPW data qual-
ity. In addition, a more robust study of microclimate impact on tradi-
tional validation metrics like CV(RMSE), NMBE, and RMSE will require
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monthly and hourly disclosure of geolocated building energy consump-
tion by more cities or countries. At the time of writing, New York City is
the only city with a publicly available dataset at the temporal resolution
of a month. The monthly interval is the highest resolution of time se-
ries data available, yet it also represents the lowest resolution at which
UBEM validation metrics are defined. Without a larger pool of data from
multiple cities, it will not be easy to test the robustness of urban energy
models when applied to new locations on the planet.

Finally, this work serves as a validation study for the potential utility
of CMIP data, which seems to have the same data quality as existing EPW
files for energy prediction based on the RMSE scores of both models. By
blending CMIP projections into simulation-based models, we may now
have a viable path forward to estimate the effects of climate change on
our urban energy demands.

The decarbonization of the built environment is one of the most
difficult challenges in the effort to mitigate climate change. This work
contextualizes the benefits of remote sensing and climate modeling for
building energy modeling, helping us better understand the role of
remote sensing in urban decarbonization. Perhaps as significant, the
worldwide coverage of satellites makes it an attractive option to ex-
tend the benefits of building energy modeling to a global audience. This
research represents a step forward in our capabilities and ability to link
communities.

Data availability

All the environmental data was collected using Google Earth Engine,
with the process outlined in [45]. The link to the GitHub repo with
the tools required for convenient collection can be found here: https://
github.com/trdougherty/tom.d. The reader may additionally find the
source code, data, and intermediate processed results as the Zenodo
repository: https://doi.org/10.5281/zenodo.7897689.
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Appendix A. Data summary
Al. Electricity data summary

Tables A.4, A.6 and A.7.

Table A.1

Electricity Data Summary: 1.
Model Variable Mean Std. Dev Min. Q25 Median Q75 Max.
- Building Classification nothing nothing Commercial  nothing nothing nothing Residential
- Daily Electricity (MWh) 1.83 2.755 0.1137 0.493 0.8841 1.848 24.46
- Date nothing nothing 2018-01-01 2018-11-01 2019-08-01 2020-05-01 2020-12-01
- Distance to Weather Station (km) 9.168 5.206 0.5509 5.061 8.411 12.42 24.15
- Month 6.43 3.267 1 4 7 9 12
- Property Id 5.935 -10° 3.071 -10° 7365 3.072 -10° 6.297 -10° 6.794 -10° 16911026
- Zipcode 1.077 -10* 540.6 10,001 1.031 -10* 1.11 -10* 1.123 -10* 11694
CMIP Daily Maximum Temperature (°C) 19.14 8.787 4.541 10.93 20.23 27.74 32.15
CMIP Daily Minimum Temperature (C) 9.629 8.221 —4.057 2.061 9.868 17.46 21.47
CMIP Precipitation (kg -m~2 - s~!) 1.541 -107° 6.118 -107° 1.5-10°° 1.197 -107° 1.436 -107° 1.812-107° 3.425 1073
Dynamic World  Coverage by Bare Land 0.05629 0.03267 0.02436 0.03981 0.04471 0.05586 0.3896
Dynamic World ~ Coverage by Built Environment 0.6635 0.137 0.02958 0.6732 0.7154 0.7295 0.7654
Dynamic World ~ Coverage by Crops 0.03201 0.005377 0.0192 0.02937 0.03169 0.0335 0.2454
Dynamic World  Coverage by Flooded Vegetation 0.03279 0.003448 0.01962 0.03073 0.03265 0.03479 0.09522
Dynamic World Coverage by Grass 0.03026 0.005561 0.02123 0.02747 0.02923 0.03146 0.2987
Dynamic World ~ Coverage by Shrub 0.03818 0.02176 0.0213 0.02883 0.03088 0.0357 0.2397
Dynamic World Coverage by Snow or Ice 0.04748 0.04746 0.0236 0.03245 0.03532 0.04018 0.4832
Dynamic World  Coverage by Trees 0.03904 0.02354 0.0229 0.0303 0.03316 0.03897 0.7473
Dynamic World Coverage by Water 0.05553 0.03276 0.02409 0.03878 0.04468 0.05614 0.5136
Dynamic World  Likely Coverage Class 5.991 0.4073 0.6247 6 6 6 8
Null Building Floor Area (m?) 1385 1957 13.78 565.7 828.3 1496 8.969 -10*
Null Building Height (m) 79.61 66.46 0 46.73 64.24 81 1019
Null Construction Year 1945 31.71 1706 1925 1931 1963 2022
Null Ground Elevation (m) 52.81 37.16 -4 25 44 70 331
SAR Incidence Angle from Ellipsoid (Deg.) 38.2 2.254 35.37 37.12 37.49 37.81 46.01
SAR Vertical Transmis / Horizontal Receive (dB) ~ —8.885 4.193 -19.7 -12.1 -9.73 —6.705 9.692
SAR Vertical Transmit / Vertical Receive (dB) -1.321 3.383 -12.01 -3.899 -2.088 1.022 16.29
VIIRS Average DNB Radiance (nW - cm™2 - sr~!) 75.34 50.85 0 49.14 64.15 84.82 726.5
VIIRS Number of Cloud-free Observations Used 10.63 2.659 0 8.897 10.51 13 19

Number of Buildings: 7782, Number of Data Points: 189,625
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Table A.2

Electricity Data Summary: 2.
Model Variable Mean Std. Dev Min. Q25 Median Q75 Max.
Landsat8 Atmospheric Transmittance 0.7969 0.152 0.422 0.6992 0.8697 0.9312 0.9728
Landsat8 Blue 0.09598 0.03913 -0.1532 0.07445 0.09389 0.1154 0.9082
Landsat8 Downwelled Radiance (W -m™2 - sr=' - uym™") 0.7138 0.5583 0.061 0.223 0.451 1.131 1.974
Landsat8 Emissivity Standard Deviation 0.008015 0.002772 0 0.006345 0.007783 0.009504 0.03586
Landsat8 Emissivity of Band 10 0.9676 0.005805 0.9311 0.9644 0.9675 0.9701 0.9904
Landsat8 Green 0.1155 0.0421 -0.1616 0.09061 0.1132 0.1386 0.848
Landsat8 NDVI 0.06535 0.04642 —0.07266 0.0296 0.05593 0.09005 0.5599
Landsat8 Near Infrared 0.1696 0.06102 —0.05958 0.1301 0.1674 0.2107 0.8048
Landsat8 Pixel Distance to Cloud (km) 0.9878 1.158 0.01 0.1545 0.5773 1.377 12.47
Landsat8 Red 0.1227 0.0447 —-0.1569 0.09607 0.1205 0.1474 0.8284
Landsat8 Shortwave Infrared 1 0.1658 0.0557 —0.006333 0.1336 0.1655 0.2014 0.6068
Landsat8 Shortwave Infrared 2 0.1396 0.04805 0.002208 0.1103 0.1383 0.1693 0.4804
Landsat8 Surface Temperature (°C) 22.94 14.83 -14.38 10.61 24.12 36.01 55.28
Landsat8 Surface Temperature Uncertainty (C) 4.314 1.223 1.893 3.326 4.101 5.466 7.64
Landsat8 Thermal Band Converted to Radiance (W - m™2 - sr™' - ym™')  8.356 1.502 4.633 7.084 8.605 9.643 11.86
Landsat8 Ultra Blue, Coastal Aerosol 0.08601 0.03716 -0.1921 0.06665 0.08402 0.1034 0.9147
Landsat8 Upwelled Radiance (W - m=2 - sr~" - ym™") 1.502 1.278 0.093 0.383 0.855 2.394 4.489
NOAA Dewpoint Temperature (C) 7.571 8.703 —-7.155 —-0.5361 9.167 14.89 21.74
NOAA Pressure (Pa) 1.015 -10° 296.6 1.004 -10° 1.013 -10° 1.015 -10° 1.017 -10° 1.022 -10°
NOAA Specific Humidity (kg/kg) 0.007818 0.004044  0.002656 0.003946 0.007772 0.01086 0.01649
NOAA Temperature (C) 13.98 8.54 -1.367 6.119 14.65 21.86 27.12
NOAA Terrain Elevation (m) 17.92 12.97 0 8 16 27 89
NOAA Total Cloud Cover (%) 45.66 8.447 28.12 38.21 47.21 52.39 63.41
NOAA U-component Wind Speed (m/s) 0.6528 0.7238 -1.791 0.117 0.4897 1.242 3.624
NOAA V-component Wind Speed (m/s) —0.07602 0.5462 -3.19 —-0.4717 —-0.1012 0.2279 2.118
NOAA Visability (m) 1.479 -10*  570.8 1.225 -10* 1.435 -10* 1.48 -10* 1.532 -10* 1.619 -10*
NOAA Wind Direction (Deg.) 195 24.47 116.2 177.5 199.7 212 244.1
NOAA Wind Speed (Gust) (m/s) 6.314 1.042 4.154 5.332 6.5 7.109 10.74
NOAA Wind Speed (m/s) 3.007 0.6231 1.71 2.549 2.96 3.306 7.458
Sentinel-2  Aerosols 0.1814 0.01996 0.08526 0.1681 0.1806 0.1937 0.5017
Sentinel-2 Blue 0.1575 0.02361 0.08645 0.1421 0.1562 0.1718 0.3102
Sentinel-2  Green 0.1387 0.02811 0.06213 0.1201 0.1364 0.1564 0.3072
Sentinel-2 ~ NDVI 0.07168 0.08379 —0.1966 0.01509 0.05667 0.1125 0.7589
Sentinel-2 Near Infrared 0.162 0.04612 0.0327 0.1306 0.16 0.1951 0.3585
Sentinel-2  Red 0.1375 0.03381 0.04306 0.1153 0.1351 0.1586 0.4719
Sentinel-2  Red Edge 1 0.1415 0.0343 0.04092 0.1197 0.1396 0.1631 0.481
Sentinel-2  Red Edge 2 0.1616 0.04325 0.03881 0.1324 0.1595 0.1921 0.6953
Sentinel-2 Red Edge 3 0.1724 0.04989 0.03698 0.1373 0.1688 0.2088 0.721
Sentinel-2  Red Edge 4 0.1775 0.05349 0.03305 0.1399 0.1738 0.2167 0.725
Sentinel-2  Shortwave Infrared 1 0.168 0.05076 0.01865 0.1357 0.1657 0.2015 0.4255
Sentinel-2 Shortwave Infrared 2 0.138 0.04368 0.01239 0.1099 0.1347 0.1653 0.4304
Sentinel-2 ~ Water Vapor 0.05969 0.02122 0.0001865 0.04494 0.05769 0.07391 0.2833

Number of Buildings: 7782, Number of Data Points: 189,625
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Table A.3

Electricity Data Summary: 3.
Model  Variable Mean Std. Dev Min. Q25 Median Q75 Max.
EPW Aerosol Optical Depth (thousandths) Daily Maxium 0.07226 0.08398 0 0 0 0.134 0.221
EPW Aerosol Optical Depth (thousandths) Daily Median 0.07207 0.08382 0 0 0 0.133 0.221
EPW Aerosol Optical Depth (thousandths) Daily Minimum 0.07187 0.08362 0 0 0 0.133 0.221
EPW Albedo Daily Maxium 0.0671 0.07277 0 0 0 0.14 0.17
EPW Albedo Daily Median 0.0671 0.07277 0 0 0 0.14 0.17
EPW Albedo Daily Minimum 0.06686 0.07247 0 0 0 0.14 0.17
EPW Atmospheric Station Pressure (Pa) Daily Maxium 1.02 e5 303.5 1.015e5 1.018 e5 1.02 e5 1.023 e5 1.026 e5
EPW Atmospheric Station Pressure (Pa) Daily Median 1.017 e5 304.4 1.005 e5 1.016 e5 1.016 e5 1.018e5 1.024e5
EPW Atmospheric Station Pressure (Pa) Daily Minimum 1.013 e5 267.1 1.001 e5 1.012e5 1.013 e5 1.015e5 1.018 e5
EPW Days Since Last Snowfall Daily Maxium 88 0 88 88 88 88 88
EPW Days Since Last Snowfall Daily Median 88 0 88 88 88 88 88
EPW Days Since Last Snowfall Daily Minimum 88 0 88 88 88 88 88
EPW Dewpoint Temperature (°C) Daily Maxium 10.34 7.822 -3.3 2.8 8.6 17.5 22.2
EPW Dewpoint Temperature (°C) Daily Median 6.861 8.653 -7.225 0 6.7 14.6 20
EPW Dewpoint Temperature (°C) Daily Minimum 3.142 9.581 -14.7 -2.2 2.2 111 18.3
EPW Diffuse Horizontal Illuminance (lux) Daily Maxium 3.27 e4 9694 1.692 e4 2.41 e4 2.945 e4 4.146 e4 4.861 e4
EPW Diffuse Horizontal Illuminance (lux) Daily Median 3296 3512 0 0 1775 7222 1.07 e4
EPW Diffuse Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0
EPW Diffuse Horizontal Radiation (Wh/m?2) Daily Maxium 287.4 82.66 147 215.5 260 359 421
EPW Diffuse Horizontal Radiation (Wh/m?) Daily Median 28.61 30.12 0 0 13 56 90.5
EPW Diffuse Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Direct Normal Illuminance (lux) Daily Maxium 5.335e4 1.376 e4 126 4.353 e4 5.162 e4 6.77 e4 7.15 e4
EPW Direct Normal Illuminance (lux) Daily Median 474.9 784.2 0 0 0 606 3050
EPW Direct Normal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0
EPW Direct Normal Radiation (Wh/m?) Daily Maxium 639.6 94.42 2 608 658 689 745
EPW Direct Normal Radiation (Wh/m?) Daily Median 11.7 18.44 0 0 2.75 14.5 79
EPW Direct Normal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Drybulb Temperature (°C) Daily Maxium 17.82 8.771 2.2 11.1 16.7 26.1 31.1
EPW Drybulb Temperature (°C) Daily Median 14.21 8.274 -1.7 8.3 13.05 22.65 26.4
EPW Drybulb Temperature (°C) Daily Minimum 10.55 8.081 -4.4 4.4 10 18.3 22.8
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Maxium 1364 31.96 1322 1332 1358 1398 1414
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Median 723.5 558 0 93.5 923.8 1322 1336
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Maxium 1008 215.6 612 825 1056 1234 1253
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Median 129.2 132.3 0 1.75 74.75 287.5 343
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Global Horizontal Illuminance (lux) Daily Maxium 7.485 e4 2.186 e4 1.684 e4 6.077 e4 7.936 e4 9.47 e4 1.049 e5
EPW Global Horizontal Illuminance (lux) Daily Median 4366 4700 0 0 2100 8950 1.243 e4
EPW Global Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0

Number of Buildings: 7782, Number of Data Points: 189,625
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Table A.4

Electricity Data Summary: 4.
Model  Variable Mean Std. Dev.  Min. Q25 Median Q75 Max.
EPW Global Horizontal Radiation (Wh/m?) Daily Maxium 670.8 188.8 147 5185  697.5 831 895.5
EPW Global Horizontal Radiation (Wh/m?) Daily Median 40.09 42.64 0 0 19.5 80.5 113.5
EPW Global Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Maxium 365 48.46 288 320 355.5 416 448
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Median 338.2 46.23 257 301.5 329 381.8 417.5
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Minimum  307.5 43.61 231 274 305 347 380
EPW Liquid Precipitation Depth (mm) Daily Maxium 0 0 0 0 0 0 0
EPW Liquid Precipitation Depth (mm) Daily Median 0 0 0 0 0 0 0
EPW Liquid Precipitation Depth (mm) Daily Minimum 0 0 0 0 0 0 0
EPW Liquid Precipitation Quantity (hr) Daily Maxium 1 0 1 1 1 1 1
EPW Liquid Precipitation Quantity (hr) Daily Median 1 0 1 1 1 1 1
EPW Liquid Precipitation Quantity (hr) Daily Minimum 1 0 1 1 1 1 1
EPW Opaque Sky Cover Daily Maxium 9.81 0.4646 8 10 10 10 10
EPW Opaque Sky Cover Daily Median 4.787 1.376 3 3.75 4.75 5.5 10
EPW Opaque Sky Cover Daily Minimum 0.05576 0.3274 0 0 0 0 3
EPW Precipitable Water (mm) Daily Maxium 118.5 124.4 9 18.5 37 1945 400
EPW Precipitable Water (mm) Daily Median 102.5 111.3 7 15.25 33.5 170 390
EPW Precipitable Water (mm) Daily Minimum 87.15 100.4 5 12 28 129 379
EPW Relative Humidity Daily Maxium 82.51 7.217 60 79 83 88.5 100
EPW Relative Humidity Daily Median 61.44 7.404 46.5 57 61 65.75 96
EPW Relative Humidity Daily Minimum 43.7 6.565 31 39 44 49 58
EPW Snow Depth (cm) Daily Maxium 0 0 0 0 0 0 0
EPW Snow Depth (cm) Daily Median 0 0 0 0 0 0 0
EPW Snow Depth (cm) Daily Minimum 0 0 0 0 0 0 0
EPW Total Sky Cover Daily Maxium 10 0 10 10 10 10 10
EPW Total Sky Cover Daily Median 6.474 1.463 3 5.5 7 7.5 10
EPW Total Sky Cover Daily Minimum 0.1337 0.4263 0 0 0 0 3
EPW Visibility (km) Daily Maxium 25.79 5.873 16 24 24.1 32 32.2
EPW Visibility (km) Daily Median 18.45 4.116 3.2 16 19.3 21.6 24.1
EPW Visibility (km) Daily Minimum 11.82 3.626 0.8 8 12.8 14.4 16.8
EPW Wind Direction (deg) Daily Maxium 324.3 16.73 300 310 320 340 360
EPW Wind Direction (deg) Daily Median 203.6 39.26 50 180 200 230 275
EPW Wind Direction (deg) Daily Minimum 46.47 49.47 10 20 20 40 220
EPW Wind Speed (m/s) Daily Maxium 8.239 1.209 5.95 7.2 8.2 9.05 10.8
EPW Wind Speed (m/s) Daily Median 5.22 0.902 3.6 4.6 4.9 5.8 7.7
EPW Wind Speed (m/s) Daily Minimum 2.368 0.6251 1.5 2.1 2.6 2.6 5.2
EPW Zenith Luminance (Cd/m?) Daily Maxium 7414 1395 4160 6522 7610 8434 9980
EPW Zenith Luminance (Cd/m?) Daily Median 792.4 876.7 0 0 474.2 1278 2701
EPW Zenith Luminance (Cd/m?) Daily Minimum 0 0 0 0 0 0 0

Number of Buildings: 7782, Number of Data Points: 189,625
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Table A.5

Natural Gas Data Summary: 1.
Model Variable Mean Std. Dev Min. Q25 Median Q75 Max.
- Building Classification nothing nothing Commercial  nothing nothing nothing Residential
- Daily Natural Gas (MWh) 2.504 3.547 0.002838 0.2737 1.21 3.273 30.74
- Date nothing nothing 2018-01-01 2018-12-01 2019-08-01 2020-05-01 2020-12-01
- Distance to Weather Station (km) 9.238 5.201 0.5509 5.166 8.463 12.48 24.15
- Month 6.413 3.282 1 4 6 9 12
- Property Id 5.921 -10° 3.083 -10° 8604 2.977 106 6.297 -10° 6.794 -10° 16911026
- Zipcode 1.077 -10* 534.8 10,001 1.045 -10* 1.11 -10* 1.123 -10* 11694
CMIP Daily Maximum Temperature (°C) 19.03 8.774 4.541 10.88 20.22 27.3 32.15
CMIP Daily Minimum Temperature (C) 9.517 8.204 —4.057 2.061 9.868 17.39 21.47
CMIP Precipitation (kg -m~2 - s~') 1.538 -107° 6.086 -10~° 1.5-107° 1.197 -1073 1.436 -107° 1.812 1073 3.425 -107°
Dynamic World ~ Coverage by Bare Land 0.05523 0.03133 0.02436 0.03966 0.04444 0.05495 0.3896
Dynamic World  Coverage by Built Environment 0.6679 0.1292 0.0316 0.6758 0.7158 0.7296 0.7654
Dynamic World Coverage by Crops 0.03207 0.005401 0.0192 0.02947 0.03174 0.03354 0.2454
Dynamic World ~ Coverage by Flooded Vegetation 0.03277 0.003425 0.01962 0.03074 0.03265 0.03476 0.08482
Dynamic World Coverage by Grass 0.03026 0.005587 0.02123 0.02749 0.02923 0.03143 0.2987
Dynamic World ~ Coverage by Shrub 0.03756 0.02044 0.02251 0.02885 0.03088 0.03549 0.2397
Dynamic World  Coverage by Snow or Ice 0.04584 0.04318 0.0236 0.03243 0.03527 0.04 0.4828
Dynamic World Coverage by Trees 0.03908 0.0237 0.0229 0.03032 0.03317 0.03887 0.7195
Dynamic World ~ Coverage by Water 0.05455 0.03152 0.02409 0.03867 0.04447 0.0553 0.5136
Dynamic World Likely Coverage Class 5.984 0.3869 0.9036 6 6 6 8
Null Building Floor Area (m?) 1382 1985 13.78 562.6 819.6 1483 8.969 -10*
Null Building Height (m) 76.95 60.04 0 47 64.14 79.74 1019
Null Construction Year 1945 31.52 1706 1925 1931 1962 2022
Null Ground Elevation (m) 53.55 37.97 -4 25 44 72 331
SAR Incidence Angle from Ellipsoid (Deg.) 38.18 2.222 35.37 37.14 37.5 37.81 46.01
SAR Vertical Transmis / Horizontal Receive (dB) =~ —9.069 4.022 -19.7 -12.14 -9.814 —7.049 9.692
SAR Vertical Transmit / Vertical Receive (dB) -1.467 3.3 -12.01 -3.949 -2.238 0.7958 15.59
VIIRS Average DNB Radiance (nW - cm™2 - sr~!) 73.24 47.43 0 48.84 63.45 83.4 711.6
VIIRS Number of Cloud-free Observations Used 10.64 2.641 0 8.978 10.53 13 19

Number of Buildings: 7229, Number of Data Points: 172,213
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Table A.6

Natural Gas Data Summary: 2.
Model Variable Mean Std. Dev Min. Q25 Median Q75 Max.
Landsat8 Atmospheric Transmittance 0.7988 0.151 0.422 0.6998 0.8704 0.9313 0.9728
Landsat8 Blue 0.09622 0.03908 —0.1532 0.0747 0.09395 0.1155 0.9082
Landsat8 Downwelled Radiance (W -m™2 - sr=' - uym™") 0.7063 0.5547 0.061 0.223 0.45 1.127 1.974
Landsat8 Emissivity Standard Deviation 0.008029 0.002719 0 0.00637 0.007785 0.009494 0.03586
Landsat8 Emissivity of Band 10 0.9676 0.005671 0.9311 0.9644 0.9675 0.9701 0.9904
Landsat8 Green 0.1158 0.04195 —-0.1616 0.09095 0.1133 0.1387 0.848
Landsat8 NDVI 0.06635 0.04675 —0.07266 0.03027 0.05711 0.09115 0.5599
Landsat8 Near Infrared 0.1707 0.06057 —0.05958 0.131 0.1683 0.2115 0.8048
Landsat8 Pixel Distance to Cloud (km) 0.991 1.163 0.01 0.1551 0.5767 1.381 12.47
Landsat8 Red 0.1231 0.04451 —-0.1569 0.09644 0.1206 0.1475 0.8284
Landsat8 Shortwave Infrared 1 0.1667 0.05514 —0.006333 0.1347 0.166 0.2019 0.6068
Landsat8 Shortwave Infrared 2 0.1404 0.0477 0.002208 0.1112 0.1388 0.1697 0.4804
Landsat8 Surface Temperature (°C) 22.78 14.78 -14.38 10.45 23.94 35.75 55.28
Landsat8 Surface Temperature Uncertainty (C) 4.31 1.221 1.893 3.324 4.097 5.461 7.64
Landsat8 Thermal Band Converted to Radiance (W - m™2 - sr=! - ym™')  8.341 1.497 4.633 7.068 8.584 9.629 11.86
Landsat8 Ultra Blue, Coastal Aerosol 0.0862 0.03715 -0.1921 0.06683 0.08406 0.1034 0.9147
Landsat8 Upwelled Radiance (W - m=2 - sr~" - ym™") 1.484 1.269 0.093 0.383 0.853 2.385 4.489
NOAA Dewpoint Temperature (C) 7.445 8.669 —7.155 —-0.5827 9.063 14.83 21.74
NOAA Pressure (Pa) 1.015 -10° 297.1 1.004 -10° 1.013 -10° 1.015 -10° 1.017 -10° 1.022 -10°
NOAA Specific Humidity (kg/kg) 0.007752 0.004021 0.002656 0.003929 0.00775 0.01085 0.01649
NOAA Temperature (C) 13.86 8.511 -1.367 6.078 14.58 21.78 27.12
NOAA Terrain Elevation (m) 17.96 13.01 0 8 16 27 89
NOAA Total Cloud Cover (%) 45.66 8.411 28.12 38.24 47.31 52.37 63.41
NOAA U-component Wind Speed (m/s) 0.6603 0.7206 -1.791 0.1302 0.4937 1.248 3.624
NOAA V-component Wind Speed (m/s) —0.08125 0.5402 -3.19 —-0.4722 —0.1056 0.2211 2.118
NOAA Visability (m) 1.479 -10*  571.8 1.225 -10* 1.434 -10* 1.48 -10* 1.531 -10* 1.619 -10*
NOAA Wind Direction (Deg.) 195.2 24.34 116.2 177.6 199.8 212.1 244.1
NOAA Wind Speed (Gust) (m/s) 6.325 1.039 4.154 5.349 6.52 7.116 10.74
NOAA Wind Speed (m/s) 3.014 0.6236 1.71 2.558 2.967 3.312 7.458
Sentinel-2  Aerosols 0.1816 0.01979 0.08526 0.1684 0.1807 0.1938 0.5017
Sentinel-2 Blue 0.1578 0.02339 0.09001 0.1424 0.1563 0.1718 0.3102
Sentinel-2  Green 0.139 0.02783 0.06213 0.1204 0.1365 0.1565 0.3072
Sentinel-2 ~ NDVI 0.0741 0.08397 —0.1966 0.01677 0.05891 0.1146 0.7119
Sentinel-2  Near Infrared 0.163 0.04555 0.0327 0.1315 0.1607 0.1958 0.3585
Sentinel-2  Red 0.1379 0.03351 0.04438 0.1156 0.1352 0.1587 0.4719
Sentinel-2 ~ Red Edge 1 0.142 0.03389 0.04092 0.1202 0.1398 0.1633 0.481
Sentinel-2  Red Edge 2 0.1624 0.04271 0.03881 0.1332 0.16 0.1927 0.6953
Sentinel-2 Red Edge 3 0.1733 0.04934 0.03698 0.1381 0.1694 0.2094 0.721
Sentinel-2  Red Edge 4 0.1785 0.0529 0.03305 0.1408 0.1746 0.2175 0.725
Sentinel-2  Shortwave Infrared 1 0.1689 0.05009 0.01865 0.1366 0.1662 0.2019 0.4255
Sentinel-2 Shortwave Infrared 2 0.1388 0.04326 0.01239 0.1107 0.1352 0.1658 0.4304
Sentinel-2 ~ Water Vapor 0.06035 0.02102 0.0001865 0.0459 0.05822 0.07451 0.2833

Number of Buildings: 7229, Number of Data Points: 172,213
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Table A.7

Natural Gas Data Summary: 3.
Model  Variable Mean Std. Dev Min. Q25 Median Q75 Max.
EPW Aerosol Optical Depth (thousandths) Daily Maxium 0.07481 0.08418 0 0 0 0.134 0.221
EPW Aerosol Optical Depth (thousandths) Daily Median 0.07461 0.08402 0 0 0 0.133 0.221
EPW Aerosol Optical Depth (thousandths) Daily Minimum 0.0744 0.08381 0 0 0 0.133 0.221
EPW Albedo Daily Maxium 0.06965 0.07296 0 0 0 0.14 0.17
EPW Albedo Daily Median 0.06965 0.07296 0 0 0 0.14 0.17
EPW Albedo Daily Minimum 0.06939 0.07265 0 0 0 0.14 0.17
EPW Atmospheric Station Pressure (Pa) Daily Maxium 1.021 e5 302.4 1.015e5 1.018 e5 1.02 e5 1.023 e5 1.026 e5
EPW Atmospheric Station Pressure (Pa) Daily Median 1.017 e5 305.7 1.005 e5 1.016 e5 1.016 e5 1.018e5 1.024e5
EPW Atmospheric Station Pressure (Pa) Daily Minimum 1.013 e5 269 1.001 e5 1.012e5 1.013 e5 1.015e5 1.018 e5
EPW Days Since Last Snowfall Daily Maxium 88 0 88 88 88 88 88
EPW Days Since Last Snowfall Daily Median 88 0 88 88 88 88 88
EPW Days Since Last Snowfall Daily Minimum 88 0 88 88 88 88 88
EPW Dewpoint Temperature (°C) Daily Maxium 10.24 7.801 -3.3 2.8 8.6 17.5 22.2
EPW Dewpoint Temperature (°C) Daily Median 6.743 8.631 -7.225 0 6.35 14.6 20
EPW Dewpoint Temperature (°C) Daily Minimum 3.019 9.557 -14.7 -2.2 2.2 111 18.3
EPW Diffuse Horizontal Illuminance (lux) Daily Maxium 3.25 e4 9656 1.692 e4 2.41 e4 2.945 e4 4.146 e4 4.861 e4
EPW Diffuse Horizontal Illuminance (lux) Daily Median 3269 3514 0 0 1775 7222 1.07 e4
EPW Diffuse Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0
EPW Diffuse Horizontal Radiation (Wh/m?2) Daily Maxium 285.8 82.41 147 215.5 260 359 421
EPW Diffuse Horizontal Radiation (Wh/m?) Daily Median 28.32 30.09 0 0 13 56 90.5
EPW Diffuse Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Direct Normal Illuminance (lux) Daily Maxium 5.373 e4 1.38 e4 126 4.373 e4 5.389 e4 6.77 e4 7.15 e4
EPW Direct Normal Illuminance (lux) Daily Median 474.2 784.7 0 0 0 606 3050
EPW Direct Normal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0
EPW Direct Normal Radiation (Wh/m?) Daily Maxium 639.8 94.65 2 608 661 689 745
EPW Direct Normal Radiation (Wh/m?) Daily Median 11.38 17.99 0 0 2.75 14.5 79
EPW Direct Normal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Drybulb Temperature (°C) Daily Maxium 17.74 8.758 2.2 11.1 16.7 26.1 31.1
EPW Drybulb Temperature (°C) Daily Median 14.12 8.25 -1.7 8.3 13.05 22.65 26.4
EPW Drybulb Temperature (°C) Daily Minimum 10.46 8.061 -4.4 4.4 10 18.3 22.8
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Maxium 1364 31.93 1322 1332 1358 1398 1414
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Median 718 558.5 0 93.5 923.8 1322 1336
EPW Extraterrestrial Direct Normal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Maxium 1006 215.8 612 825 1056 1234 1253
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Median 128 132.2 0 1.75 74.75 287.5 343
EPW Extraterrestrial Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Global Horizontal Illuminance (lux) Daily Maxium 7.454 e4 2.182 e4 1.684 e4 6.077 e4 7.936 e4 9.47 e4 1.049 e5
EPW Global Horizontal Illuminance (lux) Daily Median 4313 4682 0 0 2100 8950 1.243 e4
EPW Global Horizontal Illuminance (lux) Daily Minimum 0 0 0 0 0 0 0

Number of Buildings: 7229, Number of Data Points: 172,213
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A2. Natural gas data summary

Table A.8

Table A.8

Natural Gas Data Summary: 4.
Model  Variable Mean Std. Dev  Min. Q25 Median Q75 Max.
EPW Global Horizontal Radiation (Wh/m?) Daily Maxium 670.8 188.8 147 518.5 697.5 831 895.5
EPW Global Horizontal Radiation (Wh/m?) Daily Median 40.09 42.64 0 0 19.5 80.5 113.5
EPW Global Horizontal Radiation (Wh/m?) Daily Minimum 0 0 0 0 0 0 0
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Maxium 365 48.46 288 320 355.5 416 448
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Median 338.2 46.23 257 301.5 329 381.8 4175
EPW Horizontal Infrared Radiation Intensity (Wh/m?) Daily Minimum  307.5 43.61 231 274 305 347 380
EPW Liquid Precipitation Depth (mm) Daily Maxium 0 0 0 0 0 0 0
EPW Liquid Precipitation Depth (mm) Daily Median 0 0 0 0 0 0 0
EPW Liquid Precipitation Depth (mm) Daily Minimum 0 0 0 0 0 0 0
EPW Liquid Precipitation Quantity (hr) Daily Maxium 1 0 1 1 1 1 1
EPW Liquid Precipitation Quantity (hr) Daily Median 1 0 1 1 1 1 1
EPW Liquid Precipitation Quantity (hr) Daily Minimum 1 0 1 1 1 1 1
EPW Opaque Sky Cover Daily Maxium 9.81 0.4646 8 10 10 10 10
EPW Opaque Sky Cover Daily Median 4.787 1.376 3 3.75 4.75 5.5 10
EPW Opaque Sky Cover Daily Minimum 0.05576  0.3274 0 0 0 0 3
EPW Precipitable Water (mm) Daily Maxium 118.5 124.4 9 18.5 37 194.5 400
EPW Precipitable Water (mm) Daily Median 102.5 111.3 7 15.25 33.5 170 390
EPW Precipitable Water (mm) Daily Minimum 87.15 100.4 5 12 28 129 379
EPW Relative Humidity Daily Maxium 82.51 7.217 60 79 83 88.5 100
EPW Relative Humidity Daily Median 61.44 7.404 46.5 57 61 65.75 96
EPW Relative Humidity Daily Minimum 43.7 6.565 31 39 44 49 58
EPW Snow Depth (cm) Daily Maxium 0 0 0 0 0 0 0
EPW Snow Depth (cm) Daily Median 0 0 0 0 0 0 0
EPW Snow Depth (cm) Daily Minimum 0 0 0 0 0 0 0
EPW Total Sky Cover Daily Maxium 10 0 10 10 10 10 10
EPW Total Sky Cover Daily Median 6.474 1.463 3 5.5 7 7.5 10
EPW Total Sky Cover Daily Minimum 0.1337 0.4263 0 0 0 0 3
EPW Visibility (km) Daily Maxium 25.79 5.873 16 24 24.1 32 32.2
EPW Visibility (km) Daily Median 18.45 4.116 3.2 16 19.3 21.6 24.1
EPW Visibility (km) Daily Minimum 11.82 3.626 0.8 8 12.8 14.4 16.8
EPW Wind Direction (deg) Daily Maxium 324.3 16.73 300 310 320 340 360
EPW Wind Direction (deg) Daily Median 203.6 39.26 50 180 200 230 275
EPW Wind Direction (deg) Daily Minimum 46.47 49.47 10 20 20 40 220
EPW Wind Speed (m/s) Daily Maxium 8.239 1.209 5.95 7.2 8.2 9.05 10.8
EPW Wind Speed (m/s) Daily Median 5.22 0.902 3.6 4.6 4.9 5.8 7.7
EPW Wind Speed (m/s) Daily Minimum 2.368 0.6251 1.5 2.1 2.6 2.6 5.2
EPW Zenith Luminance (Cd/m?) Daily Maxium 7414 1395 4160 6522 7610 8434 9980
EPW Zenith Luminance (Cd/m?) Daily Median 792.4 876.7 0 0 474.2 1278 2701
EPW Zenith Luminance (Cd/m?) Daily Minimum 0 0 0 0 0 0 0

Number of Buildings: 7229, Number of Data Points: 172,213
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Appendix B. Results
B1. Monthly MAE results

Tables B.1-B.8

Table B.1

Individual Monthly Building MAE for Schema S, - Commercial Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 40.1 36.8 35.1 35.2 40.6 41.5 47.9 46.1 42.6 39.4 36.5 36.3
NOAA 40.4 36.5 34.8 35 40 41.3 47.2 45 42.1 39.8 36.4 36.2
CMIP 40.8 37 35.2 35.4 40.7 41.7 47.4 45.3 43.2 40.1 37 36.5
EPW 40.8 36.9 35.3 35.7 40.6 42.5 48.4 46.5 43.2 40.5 37.1 36.6
Landsat8 41 36.9 34.7 34.3 38.6 40.8 46.3 45.1 41.7 39.2 36.5 36.3
VIIRS 39.4 35.9 35.5 34.9 39.4 39.7 46.3 45.3 41 38.7 37 38.7
SAR 39.7 36.3 34.8 34.9 40.2 40.3 46.5 45.1 41.5 38.2 35.8 36.1
Dynamic World 40.6 36.5 34.2 33.7 39.4 41.2 47.4 45.7 41.9 38.1 36.3 37.6
Sentinel-2 40.3 36.2 34.1 34 39.1 41 46.6 45.4 42.2 38.8 36.6 36.5

Table B.2

Individual Monthly Building MAE for Schema S, - Manufacturing Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 40.2 36.6 43.2 39.9 43 42.1 42.2 43 41.8 42.4 41.2 42.4
NOAA 38.8 34.3 40.1 36.2 39.2 45 47.8 48 43.8 39.4 36.8 37.8
CMIP 37.9 34.1 38.9 35.9 39.5 45.5 49 49.1 43.4 39 37.1 38.2
EPW 39.5 35.1 40.9 37.5 40.1 46.3 47.9 48.3 43.5 41 37.8 39
Landsat8 37.8 32.1 37.9 33.3 38.8 42.2 45.6 45.1 44.2 38.1 36.8 36.8
VIIRS 41.7 36.5 43.5 40.5 42.6 44.1 43.8 43.6 41.4 43.2 42.1 42.8
SAR 40.4 35.7 41.9 39 42.7 42.6 42.4 42.9 42 42 40 40.6
Dynamic World 41.9 36.1 41.9 37.2 41.1 41 42.3 42.7 41 42.2 40.4 43
Sentinel-2 39.2 33.2 38.3 34.1 38.6 41.4 45.9 45.5 43.1 42.7 40.7 40.6

Table B.3

Individual Monthly Building MAE for Schema S, - Residential Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 16.7 18 17.9 17.7 18.6 16.1 19 16.9 16.7 18.9 18 16.8
NOAA 15.6 16.5 15.7 15 16.4 17 19.2 17.7 17.5 16.7 15.2 13.7
CMIP 16.1 17.3 16.3 16.1 17.8 18.1 20.2 18.4 18.1 17.8 16.3 15.2
EPW 15.7 16.9 16 15.9 16.9 17.3 19.2 17.5 17.5 17.2 15.7 14.4
Landsat8 15.4 16 15.3 14.3 16.4 15.9 17.9 16.5 17.6 16.1 15.5 14.4
VIIRS 16.4 17.3 17.3 16.7 16.3 15 18.8 16.8 15.7 16.5 17.4 17.1
SAR 15.4 16.8 16.5 16.1 17.4 15.3 19 16.8 15.6 16.9 16.3 15.1
Dynamic World 16.7 17.6 16.8 16.4 17.6 16.2 18.6 16.6 16.9 18.4 17.9 16.6
Sentinel-2 15.9 16.3 15.4 14.4 16.1 15.7 18.1 16.5 17.6 18 17.6 15.5

Table B.4

Individual Monthly Building MAE for Schema S, - Commercial Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 101 89.3 80.7 60.1 59.5 64 67.4 68.6 67 63.2 65.2 90.3
NOAA 99.7 88.7 84.1 63.3 44.2 31.3 30.2 30.8 32.9 45.5 71.5 92.9
CMIP 101 90.1 85.4 63.4 43.9 30.8 29.8 30.9 33.7 47.8 72.4 97.8
EPW 101 91.7 84.4 63.7 44.3 31.1 29.4 29.9 32.6 52.7 71.3 94.2
Dynamic World 98.3 88.4 84.6 65.3 50.6 35.7 36.4 40.8 44.3 53.4 72.1 95.4
Landsat8 99.4 88 83.7 61.3 43.5 30.9 29.1 30 31.4 50.9 75.1 96
SAR 102 89 81 60.8 59.8 65.5 67.8 69.9 67.3 63.6 66.2 89.6
VIIRS 100 89.1 82.8 63.3 48.2 61.3 60 66.6 63.1 54.4 67.9 90.9
Sentinel-2 98.5 87.9 85.2 67.6 47 32 29.9 32.1 37.1 51.6 70.2 94.6
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Table B.5

Individual Monthly Building MAE for Schema S, - Manufacturing Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 78 66.4 62.8 54.5 62.7 72.5 73.3 76.2 71.2 66.4 52.3 71.5
NOAA 88.8 75.7 76.4 59.7 40.6 34.5 34.4 35.4 34.6 43.8 58.1 81.2
CMIP 88 74.3 76.7 57.7 38.9 34 34.5 36.4 34.8 43.6 59.7 84.3
EPW 85.7 77.5 77.1 62.5 41.2 35.5 34.4 35.2 34.7 50.8 61 79.5
Dynamic World 80.1 70.4 71.9 59 47.7 40.1 41.5 47.3 54.4 62.7 59.7 79.3
Landsat8 83.7 73.8 74.9 53 41.1 34.6 33.2 34.8 33 51.5 60.7 83
SAR 79.2 67.8 64.3 54.4 61.1 71.9 72 73.4 69 63.7 51.9 73.1
VIIRS 77.5 65.5 65.9 57.2 45.6 64.8 67.1 74 71 58.5 56.7 72.9
Sentinel-2 81.1 75.7 77.8 68 47.7 35 33.1 37.9 43.5 51.8 58.5 83.7

Table B.6

Individual Monthly Building MAE for Schema S, - Residential Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 112 97.4 85.6 53.8 38.8 44.9 50.1 49.3 47 41 68.3 98.5
NOAA 85.6 75.4 70.2 50.7 34.4 26 23.9 21.4 24.4 37.6 61.2 75.5
CMIP 86.4 76.5 70.4 51.3 34.8 259 23.7 21.6 24 38 61.6 75.1
EPW 86.5 76.1 71.7 51.6 35.1 259 23.7 21.2 24 41.8 62 76
Dynamic World 89.7 79.8 73.2 55.3 37.5 27 25.7 25.2 29.1 41.1 65.8 76.4
Landsat8 87.5 76.4 71.4 52.8 35.1 26 23.8 21.4 24.3 38.8 60.6 75
SAR 111 97.1 84.5 52.8 38.3 44.5 48.9 49.1 46 40.5 67.2 96.4
VIIRS 106 93.5 81 53.4 36 43.3 43.6 47.6 44.1 39.7 68.9 97.5
Sentinel-2 88.3 76.5 71.4 52.6 36 26.1 23.8 21.8 25.9 39.4 63.6 76.4

Table B.7

Individual Monthly Building MAE for Schema S, - Commercial Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 40.5 37 35.4 35.5 40.9 41.6 48 46.4 42.8 39.6 36.9 36.4
NOAA 40.9 36.9 35 35.4 40.5 41.8 47.7 45.6 42.6 40.2 36.7 36.6
CMIP 41.1 37.1 35.1 35.2 40.3 42.3 48.4 46.8 43.3 40.1 36.8 35.9
EPW 41.1 37.7 35.7 35.7 40.9 42.8 48.3 46.6 43.8 41 38 37.2
Landsat8 40.4 36 33.8 33.5 37.4 39.6 45.3 44.3 40.9 38.1 35.9 35.9
VIIRS 40.4 36.7 35.9 35.3 39.8 40 46.6 45.9 41.6 39.4 37.4 39.1
SAR 39.5 36.1 34.6 34.6 39.9 40.1 45.9 45 41.3 38.1 35.4 35.9
Dynamic World 41.5 36.3 34.4 34 39.7 41 46.9 45.7 42.7 39.1 37 40
Sentinel-2 41.3 36.9 35.4 35.2 40.1 42.1 47.2 46.1 43.1 39.9 36.9 37.5

Table B.8

Individual Monthly Building MAE for Schema S, - Manufacturing Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 40.5 36.8 43.4 40 43.5 42.8 42.6 43 41.8 42.7 41.5 42.3
NOAA 39.6 35.1 41.2 37.5 40.1 45.7 48.2 48.1 44.2 40.2 37.8 38.8
CMIP 38.6 34.5 40.8 37 40.4 45.5 48.2 47.8 44.8 39.7 38.6 39.3
EPW 40 35 39.8 36.9 39.1 45.7 49.8 50.5 44.4 40.4 37.9 39.4
Landsat8 37.8 33 37.4 33.8 38.3 40.4 45.6 44.7 42.7 37.9 36.8 37.3
VIIRS 42.3 37.1 44 40.6 42.7 43.8 43.5 44 41.8 42.9 42.5 43.2
SAR 39.4 35.9 41.3 38.8 41.6 41 43.3 42 40.8 40.6 39.7 40
Dynamic World 39.3 33.8 38.8 33.9 37.8 39.6 42.3 42.7 40.8 40.1 39 40.7
Sentinel-2 38.3 34 39.6 34.8 38.9 40.3 44.7 46.5 43.4 42.3 38.9 39.3
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B2. Individual building results

Tables B.9-B.18

Table B.9

Individual Monthly Building MAE for Schema S, - Residential Electricity.
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Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 16.7 17.9 17.8 17.6 18.5 15.9 18.7 16.7 16.6 18.8 17.9 16.5
NOAA 15.6 16.6 15.8 15.2 16.4 17 19.2 17.5 17.5 16.9 15.5 14.1
CMIP 15.8 17.2 16.4 16.2 17.6 17.7 19.7 17.9 18.3 17.4 16.5 15
EPW 15.6 16.7 15.3 14.7 16 16.4 19 17.6 17.7 16.7 15.2 13.3
Landsat8 15.3 16 15.3 14.2 16.1 15.3 17.6 16.4 16.7 15.8 15.3 14.7
VIIRS 16.4 17.3 17.3 16.6 16.5 15 18.6 16.6 15.7 16.6 17.5 17.4
SAR 15.1 16.3 16.1 15.6 16.6 15.1 18.8 16.8 15.2 16.3 15.6 14.6
Dynamic World 16.2 17.1 16.1 15.8 16.8 15.9 18.1 16.2 16.5 17.4 17.3 16
Sentinel-2 15.3 16.1 15.3 14.2 15.8 15.6 17.7 16.3 17 17.1 16.4 14.3

Table B.10

Individual Monthly Building MAE for Schema S, - Commercial Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 101 89.3 80.6 61 60.7 65.6 68.5 70.4 68.1 64.3 66.2 89.2
NOAA 101 90.9 85.3 64.5 44.4 31.4 30.3 31.2 33.4 46.2 72.5 95.3
CMIP 101 90.5 85.2 64.4 43.5 30.5 29.4 30.7 33 44.7 72.5 95
EPW 104 93.4 88 65.5 45 34 30.4 29.9 33.4 50.7 74.7 96.6
Dynamic World 100 91 84.5 65.1 49 36.5 34.6 38.6 42.9 53.9 71.9 95.5
Landsat8 99 88.4 83.4 61.5 43.6 31 29 30.7 31.9 47.3 73.8 94.4
SAR 102 89.4 81.8 61.3 60.2 66.5 56.8 67.6 65.4 63.7 67 89.5
VIIRS 100 88.8 82.1 61.6 47.3 59.3 59.2 64.8 61.2 53.5 66.8 90.6
Sentinel-2 101 90.1 88.1 67.4 47 34.2 31.3 32.6 37 53.1 73.5 95.7

Table B.11

Individual Monthly Building MAE for Schema S, - Manufacturing Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 78.7 68 63.4 55 61.9 71.8 72.9 75.7 70 65.1 52.2 72.6
NOAA 88.3 76.4 77.3 60.8 40 33.8 34.4 35.2 34.1 43.4 59.2 82.5
CMIP 87.4 75.2 78.4 59.2 38.9 32.6 32.7 34.4 33.6 43.8 61.5 81.9
EPW 88.7 77.6 80.7 59.3 41.7 36.3 34 33.6 34.2 47.4 61.1 78.3
Dynamic World 83.8 72.5 73.5 60.8 46.3 43 42.1 47.1 53.6 65 61.5 83.3
Landsat8 86.2 75.4 75.5 54.7 40.7 34 32.5 36.1 33.2 44.1 61.1 83.1
SAR 78.1 67.5 63.3 54.8 60.8 72.2 62.7 69.3 67.5 65.1 51.8 72.3
VIIRS 76.1 65.1 65.4 57.9 46 64.5 68.5 74.7 72.9 57.6 57.3 74.8
Sentinel-2 82.4 72.2 80.5 64.1 45.5 37.5 35 39.4 43.2 54.1 59.7 80.8

Table B.12

Individual Monthly Building MAE for Schema S, - Residential Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 112 98 86 54.2 38.8 44.9 49.8 49.4 46.8 41 68.6 98.6
NOAA 86 75.9 70.1 50.6 34.5 25.8 23.7 21.2 24 37.6 61.3 75.2
CMIP 86.6 76.2 71 51.6 35.4 26 24 21.6 24.4 38.1 62.2 77.1
EPW 86.6 76.7 71.9 51.7 35.4 26.3 23.5 21.1 23.9 38.7 61.8 76.2
Dynamic World 88.5 78.2 73.7 54.7 37.2 27.1 25.3 24.1 28.2 40.8 65.2 76.5
Landsat8 86.9 75.3 70.8 51.5 35 26.2 24 21.5 24.2 38.2 60.1 74.6
SAR 110 95.4 83.3 52.6 38.7 45.4 43.3 46.7 44.6 41.3 66.4 92.2
VIIRS 107 94 81.7 53.9 35.6 42.4 43.1 46.7 43.3 39.2 69.5 98.1
Sentinel-2 88.4 77.5 71.1 52.4 36.6 27 24.3 22 26 39.9 63.4 78.4
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Table B.13

Individual Monthly Building MAE for Schema S; - Commercial Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 39.8 36.3 34.8 35.1 40.4 41.4 47.7 46.2 42.5 39.4 36.1 36.1
NOAA 41.2 37.1 35.3 35.6 40.5 42.3 47.9 45.9 42.7 40.3 36.9 36.2
CMIP 40.9 37.6 35.4 35.1 40.6 41.8 47.9 45.7 43.2 40.2 37 36.5
EPW 40 36.7 34.6 34.8 40.2 41.8 47.9 45.8 43 39.8 36.3 35.9
Landsat8 40 35.7 33.7 33.1 37.2 39.1 45.1 44.1 40.6 38.1 35.4 35.6
VIIRS 40.3 36.7 35.6 35.2 40.3 40.2 47.3 46.1 41.7 39.3 37.1 38.6
SAR 39.4 35.8 34.4 34.8 40.1 39.8 45.8 44.8 41.2 38.2 35.7 35.6
Dynamic World 40.7 36 33.9 32.8 37.8 39.3 45.1 43.8 41 37.4 35.5 37.4
Sentinel-2 40 35.4 34.1 33.7 38.5 40.6 46.3 44.7 41.4 38.1 35.8 36.9

Table B.14

Individual Monthly Building MAE for Schema S; - Manufacturing Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 40.8 37.3 43.2 39.9 42.9 42.1 43.1 43.8 41.4 42.4 40.8 42.2
NOAA 39 34.8 40.5 36.2 39.8 45.3 48.1 47.5 43.9 39.6 37.1 38
CMIP 39.9 35.7 40.8 36.7 38.7 44.8 47.6 47.6 43.3 39 38 39.9
EPW 38.6 34.1 39.6 36.5 39.5 44.7 47.4 47.3 42.1 39.5 36.8 38.3
Landsat8 37.5 32.2 37 32.6 36.1 39.6 44.4 44.6 41.3 37.1 36.2 36.9
VIIRS 41.4 37.3 43.9 40.4 41.8 42.9 42.6 42.6 41.6 42.3 42.7 44.8
SAR 39.1 35.6 41.7 38.5 41.7 41.4 42 42 41.2 40.6 39.6 40.7
Dynamic World 37 31.7 36 31.6 35.3 36.1 39.4 40.8 40.3 39 37 38
Sentinel-2 38.9 33.5 38.5 33.3 37.3 41 46.2 45.9 43.3 42.2 39.4 38.9

Table B.15

Individual Monthly Building MAE for Schema S; - Residential Electricity.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 16.6 17.9 17.7 17.5 18.5 15.9 18.9 16.8 16.6 18.7 17.7 16.6
NOAA 15.8 16.8 15.9 15.2 16.6 16.9 19.4 17.7 17.6 16.8 15.5 13.9
CMIP 15.5 16.7 15.7 15.2 16.1 16.9 18.9 17.5 17.3 16.7 15.6 14.3
EPW 15.8 17.1 16.1 15.7 16.8 17.2 19.2 17.8 17.8 17.5 16 14.5
Landsat8 14.9 15.6 14.8 14 15.5 15.1 17.6 16.1 16.5 15.4 14.6 13.9
VIIRS 16.4 17.5 17.3 16.6 16.6 15.1 18.7 16.8 15.7 16.7 17.1 17
SAR 15.4 16.7 16.3 15.9 17.3 15.3 18.7 16.6 15.7 16.8 16.1 14.9
Dynamic World 15.7 16.5 15.6 15.1 15.7 16 18 16.3 16.5 16.4 16.3 15
Sentinel-2 15.6 16.3 15.5 14.2 15.8 15.7 18 16.8 17.5 17.5 16.8 14.2

Table B.16

Individual Monthly Building MAE for Schema S, - Commercial Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 101 88.8 80.3 60.7 60.7 65.7 68.8 70.5 68.3 64.5 65.2 89.4
NOAA 99.9 89.6 84.1 62.8 43.3 30.3 28.8 29.2 31.8 44.3 71.4 93.7
CMIP 99.7 89.8 82.7 61.6 43.3 30.1 28.3 28.8 32.3 45.7 70.8 93.9
EPW 102 92.9 87.8 65.7 44.9 31.4 28.5 28.7 31.7 48.2 73.3 94.2
Dynamic World 98.1 88.8 82.8 62.8 47.1 35.2 34.5 37.9 42.3 52.1 70.2 92.5
Landsat8 101 91.6 85.6 62.9 45.6 32.7 30.3 31.5 33.2 49.5 75.2 97.3
SAR 100 88.6 80.2 59.9 59 65.9 55.9 66.8 64 63 66 89.8
VIIRS 101 89.4 82.4 62.2 46.1 58 57.6 63.4 59.6 52.4 66.6 91.6
Sentinel-2 101 88.3 84.9 64.3 44.2 31.5 28.3 30 34.8 48.6 71.4 94.8

Table B.17

Individual Monthly Building MAE for Schema S; - Manufacturing Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 79.2 68.4 64.1 54.6 62 71.1 72.3 74.2 69 65.1 52.5 73.7
NOAA 87 74.5 74.7 57.4 39.4 34.2 33.5 34.3 33.5 42.1 58.6 80.1
CMIP 87.1 76.3 77.3 57.5 39.3 33.7 31.9 33.1 33.5 43.3 58.7 81.4
EPW 84.6 75.5 76 60.3 41.7 35 33 32.9 32.3 45.5 60.4 77.3
Dynamic World 80 68.6 70.2 57 47.4 41.1 40.8 46.8 53.3 63.1 57.3 78.6
Landsat8 85.9 75.5 73 54.6 43.7 36.7 34.7 37.7 34.6 47.1 60.4 83.4
SAR 79.9 68.1 64.6 54.9 58.7 70.7 61 67.4 65.7 62.9 52.7 73.9
VIIRS 78.5 66.4 67.8 59.3 47 64.6 69.2 75.3 73.3 59.7 57.4 74.9
Sentinel-2 81.6 72.9 77.7 63.8 39.8 33.6 31.3 34.3 40.2 51.7 57.7 81.9
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Table B.18
Individual Monthly Building MAE for Schema S; - Residential Natural Gas.
Model 1 2 3 4 5 6 7 8 9 10 11 12
Null 112 97.9 86 53.8 39.1 45.4 50.4 49.9 47.3 41.3 68.6 98.7
NOAA 84.7 74.4 69.6 50.6 34.4 25.8 23.6 21.4 24 37.2 60.9 74.6
CMIP 85.2 74.6 69.9 51.3 34.8 25.7 23.4 21 24 37.9 61.6 75.9
EPW 86.1 76.2 71.2 51.8 35 25.7 23.5 20.9 23.8 39.3 61.2 76.6
Dynamic World 88.8 78.2 73 54.4 36 26.2 24.6 235 27.3 40.4 64.5 76.2
Landsat8 88.1 76.5 71.4 52.4 35.4 26.2 24.2 21.9 24.7 38.4 60.7 75.3
SAR 109 95.4 82.9 52.3 38.3 45.4 42.9 46.1 44.2 41.2 65.9 91.8
VIIRS 107 94.2 81.5 53.8 36.3 42.9 43.2 46.9 43.5 39.6 69.4 98.1
Sentinel-2 86.4 76.5 70.6 51.9 35.5 26.4 23.8 21.1 25 39.3 62.3 77.2
Table B.19
Individual Building Results for Schema S,.

Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE

Electricity VIIRS 94.01 —-0.8161 25.79 65.26 50.17

Electricity SAR 94.22 1.381 25.56 65.26 50.28

Electricity Sentinel-2 94.27 -0.1591 25.58 65.26 50.3

Electricity Landsat8 94.41 0.361 25.25  65.26 50.38

Electricity Dynamic World 95.3 —-0.1949 26.06 65.26 50.85

Electricity NOAA 95.81 —-0.3424 25.72 65.26 51.13

Electricity CMIP 96.74 —-2.388 26.47 65.26 51.63

Electricity EPW 96.88 -1.624 26.24 65.26 51.7

Electricity Null 97.56 0.4302 26.54 65.26 52.06

Natural Gas NOAA 115 2.838 50.04 71.38 87.05

Natural Gas CMIP 115.2 1.427 50.46 71.38 87.26

Natural Gas EPW 115.5 0.1371 50.92 71.38 87.46

Natural Gas Landsat8 115.9 3.42 50.49 71.38 87.73

Natural Gas Sentinel-2 116.4 2.218 51.54  71.38 88.11

Natural Gas Dynamic World  119.8 2.438 53.78 71.38 90.71

Natural Gas VIIRS 128.1 1.143 62.83 71.38 97

Natural Gas SAR 129.9 0.5474 65.22 71.38 98.37

Natural Gas Null 130.6 1.145 65.56 71.38 98.92

B3. Aggregated results

Tables B.20, B.22, B.23, B.25, B.26, B.27.

Table B.20
Individual Building Results for Schema S,.
Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE
Electricity Landsat8 93.1 1.477 24.76 65.26 49.68
Electricity VIIRS 93.6 -1.088 25.97 65.26 49.95
Electricity SAR 93.85 1.967 25.18 65.26 50.08
Electricity Dynamic World 95.44 -0.693 25.78 65.26 50.93
Electricity NOAA 95.76 —0.4093 25.97 65.26 51.1
Electricity Sentinel-2 95.78 1.646 25.6 65.26 51.11
Electricity Null 96.72 0.2819 26.56 65.26 51.62
Electricity EPW 96.76 -1.207 26.08 65.26 51.64
Electricity CMIP 97.31 —0.4502 26.47 65.26 51.93
Natural Gas Landsat8 115.1 3.197 50.1 71.38 87.16
Natural Gas NOAA 115.4 2.393 50.29 71.38 87.4
Natural Gas EPW 115.9 —0.9957 51.26 71.38 87.74
Natural Gas CMIP 116.1 0.9616 50.5 71.38 87.88
Natural Gas Sentinel-2 117.4 1.153 52.21 71.38 88.87
Natural Gas Dynamic World  119.7 1.096 53.45 71.38 90.6
Natural Gas VIIRS 128 3.495 62.45 71.38 96.9
Natural Gas SAR 128.9 1.157 63.99 71.38 97.6
Natural Gas Null 131.6 0.6646 65.89 71.38 99.63

23



T.R. Dougherty and R.K. Jain

Table B.21

Individual Building Results for Schema S;.
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Energy Class Model CV(RMSE) NMBE MAE CV(STD) RMSE
Electricity Landsat8 92.58 2.102 24.42  65.26 49.4
Electricity SAR 93.41 1.423 25.34 65.26 49.85
Electricity Dynamic World 93.9 2.243 24.87 65.26 50.11
Electricity Sentinel-2 94.01 —0.2982 25.27 65.26 50.17
Electricity VIIRS 94.46 0.2878 25.99 65.26 50.41
Electricity NOAA 95.94 —0.5896 26.04 65.26 51.2
Electricity CMIP 96.17 —-0.0328 25.94 65.26 51.32
Electricity EPW 96.51 —0.4866 26.05 65.26 51.5
Electricity Null 97.03 1.104 26.4 65.26 51.78
Natural Gas NOAA 114.3 2.472 49.56 71.38 86.59
Natural Gas CMIP 114.5 1.811 49.7 71.38 86.69
Natural Gas EPW 115.5 0.09753 50.64 71.38 87.47
Natural Gas Sentinel-2 115.8 2.914 50.75  71.38 87.68
Natural Gas Landsat8 115.9 1.43 51.06  71.38 87.73
Natural Gas Dynamic World ~ 117.9 3.662 52.51 71.38 89.26
Natural Gas VIIRS 128.3 4.012 62.45 71.38 97.12
Natural Gas SAR 128.4 1.683 63.45 71.38 97.22
Natural Gas Null 131.1 0.07637 65.98 71.38 99.26

Table B.22

Aggregated Building Results for Schema S;.
Energy Class ~ Model CV(RMSE)  NMBE MAE CV(STD) RMSE
Electricity Landsat8 27.01 -9.299 72.95 350.6 86.61
Electricity NOAA 27.21 -10.31 73.27 350.6 81.25
Electricity Sentinel-2 28.58 -7.669 7496  350.6 85.67
Electricity EPW 28.63 -11.3 77.21 350.6 89.44
Electricity SAR 29.06 -5.232 76.87 350.6 93.86
Electricity CMIP 29.39 -14.17 71.43 350.6 88.65
Electricity Dynamic World  30.56 -8.163 85.37  350.6 95.62
Electricity VIIRS 31.3 -8.132 84.8 350.6 97.36
Electricity Null 31.41 -8.751 78.07 350.6 93.07
Natural Gas EPW 41.5 -5.591 153.3 141 203.4
Natural Gas CMIP 42.63 -4.474 148.4 141 191
Natural Gas NOAA 44.82 -3.33 133.5 141 179.4
Natural Gas Landsat8 46.51 —-2.409 150.4 141 188.8
Natural Gas Sentinel-2 48.24 -2.017 159.6 141 211.3
Natural Gas Dynamic World ~ 48.95 —1.401 185 141 220.9
Natural Gas VIIRS 71.75 -1.378 262.2 141 307.7
Natural Gas Null 76.94 —-4.749 274.6 141 323.7
Natural Gas SAR 79.19 -5.245 274.3 141 323.6

Table B.23

Aggregated Building Results for Schema S,.
Energy Class ~ Model CV(RMSE)  NMBE MAE CV(STD) RMSE
Electricity Landsat8 25.98 -5.899 72.71 350.6 83.3
Electricity EPW 28.37 -8.728 71.93 350.6 80.63
Electricity NOAA 28.56 -10.17 76.15 350.6 87.3
Electricity CMIP 28.57 -12.9 73.78 350.6 85.17
Electricity Dynamic World  28.71 —-8.081 80.2 350.6 93.86
Electricity SAR 28.84 —4.483 74.28 350.6 88.93
Electricity Sentinel-2 29.03 -5.309 80.1 350.6 90.11
Electricity VIIRS 31.22 -10.73 79.99 350.6 95.42
Electricity Null 31.51 -9.297 80.04 350.6 93.67
Natural Gas CMIP 42.28 -4.95 145.5 141 194
Natural Gas Landsat8 43.42 -0.1227 145.2 141 190.6
Natural Gas EPW 44.21 —-7.446 156.7 141 196.9
Natural Gas NOAA 45.13 —4.095 137.5 141 179
Natural Gas Sentinel-2 49.13 —-5.049 170.8 141 209.9
Natural Gas Dynamic World  50.16 —-3.409 172.4 141 214.9
Natural Gas VIIRS 71.41 -2.03 257.6 141 307.2
Natural Gas SAR 74.12 -4.754 265.9 141 331.5
Natural Gas Null 78.92 -6.163 275.6 141 333.7
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Table B.24

Aggregated Building Results for Schema S;.
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Energy Class ~ Model CV(RMSE)  NMBE MAE CV(STD)  RMSE
Electricity Landsat8 25.7 -6.813 69.19  350.6 79.49
Electricity Dynamic World  26.65 —4.752 70.12  350.6 85.51
Electricity Sentinel-2 26.95 —-8.267 77.69  350.6 84.4

Electricity NOAA 27.68 -11.47 72.87  350.6 81.94
Electricity EPW 28.26 -10.49 72.63  350.6 84.19
Electricity CMIP 28.42 -9.798 76.31  350.6 85.54
Electricity SAR 29.13 -6.787 76.86 350.6 92.88
Electricity VIIRS 31.62 -8.535 79.7 350.6 95.15
Electricity Null 31.88 —-8.094 78.78  350.6 95.74
Natural Gas NOAA 42.52 -1.922 135.1 141 179.6
Natural Gas CMIP 43.1 -3.032 1327 141 167.4
Natural Gas EPW 44.3 —-5.405 146.6 141 189.9
Natural Gas Landsat8 45.65 -3.373 156.5 141 198.4
Natural Gas Dynamic World  46.1 -0.3658 170.4 141 215.3
Natural Gas Sentinel-2 46.23 —-2.027 150.1 141 192.8
Natural Gas VIIRS 70.54 -1.666 249.3 141 307.1
Natural Gas SAR 74.13 -2.701 264.5 141 312.5
Natural Gas Null 77.5 —-5.936 274 141 329.3
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Table B.25
Individual Building Results by Zone for Schema S, .

Energy Class  Zone Model CV(RMSE)  NMBE CV(STD) RMSE  MAE

Electricity Commercial SAR 79.12 9.463 78.14 65.32 39.36
Electricity Commercial VIIRS 79.19 6.623 78.14 65.38 39.46
Electricity Commercial Sentinel-2 79.25 9.735 78.14 65.43 39.5

Electricity Commercial Landsat8 79.78 8.726 78.14 65.86 39.54
Electricity Commercial Dynamic World  80.02 10.12 78.14 66.07 39.58
Electricity Commercial CMIP 80.77 9.118 78.14 66.68 40.35
Electricity Commercial NOAA 81.08 9.611 78.14 66.94 39.86
Electricity Commercial Null 81.22 11.44 78.14 67.06 40.15
Electricity Commercial EPW 81.98 9.139 78.14 67.68 40.69
Electricity Manufacturing ~ Landsat8 122.6 -3479  77.07 50.58 39.12
Electricity Manufacturing ~ NOAA 124.1 -38.87  77.07 51.2 40.66
Electricity Manufacturing ~ CMIP 124.2 —-44.43  77.07 51.22 40.64
Electricity Manufacturing  Sentinel-2 125.2 -38.02 77.07 51.65 40.31
Electricity Manufacturing ~ Dynamic World ~ 125.9 -40.14  77.07 51.95 40.8

Electricity Manufacturing ~ EPW 126.8 —42.41 77.07 52.3 41.46
Electricity Manufacturing ~ Null 127.9 -38.26  77.07 52.76 41.5

Electricity Manufacturing ~ VIIRS 130.6 -39.57  77.07 53.88  42.14
Electricity Manufacturing ~ SAR 130.8 -36.38  77.07 53.97 41.05
Electricity Residential VIIRS 102.1 -6.586  61.95 38.64 16.75
Electricity Residential SAR 102.8 -5.269  61.95 38.92 16.51
Electricity Residential Landsat8 103 -6.867  61.95 38.98 16.06
Electricity Residential Sentinel-2 103.4 -9.035  61.95 39.12 16.53
Electricity Residential NOAA 104.3 -9.233  61.95 39.48 16.53
Electricity Residential Dynamic World  104.8 -9.405  61.95 39.65 17.24
Electricity Residential EPW 105.4 -11.31 61.95 39.87 16.86
Electricity Residential CMIP 107.7 -12.88  61.95 40.77 17.48
Electricity Residential Null 108.8 -9.749  61.95 41.17 17.65
Natural Gas Commercial CMIP 151.3 -21.37 58.14 95.31 57.86
Natural Gas Commercial Landsat8 151.5 -17.54  58.14 95.41 57.32
Natural Gas Commercial NOAA 151.5 -18.37 58.14 95.42 57.01
Natural Gas Commercial EPW 152 —-21.51 58.14 95.73 57.99
Natural Gas Commercial Sentinel-2 153.8 -19.73 58.14 96.91 58.73
Natural Gas Commercial Dynamic World 157.2 -20.73 58.14 99.04 61.44
Natural Gas Commercial VIIRS 166.1 -20.92 58.14 104.6 68.94
Natural Gas Commercial Null 168.9 —20.86 58.14 106.4 71.66
Natural Gas Commercial SAR 170.1 -22.15 58.14 107.1 72.2

Natural Gas Manufacturing ~ CMIP 174.9 -20.18  52.65 97.77 54.68
Natural Gas Manufacturing NOAA 175.4 -21.23 52.65 98.04 54.84
Natural Gas Manufacturing ~ Landsat8 176 -16.72 52.65 98.39 54.39
Natural Gas Manufacturing EPW 176.9 -24.29 52.65 98.91 56.18
Natural Gas Manufacturing  Sentinel-2 178.7 -24.31 52.65 99.88 57.73
Natural Gas Manufacturing ~ Dynamic World 181 -23.5 52.65 101.2 59.38
Natural Gas Manufacturing ~ VIIRS 187.5 -21.12  52.65 104.8 63.78
Natural Gas Manufacturing ~ SAR 189 -17.47  52.65 105.6 65.77
Natural Gas Manufacturing ~ Null 189 -20.79  52.65 105.7 66.33
Natural Gas Residential NOAA 97.88 11.94 80.15 81.69 46.23
Natural Gas Residential EPW 98.39 9.419 80.15 82.12 47.03
Natural Gas Residential CMIP 98.4 11.01 80.15 82.12 46.49
Natural Gas Residential Sentinel-2 98.78 11.71 80.15 82.44 47.53
Natural Gas Residential Landsat8 99.22 12.24 80.15 82.8 46.82
Natural Gas Residential Dynamic World  102.4 12.36 80.15 85.44 49.58
Natural Gas Residential VIIRS 110.7 10.48 80.15 92.37 59.73
Natural Gas Residential SAR 111.6 9.917 80.15 93.15 61.71
Natural Gas Residential Null 113.2 10.44 80.15 94.46 62.47
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Table B.26
Individual Building Results by Zone for Schema S,.

Energy Class  Zone Model CV(RMSE)  NMBE CV(STD) RMSE  MAE

Electricity Commercial Landsat8 78.28 10.03 78.14 64.63 38.65
Electricity Commercial SAR 78.93 9.259 78.14 65.17 39.09
Electricity Commercial VIIRS 79.66 6.834 78.14 65.76 39.97
Electricity Commercial Dynamic World  81.05 7.678 78.14 66.91 39.99
Electricity Commercial Null 81.3 11.49 78.14 67.12 40.38
Electricity Commercial EPW 81.62 8.005 78.14 67.39 41.05
Electricity Commercial NOAA 81.67 10.06 78.14 67.42  40.32
Electricity Commercial Sentinel-2 82.25 10.56 78.14 67.9 40.39
Electricity Commercial CMIP 82.55 11.7 78.14 68.15 40.55
Electricity Manufacturing ~ Dynamic World ~ 122.2 -34.2 77.07 50.4 38.99
Electricity Manufacturing ~ Landsat8 122.9 -28.71 77.07 50.71 38.83
Electricity Manufacturing ~ NOAA 126 -40.67  77.07 51.98 41.42
Electricity Manufacturing  Sentinel-2 126.2 -34.31 77.07 52.05 40.12
Electricity Manufacturing ~ CMIP 126.3 -44.73  77.07 52.08  41.32
Electricity Manufacturing ~ SAR 127.1 -34.41 77.07 52.41 40.4

Electricity Manufacturing ~ EPW 128.1 —40.7 77.07 52.84 41.55
Electricity Manufacturing ~ Null 128.2 -40.68  77.07 52.89 41.75
Electricity Manufacturing ~ VIIRS 130.6 -41.84 77.07 53.85 42.35
Electricity Residential VIIRS 99.88 -7.279  61.95 37.8 16.75
Electricity Residential Sentinel-2 101.5 -6.193  61.95 38.41 16.07
Electricity Residential Landsat8 102.2 -6.422  61.95 38.66 15.79
Electricity Residential SAR 102.6 -3.831  61.95 38.81 16.09
Electricity Residential NOAA 102.7 -9.788  61.95 38.87 16.62
Electricity Residential Dynamic World ~ 103.5 -8.073  61.95 39.17 16.69
Electricity Residential CMIP 105.5 -11.54 61.95 39.93 17.31
Electricity Residential EPW 105.6 -9.098  61.95 39.96 16.38
Electricity Residential Null 106.1 -9.942  61.95 40.16 17.52
Natural Gas Commercial Landsat8 150.4 -18.21 58.14 94.74 56.88
Natural Gas Commercial CMIP 150.9 -21.34  58.14 95.06 57.33
Natural Gas Commercial NOAA 152.8 -19.86 58.14 96.26 57.88
Natural Gas Commercial EPW 153.4 -25.76  58.14 96.62 59.51
Natural Gas Commercial Sentinel-2 156 —23.46 58.14 98.24 60.14
Natural Gas Commercial Dynamic World 158.5 -21.78  58.14 99.82 61.25
Natural Gas Commercial VIIRS 164.2 -17.07  58.14 103.4 67.88
Natural Gas Commercial SAR 169.3 -20.61 58.14 106.6 71.11
Natural Gas Commercial Null 170.8 -22.7 58.14 107.6 72.43
Natural Gas Manufacturing ~ NOAA 177 -19.48  52.65 98.94 55.05
Natural Gas Manufacturing CMIP 177 -21.22 52.65 98.95 54.61
Natural Gas Manufacturing ~ EPW 177.3 -22.67  52.65 99.11 55.95
Natural Gas Manufacturing Landsat8 177.4 -15.75 52.65 99.18 54.14
Natural Gas Manufacturing ~ Sentinel-2 180.4 -23.09  52.65 100.9 57.84
Natural Gas Manufacturing ~ Dynamic World  183.3 —26.45 52.65 102.5 60.91
Natural Gas Manufacturing ~ VIIRS 187.2 -22.3 52.65 104.6 64.05
Natural Gas Manufacturing SAR 188.4 -15.64 52.65 105.3 64.64
Natural Gas Manufacturing ~ Null 190.7 -18.48  52.65 106.6 66.21
Natural Gas Residential NOAA 97.91 11.78 80.15 81.72 46.18
Natural Gas Residential EPW 98.32 9.323 80.15 82.06 46.82
Natural Gas Residential Landsat8 98.46 12.13 80.15 82.17 46.45
Natural Gas Residential Sentinel-2 99.27 11.54 80.15 82.85 47.87
Natural Gas Residential CMIP 99.69 10.38 80.15 83.2 46.81
Natural Gas Residential Dynamic World  101.5 10.99 80.15 84.7 49.05
Natural Gas Residential SAR 110.5 10.12 80.15 92.18 60.41
Natural Gas Residential VIIRS 111.3 12.44 80.15 92.89 59.64
Natural Gas Residential Null 113.7 10.34 80.15 94.9 62.62
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Table B.27
Individual Building Results by Zone for Schema S;.

Energy Class  Zone Model CV(RMSE)  NMBE CV(STD) RMSE  MAE
Electricity Commercial Landsat8 77.77 9.675 78.14 64.21 38.38
Electricity Commercial Dynamic World  78.48 9.921 78.14 64.79 38.55
Electricity Commercial Sentinel-2 78.84 8.75 78.14 65.09 39.02
Electricity Commercial SAR 79.19 9.537 78.14 65.38 39.06
Electricity Commercial VIIRS 80.39 8.637 78.14 66.37 40.03
Electricity Commercial EPW 80.78 10.61 78.14 66.69 40.09
Electricity Commercial Null 80.97 11.79 78.14 66.84 39.96
Electricity Commercial CMIP 81.1 10.2 78.14 66.96 40.46
Electricity Commercial NOAA 81.39 9.737 78.14 67.19  40.49
Electricity Manufacturing ~ Dynamic World ~ 116.6 -28.07  77.07 48.1 36.83
Electricity Manufacturing ~ Landsat8 119.4 -27.73  77.07 49.27 37.93
Electricity Manufacturing ~ SAR 124.7 -35.63  77.07 51.42 40.34
Electricity Manufacturing ~ EPW 125 -38.26  77.07 51.54 40.39
Electricity Manufacturing ~ NOAA 125.4 -39.51  77.07 51.74  40.88
Electricity Manufacturing CMIP 125.9 —40.25 77.07 51.93 40.97
Electricity Manufacturing  Sentinel-2 126 -36.41 77.07 51.98 39.94
Electricity Manufacturing ~ VIIRS 127.2 —43.02  77.07 52.46  41.95
Electricity Manufacturing ~ Null 129.8 -35.07  77.07 53.56 41.62
Electricity Residential SAR 101 -5.33 61.95 38.22 16.38
Electricity Residential VIIRS 101.4 -6.206  61.95 38.35 16.78
Electricity Residential Landsat8 102.1 -4.617  61.95 38.62 15.44
Electricity Residential Sentinel-2 103.4 -8.284  61.95 39.11 16.31
Electricity Residential NOAA 103.9 -9.905  61.95 39.33 16.69
Electricity Residential Dynamic World  104.8 -4.563  61.95 39.67 16.18
Electricity Residential CMIP 105.2 -9.12 61.95 39.79 16.52
Electricity Residential EPW 106.9 -10.85  61.95 40.46 16.96
Electricity Residential Null 107.6 -8.893  61.95 40.7 17.5
Natural Gas Commercial CMIP 149.4 -19.98 58.14 94.1 56.27
Natural Gas Commercial NOAA 150.9 -17.91 58.14 95.04 56.43
Natural Gas Commercial Landsat8 152.6 -22.25 58.14 96.14 58.68
Natural Gas Commercial Sentinel-2 152.7 -18.65 58.14 96.22 57.6
Natural Gas Commercial EPW 153.3 -21.11 58.14 96.56 58.2
Natural Gas Commercial Dynamic World 155.4 -17.33 58.14 97.87 59.72
Natural Gas Commercial VIIRS 164.2 -14.46  58.14 103.4 67.34
Natural Gas Commercial SAR 168 -19.26 58.14 105.8 70.08
Natural Gas Commercial Null 169.3 —-23.53 58.14 106.6 72.33
Natural Gas Manufacturing ~ NOAA 176.3 -17.31 52.65 98.56 53.65
Natural Gas Manufacturing CMIP 177.4 -18.34 52.65 99.19 54.04
Natural Gas Manufacturing ~ EPW 177.5 -22.8 52.65 99.21 54.41
Natural Gas Manufacturing ~ Landsat8 177.9 -17.15  52.65 99.47 55.02
Natural Gas Manufacturing ~ Dynamic World ~ 178.5 -24.1 52.65 99.78 58.5
Natural Gas Manufacturing  Sentinel-2 178.6 —-19.03 52.65 99.86 55.53
Natural Gas Manufacturing ~ VIIRS 187.3 —24.5 52.65 104.7 65.18
Natural Gas Manufacturing SAR 188.3 -13.44 52.65 105.3 64.2
Natural Gas Manufacturing ~ Null 191.8 -16.89  52.65 107.2 66.15
Natural Gas Residential NOAA 97.17 11.06 80.15 81.09 45.85
Natural Gas Residential EPW 97.81 9.144 80.15 81.63 46.62
Natural Gas Residential CMIP 97.95 10.94 80.15 81.75 46.13
Natural Gas Residential Sentinel-2 98.4 12.05 80.15 82.13 47.01
Natural Gas Residential Landsat8 98.59 11.2 80.15 82.28 47
Natural Gas Residential Dynamic World ~ 100.4 12.86 80.15 83.82 48.5
Natural Gas Residential SAR 110.3 10.26 80.15 92.04 60.11
Natural Gas Residential VIIRS 111.7 12.3 80.15 93.24 59.82
Natural Gas Residential Null 113.6 9.737 80.15 94.77 62.82
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B4. Individual building results by zone

Figures B.1 and B.2

model by zone
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Mean Absolute Error by Month, Model, and Building Class
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Fig. B.1. MAE bins showing mean absolute error by month, model, and building class. From schema S, .
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model by zone
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Mean Absolute Error by Month, Model, and Building Class

VIIRS
Sentinel-2
SAR
Null
NOAA
Landsat8
EPW
Dynamic World
CMIP
VIIRS
Sentinel-2
100
cmip — |
VIIRS 0
Sentinel-2
SAR
Null
NOAA
Landsat8
EPW
Dynamic World
CMIP

SAR
1 23456 7 8 9101112 123456 7 8 9101112

Null

NOAA
Landsat8
EPW

Dynamic World -

Electricity Natural Gas

month by fuel

Fig. B.2. MAE bins showing mean absolute error by month, model, and building class. From schema S,.
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B5. Monthly errors - Mean absolute value

Figures B.3

model by zone
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Mean Absolute Error by Month, Model, and Building Class
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Fig. B.3. MAE bins showing mean absolute error by month, model, and building class. From schema S;.
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